	Austrian Grid
	
	[image: image5.png]

Austrian Grid
A report on a unified grid-aware access layer
for SEE-Grid data sets
	Document Identifier:
	AG-DM-4aA-1c-1-2005_v1.doc

	Workpackage:
	A-1c, M-4a

	Partner(s):
	A-1c – RISC, Upper Austrian Research (UAR)

	Lead Partner:
	Wagner, Wöß

	WP Leaders:
	Wolfram Wöß, FAW, Joh. Kepler University Linz

Wolfgang Schreiner, RISC, Joh. Kepler University Linz
Michael Buchberger, UAR

	Delivery Slip

	
	Name
	Partner
	Date
	Signature

	From
	M-4a
	A-1c
	2005-07-31
	

	Verified by
	
	
	
	

	Approved by
	
	
	
	

	Document Log

	Version
	Date
	Summary of changes
	Author

	1.0
	2005-07-31
	First stable version
	M-4a, A-1c

	
	
	
	

	
	
	
	

	
	
	
	

41
Abstract

52
Motivation

52.1
Data store for Evidence based Medicine

52.2
Speed up pathology fitting

62.3
Derived Use Cases

63
Chosen Approach

63.1
The Grid Seamless Data Access Middleware (G-SDAM)

73.1.1
Grid Seamless Data Access Toolkit

83.1.2
Grid Data Mapping Toolkit

83.2
SEE-GRID components

94
Implementation Aspects

94.1
Proxy Generator

94.2
Component Configuration

105
Outlook

116
References

Abstract

In the frame of the SEE-GRID project, the SEE++ client software is enhanced in many aspects. One of these aspects is the replacement of the file-based persistence with a database-based persistence. However, the database and its corresponding data access layer must be available in a server environment and in a grid environment. To support both environments without modification of the core parts of the data access layer, an abstraction layer has to be introduced. This document describes the motivation for such an abstraction layer, its design and implementation aspects.

To ensure the above mentioned data access WP M-4a introduces a middleware concept for seamless data access. The concept for the Grid Seamless Data Access Middleware (G-SDAM) is explained in detail in the deliverable AG-DM-4a-3-2005_v1 for the Austrian Grid Project. In this document G-SDAM is discussed on the package layer. Of course the special circumstances and demands of SEE-GRID are considered and the minor distinctions and restrictions to the general-purpose architecture of G-SDAM are shown and discussed.
The work described in this paper is partially supported by the Austrian Grid Project, funded

by the Austrian BMBWK (Federal Ministry for Education, Science and Culture) under

contract GZ 4003/2-VI/4c/2004.
1 Motivation

The concept of Seamless Data Access is of particular importance in a GRID environment. The ability to add or remove data sources at runtime with only a little effort and resources is one of the core features of the Grid Seamless Data Access Middleware (G-SDAM). Another core feature of G-SDAM is the possibility to launch a query to all participating distributed data sources. Further the query results of all participating data sources are combined and presented to the query composer. For the query composer it seems as the query was processed in a central database, even if at runtime it has been processed at every participating data source.

In this stage of SEE-GRID only data sources are participating in G-SDAM, which follow the same data structure. For future stages it may be desired or even necessary to include also data sources with heterogeneous data structures. It is also possible to include applications that compute needed results just-in-time.
[Bosa et.al., 2004] formed the architectural basis for SEE-GRID. Among other parts, a database for SEE-GRID was described. The database serves different purposes in the frame of this project:

1.1 Data store for Evidence based Medicine

One goal of SEE-GRID is preparation to make SEE++ aware of Evidence Based Medicine, which is technically performed by applying Data Mining algorithms to Data sets. Data Mining usually operates on very large data sets. Therefore, a database is desirable. However, before Data Mining can be performed, lots of data sets have to be collected. The SEE++ client software produces these data sets every time a pathology or surgery simulation is performed.

