	Austrian Grid
	
	[image: image25.png]

Austrian Grid
Design of a GRID Database for SEE++
	Document Identifier:
	AG-DA-1c-2-2005_v1.doc

	Workpackage:
	A-1c

	Partner(s):
	RISC, UAR

	Lead Partner:
	UAR

	WP Leaders:
	Wolfgang Schreiner (RISC), Michael Buchberger (UAR)

	Delivery Slip

	
	Name
	Partner
	Date
	Signature

	From
	
	
	
	

	Verified by
	
	
	
	

	Approved by
	
	
	
	

	Document Log

	Version
	Date
	Summary of changes
	Author

	1.0
	2005-03-31
	Initial Version
	Daniel Mitterdorfer

	
	
	
	

	
	
	
	

	
	
	
	

Design of a GRID Database for SEE++
Daniel Mitterdorfer
Department for Medical Informatics

Upper Austrian Research (UAR)

March 31, 2005
[image: image25.png][image: image26.png]

41
Abstract

52
Introduction

53
Basics

53.1
Modeling notation

63.1.1
Shared 1:n relationships (Aggregation)

63.1.2
Unshared 1:n relationship (Composition)

63.1.3
One-way relationships

63.1.4
Ordered relationships

73.1.5
Named relationships

73.1.6
Inheritance

73.2
Meta‑models

83.2.1
Semantics

93.2.2
Stability

93.2.3
Expressiveness and Applicability

93.2.4
Different approaches imply different meta-models

104
Introducing the meta‑model

104.1
Main design concepts

114.1.1
Process participants

134.1.2
Processes

144.1.3
Medical Activities

194.1.4
Summary

204.2
Instantiation of the meta‑model

204.2.1
Meta‑classes contained in the meta‑model

205
Outlook

216
Overview of the meta‑model

227
Glossary

238
References

1 Abstract
In the frame of the Austrian Grid project, various components of the existing software system SEE++ are extended to make it grid‑aware. This document describes the design of a new persistence subsystem that will enable SEE++ to store patient records locally and in the grid.
Additionally, this database contributes to the goal of the SEE‑GRID project to speed up the calculations of SEE++ by serving as a data‑storage for gaze patterns in the grid.
The work described in this paper is partially supported by the Austrian Grid Project, funded

by the Austrian BMBWK (Federal Ministry for Education, Science and Culture) under

contract GZ 4003/2-VI/4c/2004.
2 Introduction

During the last years, the software system SEE++ has been developed in the frame of the SEE‑KID project (Software Engineering Environment for Knowledge based Interactive Eye motility Diagnostics) by the Upper Austrian Research Center at the department of Medical‑Informatics. The main goal of SEE++ is to support ophthalmologists in their decision making process of finding a sufficient strategy for correcting eye‑motility disorders. A detailed discussion of such disorders and underlying concepts of SEE++ is out of the scope of this document. For more information on these subjects, see [Buchberger 2004].

Currently, SEE++ uses a proprietary binary file format to persist information. To enhance interoperability, a better approach is to use a database, which provides a standardized interface to the contained data. Thus, a database for SEE++ will be designed, realized and integrated.

The goal of this document is to give the reader a detailed understanding of the design of a meta‑model for this database. Introductory, the chosen modeling notation is presented, followed by a discussion of certain idioms that have been used to express different concepts of the meta‑model. Then, there is a short overview about meta‑models in general. After that, an in‑depth explanation of the designed meta‑model is given. Moreover, in this section the main design decisions are explained and justified. At the end of the document, there are the glossary, a diagram of the whole meta‑model and the reference section.

3 Basics

This section introduces concepts and defines terms that are necessary to understand the later sections.

3.1 Modeling notation

In engineering, it is common to document models using a graphical notation. Today, the most common modeling language in software engineering is the Unified Modeling Language (UML). Although Entity-Relationship diagrams (ER diagrams) are widely used in data modeling, the meta‑model for SEE++ is documented in UML. The main reason for this decision was that here the focus lies on conceptual and not on physical modeling. At this level, too many technical details are not of interest. Describing the model in UML allows exploring the model at a high level and understanding concepts more easily. As a result, the chosen notation allows thinking problem‑oriented instead of technology‑oriented.
3.1.1 Shared 1:n relationships (Aggregation)

[image: image1.png]

Figure 1
This construct means that one A-object contains any number of B-objects. Furthermore, it means that several A-objects can “share” one or more B‑objects, i.e. they contain the same B-objects. In other words, B-objects exist independently from A-objects.
3.1.2 Exclusive 1:n relationship (Composition)

[image: image2.png]

Figure 2
Composition is similar to Aggregation, except that sharing B-objects among A-objects is impossible. In this case, the lifecycle of B-objects depends on the lifecycle of their related A‑object.

