	Austrian Grid
	
	[image: image3.png]

Austrian Grid
Report on the Use of Globus 4 and the Web Service Resource Framework for SEE++
	Document Identifier:
	AG-DA-1c-4-2006_v1.doc

	Status:
	Public

	Workpackage:
	A1c

	Partner(s):
	Research Institute for Symbolic Computation (RISC)

Upper Austrian Research (UAR)

	Lead Partner:
	RISC

	WP Leaders:
	Wolfgang Schreiner (RISC), Michael Buchberger (UAR)

	Delivery Slip

	
	Name
	Partner
	Date
	Signature

	From
	Karoly Bosa
	RISC
	2006.11.31
	

	Verified by
	
	
	
	

	Approved by
	
	
	
	

	Document Log

	Version
	Date
	Summary of changes
	Author

	1.0
	2006-11-31
	Initial Version
	See cover on page 3

	
	
	
	

	
	
	
	

	
	
	
	

Report on the Use of Globus 4 and the Web Service Resource Framework for SEE++
Karoly Bosa

Wolfgang Schreiner

Research Institute for Symbolic Computation (RISC)

Johannes Kepler University Linz

{Karoly.Bosa, Wolfgang.Schreiner}@risc.uni-linz.ac.at

Michael Buchberger

Thomas Kaltofen

Department for Medical Informatics

Upper Austrian Research (UAR)

Thomas.Kaltofen@uar.at

Dezember 12, 2006
2Delivery Slip

2Document Log

51
Abstract

62
Introduction

73
A WS-GRAM Compatible Extension of SEE++

83.1
The new Job Description

93.2
User Interface

103.3
Benchmarks

114
Using the PBS Scheduler for SEE++ Job Submissions

115
Experiences with SEE++ Data Management System Based on WSRF

125.1
Discovered Limitations

125.2
A Preliminary Experiments with the WSRF Based Medical Database Services

136
Outlook

157
Acknowledgements

15References

1 Abstract
SEE-GRID is based on the SEE++ software system for the biomechanical simulation of the human eye. The goal of SEE-GRID is to extend SEE++ in several steps in order to develop an efficient grid-based tool for “Evidence Based Medicine”, which supports surgeons in choosing optimal surgery techniques for the treatment of certain eye motility disorders.

First, we have developed a grid-enabled version of the simulation of the Hess-Lancaster test, which is a medical examination by which the pathology of the patient can be estimated. Based on this, we work on a pathology fitting algorithm that attempts to give sufficiently close estimations for the pathological reasons of the disorder. Furthermore, we have developed a prototype version of a grid enabled medical database where both real and simulated pathological cases can be collected, sorted and evaluated for improving both the later pathology fitting calculations and the future medical treatments.

In this document, we present an extension of the “SEE++ to Grid Bridge”, with which it is able to start SEE++ server processes on a grid site via WS-GRAM. Then we describe how “Grid-Enabled SEE++” can work together with the OpenPBS batch scheduler, which is deployed on some clusters of the Austrian Grid.

Finally, we give an analysis about our experiences with integration of the prototype Web Service based implementation of the SEE-GRID database into the WSRF framework.
2 Introduction
[image: image1.jpg]Current Architecture

— =
'WEB SERVICE (AXIS) 2 SEE++ SEE++
Client Ut Client
L3
3 i [f
WS API ‘WS API
R
'WEB SERVICE (AXIS) l)
| mmEAET)

- 5 V
|«— & - H
P
I 5 SEE++2GRID BRIDGE H

WS API
GRAM AP|
‘WS
WS-GRAM G-SDAM
(pre-WS) GRAM WSRF SERVICE WSRF SERVICE
T I :
MPI JOB MPIJOB
HESS CALC. PATH. FITTER PATH. FITTER :
B +—hesscarc]| - HESS CALC. ‘
HESS CALC. —HESS CALC. HESS CALC.

GRID

Figure 1. The Extended Architecture of the „Grid-Enabled SEE++“ based on Globus 4

“Grid-Enabled SEE++” is based on the SEE++ [SEE-KID, 2006; Buchberger, 2004; Kaltofen, 2002] software system for the biomechanical 3D simulation of the human eye and its muscles. SEE++ simulates the common eye muscle surgery techniques in a graphic interactive way that is familiar to an experienced surgeon. The goal of “Grid-Enabled SEE++” is to adapt and to extend SEE++ in several steps and to develop an efficient grid-based tool for “Evidence Based Medicine”, which supports the surgeons in choosing optimal surgery techniques for the treatments of different syndromes of strabismus.

