
A Logic Evaluator

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC-Linz)

Wolfgang.Schreiner@risc.uni-linz.ac.at

August 2, 1999

Abstract

The Logic Evaluator is an interpreter that understands an exe-
cutable subset of first order logic with natural numbers, sets, and
tuples. The user may define predicates and functions and determine
the values of formulas and terms; a simple visualization feature allows
to plot the graphs of relations and functions. The evaluator is imple-
mented in Java; instances of it can be embedded as applets into HTML
documents such that readers may interactively experiment with basic
mathematical concepts. The executable software and its source code
can be downloaded from

http://www.risc.uni-linz.ac.at/software/formal

1

CONTENTS 2

Contents

1 Examples 3

2 Language 6

2.1 Commands . 7

2.2 Formulas . 11

2.3 Terms . 13

2.4 Miscellaneous . 15

2.5 Values . 18

2.6 Predefined Predicates and Functions 19

3 Installation and Use 21

3.1 Text Mode . 21

3.2 Window Mode . 22

3.3 Applet Mode . 22

3.4 Known Problems . 23

A Sample Files 24

A.1 set.txt . 24

A.2 circle.txt . 26

1 EXAMPLES 3

1 Examples

The following example demonstrates the use of the evaluator on some set-
theoretic notions. We define the product of two sets A and B as

A×B := {〈a, b〉 : a ∈ A ∧ b ∈ B}.

This is written in the language of the evaluator as

fun x(A, B) = set(a in A, b in B: true, tuple(a, b));

(where “true” is a placeholder for additional restrictions on a and b).

This function definition is stored in a file set.txt (listed in the appendix)
which is loaded in the evaluator as shown below. When pressing the Enter

key, the product of the sets {1, 2, 3} and {0, 1} is computed (you may also
experiment with other examples).

File set.txt also includes a definition of the unary function Powerset that
returns the set of all subsets of a given set

Powerset(A) := {S : S ⊆ A}

where the subset relationship

A ⊆ B :⇔ (∀x ∈ A : x ∈ B)

is defined in the evaluator as

pred isSubset(A, B) <=> forall(x in A: in(x, B));

For instance, if we take S as {1, 2, 3, 4, 5}, then its powerset is computed as

1 EXAMPLES 4

We now want to check whether every element in this powerset is indeed a
subset of the input, i.e.,

(∀A ∈ Powerset(S) : A ⊆ S).

The test is computed by the following program:

Now for some geometry: a tuple p = 〈px, py〉 of numbers may be interpreted
as a point in the plane with horizontal coordinate px and vertical coordinate
py, respectively. The relation

p ∼ q :⇔ r = s where
(r = (px − cx)2 + (py − cy)2,
s = (qx − cx)2 + (qy − cy)2)

expresses the fact that two points p and q have the same distance from a
given point c. The set of points

circle(p) := {q : p ∼ q}

therefore describes the circle with center c that goes through p.

Using the corresponding definitions

1 EXAMPLES 5

pred ~(p: Point, q: Point) <=>
let (r = +(-^2(.0(p), .0(c)), -^2(.1(p), .1(c))),

s = +(-^2(.0(q), .0(c)), -^2(.1(q), .1(c))):
~=(r, s));

fun circle(p: Point) =
set(x in rangeX, y in rangeY, q = tuple(x, y): ~(p, q), q);

stored in file circle.txt (listed in the appendix) we can visualize such a
circle as shown below.

Likewise, we may partition (a subset of) the plane into the set of all such
circles

{circle(p) : p = 〈x, y〉, x ∈ rangeX, y ∈ rangeY}

In the executable version, we take a fixed value for y in order to speed up
the computation (the result is the same):

2 LANGUAGE 6

2 Language

The Logic Evaluator reads a sequence of input lines; it continues with parsing
and executing after every line read (i.e., in interactive mode, when the user
has terminated a line with the Enter key). However, when executing as
an applet embedded into an HTML page, the evaluator only runs while
the focus is on the evaluator’s input field such that this field is gray; if
this field is not gray, execution is suspended. Applets may be reinitialized
by pressing the keys Shift+Reload (Netscape Communicator) respectively
Refresh (Microsoft Internet Explorer).

All responses of the evaluator are prefixed by the token ‘>’:

fun f(x) = x;
> function f/1.

