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Abstract

This report documents the RISC Algorithm Language (RISCAL). RISCAL is a language
and associated software system for describing (potentially nondeterministic) mathematical
algorithms over discrete structures, formally specifying their behavior by logical formulas
(program annotations in the form of preconditions, postconditions, and loop invariants),
and formulating the mathematical theories (by defining functions and predicates and stating
theorems) on which these specifications depend. The language is based on a type system that
ensures that all variable domains are finite; nevertheless the domain sizes may depend on
unspecified numerical constants. By instantiating these constants with values, we determine
a finite model in which all algorithms, functions, and predicates are executable, and all
formulas are decidable. Indeed the RISCAL software implements a (parallel) model checker
that allows to verify the correctness of algorithms and the associated theories with respect
to their specifications for all possible input values of the parameter domains; by translation
to the the SMT-LIB language also various SMT solvers may be applied for checking the
models. Furthermore, a verification condition generator allows to validate, by generating
verification conditions and checking them in some model, whether the program annotations
are strong enough to subsequently perform a proof-based verification that ensures the general
correctness of the algorithm for infinitelymanymodels. Finally RISCAL supports the notion
of non-deterministic (shared and distributed) systems and allows to check the invariance of
safety properties in all reachable system states.
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1 Introduction

The formal verification of computer programs is a very challenging task. If the program operates
on an unbounded domain of values, the only general verification technique is to generate,
from the text of the program and its specification, verification conditions, i.e., logical formulas
whose validity ensures the correctness of the program with respect to its specification. The
generation of such conditions generally requires from the human additional program annotations
that expressmeta-knowledge about the program such as loop invariants and terminationmeasures.
Since for more complex programs proofs of these formulas by fully automatic reasoners rarely
succeed, typically interactive proving assistants are applied where the human helps the software
to construct successful proofs.
This may become a frustrating task, because usually the first verification attempts are doomed

to fail: the verification conditions are often not valid due to (also subtle) deficiencies in the
program, its specification, or annotations. The main problem is then to find out whether a proof
fails because of an inadequate proof strategy or because the condition is not valid and, if the
later is the case, which errors make the formula invalid. Typically, therefore most time and effort
in verification is actually spent in attempts to prove invalid verification conditions, often due to
inadequate annotations, in particular due to loop invariants that are too strong or too weak.
For this reason, programs are often restricted to make fully automatic verification feasible that

copes without extra program annotations and without manual proving efforts. One possibility
is to restrict the domain of a program such that it only operates on a finite number of values,
which allows to apply model checkers that investigate all possible executions of a program.
Another possibility is to limit the length of executions being considered; then bounded model
checkers (typically based on SMT solvers, i.e., automatic decision procedures for combinations
of decidable logical theories) are able to check the correctness of a program for a subset of
the executions. However, while being fully automatic, (bounded) model checking is time- and
memory-consuming, and ultimately does not help to verify the general correctness of a program
operating on unbounded domains with executions of unbounded length.
Based on prior expertise with computer-supported program verification, also in educational

scenarios [37, 30], we have started the development of RISCAL (RISC Algorithm Language) as
an attempt to make program verification less painful. The term “algorithm language” indicates
that RISCAL is intended to model, rather than low-level code, high-level algorithms as can be
found in textbooks on discrete mathematics [34]. RISCAL thus provides a rich collection of data
types (e.g., sets and maps) and operations (e.g., quantified formulas as Boolean conditions and
implicit definitions of values by formulas) but only cares about the correctness of execution, not
its efficiency. The core idea behind RISCAL is to use automatic techniques to find problems in
a program, its specification, or its annotations, that may prevent a successful verification before
actually attempting to prove verification conditions; we thus aim to start a proof of verification
conditions only when we are reasonably confident that they are indeed valid.
As a first step towards this goal, RISCAL restricts in a program P all program variables and

mathematical variables to finite types where the number of values of a type T , however, may
depend on an unspecified constant n ∈ �. If we set n to some concrete value c, we get an
instance Pc of P where all specifications and annotations can be effectively evaluated during
the execution of the program (runtime assertion checking). Furthermore, we can execute a
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program and check the annotations for all possible inputs (model checking); only if we do not
find errors, the verification of the general program P may be attempted. Thus since Version 1
the RISCAL software has supported model checking of finite domain instances of programs via
the runtime assertion checking of all possible executions, which is based on the executability of
all specifications and annotations (further mechanisms will be added in time).
However, ensuring the correctness of formal annotations such as loop invariants by model

