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Abstract

We consider a modification of the pigeonhole principle, M PH P, introduced by Goerdt in
[7]. Using a technique of Razborov [9] and simplified by Impagliazzo, Pudldk and Sgall [8], we
prove that any Polynomial Calculus refutation of a set of polynomials encoding the M PHP,
requires degree Q(logn). We also prove that the this lower bound is tight, giving Polynomial
Calculus refutations of M PH P of optimal degree.

Finally we prove a simple Lemma giving a simulation of Resolution by Polynomial Calculus.

1 Introduction

Razborov in [9] proved that any Polynomial Calculus (PC) refutation of a polynomial encoding
of the pigeonhole principle (PHP.*) requires degree at least €2(n). Here the number of pigeons
m is any integer greater than n. While other techniques were developed to prove degree lower
bounds in PC' [5, 2, 1] for other combinatorial principles, the technique introduced by Razborov
and simplified by [8] wasn’t succesfully applied to other principles different from the PHP.

The core of Razborov’s technique is to produce an explicit characterization of the vector space
of all polynomials derivable from the polynomial encoding of PH P, using low degree Polynomial
Calculus refutations. This way one can study what is the minimal degree d for which refutations
of PHP of degree d exist.

The main contribution of our result is extending Razborov’s technique to a combinatorial princi-
ple somewhat different from the pigeonhole principle. We consider a modification of the pigeonhole
principle (M PH P), introduced by Goerdt [7]. MPHP is defined over n pigeons and logn holes,
and differs from PH P since it allows many holes to hold more than one pigeon (see Definition 2.1
for further details). In fact, M PHP is minimally unsatisfiable. Note that the PC degree lower
bound of Razborov doesn’t give lower bounds for this principle.

In Section 3 we introduce a polynomial formulation of the M PHP principle, Poly-M PHP,
and we prove that any Polynomial Calculus refutation of this set of polynomials requires degree
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O(logn) over any field. Following Impagliazzo Pudlak and Sgall [8], we define a new pigeon dance
tailored for the M PH P principle and we prove those properties that we need to define an explicit
characterization of the vector space of all polynomials derivable from the Poly-M PH P using degree
d PC refutations. As a consequence we prove that the minimal degree for refuting Poly-M PH P
in PC over any field is of the order of the number of holes in MPHP (i.e Q(logn)).

In section 4 we introduce the Resolution system. Following [3], we consider the width (i.e. the
size of the largest clause used in a refutation) as a complexity measure and we show a Polyno-
mial Calculus simulation of Resolution. Under a fixed standard translation of CNF formulas to
polynomials our simulation produces PC refutations of degree bounded by the width plus 1. The
consequences of this result are discussed in the last Section where we argue that our simulation
implies that the width based proof-search algorithm of [3] cannot have a better performance than
the Groebner Basis proof-search algorithm of [6].

In Section 5, we approach the problem of proving tight degree upper bounds for PC refutations
of Poly-M PHP. In fact using the simulation result of the previous section we give PC refutations
for Poly-M PHP of optimal degree (i.e. O(logn)).

In the final section, we propose an alternative approach to obtain the upper bound of section
5 and we discuss some consequences of our results. Also we pose some problems arising from our
work that could be interesting to study.

2 Preliminaries

The PoryNoMIAL CaLcuLus (PC) is a refutation system for formulas in CNF. We express a CN F
formula F as a sequence of polynomials p;,= 0,...,p, = 0 over some field K. To force 0-1
solutions we always add among the initial polynomials the axioms z? — z = 0 for all variables z. A
PC REFUTATION is a sequence of polynomials ending with 1 = 0 such that each line in the sequence
is either an initial polynomial or is obtained from two previous polynomials in the sequence by
the following rules: (1) aj+5g for o, 8 € K; and (2) f , for any variablez. The DEGREE of
a refutation is the maximal degree of a polynomlal used in the proof. The complexity of a PC
refutation is given by its degree.