Any text starting with the token ‘//’ is ignored until the end of a line is
encountered:

2 LANGUAGE 7

fun f(x) = x; // this is the identity function
> function f/1.

Apart from that, the separation of input into lines has no significance:

fun f(x) = // this is the identity function
x;

> function f/1.

We describe the grammar of the evaluator’s language by an extended version
of BNF where “{ Phrase }” denotes zero or more repetitions of Phrase and
“[Phrase]” denotes zero or one occurrence of Phrase. Do not confuse the
meta-symbols ‘{’, ‘}’, ‘[’, ‘]’ with the language symbols ‘{’, ‘}’, ‘[’, ‘]’ (which
are typeset in a different font).

2.1 Commands

The evaluator executes a sequence of commands:

{ [Command] ; }
The input consists of a sequence of commands separated by one or more
semicolons. The semicolon serves as a “boundary marker”: in the case
of a syntax error, the parser skips all input until it encounters the next
semicolon.

pred p(x,y) <=> <=(*(2, y), x);
> predicate p/2.
fun f(x, y) = if(p(x, y), x, y);
> function f/2.
term f(2 3);
> ERROR: unexpected ’3’.
term f(2, 3);
> 3.

A Command is one of the following statements executed by the evaluator.

pred Name [(ConstrainedVariables)] [recursive Term]
<=> Formula

Defines a predicate with a certain name and arity (number of param-
eters). Different predicates may have the same name if they have dif-
ferent arities. The symbol ‘<=>‘ should be surrounded by whitespace,
because it can be also part of a name.

2 LANGUAGE 8

pred isSubset(A: Set, B: Set) <=> // A is subset of B
forall(x in A: in(x, B));

> predicate isSubset/2.
pred positive(x: Nat)<=>>(x, 0);
> ERROR: unexpected ’<=>>’.

If the recursive clause is given, the definition may refer to the func-
tion being defined. In this case, however, a termination term must be
given that denotes a natural number which is decreased in every recur-
sive invocation of the predicate (which is checked by the interpreter, if
execution checking is switched on).

pred <(m: Nat, n: Nat) recursive m =
if (=(m, 0), not(=(n, 0)),
and(not(=(n, 0)), <(-(m, 1), -(n, 1))));

> function </2.

fun Name [(ConstrainedVariables)] [recursive Term] = Term

Defines a function with a certain name and arity (number of parame-
ters). Different functions may have the same name if they have different
arities. The symbol = should be surrounded by whitespace, because it
can be also part of a name.

fun **(A: Set, B: Set) = // the intersection of A and B
set(x in A: in(x, B), x);

> function **/2.
fun inc(x: Nat)=+(x, 1);
> ERROR: unexpected ’=+’.

If the recursive clause is given, the definition may refer to the func-
tion being defined. In this case, however, a termination term must be
given that denotes a natural number which is decreased in every recur-
sive invocation of the function (which is checked by the interpreter, if
execution checking is switched on).

fun sum(S: Set) recursive #(S) =
if (=(S, {}), 0,
let(e = element(S):

+(e, sum(-(S, {}(e))))));
> function sum/1.

formula Formula

Evaluates a formula to true or false.

2 LANGUAGE 9

formula isSubset(**(A, B), A);
> true.

term Term

Evaluates a term to a value.

term **(A, **(B, C));
> {1, 2, 3}.

plot Term

Plots a set of points. The value of the given term must be a set of
tuples of length 2 which are interpreted as points in the plane. The
elements of each tuple must be natural numbers that are interpreted
as the horizontal respectively vertical coordinate of the point. The
coordinate system has point (0,0) in the lower left corner and extends
swidth units to the right and sheight units to the top. The values
swidth and sheight are defined as startup parameters.

plot set(x in nat(1,50), y in nat(1, x): <=(x,*(y,y)),
tuple(x, y));

> done.

plots Term

Plots a set of point sets. The value of the given term must be a set
of point sets as described for the command plot. The point sets are
printed in various colors.

plots set(r in nat(1,50): true,
set(x in nat(1, r), y in nat(1, x): <=(x,*(y,y)),
tuple(x, y)));

> done.

read Name

Reads the file Name .txt and executes the commands contained in the
file.

read theory/set;
> predicate Subset/2.
> function **/2.
> file ’theory/set.txt’ read.