checking program executions only ensures that the annotations are not too strong, i.e., that
they are not violated by any execution. Checking program executions does not rule out that
the annotations are too weak to derive from them valid verification conditions that ensure the
correctness of the program by a proof-based verification (which is required, if the general
correctness of the program for models of arbitrary size is to be ensured); in particular, a loop
invariant may not be inductive, i.e., it may be to week to ensure its preservation across loop
iterations. Therefore Version 2 of the RISCAL software also includes a verification condition
generator that produces from the annotations verification conditions whose validity ensures the
correctness of the program; since these conditions are formulas, they may be also checked in a
finite model by the RISCALmodel checker. A successful check of these conditions demonstrates
that with these annotations a proof-based verification in that model is possible; this increases our
confidence that with these annotations also a proof-based verification for models of arbitrary size
may succeed (conversely, if the check fails, this demonstrates that such a proof-based verification
need not be attempted yet).
Furthermore, in the frame of his master thesis [32], Franz-Xaver Reichl has developed a

translation of the RISCAL language to the SMT-LIB logic QF_UFBV of unquantified formulas
over bitvectors with uninterpreted sort and function symbols [5]; based on this translation he
has implemented interfaces between RISCAL and the SMT solvers Boolector [25], CVC4 [4],
Yices 2 [15], and Z3 [14]; this allows to verify the validity of formulas over larger domains than
is possible with the RISCAL checker alone.
Version 3 of the RISCAL software extends the specification language by the concept of (finite

state) “systems” whose states are updated by the repeated nondeterministic execution of atomic
actions. In “shared” systems this update is performed by directly writing to global state variables;
“distributed” systems consist of multiple components that may only update their local states but
interact with each other by the exchange of messages. A systemmay be annotated with invariants
and the RISCAL software may check that these invariants hold in all reachable system states.
The RISCAL software is freely available as open source under the GNU General Public

License, Version 3 at

https://www.risc.jku.at/research/formal/software/RISCAL

with this document included in electronic form as the manual for the software. Further examples
on the use of this software are provided by some publications that may be also downloaded from
this web site, e.g. [38].
The remainder of this document is organized as follows: Section 2 represents a tutorial into

the practical use of the RISCAL language and system based on a concrete example of a RISCAL
specification. Section 3 elaborates more examples to deepen the understanding. Section 4 relates
our work to prior research; Section 5 elaborates our plans for the future evolution of RISCAL.
Appendix A provides a detailed documentation for the use of the system. Appendix B represents
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Figure 1: The RISCAL User Interface

the reference manual for the specification language. Appendix C gives the full source of the
specifications used in the tutorial; this source is also included in the distribution.

2 A Quick Start

We start with a quick overview on the RISCAL specification language and associated software
system whose graphical user interface is depicted in Figure 1 (an enlarged version is shown in
Figure 20 on page 89).

2.1 System Overview

The system is started from the command line by executing

RISCAL &

The user interface is divided into two parts. The left part mainly embeds an editor panel with
the current specification. The right part is mainly filled by an output panel that shows the output
of the system when analyzing the specification that is currently loaded in the editor. The top of
both parts contains some interactive elements for controlling the editor respectively the analyzer.
Appendix A.3 explains the user interface in more detail.

The system remembers across invocations the last specification file loaded into the editor, i.e.,
when the software is started, the specification used in the last invocation is automatically loaded.
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Likewise the options selected in the right panel are remembered across invocations. However,
a button (Reset System) in the right panel allows to reset the system to a clean state (no
specification loaded and all options set to their default values).

Specifications are written as plain text files in Unicode format (UTF-8 encoding) with arbitrary
file name extension (e.g., .txt). The RISCAL language uses several Unicode characters that
cannot be found on keyboards, but for each such character there exists an equivalent string in
ASCII format that can be typed on a keyboard. While the RISCAL grammar supports both
alternatives, the use of the Unicode characters yields much prettier specifications and is thus
recommended. The RISCAL editor can be used to translate the ASCII string to the Unicode
character by first typing the string and then (when the editor caret is immediately to the right of
this string) pressing <Ctrl>-#, i.e, the Control key and simultaneously the key depicting #. Also
later such textual replacements can be performed by positioning the editor caret to the right of
the string and pressing <Ctrl>-#. The current table of replacements is given in Appendix B.1.
Furthermore, the button above the editor area opens a window with a list of all symbols; by
selecting an entry in this list the corresponding symbol is inserted into the editor area.