We define a standard mapping tr from formulas in C N F to sets of polynomials in the following
way: (1) tr(z) =1—2; (2) tr(z) = z; (3) tr(z Vy) = tr(z) - tr(y). We denote by [n] the set
{1,2,...,n}.

We will use a tautology encoding a modification of the pigeon hole principle defined in [7]. Let
n be a natural number of the form 2%, for some %, and let m = log, n. For each j = 1,...,m, let
Part(j) be the partition of [n] induced by j the following way:

Part(j) :={{i,i+1,...,.0+ (2 = 1)} [i=1,1427,142-27, . 14 (& —1)-27}
If we consider [n] as a set of pigeons and [m] a set of holes, then for each hole j € [m], Part(j)
contains sets of pigeons, e.g.

Part(1) = {{1,2},43, 4} {n— 1 n}}
Part(2) = {{1,2,3,4},. {n -2,n—1,n}}

Part(log, n) = {{1,2,...,n}}

Consider the following definition:

Definition 2.1 For all 7,7’ € [n], i and i’ are j-COMPATIBLE if and only if they are in different
sets of Part(7).



We consider the following property for n pigeons and log, n holes. If each pigeon is sitting in
some hole, then there must exist an hole j and two pigeons i and i’ that are not j-compatible sitting
in hole j. Our CNF formula M PH P,, expresses the negation of the previous property with the
further restriction that each pigeon must sit in exactly one hole.

(1) Vitizi; i€n]
(2) zi;VZy,; jE[m],i#£1i €[n], not j-compatible
(3) Zi;Vaix i€[n],j#ke€[m]

Notice that the set of clauses defining our M PH P,, subsumes the set of clauses defining the
MPHP, of [7]. First, we add clauses encoding the restriction that each pigeon must sit in ex-
actly one hole. Second, Goerdt considered the restricted, but more complicated, definition of not
compatibility between pigeons, allowing the clauses in (2) only for not compatible piegeons 7 and 4’
lying in different half sets of Part(j) (see [7]).

3 Degree Lower Bounds for the Modified PHP

In this section we show that any polynomial calculus refutation of the M PH P, requires degree
Q(logn). We will use the same technique of [9, 8]. Recall that m = logn, the definition of j-
compatible pigeons and the definition of the set Part(j), for all j € [m] (see Section 2). Given
Q;,=1- Eje[m] z; ; we adopt the following polynomial formulation of the M PHP,, that we call
Poly-MPHP,:

(1) Q=0 i € [n]

(2) zijzik=0 i € [n], j,k € [m]

(3) =xijxr; =0 Jj € [m], i,k € [n] not j-compatible
(4) :t:'f’j —x;;=0 i€[n], j€[m]

For a polynomial z which is a product of z; ;, let Pigeons(z,j) be the set of ¢’s such that z; ;
is a factor in z.

Definition 3.1 T is the set of the monomials x = x;, j, ...%;,j, such that all i, are distinct and
for all j € [m] and for all i and ' in Pigeons(z,ji) © and i’ are jp-compatible. T4 is the set of
monomials in T of degree at most d.

Using the identities (2), (3) and (4) any polynomial can be represented, without increasing its
degree, as a linear combination of monomials in T'. Therefore any polynomial calculus refutation
carried on modulo the ideal I generated by the polynomials (2), (3) and (4), is in the vector space
Span(T) generated from the monomials in 7. From now on we assume that all the computations
are modulo the ideal I.

We want to build a basis By for the vector space Span(T') such that the elements of By are
products of the form [, ;z;;[[;Qi. As in [8] (and [9]) the definition of By is obtained from a
process that maps partial assignments into partial assignments: the pigeon dance. We consider a
dummy hole 0, and we represent elements of By as partial assignments according to the following
definition:

Definition 3.2 A is the set of the partial mappings a from [n] to [m]U {0} such that for all
i,i' € [n], 1 #4, if a(i) = a(i') = j # 0 then i and ' are j-compatible.