3.1.3 One-way relationships

[image: image3.png]

Figure 3
This means, that navigating from A to B is allowed, but not reverse. Certainly, this constraint can usually be circumvented in many physical models. Nevertheless, in a conceptual model, this relationship expresses that navigating from B to A does not really make sense.

3.1.4 Ordered relationships

[image: image4.png]=<ordered=>

Figure 4
Ordered relationships are used to express, that there is some kind of order or sequence among the objects of the given relationship. This is useful in different situations. As an example, the meta‑model uses this concept to indicate the order of process activities.

3.1.5 Named relationships

[image: image5.png]<<named>->

Figure 5
A named relationship allows referring to the associated object by its name. Consider a vector that consists of two components “x” and “y”. The vector and its components are in a named relationship with each other, so that one can refer to the two components using their name.
3.1.6 Inheritance

[image: image6.png]

Figure 6
The diagram means that B is inherited from A, i.e. B is a subclass of A.

3.2 Meta‑models

First of all, the term “meta“ needs to be defined. According to [Matthews 2004], “meta“ is derived from the Ancient Greek meta and means about.

As an example, let us consider an MP3 file. Obviously, the file contains music (this is the data). However, that is not the whole information in the file. Embedded into the file, there is the so-called ID3 tag. If properly filled in, this tag contains information about the title, the band, the genre and other related information. This information is called “meta‑information” because it provides further information about the music. In other words, meta‑information adds semantics to the data. To illustrate this issue, combined with a database the meta‑information of an MP3 file allows to answer questions like “Which songs were produced in 2004?”, “Which groups have covered the song xyz?” and so on. Thus, meta‑information is a powerful concept.

Now, let us focus on meta‑models. As per the above-mentioned definition of meta, a meta‑model is a model about a model. Figure 7 describes a simple meta‑model for Entity‑Relationship diagrams. Although not fully featured, it helps to discuss some aspects of meta‑models.
[image: image7.png]rimary key'is subsetof"atiibutes™) 1

iy e Relationship

- name :String |- partner8 - name : String

- attributes, | primary key

Attribute - A primary key

- name : String
- dataType : DataType

- B's primary key

Figure 7
To build a specific model, create instances of the meta‑classes Entity, Relationship, and Attribute according to the given domain (see Figure 8).

[image: image8.png]bookuthor : Relationshin
partners partnert [author- Entty
ook En narme = Author_wiites_book =
narme = Book name = Author
attibute(o) primary key(o] attibute(0] primary keyl0]
tite - Attioute lastiarne - Attipute
name = e - § narme = lastame
dataType = VARCHAR | A's primary key. B primanykey | gataType = VARCHAR

Figure 8
Using this example, let us discuss some aspects of meta‑models.

3.2.1 Semantics

The meta‑model enforces semantics by the terms and relationships used, which form the “language” of the described domain. The meta‑model in the example used the terms “Entity”, “Relationship” and “Attribute”. Furthermore, the model describes that entities have a couple of attributes; some of them are primary key attributes. Thus, this domain language makes the modeler think in terms of entities, attributes and relationships, as well as how they are associated.

3.2.2 Stability

If the data‑model in the example above needs to store also the first name of an author, just a new instance of “Attribute” has to be added to the model. The meta‑model remains untouched; there is no need to change the domain vocabulary of the meta‑model. Consequently, assuming that the meta‑model has been deployed to a relational database, no new tables need to be added; the database contains just a new record. Therefore, the introduction of a meta‑model also contributes to the stability of the database that contains that meta‑model.