Whenever a specification is loaded from disk respectively saved to disk after editing, it is
immediately processed by a syntax checker and a type checker. Error messages are displayed
in the output panel; the positions of errors are displayed by red markers in the editor window;
moving the mouse pointer over such a marker also displays the corresponding error message.

2.2 Specification Language

As a first example of the specification language (which is defined in Appendix B), we write a
specification consisting of a mathematical theory of the greatest common divisor and execution
by the Euclidean algorithm. This specification (whose full content is given in Appendix C.1)
starts with the declarations

val N: �;
type nat = �[N];

that introduce a natural number constant N a type nat that consists of the values 0, . . . ,N (the
symbol � may be entered as Nat followed by pressing the keys <Ctrl>-#) which corresponds
to the mathematical definition

nat := {x ∈ � | x ≤ N}.

The value of N is not defined in the specification but in the RISCAL software. We may enter
this value either in the field “Default Value” in the right part of the window or we may open with
the button “Other Values” a window that allows to set different values for different constants; if
there is no entry for a specific constant, the “Default Value” is used.
The specification defines then a predicate

pred divides(m:nat,n:nat) ⇔ ∃p:nat. m·p = n;

which corresponds to the mathematical definition

divides ⊆ nat × nat
divides(m,n) :⇔ ∃p ∈ nat. m · p = n
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In other words, divides(m,n) means “m divides n” which is typically written as m|n.
We then introduce the “greatest common divisor” function as

fun gcd(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;

= choose result:nat with
divides(result,m) ∧ divides(result,n) ∧
¬∃r:nat. divides(r,m) ∧ divides(r,n) ∧ r > result;

This function is defined by an implicit definition; for any m ∈ nat and n ∈ nat with m , 0 or
n , 0, its result is the largest value result ∈ nat that divides both m and n.
The function can be used to define some other values, e.g.

val g:nat = gcd(N,N-1);

which corresponds to the mathematical definition

g ∈ nat, g := gcd(N,N − 1)

This function satisfies certain general properties stated as follows:

theorem gcd0(m:nat) ⇔ m,0 ⇒ gcd(m,0) = m;
theorem gcd1(m:nat,n:nat) ⇔ m , 0 ∨ n , 0 ⇒ gcd(m,n) = gcd(n,m);
theorem gcd2(m:nat,n:nat) ⇔ 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m%n,n);

Each such “theorem” is represented by a named predicate which is implicitly claimed to be true
for all possible applications, corresponding to the mathematical propositions

∀m ∈ nat. m , 0⇒ gcd(m,0) = m

∀m ∈ nat,n ∈ nat. m , 0 ∨ n , 0⇒ gcd(m,n) = gcd(n,m)
∀m ∈ nat,n ∈ nat. 1 ≤ n ∧ n ≤ m⇒ gcd(m,n) = gcd(m mod n,n)

The symbol % thus stands for the mathematical “modulus” operator (arithmetic remainder).
Now we write a procedure gcdp that implements the Euclidean algorithm:

proc gcdp(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;
ensures result = gcd(m,n);

{
var a:nat := m;
var b:nat := n;
while a > 0 ∧ b > 0 do
invariant a , 0 ∨ b , 0;
invariant gcd(a,b) = gcd(old_a,old_b);
decreases a+b;

{
if a > b then

8



a := a%b;
else
b := b%a;

}
return if a = 0 then b else a;