Let Ag:={a € A : |a| < d}. For a € A with a = {(¢1,51),...(k, Jr), (11,0),...,(i;,0)}, let @
denote the restriction {(71,71),...(ik,jx)} of a. Any element a € A defines a polynomial z, the
following way: z, = Ha(i)zm;ﬁo T Ha(i):O Q);. Therefore by definition of T any polynomial x4
associated to @ € Ay is in Ty.

Our pigeon dance differs from that of [9, 8] since sometimes a pigeon can be sent to an occupied
hole. Consider the following definition:

Definition 8.3 Given a € A, we say that a hole j 1S GOOD FOR THE PIGEON i IN @, and we write
j € Good(i,a), if 7 > a(i) and for all i’ € a™1(j), i and ' are j-compatible.

Given a € A, our pigeon dance works the following way: starting from the first pigeon in dom(a)
we try to move all the pigeons 7 € dom(a) into a hole 7 which is good for ¢ in a.

Definition 3.4 (Dance) Let a € A and consider dom(a). A pigeon dance on a is a sequence of
mappings ag, a1, ...ay, in A with the same domain as a, defined the following way: ag = a and for
all 0 <t < n, if a(t) is undefined, then a; = a;_1, otherwise

{ a(j) = a1 () j#t

at(t) € Good(t, a;_1)

Definition 3.5 (Minimal Dance) Let ¢ € A be given and let t be a pigeon index in [n]. By
Dy(a) we denote a mapping b € A such that dom(b) = dom(a), and defined as follows:

b(i) =a(i) i€ dom(a),i#t
b(t) = minjcm[j € Good(t, a)]

If minjep)[j € Good(t,a)] does not erists, then Dy(a) is undefined. The MINIMAL PIGEON DANCE
Dyin(@) on @ i8: Dyin(A) = Dyp(Dp—y (- -+ (D1(a)) - ++)

The minimal dance has two main properties. It can be always defined whenever a dance is
defined, and it defines a one-to-one mapping from partial assignments to partial assignments. We
show these properties in the following lemmas.

Lemma 3.1 If there exists a dance on a, then there always exists a minimal dance on a.

Proof. We prove by induction on ¢t = 1,...,n that there is dance b = bg, by, ..., b, where by = a
such that its first ¢ steps correspond to the first ¢ steps of the minimal dance on @. The lemma

hence follows for £ = n. Assume to have proved the claim for ¢ — 1, and let b = by, b1, ..., b, the
correct dance having the first £ — 1 steps as in the minimal dance. We show how to build a new
correct dance ¢ = cg, ¢q, . .., ¢, having its first ¢ steps as in the minimal dance.

Let jmin = minje(m)[j € Good(t,b;_1)] and suppose j = b;(t). Observe that since b is a correct
dance, then j,,;, always exists and moreover j,,;, < 7. If = Jmin, then b is making the right choice
at the ¢-th step. In this case we have no need to change b, so we define ¢; = b; for all : =0,...,n.
Assume instead that j,,;, < j. In this case we define ¢ = ¢g, ¢y, ..., ¢, the following way: in the
first t — 1 steps ¢ and b are the same, that is, for all 7, 1 = 1,...,f — 1, ¢; = b;; at the t-th step, ¢
is defined by:

. Jmin f1=1
(i) = { bi(i) otherwise



The definition of ¢; for for ¢ > t is as follows:

¢i(j) = ci1(j) for j#i
(i) = j if b; () = jmin and i and ¢ are not j,;,-compatible
! b;(1) otherwise

We have to prove that ¢ = ¢g,cq,..., ¢, is a properly defined dance and its first ¢ steps are
minimal. Observe that the first £ — 1 steps of ¢ are correct and minimal since they are the same of
b. The t-th step is correct and minimal by definition of j,,;,. Therefore it remains to prove that
the steps strictly greater than ¢ define a correct dance. By the definition of ¢;, for ¢ > ¢, we have
to prove that for all i >t ¢;(¢) € Good (1, ¢;—1).0

Claim 3.1 For alli > t, ¢;(i) € Good(i,ci_1).