3.2.3 Expressiveness and Applicability

The simplest and most powerful meta‑model is the one in Figure 9:

[image: image9.png]<<named>»

Object

Figure 9
The problem of this meta‑model is that it is in fact useless. Certainly, it can be used in any context, which leads to a high applicability, but it provides no useful semantics. In other words, the model has no expressiveness. The other extreme is a too detailed model. Hence, a meta‑modeler has to manage the tradeoff between expressiveness and applicability. If the meta‑model is too expressive, it is likely that it cannot be used in any desired context and vice versa. Considering performance issues, it is better to tend to be more expressive.

During deployment, tables in a database, usually a relational one, will represent the meta‑model. If the meta‑model is too abstract, many queries are necessary to extract the information needed. Therefore, a more abstract model will typically result in lower performance.

3.2.4 Different approaches imply different meta-models

Different people have different points of view on how to model a domain. Meta‑models cannot eliminate this circumstance; they just lift it “one level up”. Therefore, meta‑models are no magic bullet to modeling.
4 Introducing the meta‑model

This section describes the design of a meta‑model for a database for SEE++. Although designed to be usable for medical applications in general, it is highly unlikely that the model is capable of supporting every medical application. Nevertheless, the meta‑model is designed to be easy to customize.

To clarify the terminology, the term “meta‑model” refers to the meta‑model itself whereas the term “model” only refers to the data‑model that is built using the meta‑model. In essence, “model” is never used as an abbreviation for “meta‑model”. However, “to meta‑model” is an awkward description of meta‑modeling activities. Therefore, these activities will also be termed “to model”.

4.1 Main design concepts

As mentioned above, the meta‑model does not only support SEE++ although it was designed with the needs of SEE++ in mind. As a consequence, some things would not have been necessary, if the model only had to support SEE++. It is yet uncertain, whether or not to use all parts of the meta‑model in SEE++. Therefore, only the currently needed parts have already been defined in more detail.

The most important concept of the meta‑model is that it makes the modeler think process‑oriented. The meta‑model is heavily influenced by [Fowler 2004] and [NHS 2004] and uses many concepts from these models.

Since the meta‑model itself is process‑oriented, it allows defining

· the steps within a process,

· the involved persons, and

· the objectives.

The classification used to describe the meta‑model is as follows:

· processes (red)

· process participants (yellow)

· medical activities (green)

· basic data types (gray)

[image: image10]
Figure 10
The further elaborations of the meta‑model use the classification shown in Figure 10. Since basic data types are just used as utilities, there is no extra section for introducing them.

4.1.1 Process participants

[image: image11.png]Address

- strest: String

- city String

- state : Sting
~zip String

- POBox: String

- houseNumber : int
- houseNumberaddiion : String

Party

Role

RoleType

- name : String

- typeName : String

- equivalents,

Identifier

ContactType

Contact

Organization

Person

- name : tring

- name :string_[<—]

- contact: String

- firstarme : String
- birthday Date
- acTille String

NamingScheme

- name : tring

Figure 11
According to Figure 11, process participants or parties can be either an organization - like an insurance company or a hospital – or a person. Party is an analysis pattern introduced by Martin Fowler in [Fowler 2004].

Parties can have several addresses and possibilities to contact them. Whereas the use of “Address” is straightforward, “Contact” and “ContactType” are more interesting. These two classes allow saving various contact information. Some examples are:

· ContactType.name = “Phone”;
Contact.contact = “+43/650/12345678”

· ContactType.name = ”E-Mail”;
Contact.contact = “peter.mueller@mydomain.at”

· ContactType.name = “Fax”;
Contact.contact = “+43/5242/11111”

The last part of process participants deals with roles; a party can have different roles. The role itself is identified by its role type, which could be for example “patient”, “doctor” or “insurant”, and a name (=Identifier) for the party that acts in this role. Although a simple name is sufficient to identify a role, the identifier concept allows using features that are more sophisticated like anonymized patient records.

Consider a database in a doctor’s practice. Since only one doctor uses the database, the system can refer to the patient via its social security number without violating privacy. However, when putting many patient records from different sources into a centralized database to carry out e.g. statistical studies privacy issues arise. To deal with these issues, the meta‑model uses the identifier concept. Therefore, not only the social security number is stored but also a globally unique identifier (GUID), which is a completely random unique number. Both numbers refer to the same patient. This leads to the following situation:

[image: image12.png]insurant RoleType
role Role
typeName = insurant
ssn tIdentifer equivalents| guid Jigentiter
name = 1234 0792349
private : NamingScheme publi : NarmingScherne
name = Social Security Number name = GUID

Figure 12
Figure 12 shows two different identifiers for this person. The social security number allows identifying the person directly whereas the GUID enables only its doctor to identify the person. During export, all personal information is eliminated and only the GUID refers to the person. Figure 13 shows the exported record in the central database.