}

The clauses requires and ensures state that for any arguments m,n with m , 0 or n , 0 (i.e.,
for any argument that satisfies the given precondition), the result of this procedure (denoted by
the keyword result) is indeed the greatest common divisor of m and n, as specified above (i.e.,
the result satisfies the given postcondition). The invariant clauses state the crucial property
for proving the correctness of the algorithm: before and after every iteration of the loop, the
greatest common divisor of the current values of program variables a and b (of which at least one
is not zero) equals the greatest common divisor of their initial values (denoted by the keyword
prefix old_), i.e., the greatest divisor of m and n. The clause decreases states the crucial
property for the termination of the algorithm: the value a + b decreases by every loop iteration
but does not become negative. While all these loop annotations are not necessary for executing
the algorithm, they formally express additional knowledge that aid our understanding of the
algorithm. Furthermore, RISCAL generates from these clauses verification conditions whose
validity implies the correctness of the program with respect to its specification (see Section 2.7).
Above procedure demonstrates that RISCAL incorporates an algorithmic language with the

usual programming language constructs. However, unlike a classical programming language,
this algorithm language allows also nondeterministic executions as in the following procedure:

proc main(): ()
{
choose m:nat, n:nat with m , 0 ∨ n , 0;
print m,n,gcdp(m,n);

}

This procedure does not return a value (indicated by the return type ()) but just prints the
arguments and result of some application of procedure gcdp. The argument values m,n for its
application are not uniquely determined: the choose command selects for m and n some values
in nat such that at least one of them is not zero.

2.3 Language Features

As shown above, a RISCAL specification may contain definitions of

• types,

• constants, functions, predicates,

• theorems, and

• procedures
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which may depend on (declared but) undefined natural number constants. Functions may be ex-
plicitly defined or implicitly specified by predicates, theorems are special predicates that always
yield “true”, procedures may contain apart from the usual algorithmic constructs also nondeter-
ministic choices, and functions and procedures may be annotated with pre- and postconditions
respectively loop invariants and termination measures. The language does not distinguish be-
tween logical terms and formulas, a formula is just a term of a type Bool and a predicate is a
function with that result type.
Furthermore, there is no difference between logical formulas and conditions in program

constructs; every logical formula may be in a procedure for example used as a loop condition.
Likewise, there is no difference between logical terms and program expressions; every logical
term may be for example used on the right hand side of an assignment statement. Procedures
have (apart from potential output) no other effect than returning values (also the procedure main
above implicitly returns a value ()); they may be thus also used as functions in logical formulas.

The RISCAL language has been designed in such a way that

• every type has only finitely many values, and thus

• every language construct is executable, and thus

• every constant, function, predicate, theorem, procedure can be evaluated.

For instance, the truth value of a formula like

∃p:nat. m·p = n

can be determined by evaluating, for every possible nat-value p, the formula m · p = n. If there is
at least one value for which this equality holds, the formula is true, otherwise it is false. Likewise,
the function

fun gcd(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;

= choose result:nat with ...

can be evaluated by enumerating all possible candidate values for the result of the function.
The function result is then one such candidate for which the condition “. . . ” holds (if this is
not the case for any candidate, the execution may abort with an error message). Therefore also
all function/predicate/procedure annotations requires, ensures, invariant, and decreases
are executable.
In summary, every RISCAL specification is completely executable; in particular, all stated

claims (theorems and function/predicate/procedure annotations) are checkable.

2.4 Execution and Model Checking

Whenever a specification file is loaded or saved, the corresponding specification is processed,
i.e., checked for syntactic and type errors (with graphical markers indicating the locations of
the errors) and translated into an executable representation. For this purpose, the value of every
constant introduced by a val clause on the top level of a specification is determined: if a natural
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number constant c is just declared, the value of c is taken from the user interface, either from the
panel “Other Values”or (if this panel does not list a value for c) from the box “Default Value”. If
the value of a constant is defined by a term, this value is determined by evaluating the term (which
may contain arbitrary computations including the application of user-defined functions). The
values of constants may be used as bounds in types; a specification is thus always processed for
a specific set of values for the global constants (if the user changes these values, the specification
is automatically re-processed before execution). In our example, we may thus get output

RISC Algorithm Language 1.0 (March 1, 2017)
http://www.risc.jku.at/research/formal/software/RISCAL
(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options.
-----------------------------------------------------------------
Reading file /home/schreine/papers/RISCALManual2017/gcd.txt
Using N=3.
Computing the value of g...
Type checking and translation completed.

which indicates that the user provided the value 3 for constant N and that the value of g was
computed by evaluating the definition.
After the processing of a specification, the menu “Operation” lists all operations together with

their argument types (operations with different argument types may have the same name). We
may e.g. select the operation main() which selects the method

proc main(): ()
{
choose m:nat, n:nat with m , 0 ∨ n , 0;
print m,n,gcdp(m,n);

}

By pressing the button (Start Execution) the system executes main() which produces (as-
suming that option Nondeterminism has not been selected) the output

Executing main().
Run of deterministic function main():
0,1,1
Result (34 ms): ()
Execution completed (96 ms).
WARNING: not all nondeterministic branches have been considered.