In [Bosa, 2006], we combined the SEE++ software with the Globus (pre-Web Service) middleware [Globus, 2006] and developed a parallel version of the simulation of the Hess-Lancaster test (typical medical examination). By this, we demonstrated how a noticeable speedup can be achieved in SEE++ by the exploitation of the computational power of the Austrian Grid. Furthermore, we reported the prototype implementation of a medical database component for “Grid-Enabled SEE++”. Finally, we designed a so called grid-based Pathology Fitting algorithm, which would be able to determinate (or at least estimate) automatically the pathological reason of a patient's strabismus.
The current architecture of “Grid-Enabled SEE++” (the box in Figure 1 bordered by the dashed line) consists of the Web Service based database services, WSRF-based database services, the “SEE++ to Grid Bridge”, the grid-enabled SEE++ servers (which are started via pre-WS GRAM and perform the gaze pattern calculations) and the SEE++ clients. According to the scenario of the parallel simulation of Hess-Lancaster, before the bridge accepts the computational requests from the SEE++ clients, it submits in advance some grid-enabled SEE++ servers into the grid. These processes behave as some kind of “executer” processes for the computation tasks in order that the remarkable latencies of the job submissions in case of the computational requests can be avoided (since the developed parallel Hess-Lancaster test simulation takes only approximately 1 up to 45 seconds on the grid).

The SEE++ clients can connect to all database components located on the grid via the “SEE++ to Grid Bridge” (the underlying grid-based infrastructure is hidden from the clients). Furthermore, the clients can also reach every Web Service based database component via the bridge, although a client is also able to interact only with one such database directly. For the underlying database system, we decided to use MySQL, because in our comparative performance tests it worked together with our developed software architecture 4-8 times faster than postgreSQL.
Recently, we have just finished an extension of the “SEE++ to Grid Bridge”, with which it is able to start grid-enabled SEE++ servers on a grid site via WS-GRAM, see Section 3. Furthermore, we describe in this document, how “Grid-Enabled SEE++” can work together with the OpenPBS batch scheduler, which is deployed on some clusters of the Austrian Grid, see Section 4.
Finally, we attempted to refine the elementary integration of the prototype Web Service based implementation [Mitterdorfer, 2005] of the SEE-GRID database into the WSRF framework. But since we met very strict limitations from the side of C WS Core of Globus 4, we could make only preliminary experiences with WSRF-based medical database of SEE++, see Section 5.
3 A WS-GRAM Compatible Extension of SEE++
Until now, we could not implement a fully functioning WS-GRAM client using the C WS Core API and the C WS-GRAM API, although we spent lots of time with reading of their available documentations and discussed the situation with some other research groups of the Austrian Grid. We found there is simply not enough documentation for these APIs. The only complete and well functioning ANSI C client application for WS-GRAM, whose source is available, is the Globus tool globusrun-ws which is a very general and complex software. So we decided to call this application from our “SEE++ to Grid Bridge” in order to submit our SEE++ server processes via WS-GRAM. By this, we can make some experiments with the WSRF interface used for this grid service and we can compare this solution with the already used pre-WS architecture. So the globusrun-ws is called in the following form from our bridge application:
globusrun-ws -submit -S -f <job_description>
-F https://<address_of_the_grid_site>:8443/wsrf/services /ManagedJobFactoryService
The chosen options are the followings:
· The “-submit” argument submits or resubmits the job.
· The “-S” or “-staging-delegate” will delegate the client credential to WS-GRAM and Reliable File Transfer (RFT) service. For SEE++, these are required, because we apply file stage out (for send back the output file to the client) and clean up after the job has been executed successfully.
· The “-f” or “-job-description-file” causes the job description to be read from the given XML file, see Section 3.1.
· With “-F” or “-factory” contact address of the WS-GRAM can be given. If this option is omitted then the job is submitted on the WS-GRAM service located on “localhost“. The ManagedJobFactoryService is one of the available services of WS-GRAM which always creates an independent resource environment for each submitted job [Globus, 2006].

Accordingly, the "SEE++ to Grid Bridge" acts as a WS-GRAM client and submits a job described by an XML based description language, see Section 3.1.