2 LANGUAGE 10

option Option

Sets Option which can be one of the following:

silent = (true | false)

Switches on respectively off the messages that are printed after
the definition of every predicate respectively function (initially
on). This is the only command to which the evaluator does not
respond with a message:

fun f(x) = x;
> function f/1.
set silent = true;
fun inc(x: Nat) = +(x, 1);
fun dec(x: Nat) = -(x, 1);

check = (true | false)

Switches on respectively off the checking of guard formulas, pa-
rameter types, and termination terms in the evaluation of formulas
and terms (initially on).

fun f(x: Nat) = x;
> function f/1.
term f({});
> ERROR: value {} does not satisfy predicate Nat/1
for parameter x.

option check = false;
> execution checks are off.
term f({});
> {}.

universe = Term

Sets the universe of discourse to the domain denoted by the given
term (initially undefined). The evaluation of this term must de-
note a domain (an interval or a set). All quantified variables with-
out domain constraints are assumed to range over this domain.

option universe = nat(1,100);
> universe of discourse set.
formula forall(x: <=(x, 1000));
> true.

help

Prints a short help message with a reference to the home page of the
evaluator.

2 LANGUAGE 11

help;
> commands (terminated by ’;’):
> pred <name>(<parameters>) <=> <formula>;
> fun <name>(<parameters>) = <term>;
> formula <formula>;
> term <term>;
> plot <term>;
> plots <term>;
> read <name>;
> option <name> = <value>;
> help;
> see http://www.risc.uni-linz.ac.at/software/formal.

2.2 Formulas

A Formula is one of the following phrases denoting a Boolean value (true or
false):

Name [(Terms)]

An atomic formula: the value of the formula is the value of the de-
noted predicate where the parameters are bound to the values of the
corresponding argument terms.

pred p(x) <=> <=(x, 5);
> predicate p/1.
formula p(4);
> true.

if (Formula , Formula [, Formula])

A conditional formula: if the first formula (the guard) evaluates to
true, the result is the value of the second formula, otherwise it is the
result of the third formula. If the guard evaluates to false and the third
formula is not given, the result is undefined (evaluation aborts, if guard
checking is switched on).

formula if(not(true), false, or(true, false));
> true;
formula if(not(true), false);
> ERROR: guard condition is false.

2 LANGUAGE 12

let (BoundVariables : Formula)

A formula with some locally bound variables; the value of the formula
is the value of the base formula for the denoted variable bindings.

formula let(x = 1, y = 2: <=(x, y));
> true;

not (Formula)

The negation of a formula: the negation is true if and only if the base
formula is false.

formula not(true);
> false.

and ({ Formulas })
The conjunction of a sequence of formulas; the conjunction is true if
and only if every formula in the sequence is true.

formula and(true, not(true), true);
> false.

or ({ Formulas })
The disjunction of a sequence of formulas; the disjunction is true if and
only if some formula in the sequence is true.

formula or(false, and(false, true), not(false));
> true.

implies (Formula , Formula)

The implication of two formulas: the implication is false if and only if
the first formula is true and the second one is false.

formula implies(not(false), false);
> false.

equiv (Formula , Formula)

The equivalence of two formulas: the equivalence is true if and only if
both formulas are true or both are false.

formula equiv(true, or(false, true));
> true;

2 LANGUAGE 13

forall (IteratorVariables : Formula)

A formula that is universally quantified over a sequence of variables:
the universal quantification is true if the base formula is true for every
binding of the variables denoted by the iterators.

formula forall(x in nat(1,10), y in nat(1, x): <=(y, x));
> true;

exists (IteratorVariables : Formula)

A formula that is existentially quantified over a sequence of typed vari-
ables; the existential quantification is true if the base formula is true
for some binding of the variables denoted by the iterators.

formula exists(x in nat(1, 10), y in nat(x, 10):
=(y, *(2, x)));

> true;

2.3 Terms

A Term is one of the following phrases denoting a valuevalues:

Variable

A variable: the value of a variable is determined by the context in
which the variable is evaluated.

formula forall(x in Nat(1, 10): <=(x, 10));
> true.
fun f(x: Nat) = +(x, 1)
> function f/1.