The system has thus chosen the values 0 for m and 1 for n and computed their greatest common
divisor 1.

However, if we select the option Nondeterminism and then press the button , the specifi-
cation is first re-processed and then executed with the following output:
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Executing main().
Branch 0 of nondeterministic function main():
0,1,1
Result (11 ms): ()
Branch 1 of nondeterministic function main():
0,2,2
Result (24 ms): ()
Branch 2 of nondeterministic function main():
0,3,3
Result (11 ms): ()
...
Branch 13 of nondeterministic function main():
3,2,1
Result (8 ms): ()
Branch 14 of nondeterministic function main():
3,3,3
Result (8 ms): ()
Branch 15 of nondeterministic function main():
No more results (434 ms).
Execution completed (441 ms).

Thus the program was executed for all possible choices for m and n subject to the condition
m , 0 ∨ n , 0 and computed the greatest common divisor. In this execution, all annotations
specified in requires, ensures, invariant, and decreases have been checked by evaluating
the corresponding formulas respectively terms, thus also evaluating the implicitly defined function
gcd and the predicate divides. For instance, changing the postcondition of gcdp to

ensures result = 1;

yields output

Executing main().
Branch 0 of nondeterministic function main():
0,1,1
Result (6 ms): ()
Branch 1 of nondeterministic function main():
ERROR in execution of main(): evaluation of
ensures result = 1;

at line 24 in file gcd.txt:
postcondition is violated

ERROR encountered in execution.

which demonstrates that the second execution of main violated the specification. Likewise,
setting the termination measure to

decreases a;
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produces the output

Executing main().
Branch 0 of nondeterministic function main():
0,1,1
Result (10 ms): ()
...
Branch 4 of nondeterministic function main():
ERROR in execution of main(): evaluation of
decreases a;

at line 30 in file gcd.txt:
variant value 1 is not less than old value 1

ERROR encountered in execution.

However, rather than main in nondeterministic mode, we may also executed gcdp for all possible
inputs. We thus deselect “Nondeterminism” and select from the menu Operation the operation
gcdp(�,�), which yields the following execution:

Executing gcdp(�,�) with all 16 inputs.
Ignoring inadmissible inputs...
Run 1 of deterministic function gcdp(1,0):
Result (1 ms): 1
Run 2 of deterministic function gcdp(2,0):
Result (0 ms): 2
...
Run 15 of deterministic function gcdp(3,3):
Result (1 ms): 3
Execution completed for ALL inputs (206 ms, 15 checked, 1 inadmissible).
WARNING: not all nondeterministic branches have been considered.

The system thus runs gcdpwith all “admissible” inputs, i.e., with all argument tuples that satisfy
the specified precondition

requires m,0 ∨ n,0;

The system thus executes the operation (and checks all annotations) for 15 inputs excluding
the inadmissible input m = 0 and n = 0. The last line of the output reminds us that we have
executed the system in deterministic mode which is generally faster but does not consider all
possible execution branches resulting from nondeterministic choices such the one performed in
the definition of gcd.

By switching on the option “Silent”, the output is compacted to

Executing gcdp(�,�) with all 16 inputs.
Execution completed for ALL inputs (6 ms, 15 checked, 1 inadmissible).
WARNING: not all nondeterministic branches have been considered.
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which just gives the essential information.
As illustrated by these examples, the RISCAL software encompasses the execution of specifi-

cations with runtime assertion checking (checking correctness of a computation for some input)
and model checking (checking correctness for all/many possible inputs).