Proof. (of Claim3.1)

By the definition of ¢;(¢) for ¢ > t, it is easy to see that we have to prove that for all i > ¢ such
that b;(¢) = jmin and ¢ and ¢ are not j,;,-compatible, then j € Good(%, ¢;—1). We obtain the Claim
showing that: (1) there is at most one 7 such that b;(7) = jmin and 7 and ¢ are not j,,-compatible;
and (2) for this ¢ we have that j € Good(i, ¢;—1).

The first property easily follows since if there exist two different pigeons 7 and 7' both not j,u;m,-
compatible with ¢, then 7,7" and ¢ are in the same set D € Part(jmin). But this is not possible
since b is a correct dance and therefore ¢ and ' must be 7,,;,-compatible.

For the second point, assume we have an i such that b;(¢) = jmin and ¢ and ¢ are not Jun-
compatible. We prove that ¢ is j-compatible with all elements in cl-__l1 (7), which proves that j €
Good(i, c;,_1). If ¢, (j) = 0, the result is trivial. Assume, for the sake of contradiction, that there is
a4’ € ¢;!,(j), which is not j-compatible with i. Therefore i and i’ are in the same set B € Part(j).
Since i is the only pigeon on which we have modified the dance b (except for t), then it follows that
i’ was already sent to j in b, that is b, (i') = j. Observe that, since i and ¢ are not j,;,-compatible,
then 7 and ¢ are in the same set C' € Part(jmin). But since jmin < j, then C C B and therefore
t € B. This is a contradiction since b is a correct dance and we cannot have that b,(t) = j and
b(i) = j, for two pigeons ¢ and ¢ not j-compatible. O

Lemma 3.2 The minimal dance is a one-to-one mapping.

Proof. We show that for all t =1,...,n, Di(-) is a 1-1 mapping. The result then follows since the
minimal dance is a composition of the D; mappings. We show that if D;(a) = D¢(a’) then a = o'
Suppose Dy(a) = Dy(a’). Then dom(a) = dom(a’) and a(:) = &'(7) for all ¢ € dom(a),i # t. It
remains to show that a(t) = @'(t). We show that neither a(t) < a’(¢) nor a’(t) < a(t). Suppose the
former. We show the following two inequalities:

Dy(a)(t) < d'(t)  a'(t) < Di(a’)(?)

This leads to a contradiction since D;(a’)(t) = Di(a)(t) and by previous two inequalities we have
that Dy(a)(t) < D¢(a)(t). The second inequality just follows from the definition of minimal dance.
To obtain the first inequality, observe that since for all i < ¢, a(7) = /(7), then either Good(t,a) C
Good(t,a’) or Good(t,a’) C Good(t,a) and moreover Good(t,a’) and Good(t,a) share the same
minimal element Dy(a)(t) = D(a)(t). Since d'(t) € Good(t,a’), then a'(t) > Dy(a)(t). The other
case a'(t) < a(t) is completely symmetric. O



Consider the following fact:
Fact
If a pigeon dance ends successfully on an a € A, then the polynomial associated to the dance is
in T (this is because we are moving to always strictly greater holes and therefore at the end the
dummy hole 0 has disappeared).

Lemma 3.3 Ifd < logn and a € Ayq, then there exists a dance on a if and only if there erists a

dance on a.

Proof. If there is a dance for a then obviously there is a dance for @, so one implication is easy. For
the other implication, assume that the number of ) factors in z, is different from 0, since otherwise
there is nothing to prove. Assume that @ = {(¢1,71), ..., (%, Jk)} and that [ is the number of @Q’s
factors in a, so that k +1 < d = 10%" . Note that after excuting the dance on @ we remain with
at least [ holes unused. We will use these unused holes to define a dance on the whole a. That
is, if the pigeon 7 is in dom(a), then a(:) = a(¢). If the pigeon i € dom(a) — dom(a), then we
assign one of the unused [ holes to move i in a(7). Since these are completely new holes and since
|dom(a)| — |dom(a)| < I, then the dance on a is well defined. O

We can now proceed to the definition of the basis By.