[image: image13.png]role Role

insurant RoleType

i Identier
name = 80792349

typeNarme = insurant

‘ublic : NamingScheme

name = GUID

Figure 13
Martin Fowler presents a very similar pattern called “Identification Scheme” in [Fowler 2004]. The drawback of the current approach is that the export mechanism has to traverse the equivalents of the social security number until the GUID is found. This is necessary to update the relationship between role and social security number to GUID.

Other important usages for NamingScheme are internationalization, encoding of diagnoses using International Classification of Diseases (ICD) scheme (see [WHO 2004]) or natural language. Yet, there is no explicit use of internationalization techniques to keep the meta‑model easier to understand. Nevertheless, the finally created meta‑model will use these techniques to support internationalization.

4.1.2 Processes

[image: image14.png]- seniced | |- providers

Role

- applicabily
. Activity Timerecord
step 1 Stie] - recording time.
start
Timepoint |<~ | Timeperiod
end
[ordered) ["Service Objective IS

Figure 14
The classes shown in Figure 14 provide a basic but extensible framework to model processes. Although processes are modeled, there is no “Process” class. Since services are a sufficient abstraction in this domain, the types of processes are limited to service processes only. The reason is the intended limitation to support only service processes since services are a sufficient abstraction in this domain.
The relationship to “Role” connects a process and its participants. Concerning services, there are two important groups: Parties that provide a service and parties that use a service. Furthermore, a service allows defining objectives, e.g. “patient is healthy when service ends”. Currently, objectives are not used. If they are needed in future, they have to be specified in more detail.

Activities represent a single step of a service, e.g. the measurement of a patient’s weight. The meta‑model also allows planning at a simple stage by introducing states for an activity. States are two‑dimensionally historified. Although two-dimensional historization is covered in [Fowler 2004], let us introduce a short example.

Two-dimensional history

Consider the planning of an activity like an operation and a simple state model shown in Figure 15.

[image: image15.png]rescheduled f"update” scheduled time

rescheduled

scheduled tme reached

Scheduled

update” scheduled time

Figure 15
Note: Update scheduled time does not mean that the old scheduled time will be overwritten. Actually, a new time record will be created and marked as valid, whereas the old one will be invalided. This mechanism allows keeping track of the State’s history.

	Applicability
	Recording time
	State

	2nd May 2005
	5th March 2005
	Active

	5th May 2005
	4th April 2005
	Active

	15th April 2005
	14th April 2005
	Active

The table shows an operation schedule that has been rescheduled twice. On March 5, the operation has been scheduled for May 2. On April 4, the schedule has been updated for whatsoever reason to May 5. On April 14, the operation has been scheduled for the next day (maybe because of an emergency).

Now, two‑dimensional historization allows answering questions like “Assuming that today is April 5, when will the operation take place?” (The answer is May 5.). This enables the determination of the current state of the operation for every point in time.

4.1.3 Medical Activities

All activities in healthcare are considered “medical activities”. Medical activities are the core of the whole meta‑model. The initial inspiration was the Observation pattern in [Fowler 2004] (do not mix it up with the design pattern Observer). In order to reflect the requirements of SEE++, the initial version of this part of the meta‑model has undergone significant changes. The main abstraction is that certain activities are carried out on well‑defined subjects. A subject can be any physical or non‑physical “thing”. A simple example of a physical subject is the “eye” of a certain person, an example of a non‑physical subject is the “state of mind” of a certain person. Using this key abstraction, other concepts describe the actions carried out further.
The following diagram sketches the main parts of “Medical activities”:

[image: image16]
Figure 16
Due to the high complexity of this part of the meta‑model, the introduction is divided into several subsections and follows the structure illustrated in Figure 16. Although not shown in the following diagrams, the different parts of the meta‑model are linked together.

Subject (What is being acted on?)