When a SEE++ server is started, it attempts to bind itself to a free port in a predefined port range and to send this information back to the “SEE++ to Grid Bridge”. Unfortunately this is not a trivial task, because real-time interaction is not possible with a Job Resource managed by WS-GRAM. According to the applied concept, the output files can be stage out from the grid site if and only if the execution of the corresponding job finished successfully.
For solving this problem, we have applied a technique that was already used in [glogin, 2004] in a similar situation, but in case of (pre-WS) GRAM. According to this, after the server process has bound itself to a free port, it “forks” itself and then terminates. The WS-GRAM perceives the termination of the program and checks whether there is any predefined fileStageOut procedure. We can use this procedure to send back the output files to the “SEE++ to Grid Bridge”.
Fortunately, once a program has been started on a grid site, this program will be able to accept communication requests. Therefore, the “SEE++ to Grid Bridge” will be able to connect to the socket, which is still held active by the previously forked copy of the SEE++ server.
3.1 The new Job Description
Originally, the Resource Specification Language (RSL) developed for the Globus Project was used for defining job submission in case of (pre-WS) GRAM. For WS-GRAM the job submissions have to be specified in a new XML based description language.

<?xml version="1.0" encoding="UTF-8"?>

<job>

 <executable>/location_of_the_executable /grid-seeppserver</executable>

 <stdout>/tmp/seegrid_port_numbers.txt</stdout>

 <count>number_of_processes</count>

 <fileStageOut>

 <transfer>

 <sourceUrl>file:///tmp/seegrid_port_numbers.txt</sourceUrl>

 <destinationUrl>gsiftp://laddress_of_client:2811/ location_of_the_named_pipe</destinationUrl>

 </transfer>

 </fileStageOut>

 <fileCleanUp>

 <deletion>

 <file> file:///tmp/seegrid_port_numbers.txt </file>

 </deletion>

 </fileCleanUp>

</job>

This is a single job description template for the submission of the SEE++ server processes, which is defined between the root description elements <job> and </job>. The applied intermediate description elements are:
· executable: It specifies the location of the executable on the grid site.
· stdout: It defines the standard output file for the submitted jobs.
· count: It defines the number of processes to execute.
· fileStageOut: In order to send back the output file after job execution, we should add specific file staging elements to the job description and we must delegate our credentials, see Section 3.
· fileCleanUp: Finally, the client requires the clean up procedure, in which it denotes the established temporary or output files for deleting. For this, the client credential must be delegated as well.
3.2 User Interface
At present, if the user intends to starts some SEE++ server processes via WS-GRAM on a grid site instead of (pre-WS) GRAM, then she must start the “SEE++ to Grid Bridge” with the option “-ws”. For instance, in case of the following command

./seepp2grid –ws –n 3 altix1.jku.austriangrid.at

where the bridge will start 3 server processes on grid site altix1.jku.austriangrid.at via WS-GRAM.
3.3 Benchmarks
We have compared the overheads of the submissions of our SEE++ Server processes via pre-WS and WS GRAM in different situations where 1, 3, 9, 25, 30 or 45 processes were executed on the grid.
Each value in Table 1 depicts the average job submission time of 5-7 computations. The test cases were executed on the Austrian Grid site altix1.jku.austriangrid.at, which contains 64 Intel Itanium processors (1.4GHz) and resides at the Johannes Kepler University (JKU) in Linz. The “SEE++ to Grid Bridge” and SEE++ clients were always executed at the RISC Institute located in Hagenberg which has a one Gigabit/sec connection to the JKU Linz.

For measuring, we installed the Ethereal network protocol analyzer [Ethereal, 2004] on the machine where the SEE++ client is executed. By this software, the network traffic between the local machine and the mentioned grid site was filtered and each network package sent to or received from the port of “seepp2grid” was captured. After the execution of a test case, the duration of the job submission can be determined from the recorded capture time of the first sent and of the last received message.