1.2 Speed up pathology fitting

The pathology fitting algorithm ([Bosa et.al., 2004]) solves an n-dimensional optimization problem. Typically, this class of algorithms needs an initial solution vector to start the optimization. The less the difference between the initial solution vector and the final solution vector is, the faster is the calculation. When a gaze pattern is provided to the pathology fitting algorithm, the pathology fitter will perform the following steps:

1. Query the database for “similar” gaze patterns compared to the input gaze pattern. The semantics of “similar” has not been defined yet. The database returns the similar gaze patterns and their corresponding eye models.

2. Choose the “best” matching gaze pattern and take its eye model as initial solution vector.

3. Advance iteratively to the final solution vector.

4. Provide the solution.

As this process shows, the database can support the pathology fitter by providing “good” solution vectors which leads to a higher performance of the pathology fitter.

1.3 Derived Use Cases

[image: image1.png][CRUD = create, retrieve, updats

[using orid
[database

—_
Pathology Fitter CRUD Patient
using “locar
luatabase .

SEET \

delete

Forward Data
10 Grid
Datahase

‘Search for
Datain Grid
Datahase

Figure 1 - Use cases for the data access layer

Figure 1 indicates similar use cases for the pathology fitter and the client software – SEE++. However, the data access layer must provide its functionality in a Grid environment for the pathology fitter and in a typical server environment for the SEE++ client.

2 Chosen Approach

2.1 The Grid Seamless Data Access Middleware (G-SDAM)
G-SDAM (as shown in Figure 2) is composed of the following four main parts:
1. the Grid Seamless Data Access Toolkit (G-SDAT)

2. the Grid Data Mapping Toolkit (G-DMT)

3. the Global Repository Node (GRN)

4. and the Local Data Nodes (LDNs)

The SEE-GRID architecture of G-SDAM is a restricted version of the general-purpose architecture.

Since, for now, only one uniform data structure is supported, it is not necessary to map local and global data structures or to transform results of LDNs to a uniform global data structure. Therefore the GRN contains only the locations of the LDNs, e.g. the Virtual Organization (VO) that hosts this LDN and the Uniform Resource Identifier (URI) to this LDN.
Also the LDNs in the SEE-GRID only provide data for the queries of G-SDAT. The G-DMT provides the functionality and an interface to register new LDNs to this particular SEE-GRID. The packages G-SDAT and G-DMT are described in greater detail in the chapters 3.1.1 and 3.1.2.
[image: image2.jpg]Grid Seamless Data Access Toolkit
[(G-SDAT)
Seamless Data Access
Data Access
Sk | e

=

Query Processing Toolkit (QPT)

1

|

|

| Grid Data Mapping
Toolkit (G-DMT)

Data Source
Registration

Figure 2 – Package view of the Grid Seamless Data Access Middleware (G-SDAM)
2.1.1 Grid Seamless Data Access Toolkit
The G-SDAT visible in Figure 2 contains the packages Query Processing Toolkit (or QPT for short) and Seamless Data Access. The QPT is responsible for the scheduling, performing and result processing of a query.

The Query Scheduler multiplies the query according to the number of LDNs that are targeted by this query. The Query Scheduler now binds the query to a specific LDN and hands over the query and the URI of the target LDN to the Query Performer.

The Query Performer deposits the query through the package Data Access Service located in the package Seamless Data Access. The Data Access Service now performs the Query on the specified LDN and returns the results to the Query Result Processor.

The Query Result Processor combines all results from every targeted LDN and presents a uniform result set to the query composer.
2.1.2 Grid Data Mapping Toolkit
The G-DMT normally is responsible for the registration of new LDNs, the process of creating mapping and transformation rules and the monitoring of the participating LDNs. In the SEE-GRID the creation of mapping or transformation rules is not required in this stage, so the G-DMT is responsible for the registration and the monitoring of LDNs. These two processes are located in the package Data Source Registration visible in Figure 2. The process of the registration of a new LDN generates a new entry of the location of a LDN at the GRN.
The process of monitoring the participating LDNs should by solved as a callback service. The Data Source Observer notes the availability, the quality of service and the bandwidth of all participating LDNs. The monitoring notes may be used at a later stage by the QPT to extend the quality of the querying and the results, as well as introduce a query forecast component.
2.2 SEE-GRID components
Since the data access layer must provide the same functionality in different technical environments, it must work independent of this environment. Therefore, we introduce an abstraction layer based on the Proxy pattern [Gamma et.al., 1995]. Then, one proxy for a server environment and another proxy for the grid environment are implemented. These proxies support the division between the core functionality of the data access layer and its public interface and integration into its environment.