Name [(Terms)]

A function application: the value of the application is the result of
the function denoted by the given name and arity when applied to the
values of the given argument terms.

fun sumprod(x, y) = +(*(x, y), y);
> function sumprod/2.
term sumprod(2, 3);
> 9.

2 LANGUAGE 14

if (Formula , Term [, Term])

A conditional term: if the formula (the guard) evaluates to true, the
result is the value of the first term, otherwise it is the result of the
second term. If the guard evaluates to false and the second term is not
given, the result is undefined (evaluation aborts, if guard checking is
switched on).

term if(>(2, 3), {}, join(1, {}));
> {1}.

let (BoundVariables : Term)

A term with some locally bound variables: the value of this term is the
value of the base term for the denoted variable bindings. The token ‘=’
must be surrounded by whitespace because it can also appear as part
of a name.

term let(x = 1, y = 2: x+y);
> 3.

such (IteratorVariables : Formula , Term)

An implicit definition: the value of this term is the value of the base
term for some binding of the quantified variables that satisfies the given
formula.

term such(x in nat(1, 10): =(12, *(2, x)), x);
> 6.
term such(x in nat(1, 10): =(24, *(2, x)), x);
> ERROR: no such value.

0-9{0-9}
A natural number is represented by a non-empty sequence of decimal
digits.

term 17;
> 17.

set (IteratorVariables : Formula , Term)

The set of values of the base term for all bindings of the quantified
variables that satisfy the given formula.

2 LANGUAGE 15

term set(x in nat(1, 6), y in nat(1, 6): =(6, +(x, y)),
tuple(x,y));

> {<1, 5>, <2, 4>, <3, 3>, <4, 2>, <5, 1>}.

reduce (Name , Term , Term)

The reduction of a set by a binary function. The name must denote a
binary function f which is applied to each element of the set s denoted
by the first term and the base value b of the last term such that

reduce(f, {}, b) = b
reduce(f, v ∪ s, b) = f(v, reduce(f , s, b))

where v is an element not contained in s. An application reduce(f , s,
b) only yields a unique result if f(p0, f(p1, . . . , f(pn−1, b))) denotes the
same value for every permutation p of the elements of s.

term reduce(+, nat(1, 6), 0);
> 21.
term reduce(join, nat(1, 6), {});
> {1, 2, 3, 4, 5, 6}.

tuple (Terms)

A tuple, i.e., a sequence of values.

term tuple(2, 3, 4);
> <2, 3, 4>.

.Number (Term)

The element at the denoted position in the denoted tuple; Number is a
natural number in the interval 0 to the length of the tuple minus one.

term let(t = tuple(2, 3): +(.0(t), .1(t)));
> 5.

2.4 Miscellaneous

Formulas = [Formula { , Formula }]

A (possibly empty) sequence of formulas separated by commas.

2 LANGUAGE 16

pred areOrdered(a, b, c, d) <=>
and(<=(a, b), <=(b, c), <=(c, d));

> predicate areOrdered/4.

Terms = [Term { , Term }]

A (possibly empty) sequence of formulas separated by commas.

fun sumSquares(a, b) =
+(*(a, a), *(b, b)).

> function sumSquares/2.

IteratorVariables = [IteratorVariable { , IteratorVariable }]
A (possibly empty) sequence of iterator variables separated by commas.

option universe = nat(1,10);
> universe of discourse set.
formula forall(x, y in nat(1, x), z = y: <=(y, z));
> true.

ConstrainedVariables = [ConstrainedVariable { , Constrained-

Variable }]

A (possibly empty) sequence of constrained variables separated by com-
mas.

fun minus(x: Nat, y in nat(1, x)) = -(x, y);
> function minus/2.

BoundVariables = [BoundVariable { , BoundVariable }]

A (possibly empty) sequence of bound variables separated by commas.

term let(x = 1, y = 2: +(x, y));
> 3.

IteratorVariable = Variable | TypedVariable | BoundVariable
An iterator variable is a variable that iterates over a sequence of val-
ues: a plain variable (iterating over the universe of discourse), a typed
variable (iterating over some domain), or a bound variable (iterating
over a single value).