[image: image2]
Table 1: Comparative Benchmark of the Starting of SEE++ Server Processes via (pre-WS) GRAM and WS-GRAM

From the measured values contained in Table 1, we can see obvious differences among the overheads of the job submissions in pre-Web Service and Web Service Architectures of Globus, i.e. the latter is much slower. On reason for this is certainly the more robust architecture and the new and more sophisticated services. Another reason may be that the WSRF-based services were implemented in Java (on the top of the Java WS Core) and not in C. We hope that in the future versions of Globus the C WS Core will be also extended to those WS features which have already been in the Java part, because this could cause an appreciable improvement in the performance of the Globus Toolkit.
4 Using the PBS Scheduler for SEE++ Job Submissions

Open Portable Batch System (OpenPBS) is a computer software job scheduler that allocates (local) network resources to batch job. OpenPBS is part the software specification of Austrian Grid [AGRID S. Spec., 2005] and it is deployed some clusters of the Austrian Grid.
Unfortunately, it is quite easy to confuse this local resource management application, if a job spawns/forks a child process and terminates. In this case, the scheduler considers that the job is finished, while the child process is still active. This may induce some problems, because the batch queueing system assumes the resource is free and may assign some other jobs to it or it may kill the forked process (in order to clean up). But this is exactly the technique, how “Grid-Enabled SEE++” is able to send the bound port numbers of it server processes to the “SEE++ to Grid Bridge”.

Hence, “Grid-Enabled SEE++” could not exploit the advantages of the OpenPBS batch scheduler (on some others e.g.: Torque-1 Resource Manager) for a long time. After some search we found the paper [Rosmanith, 2006], which deals with exactly such weaknesses of the scheduling systems and it recommends a very simple trick to overcome the problem: we issue a system call setsid(), which creates a session id for the forked process. This helps, because the OpenPBS tracks the jobs by their session ids.
So if the user would like to submit some SEE++ server processes on cluster via PBS local scheduler, she has to type the name of the scheduler after the grid site contact address, when she starts the “SEE++ to Grid Bridge” (if there is not any designated scheduler or job manager, Globus will always choose the default one, which is the Globus fork-jobmanager).

Example:

seepp2grid –n 9 altix1.jku.austriangrid.at/jobmanager-pbs
Of course there are some other resource management systems (e.g.: Torque-2, Condor, etc), which are not part of the Austrian Grid software specification and in which we cannot avoid the mentioned problem as easily as in this case.
5 Experiences with SEE++ Data Management System Based on WSRF

In [SEE-GRID, 2006/3], we have already presented the initial version of the WSRF based medical database for SEE++. Now we have started to extend the “SEE++ to Grid Bridge” with the client side functionality for this database service.
5.1 Discovered Limitations
Since the “SEE++ to Grid Bridge” is implemented in C/C++, we should apply the APIs of the “Globus C WS Core” for implementing the client side functionality our database service.
First, we should generate client side stub files from the WSDL file. For this purpose, we applied the globus-wsrf-cgen tool. Unfortunately, this tool has some strict limitations, too:

· It only generates bindings from Document/literal style WSDL schemas. Since our original WSDL file used RPC/encoded style, we had to regenerate the file with Document/literal (we did it before we started to create the java stubs for the server side of course).

· It only generates ANSI-C bindings. C++ bindings are not supported. The solution for this problem is not as easy as in the previous case. We employed a very complex data structure as arguments in the SOAP messages, whose bindings were implemented in C++ on the “SEE++ to Grid Bridge” (which implementation was taken from the original SEE++ software). Therefore, we must implement a conversion between the generated ANSI-C bindings and the already applied C++ data structure (since we do not want to re-implement the whole “SEE++ to Grid Bridge” based on only the ANSI-C data structure).

We were most surprised, when we checked the generated ANSI C stubs. Most of the data structure of our eye model structure was omitted from the generated C file. After a little while, we realized that implementation of the data structure called “SOAP Encoded Array” is completely missing from the C WS Core of Globus. Since our applied eye model strongly depends on this data type, we cannot apply the WSRF framework in our software system. It also does not make sense to re-implement the whole eye model without SOAP arrays, because the development of “Grid-Enabled SEE++” would diverge from the development line of the original SEE++, what could leads serous incompatibility problems between future versions of these software packages).
5.2 A Preliminary Experiments with the WSRF Based Medical Database Services
We investigated as an alternative solution to use gSOAP [gSOAP, 2005] to interact with the WSRF database component (which does not use any special features of Globus 4 at the moment). We chose this way, because we rely on that we are able to make some preliminary performance tests with our WSRF database service with only a little effort (since SOAP is a platform- and language-independent protocol and we can use on the client side gSOAP as before, we do not need to re-implement our C++ data structures and functions).