[image: image17.png]RelationshinType

“name - Siring
‘ 0.1
islosiofts [l SubjectType Location
Fa— 5
“name - Siring
- parinera
RelationshipOfinterest P Subject
“partners

Figure 17
The four classes in the upper part of Figure 17, RelationshipType, Relationship, SubjectType and Location, describe the meta‑level. Since this meta‑model will be applied in SEE++, which deals a lot with eye anatomy, at first, it allows specifying anatomy well. The remaining classes, RelationshipOfInterest and Subject, describe which concrete subject has been chosen for the current activity. As subject types can have many relationships to other subject types, a way to specify the concrete relationship is needed; this is exactly the task that “RelationshipOfInterest” carries out. To clarify the underlying concepts, let us have a look at an example. If an orthopedist wants to examine the lumbrical muscle of the right middle‑finger, the meta‑model would map the subject as shown in Figure 18.

[image: image18.png]panor: RelationshinType

right Location

theHand : SubjectType

fingerHand.: Relationship.

name = hand lef Location

theMiddleFinger SublectTyoe

muscleFinger : Relationshin

name = middle finger

Jumbrical SublecType

jumbrical muscle

myLurbrical Sublect

parnera|

rell umbrFinger : RelationshipOfinterest

pamnerB| | mighiiddleFinger : Sublect

relFingerHand - RelationshipOfnterest

partners

myRightHand : Sublect

parners

Figure 18
To make the diagram easier to read, the meta‑level is shaded. The meta‑level describes the relevant part of the human anatomy whereas Subject and RelationshipOfInterest describe the concrete body part that is being observed (lumbrical muscle of right middle‑finger). For the sake of simplicity, the example defines only one relationship between the body parts. Therefore, there seems to be no need for RelationshipOfInterest. However, if there are many relationships between body parts it is definitely of importance, which one is meant.

Phenomenon Type (Which properties?)

[image: image19.png]PhenomenonTyne
{isQualtative(== true}
i +isQualiativeq - boolean
+ isQuantiativeq : boolean
+ isOrderedy : boolean
- eouivalents | Wdentifier
- name : tring

NamingScheme

- name : tring

Figure 19
Phenomenon types are used to describe properties of subjects. If the property is qualitative, one or more phenomena can be attached to the phenomenon type. Here too, NamingScheme is used to support multiple names for a phenomenon type and its phenomena (for a discussion of NamingScheme see the section Process participants). Examples of phenomenon types are “length” (of a muscle), “blood group”, etc. For blood group, a possible phenomenon is “A” (blood group A).

4.1.3.1 Characteristic (Which concrete value is relevant?)

[image: image20.png]from
7| charactenstic

o ContextType

Phenomenon

- name : String

‘ <<named>>

DiscreteCharacteristic Range Number Quantity Vector
~includesLower : hoolean [Samount
- includesUpper : boolean 5
1
[Consiraints
(1) rom PhenomenanType == to.PhenomenonType T3 Coorieateystem|
(2) from PhenomenanType isOrdered(== true - name - string | [-name - sting
@ from <10

Figure 20
The above shown classes are used to describe characteristics. These are:

· Simple numbers (modeled by “Number”)

· Physical values like “10 millimeters” or “2 centiliters” (modeled by “Quantity”)

· Vectors in a specific coordinate system (modeled by “Vector”)

· Ranges of values (modeled by “Range”)

· Discrete values i.e. enumerations (modeled by “DiscreteCharacteristic”)

Moreover, there is another concept shown in Figure 20 named “Context”. This concept is useful to record values in different contexts. The motivating example for Context can be found in SEE++. Among other things, SEE++ allows to simulate so-called Hess diagrams (see Figure 21). Ophthalmologists use Hess diagrams to describe the result of tests of the binocular function of a patient graphically.

[image: image21.png]Depression / Elevation

Left Eye (Right Eye fixing) [Pulley Model]

@ om0 0w w o w oa w
Souction 1 _sdtucion

tanded
Simulted
p—iet

Figure 21
According to the diagram above, the blue shape indicates the intended values (the fixation points are represented as dots); the red shape is simulated based on the eye model of the patient. To associate simulated and indented values, the concept of a Context has been introduced.

Protocol (Which strategy is used?) and ActivityType (Which type of activity?)