Definition 3.6
By ={zq:a € Aq there is a dance on a}

It is easy to prove that the following monotonicity properties hold for Bg: (1) Bg—1 C Bg; (2)
Tq € Bg_i if and only if for all ¢ ¢ dom(a), z,Q; € B4. In order to show that By is a basis for
Span(Ty) we need to define an order < on polynomials in Ty. We will do it as in [8].

Definition 3.7 Let z, and zp be two polynomials in Ty. then x, < xp if and only if deg(za) <
deg(zp), or if deg(za) = deg(zp), then for the largest pigeon i such that a(i) # b(¢), we have that
a(i) < b(i).

. . 1
Lemma 3.4 By is a basis for Span(Ty) for any d < =57,

Proof. Under the hypothesis that the degree d is less than 10% we show: (1) that |By| < |T4| and
(2) that any z, € T4 can be expressed as a linear combination of elements of By, from which the
Lemma follows. The first property follows because the minimal dance defines a 1-1 into mapping
from By to Ty. More precisely, if , € By then we have a dance on @ and since d < 13%—”, then by
Lemma 3.3, there is dance on a and therefore by Lemma 3.1 there is a minimal dance on @ that
by Lemma 3.2 is a 1-1 mapping. Finally the observation in the previous Fact proves the first part.
For the second part we work by induction on <. Assume that for all z’ < z,, ' € Span(Bg). We
show that 2, € Span(By). If there is a dance on a then z, is in B;. Otherwise we show how to
express I, as a linear combination of the elements of By. Let P, be the set of all possible correct
first ¢ steps of the dance on a. We prove that z, € Span(Bg) iff Y ycp, 23 € Span(By) by induction
ont =0,...,n. Since there is no dance on a, then P, = (§ and therefore the claim follows. The
base of the induction ¢ = 0 follows since Py = a. For the induction step observe that if ¢ ¢ dom(a)
then P, = P;_; and so the claim follows by induction on #. Otherwise for any b € P;_1, xp is of the
form z; ;z.. We rewrite z; ; with respect to the relation ()¢, so that z3 can be rewritten as

(1) Te — -'cht - Z Ty, g
J'#3



equation 1 can be rewritten as:

Te — 'cht - E Tty — E Tt g0 — E Tt g

7'<i §'>5.5' €Good(t,b) #">35.5'€Good(1,b)

Each monomial in the last term is equal 0, therefore in Span(Bg). The first three terms in the
above sum are in Span(Bp) by induction on <. The first by the base case of the definition of <.
The second by the induction case of < and by the monotonicity property of By. The third by (the
second case of the definition) <. The fourth term corresponds exactly to all the possible correct
first t steps of b. Therefore if we sum over all z; for b € P,_; we have that

Z zp € Span(Bg) iff Z zp € Span(By)
be Py beP;_1

This concludes the proof of the Lemma. O

Theorem 3.1 Any polynomial calculus refutation of M PH P, has degree not less than 10%.

Proof. The proof is as in [8]. That is we prove by induction on the length of the proof that each
polynomial derivable from the initial polynomials ); with at most degree d is a linear combinations
of polynomials in By — Ty (i.e a combination of the elements of By that are multiples of some axioms
Q;). Therefore since 1 € Ty and it has a unique representation in each basis, we cannot derive the
polynomial 1 with a proof of degree less than or equal to d.

Recall that we are considering refutation modulo the vector I. Therefore in the base case an
axiom is always of the form @); for some 7 € [n], and the claim follows.

In the inductive step, if a line is inferred by the sum rule the result is immediate. For the case
of product, say we have m:&p with |a| < d — 1. We want to prove that z; jz, € Span(Bq — Ty).