Of course, these are very artificial test circumstances, since obviously we cannot start and use the “Globus Web Service Container” in usual way. This means we must start the container with the “-nosec” option:
globus-start-container -nosec

This lets the container accept and send only plain SOAP messages without any SSL encryption. Furthermore, grid-style certificates are not applied as well (so there is no security at all). Hence, we cannot perform the test on real grid site of the Austrian Grid of course, but only in our local test environments.
For the test, we regenerated the client-side stubs by gSOAP from WSDL file used already in our WSRF based database and recompiled the “SEE++ to Grid Bridge”. The experiences were a little bit disappointing. The response time was much longer (up to 1 minute longer) than in the case of the original Web Service base database service. But in case of some SOAP messages the system just hanged or returned with some error messages (about incompatible data types).
Furthermore, this would be a dead end for the development, since later we cannot extend our system with any Globus related solutions, like grid-style certificates, resource properties, factory-service, notification etc.
6 Outlook

By our developments, “Grid-Enabled SEE++” may become an efficient tool for supporting and improving the medical treatment of strabismus. In the first phase of the Austrian Grid,
· we established an initial grid enabled architecture based on Globus Toolkit 4 for “Grid-Enabled SEE++” and then we refined it several times,
· we parallelized and speeded up the Hass-Lancaster Test by a factor of 14-17,
· we designed a grid-enabled Pathology Fitting algorithm and
· we developed a Web Service based medical database for SEE++.
Based on the results and experiences which we have gained, our ongoing research (in the frame of second Phase of the Austrian Grid) work has the following directions:
· In the future, we want to finish the WS-GRAM extension of “SEE++ to the Grid Bridge” used by C WS Core and the C WS-GRAM APIs. We really think, it would be useful to make experiments with these APIs and to report the outcome of the comparative benchmarks of the usage of the pre-WS and the WS-GRAM APIs.
· Since we met several difficulties and limitations in Globus C WS APIs which prevented us to finish the development of a fully functioning client for our WSRF based database service, we want in the future to search for and investigate other grid-enabled database access tools whose capabilities fit to our requirements (one option would be to use a gLite-compatible version of SEE++, see below).

· Another planned way for establishing a grid-based distributed medical database is to use the Grid Seamless Data Access Middleware (G-SDAM) [G-SDAM, 2005] developed by the Institute for Applied Knowledge Processing (FAW). The G-SDAM is still under development and the first prototype will come out in September 2006. However, the developers of G-SDAM and SEE-GRID have already started to elaborate the common requirements and to design interfaces to combine the two software components.
· We are going to implement a variant of pathology fitting that applies a grid-based parallel search technique to find cases in a distributed medical database of SEE++ that are similar to measured patient data; using these cases as starting points, the method executes multiple independent pathology fitting processes on the grid.

· Later we plan to extend the SEE-GRID medical decision support system by a surgery fitting algorithm that is able to give suggestions to the doctors for the optimal treatment of patients.

We have also joined the EGEE2 project [EGEE, 2006] and designed a gLite-compatible [gLite, 2006] version of SEE++. According to this, we intend to further develop the “Grid-Enabled SEE++” software system on the basis of the higher services of the EGEE2 middleware (compared with the low level services of the Globus Toolkit). In [SEE-GRID, 2006/3], we have already presented the planned design of a new architecture of SEE++ based on gLite 3.0. Accordingly:
· Our next step is to migrate and integrate the already existing components of our software system into the gLite architecture.

· We intend to modify the starting procedure of SEE++ server processes and we would like to investigate and exploit the interactive job submission feature of gLite.
· We may exchange the software architecture and authentication methods applied earlier for the “Grid-Enabled SEE++” medical databases to an AMGA-based solution. AMGA [AMGA] is a database access service for grid applications, which is part of the latest release of gLite. It is able to hide the differences of the user interfaces of the supported underlying database systems and provides a unified access to them with the grid style certificate-based authentication and encrypted network transfer.
· We plan to apply R-GMA information system in gLite in order that the “Grid-Enabled SEE++” will be able to discover automatically the available databases and the executer jobs on the grid.
· Another important issue is managing Virtual Organizations (VOs), since we need to control the access to some kinds of grid resources. For instance, the authentication and authorization of the data sources on the grid are critical issues for “Grid-Enabled SEE++”, because we have to be sure that the published medical data will be hosted only by some certain trusted grid nodes.
Finally we would like to implement a variant of “Grid-Enabled SEE++” which uses the Web Service based interfaces of gLite services (e.g.: MWSproxy and SOAP-based interface of AMGA) and to compare its performance with the other “Grid-Enabled SEE++” version based on the Globus Toolkit 4.

