[Home]
[
prev
] [
up
] [
next
] ((combinat.tex))
Contents
1
To Do
2
Introduction
3
Overview of the
C
o
m
b
i
n
a
t
Files
3.1
The include Subdirectory
3.2
The src Subdirectory
3.2.1
Species and Generating Series
3.2.2
Tools for Polynomials and Power Products
3.2.3
Tools for Small Integers
3.2.4
Compatibility with Axiom
3.3
The test Subdirectory
4
L
A
T
E
X
Style Customization
4.1
Commands for Common
C
o
m
b
i
n
a
t
Names
4.2
Environments for Collaboration
4.3
Mathematical Notation
4.3.1
Common Sets
4.3.2
Set Notation
4.3.3
Math-Operators
4.3.4
Functorial Composition
4.3.5
Theorem-like Environments
5
User Customization of the Build Process
5.1
Information about the Project
5.2
Variants of the Libraries
5.3
Adding New Directories
6
The Main Executable
7
Common
A
l
d
o
r
Include File for
C
o
m
b
i
n
a
t
7.1
Global Macros
7.2
Support for Tracing Domain Instantiations
7.3
Loading the
C
o
m
b
i
n
a
t
Library
7.4
Axiom-Aldor compatibility
8
Combinatorial Species
8.1
Combinatorial Species and their Modelling in Aldor
8.2
The Label Type
8.3
The
A
l
d
o
r
Category of Combinatorial Species
8.3.1
Structures and Isomorphismtypes
8.4
Basic Species
8.4.1
The Empty Set Species
8.4.2
The Singleton Species
8.4.3
The Characteristic Species
8.4.4
The Species of Linear Orders
8.4.5
The Species of Cyclic Permutations
8.4.6
The Species of Permutations
8.5
Turn Some Existing Aldor Domains into Species
8.5.1
The Set Species
8.6
Restricted Species
8.7
Drop Empty Structure from a Species
8.8
The Species of Subsets
8.9
Partition Species
8.9.1
Restricted Growth Functions
8.9.2
Generating Set Partitions
8.9.3
Generating Integer Partitions
8.9.4
The Number of Set Partitions
8.9.5
The Number of Integer Partitions
8.10
Addition of Species
8.11
Product of Species
8.12
Composition of Species
8.13
Functorial Composition of Species
8.14
Some Further Ideas
9
Formal Power Series
9.1
FormalPowerSeriesCategory
9.1.1
Constructor Functions
9.1.2
Access Functions
9.1.3
Coercion Functions
9.1.4
Destructive Functions
9.1.5
Arithmetic
9.2
FormalPowerSeries
9.2.1
Representation
9.2.2
Initialization of the Representation
9.2.3
Computation of an Approximate Order
9.2.4
Zero Recognition
9.2.5
Series Constructors
9.2.6
Series Selector Functions
9.2.7
Creating New Series for Recursive Use
9.2.8
Series Addition
9.2.9
Finite Sum
9.2.10
Potentially Infinite Sum
9.2.11
Series Multiplication
9.2.12
Potentially Infinite Products
9.2.13
Series Composition
9.2.14
Series Differentiation
9.2.15
Series Integration
9.2.16
Series Exponentiation
9.3
SeriesOrder
9.3.1
Constructors
9.3.2
Coercion
9.3.3
Equality
9.3.4
Arithmetic
10
Generating Series
10.1
OrdinaryGeneratingSeries
10.2
ExponentialGeneratingSeries
10.3
CycleIndexSeries
10.3.1
Definitions
10.3.2
Implementation
11
Binomials and Multinomials
11.1
The Multinomial Package
11.2
Binomial Coefficients
11.3
Multinomial Coefficients
12
Streams or Infinite Arrays
12.1
The Representation of DataStream
12.2
Constructor Functions of DataStream
12.3
Selector Functions
12.4
Access Functions
12.5
Destructive Functions
12.6
DataStream Modification
13
Infinite Lists
14
A Domain for Expressions of Species
14.1
The Representation of SpeciesExpressions
15
A Very Simple Parser
16
A Simple Interpreter
16.1
Functions from LabelType to CombinatorialSpecies
16.2
Translating Grammars to Combinatorial Species
17
Sparse Indexed Structures
17.1
IndexedFreeAdditiveCombinationType
17.2
SparseAdditiveArray
17.3
IndexedFreeArithmeticType
17.4
SparseFiniteMonoidRing
18
SparseIndexedPowerProduct
19
SparseDistributedPolynomial
20
Hardcodes Primes That Fit Into 16 Bit
21
Functions on 32-bit Integers
22
Emulation of the
A
l
g
e
b
r
a
Library API via
A
x
i
o
m
22.1
Basic
A
x
i
o
m
Types Extended
22.1.1
ACCharacter
22.1.2
ACString
22.1.3
ACInteger
22.1.4
ACMachineInteger
22.1.5
ACSymbol
22.1.6
ACList
22.2
AC Integer Tools
22.3
ACPrimitiveArray
22.4
Array
22.5
ACFraction
23
More Emulation of the
A
l
g
e
b
r
a
Library API via
A
x
i
o
m
23.1
Partial
23.2
Generator
23.3
Generator Exception
23.4
Expressions
24
Test Basic Combinatorial Species
24.1
Test EmptySetSpecies
24.2
Test CharacteristicSetSpecies
24.3
Test SetSpecies
24.4
Test Subset
24.5
Test Partition
24.6
Test LinearOrder
24.7
Test Cycle
24.8
Test Permutation
24.9
Test Two-Element Subsets
24.10
Test Constructors
24.11
Test Recursive Structures
24.12
Test Composition
24.13
Test Functorial Composition
25
Test Partition
25.1
Test Restricted Growth Arrays
25.2
Test Structures and Types
26
Test MultinomialTools
26.1
An Auxiliary Naive Implementation
26.2
Test binomial
26.3
Test multinomial
27
Test DataStream
28
Test Formal Power Series
29
Test Generating Series
29.1
Test FactorialStream
29.2
Test Functorial Composition
29.3
Test Cycle Index Variables
29.4
Test Series with Polynomial Coefficients
30
Test CombinatorialUnionList and CombinatorialCrossList
30.1
Test Grammar
31
Test Basic Polynomial-like Functions
31.1
Test SparseAdditiveArray
31.2
Test SparseFiniteMonoidRing
32
Test Sparse Indexed Power Products
33
Test Basic Polynomial Functions
34
Test Functions for Small Integers
34.1
Test Integer Square Root
34.2
Primality Test
34.3
Factorization, Möbius and Euler Totient Function
[Home]
[
prev
] [
up
] [
next
] ((combinat.tex))