[image: image22.png]- measures

Acthity.

e

PropertyTyne
Protocaly
ActhityType rotocolType =
- name : String - name : String
‘actityonsubject auvailable for ?
Property
- name : String
Protocal

- description : String

Figure 22
Since ActivityType and Protocol are tight‑knit, they are explained in the same section. ActivityType allows defining any activity that is suitable in the application’s context. For example, for medical applications, “Surgery” and “Examination” could be useful types. [Fowler 2004] describes protocol as “[…] the method by which the observations are made”. Note, that Fowler ties the protocol to observations. However, during the design of the meta‑model, protocol turned out to be useful in general. The relationship named “available for” between ActivityType and ProtocolType constrains the available protocols for an ActivityType, since not all Protocols make sense for all Acitivities. For the ActivityType „Surgery“, for example, the ProtocolType „digital weighing machine“ would be meaningless, but not so for the ActivityType “Examination”.
PropertyType and Property are useful for describing the protocol more exactly in a formal way. For example, SEE++ provides different ways to perform a surgery. One of them is “Transposition of Insertion” which can be either an anterior/posterior transposition or a tangential transposition. Both surgical procedures can be applied according to a spherical or cartesian measurement technique. In essence, there are two independent property types (type of transposition and type of measurement technique) and their corresponding properties. Protocol represents which properties have been chosen for a concrete surgery. To trace back adopted measures, an ActivityOnSubject can record them via the relationship “measures”.

Specializations of ActivityOnSubject

[image: image23.png]ActivityOnSubject

ﬁ?

- evidence

CompositeActivityOnSubject

Observation

- name : String

conclusion

Figure 23
ActivityOnSubject allows specifying an ActivityType, which is, after all, just a name. Therefore, ActivityType lacks the ability to introduce new relationships or attributes on the meta‑level. Hence, two subtypes of ActivityOnSubject had to be introduced to support two new relationships.

The benefit of CompositeActivityOnSubject is that many ActivityOnSubject objects can be grouped, e.g. an examination that consists of a couple of measurements. The main reason for introducing Observation as a separate class is the possibility to build evidence chains. Thus, it is comprehensible on which basis diagnoses have been formulated.

4.1.4 Summary

Unquestionable, the model contains very many concepts. Furthermore, it is quite abstract and powerful. Some concepts may be useful in SEE+, some not. However, if a concept does not make any sense in an application’s context just drop it. The section “Overview of the meta‑model” contains a diagram of the whole meta‑model.

4.2 Instantiation of the meta‑model

Instantiation means building a model on top of the meta‑model. Thus, concrete values for all meta‑class instances have to be defined. These values depend on the application that wants to use the meta‑model. For example, an application that deals with cancer patients uses other terms than an application that supports the planning of surgical treatments of the human eye.

4.2.1 Meta‑classes contained in the meta‑model

This section contains an exemplified description of meta‑model instances needed for practical use in SEE++. However, further model classes will be defined during later stages of development. To keep the description short, it follows the form: “name of meta‑class: names of corresponding classes”. All names use English identifiers, although also other languages will be used in the physical model.

ContactType:
Telephone, E‑Mail, Fax

RoleType:
Insurance Company, Insurant, Patient, [Doctor] (unsure)

SubjectType:
Eye, Globe, Cornea, Medial Rectus, Lateral Rectus, Superior Rectus, Inferior Rectus, Superior Oblique, Inferior Oblique, Oculo/RM, Abducens, Oculo/RS, Oculo/RI, Trochlear, Oculo/OI

RelationshipType:
contains, innervated by

ContextType:
Intended, Observed

ActivityType:
Examination (static type: Observation), Simulation (static type: Observation), Surgery (static type: ActivityOnSubject), Diagnosis (static type: Observation)

CoordinateSystem:
Carthesic

Unit:
mm, g, g/mm, g/% á L0, %/100, %

NamingScheme:
German, English

5 Outlook

The presented conceptual meta‑model has matured enough to be transformed to a logical and afterwards to a physical model. The physical model will be deployed to a grid database. Using this physical model, the meta‑model will be instantiated with the domain specific meta‑model instance for SEE++.

6 Overview of the meta‑model

[image: image24]
7 Glossary

Activity
A step in a process.

Characteristic
A concrete value.