2 LANGUAGE 17

option universe = nat(1, 3);
> universe of discourse set.
term set(x, y in nat(1, x), p = tuple(x, y): true, p);
> > <1, 1>, <2, 1>, <2, 2>, <3, 1>, <3, 2>, <3, 3>.

ConstrainedVariable = Variable | TypedVariable |
CheckedVariable

A constrained variable is a variable whose domain may be restricted:
a plain variable (not constrained), a typed variable (constrained by a
domain), or a checked variable (constrained by a predicate).

pred isMultiple(x: Nat, y in nat(1, x)) <=>
exists(z in nat(1, x): =(x, *(y, z)));

> predicate isMultiple/2.

Variable = Name

A name represents a variable if it occurs in the scope of a corresponding
variable declaration of some quantifier or if it is declared as a parameter
in a predicate/function definition.

fun a = 0;
> function a/0.
formula forall(x in nat(2,10): not(=(a, -(x, 1))));
> true.
fun f(x) = x;
> fun f/1.

TypedVariable = Name in Term

A typed variable is a name whose value range is constrained by a do-
main (an interval or a set). It is an error to attempt to bind to the
variable a value that is not from the specified domain (such an attempt
is detected if parameter checking is switched on).

fun -1(x in nat(1, 100)) = -(x, 1);
> function -1/1.

BoundVariable = Name = Term

A bound variable receives its value from the denoted term. The token
‘=’ should be surrounded by whitespace because it can be also part of
a a name.

2 LANGUAGE 18

term let(x = 7: *(2, x));
> 14.
term let(x=7: *(2, x));
> ERROR: unexpected ’:’.

CheckedVariable = Name : Name

A checked variable is a name whose value range is constrained by a
predicate. The second name must denote a unary predicate; it is an
error to attempt to bind a value to the variable that is not satisfy
the predicate (such an attempt is detected if parameter checking is
switched on).

pred isEven(n: Nat) <=>
exists(m in nat(0, n): =(n, *(2, m)));

> predicate isEven/2.
fun half(n: isEven) =

such(m in nat(0, n): =(n, *(2, m)));
> function half/2.

Name

A name is any sequence of non-whitespace characters that does not
start with a decimal digit and that does not include any of the charac-
ters ‘(’, ‘)’, ‘,’, ‘:’, ‘;’.

term +3(xVal, f_0(y, #));

2.5 Values

Every term denotes one of the following types of values:

A Natural Number One of the values 0, 1, 2, . . .

term +(1, 1);
> 2.

A Set An unordered (and in the evaluator finite) collection of values.

term join(tuple(1, 2), join({}, join(1, {})));
> {1, {}, <1, 2>}.

A Tuple A finite sequence of values.

2 LANGUAGE 19

term tuple(2, tuple(1, 4), {}, 3);
> <2, <1, 4>, {}, 3>.

An Interval A subrange of the natural numbers.

term nat(2, 7);
> 2..7.

Both sets and intervals are domains that may be used to constrain the value
range of a variable.

2.6 Predefined Predicates and Functions

The following predicates are predefined (/n denotes arity n):

true/0 The predicate denoting true.

formula true;
> true.

false/0 The predicate denoting false.

formula false;
> false.

Set/1 The predicate that returns true if and only if its argument is a set.

formula Set({});
> true.

Tuple/1 The predicate that returns true if its argument is a tuple.

formula Tuple(tuple(2, 3));
> true.

Nat/1 The predicate that returns true if its argument is a natural number.

formula Nat(1);
> true.

=/2 The equality of values.

formula =(2, +(1, 1));
> true.

2 LANGUAGE 20

in/2 The inclusion of an element (the first argument) in a set (the second
argument).

formula in(1, join(1, {}));
> true.

<=/2 The predicate on natural numbers that returns true if and only if its
first argument is not larger than the second one.

formula <=(1, 2);
> true.

Likewise the following functions are predefined:

length/1 The number of elements in a tuple.

term length(tuple(2, 3));
> 2.

{}/0 The empty set.

term {};
> {}.

join/2 The function that returns the set that results from joining an element
(the first argument) to a set (the second argument).

term join (2, join(1, {}));
> {1, 2}.

nat/2 The interval of natural numbers from a lower bound (the first argu-
ment) up to and including an upper bound (the second argument).

term nat(1, 10);
> 1..10.
term set(x in nat(1, 10): true, x);
> {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

+/2 Addition on natural numbers.

term +(7, 8);
> 15.