7 Acknowledgements

The G-SDAM framework is developed by the Institute for Applied Knowledge Processing (Institut Für Anwendungsorientierte Wissensverarbeitung ― FAW) as a partner of the SEE-GRID project.

References

[AGRID S. Spec., 2005] Austrian Grid Software Specification, http://www.austriangrid.at/austriangrid/internal/deliverables/docs/WP_I-1/2004/AG-DI-1-2_v0.5-draft.doc
[AMGA] AMGA User's and Administrator's Manual
http://project-arda-dev.web.cern.ch/project-arda-dev/metadata/downloads/amga-manual_1_2_3.pdf
[Bosa, 2006] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen. SEE-GRID, A Grid-Based Medical Decision Support System for Eye Muscle Surgery, 1st Austrian Grid Symposium, December 1-2, 2005, Hagenberg, Austria. OCG Verlag, 14 pages.

[Buchberger, 2004] Michael Buchberger. Biomechanical Modelling of the Human Eye.

Ph.D. thesis, Johannes Kepler University, Linz, Austria, March 2004.

http://www.see-kid.at/download/Dissertation_MB.pdf

[EGEE, 2006] EGEE-II homepage, 2006. http://www.eu-egee.org
[Ethereal, 2004] Ethereal Network Protocol Analyzer. http://www.ethereal.com
[gLite, 2006] gLite 3.0.0 home page, 2006. http://www.glite.org
[Globus, 2006] The Globus Toolkit. http://www.globus.org/toolkit/
[glogin, 2004] Herbert Rosmanith and Jens Volkert "glogin - Interactive Connectivity for the Grid" in: Z. Juhasz, P. Kacsuk, D. Kranzlmüller, "Distributed and Parallel Systems - Cluster and Grid Computing", Proc. of DAPSYS 2004, 5th Austrian-Hungarian Workshop on Distributed and Parallel Systems, Kluwer Academic Publishers, Budapest, Hungary, pp. 3-11 (Sept. 2004). http://www.gup.uni-linz.ac.at/glogin/
[G-SDAM, 2005] A Report on a Unified Grid-aware Access Layer for SEE-GRID Data Sets,

Austrian Grid Deliverable M-4aA-1c, FAW Institute and RISC Institute, Johannes Kepler University, Linz, August 2005. http://www.faw.uni-linz.ac.at
[gSOAP, 2005] gSOAP 2.7.0 User Guide, 2005. http://www.cs.fsu.edu/~engelen/soap.html
[Kaltofen, 2002] Thomas Kaltofen. Design and Implementation of a Mathematical Pulley Model for Biomechanical Eye Surgery. Diploma thesis, Upper Austria University of Applied Sciences, Hagenberg, June 2002. http://www.see-kid.at/download/Pulley_Model_Thesis.pdf
[Mitterdorfer, 2005] Daniel Mitterdorfer. Grid-Capable Persistance Based on a Metamodel for Medical Decision Support. Diploma thesis, Upper Austria University of Applied Sciences, Hagenberg, July 2005.

[Rosmanith, 2006] Herbert Rosmanith, Peter Praxmarer, Dieter Kranzmüller, Jens Volkert. Towards Job Accounting in Existing Resource Schedulers: Weaknesses and Improvements, The 2nd International Conference on High Performance Computing and Communications (HPCC-06), Munich, Germany, September 13-15, 2006.

[SEE-GRID, 2006/3] Karoly Bosa, Wolfgang Schreiner, Michael Buchberger, Thomas Kaltofen. A Report on the First Prototype of a Grid-enabled Data Management System for SEE-GRID. Austrian Grid Deliverable A1c-2-2006, Research Institute for Symbolic Computation (RISC), Johannes Kepler University, Linz, July 2006
[SEE-KID, 2006] SEE-KID homepage, 2006. http://www.see-kid.at

1/16

[image: image3.png][image: image4.wmf]Machine Name

altix1.jku.austriangrid.at

Number of Submitted

grid

-

Enabled

SEE++ Server

Submission via

(pre

-

WS) GRAM

Submission via

WS

-

GRAM

1

3

9

25

30

45

9,5s

10s

11s

15s

16s

20s

0,85s

0,92s

0,98s

1,06s

1,09s

1,15s