Diagnosis
The process of identifying a disease and its result.

Hypothesis
A proposed explanation of a phenomenon.

Naming Scheme
A code.

Observation
Watching something and taking notes of anything it does.

Party
Any physical or juristic person.

Phenomenon
A possible value of a qualitative phenomenon type.

Phenomenon Type
Describes medical properties.

Protocol
The method by which observations are made.

Quantity
A special type of characteristic. It consists of a number and a unit.

Role
A set of expectations placed on an individual

Service
A service is a (complex) process consisting of multiple activities.
Subject
Anything on which activities are carried out.

8 References

[Buchberger 2004]
Buchberger, Michael. Biomechanical Modelling of the Human Eye. Dissertation, Johannes Kepler Universität, Linz, March 2004

[Fowler 2004]
Fowler, Martin: Analysis Patterns: reusable object models. Addison-Wesley, fifteenth edition, August 2004. ISBN 0-201-89542-0.

[Matthews 2004]
Matthews, Charles, Meta‑. URL, http://en.wikipedia.org/wiki/Meta‑, December 2004.

[NHS 2004]
NHS Information Authority, URL, http://www.standards.nhsia.nhs.uk/hcm/htmldocs/models.html, December 2004.

[WHO 2004]
World Health Organization, “International Classification of Diseases (ICD)”, URL, http://www.who.int/classifications/icd/en/, December 2004.

[Stovall 2004]
Stovall, Joy, Role. URL http://en.wikipedia.org/wiki/Role, December 2004

processes

process participants

Medical activities

Basic data types

What is being acted on?

Which properties?

Which concrete value is relevant?

Activity on subject

Which strategy is used?

Which type of activity?

� Taken from [Fowler 2004]

� Taken from [Stovall 2004]

4/24

[image: image27.png]

[image: image28.png]o ol)
Buug © aueu - Buug © aueu - BN} == (PaIapIOs! i LUDUBWIOUBY WOl (7)
o o
(albue pue snpes) waisks| | WarsASalunI00) wn Bl UOBIOUAY4 D} == 3t zgmsgm“mﬁwﬁw
aweupiooy eiod e ol -
euaiia pmom uiesu|
sadlg elep orseq (el Siup ‘aicwexa 103 ‘adk oul o Toape0 R
Sanoe [Eampaus uaaih LS9 LupINOyS B A o | e P
500000~ pa1 ‘adll auies aney siaquiau e|
spuediaped ~ mojjak UIEASUDI| 10087 Auenp Jaquing afuey NSLI}IIRY)B)BIISIA
~=epawES
_ | ouns e
adLmanns T
Veowos | | onsuerereuy panieseibus 1o
T
fr— T 3o smiosaq
BUMS - uopauasap - uoneasasqo PalgnsuoAuoyaysoduo) Bulls - aew -
oon0ia T aumRSHuNEN
aauspna -
St aueu - T
Aadoid
T St - aueu -
ToaldnSUORIIDY S| SHeteanba -
amali0 aamias Bus s | 104 81Eens o [Goms e g
7 .
LNDEHE adA1 1030014 adAL Ay
{paiapio} adAlfatold uea|o0d : paIBpIOs! +
UEB|000 : (BAIEIIUENDS] +
T ueaiooq: Qanenienos: +
{any == Qanenienost} [T
adfuoouiooud
{ euewouayd pafansenul \
. susniousd
T !
T — wainsia)
pop—— nians | ooty —] WorowOMSuOREI
ams
St aueu -
o 0
Nmisld euoisuawiponL| o T 0| dusuoneiey
T
St aueu -
_— adkLdusuoner
poredun] Jioduny
T Gt -
4 e AP - e s swe-
Sung - suensil -
- Yoewiod)
N T wosiog uonezenio
Buw Bupioda) - BUI BUIpI0Ia] -
2 Bullg X0g0d -
[T
siopond-| | paowas - Bt seis -
Buus A -
Bl sueed - Bung - sueu - Suuag : omppviBaLINESNOL -
- sagumyssnoy -
B oo el oug 19815 -
T ssompy

(pInd pue saguinu naas|
121205 "5°8) ajo. e 1o aweu|

U0 UEw alow auyap o} SMlY|
A04611010-PEL 1,=I8UuBp) T8