*/2 Multiplication on natural numbers.

3 INSTALLATION AND USE 21

term *(2, 3);
> 6.

-/2 Subtraction of a natural number (the second argument) from another
natural number (the first argument); the second argument must not be
larger than the first one.

term -(7, 8);
> ERROR: no such difference.

3 Installation and Use

The Logic Evaluator has been developed under Linux with the Sun Java
Development Toolkit. It is written in Java 1.1 as a package Logic with main
class Main and is distributed as the Java archive Logic.jar.

3.1 Text Mode

Having retrieved Logic.jar, unpack it in the current directory or in a direc-
tory of the CLASSPATH as

jar xf Logic.jar

and start the evaluator with

java Logic.Main
> Logic Evaluator (c) 1999, Wolfgang Schreiner.
> Type ’help;’ for help.

Execution is terminated by the end of the input stream (which is triggered
by pressing the keys Control+D on most Unix systems).

Please note that in text mode the commands plot and plots do not work.

3 INSTALLATION AND USE 22

3.2 Window Mode

Having retrieved Logic.jar, unpack it in the current directory or in a direc-
tory of the CLASSPATH as

jar xf Logic.jar

and start the evaluator with

java Logic.Main -window parameters

A window pops up in which input is entered and the output is displayed.
The optional list of parameters is the same as for applets where the name of
each parameter is prefixed with the token ‘-’, e.g.,

java Logic.Main -window -screen true -lines 16

Execution is terminated by closing the window (menu entry Close in most
window managers).

3.3 Applet Mode

The evaluator may be embedded as an applet into an HTML page, e.g., as

<applet

code="Logic/Main.class"

archive="Logic.jar,Input.jar"

width=500 height=150>

<param name="exec" value="

read set;\n

fun A = set(x in nat(1, 3): true, x);\n

fun B = set(x in nat(0, 1): true, x);">

<param name="input" value="term x(A, B);">

<param name="screen" value="true">

<param name="swidth" value="50">

<param name="sheight" value="50">

<param name="lines" value="6">

</applet>

3 INSTALLATION AND USE 23

In this example, the archive Logic.jar is located in the same directory as
the HTML page embedding the applet. The file Input.jar is an archive of
files Logic/*.txt that contains all files that can be read by the interpreter,
e.g., if there exists a file Logic/set.txt, we may say in the interpreter

read set;

> file ’set.txt’ read.

The evaluator applet understands the following parameters:

exec A string that represents a command to be executed by the evaluator
after the applet has been loaded. The token “\n” may be used to
decompose the string into multiple lines.

input A string that appears in the input field of the evaluator after the
applet has been loaded.

screen A flag; if this parameter appears with any value, the applet exhibits
a screen that allows to use the commands plot and plots.

swidth If screen is given, this parameter denotes the number of (logical)
pixels of this screen in the horizontal direction (default 50).

sheight If screen is given, this parameter denotes the number of (logical)
pixels of this screen in the vertical direction (default 50).

lines If screen is given, this parameter denotes the number of lines of the
output field of the interpreter (default 6).

Please note that in applet mode the interpreter only executes while the focus
is on the input field such that the background is gray. Otherwise, execution
of the interpreter is deliberately suspended. This implies, that the interpreter
does not execute when the embedding Web page is not visible or the browser
is iconified.

3.4 Known Problems

There are no problems known when the evaluator runs in text mode or in
window mode or in applet mode with the JDK appletviewer.

As for execution as an applet in a Web browser, we have tested the evaluator
with various versions of Netscape Communicator on Linux and Windows and
with Microsoft Internet Explorer on Windows. There are several problems
caused by Java/AWT bugs in these browsers.

A SAMPLE FILES 24

Communicator: No Focus When leaving a page embedding the evaluator
applet (by following a link or pressing the buttons Back or Forward),
on return to this page the applet may not be able to gain the focus
again.

This seems to be due to an error in AWT. Do not leave the page (use
the middle mouse button to open a link in a new frame) or press the
keys Shift+Reload to reload the applet.

Internet Explorer: Applets Reloaded When leaving a page embedding
the evaluator applet (by following a link or pressing the buttons Back

or Forward), the applets are restarted (i.e., they do not preserve their
previous state).