2.5 Parallelism

If we increase the value of N to say 60, checking all possible inputs may take some time. We
thus switch on the option “Multi-Threaded” and set “Threads” to 4. The system thus applies 4
concurrent threads for the application of the operation which is (on a computer with 4 processor
cores) much faster and yields output:

Executing gcdp(�,�) with all 3721 inputs.
PARALLEL execution with 4 threads (output disabled).
1336 inputs (955 checked, 1 inadmissible, 0 ignored, 380 open)...
2193 inputs (1812 checked, 1 inadmissible, 0 ignored, 380 open)...
3005 inputs (2629 checked, 1 inadmissible, 0 ignored, 375 open)...
3721 inputs (3445 checked, 1 inadmissible, 0 ignored, 275 open)...
Execution completed for ALL inputs (8826 ms, 3720 checked, 1 inadmissible).
WARNING: not all nondeterministic branches have been considered.

The statistics output and the growing blue bar displayed on top of the output area displays the
progress of a longer running computation. To interrupt such an execution, we may press the
button (Stop Execution).

For even larger inputs, we may also set the option “Distributed” and and thus partially delegate
computations to other instances of the RISCAL software, possibly running on other computers
(e.g., high performance servers) running in the local network or being sited in other remote
networks to which we are connected by the Internet. For this, we also have configure the
connection information in menu “Servers” appropriately, see Appendix A.4 for details. The
output for N = 100 may then look as follows:

Executing gcdp(�,�) with all 10201 inputs.
Executing "/software/RISCAL/etc/runssh
qftquad2.risc.jku.at 4"...

Connecting to qftquad2.risc.uni-linz.ac.at:52387...
Executing "/software/RISCAL/etc/runmach 4"...
Connecting to localhost:9999...
Connected to remote servers.
PARALLEL execution with 4 local threads and 2 remote servers (output disabled).
939 inputs (544 checked, 1 inadmissible, 0 ignored, 394 open)...
2819 inputs (1117 checked, 1 inadmissible, 0 ignored, 1701 open)...
2819 inputs (1424 checked, 1 inadmissible, 0 ignored, 1394 open)...
4605 inputs (2851 checked, 1 inadmissible, 0 ignored, 1753 open)...
5327 inputs (3799 checked, 1 inadmissible, 0 ignored, 1527 open)...
6339 inputs (4779 checked, 1 inadmissible, 0 ignored, 1559 open)...
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8035 inputs (6363 checked, 1 inadmissible, 0 ignored, 1671 open)...
8716 inputs (7408 checked, 1 inadmissible, 0 ignored, 1307 open)...
Execution completed for ALL inputs (18500 ms, 10200 checked, 1 inadmissible).
WARNING: not all nondeterministic branches have been considered.

Here, in addition to four local threads, two remote servers are applied, one with Internet name
qftquad2.risc.uni-linz.ac.at; the other is called localhost because it is connected to
our process via a local proxy process that bypasses a firewall.
We may not only check procedures but also functions, relations, and especially theorems; in

the later case we check whether all applications of the theorem yield value “true”. For instance,
we may check the theorem gcd2(�,�) defined as

theorem gcd2(m:nat,n:nat) ⇔ 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m%n,n);

for which the output

Executing gcd2(�,�) with all 10201 inputs.
PARALLEL execution with 4 threads (output disabled).
1904 inputs (1704 checked, 0 inadmissible, 0 ignored, 200 open)...
3757 inputs (3673 checked, 0 inadmissible, 0 ignored, 84 open)...
7372 inputs (6436 checked, 0 inadmissible, 0 ignored, 936 open)...
Execution completed for ALL inputs (7127 ms, 10201 checked, 0 inadmissible).
WARNING: not all nondeterministic branches have been considered.

validates its correctness.

2.6 Validating Specifications

As demonstrated above, we can validate the correctness of an operation by checking whether it
satisfies its specification. However, it is by no means sure that the formulas in the specification
indeed appropriately express our intentions of how the operation shall behave: for instance, by a
slight logical error, the postcondition of a specification may be trivially satisfied by every output.
This kind of error can be apparently not detected by just checking the operation.
Nevertheless RISCAL provides some means to validate the adequacy of a specification ac-

cording to various criteria. If we press the button “Show/Hide Tasks”, the user interface is
extended on the right side by a view of the folder depicted in the left part of Figure 2; this folder
lists a couple of tasks related to the currently selected operation. These tasks are initially colored
red (and marked with a cloud symbol) to indicate that they are still open; once they have been
performed, they become blue (and are marked with a sun symbol) as shown in the right part of
Figure 2. Our focus is now on the tasks generated for the greatest common divisor function gcdp
introduced in Section 2.2 and checked in Section 2.4.
For instance, the task “Execute operation” denotes the checking of the operation itself, i.e., its

