LOGIC AS A PATH TO ENLIGHTENMENT
(WORK IN PROGRESS REPORT)

4

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Enlightenment and Education

B Enlightenment: reject claims based on authority (“ipse [Aristotle] dixit”)
[J Only two sources of truth acceptable:

« Empirical evidence (observation)
» Well-formed arguments (reasoning).

[J Stark contrast to pre- or even anti-modern views.
B Education: often claims accepted by authority (“ipse [the teacher] dixit”)
[Even in “rational” disciplines like mathematics or computer science.

+ Presentations of propositions, rules, methods, and algorithms (more often than not)
lack proper justification.

O Students educated to become “believers” (or, equally worse, “non-believers”)
rather than “rational skepticists”.

Students should be provided a basis for rational discourse.

1/9

Logic as a Path to Enlightenment

Logic as the “science of reasoning” provides such a basis.

B Predicate logic: the “modern” logic of today.

[0 Starting with Frege’s “Begriffsschrift” in 1879.
[J Incorporates and supersedes Aristotle’s term logic.
O Rich enough to capture most of mathematics and much of natural language.

B Construct formal models of reality with precise meaning and reasoning rules.

[] State propositions as formal sentences.
(] Derive valid arguments that prove the propositions.
J Judge whether such arguments are valid or not.

Should be taught as a practical “working language” for modeling and reasoning.

2/9

Educating with the Help of Logic

Do not consider logic just as a “paper and pencil” topic.

B Today much of logic can be automated by computer software.
[0 Advances in computational logic (automated reasoning, model checking,
satisfiability solving) may aid in many activities.
B Education may be supported by the application of such software

[J Needs to be well considered and carefully prepared.
[0 May demonstrate the practical usefulness of logic.
[J May increase the motivation of students to model and to reason.

Core idea: let students actively engage with lecturing material by solving concrete
problems and by receiving feedback from software.

3/9

JKU LIT Project “LogTechEdu”

Johannes Kepler University Linz Institute of Technology project
“Logic Technologies for Computer Science Education” (2018-2020):

B Solver Guided Exercises

B Teaching Solver Technology

B Proof Assistants for Education (Theorema)

B Specification and Verification Systems for Education (RISCAL)

B Logic across the Subjects in Primary, Secondary and Higher Education

Joint activities of the JKU institutes FMV (Biere, Seidl) and RISC (Schreiner,
Windsteiger) and supported by the Linz School of Education (Sabitzer).

4/9

The RISC Algorithm Language (RISCAL)

A language and software system for investigating finite mathematical models.

B Formulation of mathematical theories and theorems.

B Formulation and specification of (also non-deterministic) algorithms.

B Rooted in strongly typed first order logic and set theory.

B All types are finite (with sizes determined by model parameters).

B All formulas are automatically decidable by model checking.

B Correctness of all algorithms is automatically decidable by model checking.

Checking in some model of fixed size before proving in models of arbitrary size.

5/9

RISCAL Specifications

val n: N; val cn: N;

type Formula = Set[Clause];
type Valuation = ClauseBase with clause(value);

pred satisfiable(f:Formula) < Jv:Valuation. satisfies(v,f);
pred valid(f:Formula) < Vv:Valuation. satisfies(v,f);
fun not(f: Formula):Formula = { ¢ | c:Clause with Vdef. Jl€d. -1l€c };

theorem notValid(f:Formula) < valid(f) < —satisfiable(not(f));

multiple pred DPLL(f:Formula)
ensures result < satisfiable(f); decreases |literals(f)]|;
& if £ = ()[Clause] then
T
else if ([Literal] € f then
1
else choose l€literals(f) in

DPLL(substitute(f,1)) V DPLL(substitute(f,-1)); 6/9

The RISCAL Software

RISC Algorithm Language (RISCAL) - o x
Fle Edt Help
File: fusr2/schreinelrepositories/RISCALAnk/speciqed it Analysis Tosks
CRe @%0 ver ® T k@D
v - § Execute operation
oo Sviion by the Eaciidenn Maoriiim Translatio: (] Nondeterminism Default Value: 0 Other Values:
217 Compitiag the grestest i by the Euclidean Algorith « Valdate specication
Execution: (Wi Sient _Inputs: Per Mile: Branches: Bxecutn specitcntin
Visualization: (] Trace (] Tree Width: 800 Height: 600 Is precondition satisfiable?

pred divides(n:nat,ninat) < 3pinat. mp Parallelism: [Multi-Threaded Threads: 4 [Distributed ~ Servers: Is precondition not trivial?