By induction, z, can be written as a sum of elements in By — Ty (i.e. multiples of @;). Therefore
distributing z; ; along elements of this sum, we can write z,z;; as a sum of multiples of ();. By
the monotonicity properties of By, it is easy to see that this is a sum of scalar multiples of ); and
therefore in Span(Bg — Tq). O

4 Resolution lower bounds via degree lower bounds

RESOLUTION is a refutation proof system for formulas in CNF form based on the following resolution
rule: % where if C' and D have common literals, they appear only once in C'VD. A resolution
PROOF of a CNF formula F is a derivation of the empty clause from the clauses defining F, using
the above inference rule. Following [3] the width w(F') of a CNF formula F is defined to be the
the number of literals of the largest clauses in F. The width w(R) of a refutation R is defined as
the size of the greatest clause appearing in R. The width w(F F) of refuting a formula F is defined
as ;{n}_in w(R)

We prove that degree lower bounds imply width lower bounds as long as the initial polynomials
of the PC proofs are obtained by the standard mapping tr of the initial clauses of the resolution
proofs.

Lemma 4.1 Given a set of unsatisfiable clauses F and a resolution refutation of F , there is a
polynomial calculus refutation of tr(F) of degree less than or equal to w(F F)+1.

~1



Proof. Observe that given two clauses A and B, it is easy to obtain a PC derivation of
tr(A) =0+ tr(A)tr(B) =0

with degree w(A)+ w(B).

We show that for each clause A in the resolution proof we find a PC derivation of tr(A4) = 0
with degree at most the width of deriving A plus one. If A is an initial clause the result follows by
definition of ¢r. Now assume that at a resolution step we are in the following situation

AvVvz VB
D

We will simulate the resolution rule by a few PC steps. Assume that A= A’V C and B =B’V C,
i.e. C is the clause formed by the literals that belong to both A and B. D = A’V B’V C. By
induction we have derived

tr(A)(1 —z) =tr(ANtr(C)(1—2) =0 and tr(B)z =tr(B)tr(C)z =0
By the previous observation we can obtain the refutations
tr(ANtr(C)tr(B') (1 —z) =0 and tr(B')tr(C)tr(4Az =0

An application of the sum rule gives tr(D) = 0. Note that the premises and conclusion of the
resolution rule get translated by polynomials of the same degree as the width of the clauses. The
steps added in the simulation can increment by 1 the degree respect to the width. O

As a consequence of the previous lemma and the width-size trade-off [3](see also last Section),
a linear (in the number of variables) degree lower bound in polynomial calculus can give us an
exponential lower bound in resolution size.

5 Upper bounds for the Modified Pigeonhole Principle

In this section we prove that the lower bound obtained in Section 3 is tight giving degree O(logn)
PC refutations of Poly-M PH P,,. We use the simulation Lemma 4.1 of the previous section.
First consider the following definition and Lemma from [5].

Definition 5.1 ([5]) Let P(Z) and Q(Y) be two sets of polynomials over a field F. Then P is
(dy, dg)-reducible to Q if :

1. For ever y,;, there is a degree dy definition of y; in terms of ¥. That is for every 1, there exist
a degree dy polynomial r; sucht that y; can be viwed as defined by y; = r;(¥);

—

2. There exists a degree dy PC' refutation of the polynomials Q(7(Z)) from the polynomials P(Z)

Lemma 5.1 ([5]) Suppose that P(Z) is (dy, dy)-reducible to Q(y). Then if there is a degree d3 PC
refutation of Q(Y), then there is a degree max(dsy, dsdy) PC' refutation of P(%).

We’ll use the previous Lemma to obtain PC refutations of Poly-M PH P,, from PC refutations
of the set of polynomials Poly-3M PH P,, that we define next.