application to all inputs allowed by the precondition. The execution of a task may be triggered
by a double click on the item; alternatively, by a right-click a menu
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Figure 2: Operation-Related Tasks

pops up in which the entry “Execute Task” may be selected (by a right-click on a folder,
a corresponding button “Execute All Tasks” is displayed that executes all tasks in the folder
and in its subfolders). The menu entry “Print Description” prints a verbal description of the
task while “Print Definition” prints its definition (i.e. the definition of an executable operation
in the RISCAL language). If the task denotes a theorem whose checking fails, the menu entry
“Show Counterexample” prints a sequence of values for the variables bound in the corresponding
formula that demonstrate the invalidity of the theorem.
Furthermore, the folder “Validate specification” lists the following tasks:

Execute specification This task executes an automatically generated function whose result is
implicitly defined by the postcondition of the selected operation. For instance, in case of
the procedure gcdp, the menu entry “Print Definition” shows the following operation:

fun _gcdpSpec(m:nat, n:nat): nat
requires (m , 0) ∨ (n , 0);
= choose result:nat with result = gcd(m, n);

If we execute this task for N = 6 in non-deterministic and non-silent mode, we get the
following output which demonstrates that the postcondition indeed determines the greatest
common divisor:

Executing gcdp(�,�) with all 49 inputs.
Ignoring inadmissible inputs...
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Run 1 of deterministic function gcdp(1,0):
Result (2 ms): 1
..
Run 17 of deterministic function gcdp(3,2):
Result (1 ms): 1
...
Run 34 of deterministic function gcdp(6,4):
Result (1 ms): 2
...
Run 48 of deterministic function gcdp(6,6):
Result (1 ms): 6
Execution completed for ALL inputs (419 ms, 48 checked, 1 inadmissible).

The execution of this task should proceed in non-deterministic mode to ensure that, if the
postcondition allows multiple outputs (which may or may be not intended, see also the
discussion concerning the last task below), all of the outputs allowed by the postcondition
of the operation are indeed displayed.

Is precondition satisfiable/not trivial? These tasks demonstrate that there is at least one input
that satisfies the precondition respectively that there is at least one output that violates the
precondition. In more detail, the tasks denote the following theorems:

theorem _gcdpPreSat() ⇔ ∃m:nat, n:nat. ((m , 0) ∨ (n , 0));
theorem _gcdpPreNotTrivial() ⇔ ∃m:nat, n:nat. (¬((m , 0) ∨ (n , 0)));

These theorems are apparently true in our concrete case:
Executing _gcdpPreSat().
Execution completed (0 ms).
Executing _gcdpPreNotTrivial().
Execution completed (0 ms).

If the first conditionwere violated, gcdpwould not accept any input; if the second condition
were violated, gcdp would accept every input (both cases would make the precondition
pointless).

Is postcondition always satisfiable? This task demonstrates that, for every input that satisfies
the precondition, there exists at least one output that satisfies the postcondition:

theorem _gcdpPostSat(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ ∃result:nat. (result = gcd(m, n));

Again, this theorem is true in our case:
Executing _gcdpPostSat(�,�) with all 49 inputs.
Execution completed for ALL inputs (14 ms, 48 checked, 1 inadmissible).

If the theorem were violated, the specification could not be correctly implemented: for
some legal input, gcdp could not return any legal output.
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Is postcondition always/sometimes not trivial? These tasks demonstrate that the postcondi-
tion indeed rules out some illegal outputs (otherwise the postcondition would be point-
less). In more detail, the first (stronger) theorem states that for every input some outputs
are prohibited:

theorem _gcdpPostNotTrivialAll(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ ∃result:nat. (¬(result = gcd(m, n)));

However, sometimes an operation might indeed allow for some special cases of inputs
arbitrary outputs. Therefore we provide a second (weaker) theorem that states that at least
for some input not all outputs are allowed:

theorem _gcdpPostNotTrivialSome()
⇔ ∃m:nat, n:nat with (m , 0) ∨ (n , 0).