This is apparently a feature of the Internet Explorer. Do not leave the
page if you want to have the applet state preserved.

Communicator (some versions): Browser Frozen When starting the
execution of a command in the evaluator, the browser freezes until
the execution of the evaluator has terminated.

This seems to be due to an error in multi-threading. Wait until the
corresponding execution has terminated or kill the browser.

Communicator: Console Messages Sometimes error messages appear in
the Java console when (re)loading a page that embeds the evaluator.

This behavior seems to be due a Java internal problem; apparently it
does not indicate any significant troubles. Ignore the messages.

Communicator and Explorer: Java Bugs Several Java bugs have re-
quired workarounds in the evaluator (most notably security violations
when using inner classes and wrong handling of end of line conventions).

Since we have found workarounds, one should not encounter these prob-
lems any more.

A Sample Files

A.1 set.txt

// --
// $Id: set.txt,v 1.7 1999/07/13 06:39:49 schreine Exp $
// some set-theoretic notions

A SAMPLE FILES 25

//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

option silent = true;

// singleton set
fun {}(x) =

join(x, {});

// A is a subset of B iff every element of A is also in B
pred isSubset(A: Set, B: Set) <=>

forall(x in A: in(x, B));

// two sets are equal if each is a subset of the other
pred equals(A: Set, B: Set) <=>

and(isSubset(A, B), isSubset(B, A));

// the intersection of two sets
fun **(A: Set, B: Set) =

set(x in A: in(x, B), x);

// the difference of two sets
fun --(A: Set, B: Set) =

set(x in A: not(in(x, B)), x);

// the union of two sets
fun ++(A: Set, B: Set) =

reduce(join, A, B);

// the product of two sets A and B
fun x(A: Set, B: Set) =

set(a in A, b in B: true, tuple(a, b));

// cardinality of S is determined by iteration over the elements
fun count(e, i: Nat) = +(i, 1);
fun #(S: Set) = reduce(count, S, 0);

// the union of S and of e joined to all elements of S
fun combine(e, S: Set) =

++(S, set(x in S: true, join(e, x)));

A SAMPLE FILES 26

// the set of all subsets of S
fun Powerset(S: Set) =

reduce(combine, S, {}({}));

// alternative recursive definition
fun PowersetR(S: Set) recursive #(S) =

if (=(S, {}), join({}, {}),
let(e = such(x in S: true, x):

combine(e, Powerset(--(S, {}(e))))));

option silent = false;

// --
// $Id: set.txt,v 1.7 1999/07/13 06:39:49 schreine Exp $
// --

A.2 circle.txt

// --
// $Id: circle.txt,v 1.4 1999/07/13 06:39:49 schreine Exp $
// circles in the plane
//
// (c) 1999, Wolfgang Schreiner, see file COPYRIGHT
// http://www.risc.uni-linz.ac.at/software/formal
// --

option silent = true;

// p is a point
pred Point(p) <=>

and(Tuple(p), =(2, length(p)), Nat(.0(p)), Nat(.1(p)));

// the center and the image range
fun c = tuple(50, 25);
fun rangeX = nat(-(.0(c), .1(c)), +(.0(c), .1(c)));
fun rangeY = nat(0, *(2, .1(c)));

// the square of the difference of a and b
fun -^2(a: Nat, b: Nat) =

let (d = if (<=(a, b), -(b, a), -(a, b)):
*(d, d));

A SAMPLE FILES 27

// approximate equality of a and b
pred ~=(a: Nat, b: Nat) <=>

let (diff = 25:
if (<=(a, b), <=(-(b, a), diff), <=(-(a, b), diff)));

// p and q are approximately on same circle
pred ~(p: Point, q: Point) <=>

let (r = +(-^2(.0(p), .0(c)), -^2(.1(p), .1(c))),
s = +(-^2(.0(q), .0(c)), -^2(.1(q), .1(c))):

~=(r, s));

// the circle that goes through p
fun circle(p: Point) =

set(x in rangeX, y in rangeY, q = tuple(x, y): ~(p, q), q);

option silent = false;

// --
// $Id: circle.txt,v 1.4 1999/07/13 06:39:49 schreine Exp $
// --