First we define the formula 3M PH P, obtained from MPHP, as follows: for all i € [n], let
Yi0,- -1 Yim be m + 1 new extension variables. Define 3M PHP by changing for all i € [n], the
clauses Vi, z; ; of MPHP by the set of clauses:

m
JioA N\ W1V i V ¥ij) A Yim
j=1

where y; ; means that ¢ goes to one of the first j holes.
Definition 5.2 Poly-3M PH P, is obtained applying the mapping tr to the clauses defining3SMPHP,,.
Lemma 5.2 Poly-MPHP, is (1,3)-reducible to Poly-3M PHP,

Proof. Define .
vig=1-Y @ik
kE>j

We prove that the initial polynomials of Poly-3M PH P, (with the y substituted by the definitions
above) are derivable with a 3-degree polynomial calculus refutations from initial polynomials of
Poly-MPHP,.

Observe that y;0 = @; = 0 and y; ,, = 1. So we can easily prove y;o =0and 1 —y;, =0. A
generic initial polynomial of Poly-3M PH P, of the form

(1= wij—)(1 =i )(yij) for 2<j<n

is equivalent to

m

(Y wig)(1- ﬂ%,j)(i Tik)

E>j—1 k>j

And using again @); = 0, the previous equation can be rewritten as

(1- z_: zig)(1— 2z 5)(1 - i Tik)
k=1

k>j

By simple calculations (using the initial axioms of Poly-M PH P,) this is equal to

7—1

n
1=Q)+ . wigwij+(L—2i5) Y wik sumi; 1 Tik
k=1,k#j k=1

Using the initial axioms of Poly-M PH P, it is easy to see that each of the three terms of the above
polynomial is equal to 0. O

In order to use lemma 4.1 to obtain O(logn) degree upper bounds for Poly-3M PH P, we need
to prove O(logn) width upper bounds (in resolution) for 3M PH P,,. We adapt a proof sketched by
Goerdt from [7].

Lemma 5.3 There are resolution refutations of SMPH P, of size n°®(°8") and width O(logn).



Proof. First observe that there is an easy tree-like resolution refutation of size polynomial in n
and of width O(log n) to obtain the initial clauses of M PH P, from the initial clauses of SM PHP,.
We show, following [7], that there is a resolution refutation of M PH P, of width O(logn) and size
nO(logn).

The proof goes by induction on & = 4,...,logn. The case M PHP, is easy and can be also
found in [7]. Assume to have, by induction, a refutation of M PH P,., for k > 4. We give a proof
of MPH Pyky1.

Consider the intial clauses of M PH Pyr+1 of the form

Tia V... VTet (1)

for all i = 1,...,2F*!. Resolve all of these clauses in parallel with the clauses Ti k41 V Ty g for
all #' # i, such that ¢ and ¢’ are not (k + 1)-compatibles. This leaves us with the following clauses

Tia V.. . VTip VT

for all 4 = 1,...,2%" and for all i’ # i not (k4 1)-compatibles. Applying to these clauses the proof
of MPH P, we have by induction, we produce the singleton clauses Z;; p4+;. Now we use these
clauses and resolve with clauses in (1) to obtain for al i = 1,...,2* the clauses

ia V...V

With another application of the proof of M PH P, applied to these clauses we obtain the empty
clauses.

It is straigthforward to see that in the refutation we never use clauses of width greater than
O(logn) and that the total number of clauses derived is at most quasipolynomial in n. O

Theorem 5.1 There are O(logn) degree PC refutations of Poly-M PHP,.

Proof. Lemma 4.1 and the previous Lemma gives us O(logn) degree PC' refutations of Poly-
3MPHP,. Then Lemma 5.2 implies the claim of the Theorem O

6 Discussion and Open Problems

Resolution and Polynomial Calculus: width, size and degree

Consider the following two Theorems proved respectively in [6] and [7].

Theorem 6.1 ([6]) If a set of clauses F over n variables and of width at most k has a tree-like
resolution refutation of size S, then the set of polynomials tr(F) has a PC refutation of degree

k+ O(log S).