H 5
10 fun ged(mznat,ninat): nat G 1s postcondition always satisiable
e o vne: scp @)~ 1s postonditon always not trvial?
12- chasse resultinat wit

57 Tivides(result,m A divides(result,n) » = 1s postondition sometimes not triv

a divides(r,m) A divides(r,n) A r > result; Execution conpleted for ALL inputs (98 ms, 48 checked, 1 inaduissible).

15 VARG, ot 911 nondererminioiic branchel have been ¢onsid 15 result uniquely determined?
15 val ginat = ged(N,N-1); Executing gcdp 5 PreEnso(Z,7) with all 49 inputs. « Verfy spectication preconditions

17 Execution completed for ALL inputs (7 ms, 48 (he(keﬂ 1 inadmissible).

16 theoren gedo(n:nat) « me0 - ged(n,0) = m; Executing gcdp 5. CorrOpo(Z,2) with all 49 in Does operation precondtion hold?

19 theoren gedl(nznat,ninat) < m % 0'v 0 = 0 - ged(n,n) = ged(n,m ccution compieted for ALL iMputs. (305 na, 4. checked, 1 inadnissible).

20 theoren ged2(ninat,ninat) - 1= n A n < - gcd(n.n) - ged(nin,n); A i Roaaterainistic branches vave heen corsicere ~ Verfy correctness of result

21 Executing 9cdp_5 Loop0p(Z,2) with all 49 inputs. ect?

22proc gedp(minat,ninat): nat Execution conpleted for AL s (3 ms, 48 checked, 1 inadnissible) . Is result correct’

25" equires e ¥ na Executing gcdp.5 Loop0p(Z,7) with all 49 inputs. ~ Verly teration and recursion

23 ensures result = ged(m,n; Lecution conpleted for 5,52 ms. 48 chacked, 1 dnadatssivie).

25 WARN] t all nondeterministic branches have been considered Does loop invariant initially hold?
2 Exccuting Gcdp.5. LoopOps(Z,2) with alL 43 inputs.

27 Exocution conplated for AL inputs (300 me, 48 checked, 1 inadmissible) Does loop invariant nitally hold?
s WARNENG not a11_ondeterministic branches have been” considered. negative?
2 ariant‘a Executing _gcdp 5 Loop0p3(Z,2) with all 49 input 1s oop measure non-negative
3o imariant g(d(a 3P gitota a0t b); Exccution comptated for AL inputs (540 ns, 46 checked, 1 inadnissile). 1s loop invariant preserved?

31 decreases ARNING: not aLl nondeterninistic branches have been consid
2 Executing _gcdp_5_Loop0p4(Z,7) with all 49 in ul Is loop invariant preserved?

33 if azb then ecution complsted for AL inputs (602 ns, 46 checked, 1 inadnissible). b N o
3 acas ARNING: not 4Ll nondaterministic branchas have been considered s oo invariant preserve
3 etse Exccuting gcdp 5 Loop0p5(2,2) with all 49 inputs. ?

36 b = bia; Execution completed for nputs (665 ms, 48 checked, 1 inadmissible). Is loop invariant preserved:

37 WARNING: not all nondeterministic branches have been considered. Is loop measure decreased?

36 return if 3 < 0 then b else a; Executing gcdp. LoopOps(£,2) with alL 43 inputs. N N
39} Execution completed for ALL inputs (304 ns, 48 checked, 1 inadnissible). @ls loop measure decreased:

40 WAF all nondeterministic branches have been considered.

“Lfun gedf (minat ninat): nat Executing gcdp.S LoopOp? (2.2) with aiL 43 inputs. v Verify implementation preconditions

requires mx0 Execution conpleted for AL inputs, (296 ns, 46 checked, 1 inadnisaible). @ Does operation precondion hold?
et et Usmm: WARNING: ot 3Tl nondaterministic branches have been conside

"

Automatic checking of theorems,

decreases nan:

2 Does operation orecondition hold?

algorithms, and verification conditions.

7/9

Demonstration

An Exercise in Formal Problem Specification

8/9

Conclusions

B Goal: logic-based self-directed learning

(] Techer become “enablers” by providing basic knowledge and skills
0 Students “educate themselves” by solving problems.

+ (Voluntary) quizzes, (mandatory) assignments, possibly (graded) exams.
M Initial target: undergraduate university students.
[0 Reachout both “up and down” to graduate students and to high-school students.
B Initial focus: computer science and mathematics.

[J First own courses on “Logic”, “Formal Modeling”, “Formal Methods”; later also
others’ introductory courses on algorithms and software development.

Towards “enlightenment” via “rational thinking” by “self-directed learning”.

9/9