[image: image3.png]<<actor->
SEE++

<cinterface>>
SeePersistence

T

g Server Proy

% Data Access Layer

Figure 3 - Component configuration for the local data access layer
[image: image4.png]<<actor>>
Pathology Fitter

<cinterface>>
SeePersistence

g Grd Progy

g Data Access Layer

Figure 4 - Component configuration for the grid aware data access layer

Figure 3 and Figure 4 show that there is only one implementation of the data access layer component. The proxy façades decouple the data access layer from its environment. When a public method is called, the proxy delegates it to the data access layer. Since clients only depend on the interface SeePersistence, they experience no difference if they interact with the proxy instead of calling the data access layer’s façade methods. This unified layer leads to a shorter development time, since there is only one implementation of the data access layer. It also leads to a much more maintainable component.

3 Implementation Aspects

3.1 Proxy Generator

During development, it is usual that parts of the software change rapidly. Although it is possible to implement the two proxies manually, we have chosen a generator approach. Therefore, two generator tools that generate the proxies are implemented. These generators are smoothly integrated into the build process. Using this approach leads to different advantages:

· Consistency among proxy implementations

· Transparent to the developer

· Supporting new environments is easy

· Supporting other applications than the data access layer is easy

3.2 Component Configuration

To minimize coupling between the proxy and the data access layer, the proxy should not directly reference the data access layer but only access it via its interface. However, somewhere the proxy needs a reference to the data access layer component. To get this reference, different approaches exist:

· Direct instantiation via a constructor call

· Abstract Factory (see [Gamma et.al., 1995])

· Naming Services like JNDI for Java

· Dependency Injection (see [Fowler, 2004])

Currently, dependency injection is the best approach to configure components. Therefore, a dependency injection container will manage the proxy. The container ensures that the proxy is properly configured after instantiation. Since the component configuration is only a simple text file that is interpreted during startup of the dependency injection container, it is possible to deploy the data access layer easily and without recompilation either to a server environment or to a grid environment.

4 Outlook

The introduction of G-SDAM to SEE-GRID allows a greater flexibility concerning the participating data sources and the integration of new heterogeneous data sources. The restrictions of G-SDAM for SEE-GRID are easily liftable and the resources needed to integrate data sources, other than the now designated SEE-GRID data sources, are comparatively small. Future versions of G-SDAM even will support applications as data source, will also support workflows and will integrate a Workflow Engine.
G-SDAM will be integrated to the SEE-GRID environment and selected services will be implemented to though the next deliverable phase.
Currently, main parts of the data access layer and the server proxy are finished. During the following weeks, we will focus on implementing a generator for the grid proxy. After that, SEE-GRID’s data access layer will be integrated and tested in the Austrian Grid.

At the end of the year an additional report, regarding the G-SDAM integration in the SEE-GRID will be submitted to the Austrian Grid project, to reflect on the lessons learned as well as discuss future enhancements of G-SDAM and SEE-GRID.
References

	[Bosa et.al., 2004]
	Karoly Bosa, Wolfgang Schreiner, Rebhi Baraka, Michael Buchberger,
Thomas Kaltofen, Daniel Mitterdorfer “SEE-GRID Design Overview”, Austrian Grid Project Report, 2004

	[Gamma et.al., 1995]
	Erich Gamma, Richard Helm, Ralf Johnson, John Vlissides, “Design Patterns”, Addison-Wesley, 1995

	[Fowler, 2004]
	Martin Fowler, Inversion of Control Containers and the Dependency Injection pattern, http://martinfowler.com/articles/injection.html, 2004

1/11

[image: image5.png]