Theorem 6.2 ([7]) There are tree-like resolution refutations of MPHP, of size n°(1) and width
O(n).

Following the strategy used in the previous section and the previos theorems we can obtain
the same degree O(logn) upper bound for PC refutations of Poly-M PH P,,. The analysis of the
Theorem 6.1 shows that the number of poynomials produced by the simulation is roughly of the

order n@{1°85) | Therefore using this theorem we cannot improve the n?{1°87) number of polynomials

10



that also our simulation produces, given that we are using quasipolynomial size resolution refutation
for MPHP,.
Consider the following resuming table for M PHP,, and Poly-M PHP,:

System size width degree
tree-like Res | n0(1) O(n) *
dag-like Res | n90°8™) | O(logn) | *
PC nOUogn) | 4 O(logn)

Observe that there seems to be a trade-off between size and width for Resolution refutations
of MPHP,. To reduce the width from O(n) to O(logn) the size should increase considerably. We
don’t know, for the case of MPHP,, if there exist refutations of O(logn) width and polynomial
size. We suspect that such proofs don’t exists; i.e. that we cannot always obtain proofs of optimal
size and width at the same time. It could be interesting to study such a kind of questions also
for other tautologies or even in a general setting analyzing the relationships between size, width in
Resolution and degree in Polynomial Calculus.

Resolution: width optimality and proof searching

The previous question is also motivated by the problem of searching for proofs or refutations. Ben-
Sasson and Wigderson in [3], proposed an algorithm for searching for Resolution proofs based on
the width measure:

Algorithm BW

C:= Clauses of F

w:=10

While O ¢ C Do
w:i=w+1
apply resolution rule to clauses in C to derive all possible clauses of width < w.
Add the clauses obtained to C

End

The running time of this algorithm is n?® () when it searches for refutations of a formula F
over n variables. The relationship between size and width was studied by [3] in order to reduce the

problem of size lower bounds to that of width lower bounds. They proved the following theorem.

Theorem 6.3 (/3]) Let F be any unsatisfiable CNF formula over n variables and let S(-F') be
the size of the shortest resolution refutation of F. Then:

S(FF) > exp (Q ((w(l—F) — w(F))z))

n

We proved that this trade-off is optimal ([4]). It would be interesting to find some unsatisafible
formula F over O(n?) variables with polynomial size resolution refutations but requiring degree
Q(n) in Polynomial Calculus for some polynomial encoding. This result would show that there is a
tautology provable fast in Resolution, but requiring high degree in Polynomial Calculus. A possible
good candidate could be the formula GT;, used by [4] to prove the optimality of the size-width trade
off.
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Resolution and Polynomial Calculus: simulations

Recall the simulation Theorem of Clegg,Edmonds and Impagliazzo [6]:

Theorem 6.4 ([6]) If a set of clauses F over n variables and of width at most k, has a deag-like
resolution refutation of size S, then the set of polynomials tr(F) has PC refutation of degree at

most 3y/nlog, S+ k+ 1.

The size-degree trade-off of the previous Theorem is optimal, since there is a trivial resolution
proof of size O(2") for the PHP"*!, and Razborov in [9] showed that PH P™ require Q(n) degree
P(C refutations for all m. It could be interesting to prove the optimality of the previous simulation
also in the case when S is ”small” (i.e. polynomial in the size of the formula). We suspect that
this result could be true. A way to obtain it is proving a €2(n) degree lower bound for the GT;,
principle.

Observe that our Lemma 4.1 is better (in the sense that it gives a smaller degree PC refutations)
than the corresponding simulation result (Theorem 6.4) of [6] in the case we have constant width
polynomial Resolution refutations of formulas having initial clauses of constant size. Moreover it
implies that under the #r translation the width based algorithm of [3] cannot be better than the
Grobner basis algorithm of [6].

Finally notice that there is no simulation of Polynomial Calculus by Resolution. Therefore it
would be also interesting to obtain the opposite direction of Lemma 4.1.
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