(∃result:nat. (¬(result = gcd(m, n))));

In our case, both theorems hold:
Executing gcdp(�,�) with all 49 inputs.
Execution completed for ALL inputs (65 ms, 48 checked, 1 inadmissible).
Executing _gcdpPostNotTrivialSome().
Execution completed (0 ms).

Is output uniquely determined? This theorem allows to detect unintentionally underspecified
operations, i.e., operations that by a logical error in the postcondition allow multiple
outputs even when this is not desired. In more detail, the corresponding theorem states
that for every legal input there exists at most one legal output:

theorem _gcdpPostUnique(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ ∀result:nat with result = gcd(m, n).
(∀_result:nat with let result = _result in (result = gcd(m, n)).
(result = _result));

In our example, this theorem indeed holds:
Executing _gcdpPostUnique(�,�) with all 49 inputs.
Execution completed for ALL inputs (52 ms, 48 checked, 1 inadmissible).

This theorem need not generally hold, because a function might be intentionally under-
specified such that multiple outputs are acceptable. However, if the theorem holds, the
procedure has no choice in which value it may return.

Furthermore, the folder “Verify specification preconditions” contains tasks that verify that the
specification is actually well-formed, in particular, that all operations in it are applied only to
arguments that satisfy the operation’s precondition

Does operation precondition hold? If we select in our example this task, the editor window
indicates by a green squiggly line the expression gcd(m,n) in the specification fromwhich
this precondition was generated and by a grey squiggly line the corresponding precondition
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Figure 3: Does Operation Precondition Hold?

requires m , 0 ∨ n , 0;

in the definition of that operation (see Figure 3). The task is defined as
theorem _gcdp_PreEns0(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ letpar m = m, n = n in ((m , 0) ∨ (n , 0));

The validity of this theorem demonstrates that for the arguments of gcdp (which satisfy
the operation’s precondition) this property indeed holds.

2.7 Verifying Implementations

To further validate the correctness of algorithms (and as a prerequisite of subsequent general cor-
rectness proofs), RISCALprovides a verification condition generator (VCG). This VCGgenerates
from the definition of an operation (including its specification and other formal annotations) a set
of verification conditions, i.e., formulas whose validity implies that, for all arguments that satisfy
the precondition of the operation, its execution terminates and produces a result that satisfies its
postcondition. The validity of these theorems can be checked within RISCAL itself.
Generating and checking verification conditions in RISCAL serves a particular purpose: it

not only ensures that the algorithm works as expected (this has been demonstrated already by
checking the algorithm) but also establishes that all annotations (specifications, loop invariants,
termination terms) are strong enough to verify the correctness of the algorithm by formal proof.
If checking the verification conditions succeeds, this indeed demonstrates that such a proof is
possible in the particular model (determined by the concrete values assigned to the type bounds)
in which the check has taken place. However, the success of such a check gives also reason to
believe (at least increases our confidence) that such a proof may be possible for the infinite class
of all possible models (i.e., for all infinitely many possible values of the type bounds). At least,
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if a check fails, we know that there is no point in attempting such a general proof before the error
exhibited in the particular model has been fixed.
Our default assumption is that (due to some problem in the definition of the operation respec-

tively in its specification or annotations) a correctness proof will fail. Therefore RISCAL tries
to help the user to find the reason of such a failure by the following strategy:

• Rather than generating a single big verification condition whose validity ensures the overall
correctness of the algorithm, RISCAL generates a lot of smaller verification conditions
each of which demonstrates some aspect of correctness. Thus, if a particular condition
fails, we do not only know that the overall correctness of the algorithm cannot be established
but we can focus on that aspect of correctness expressed by the corresponding condition.
Thus we hope that by gradual and diligent work more and more aspects of correctness can
be established until ultimately the full correctness of the algorithm has been shown.

• Each verification condition is internally linked to those parts of the algorithm from which
the condition has been generated and that are therefore relevant for its validity. These parts
are visualized in the editor such that the user may get a quick intuition on which parts of
the algorithm she has to concentrate.

This strategy will be illustrated in an example below.
In the following, we will mainly focus on the correctness of imperative procedures whose

execution consists of a sequence of basic commands (the verification calculus also covers the
correctness of declarative functions, but the principles outlined above have been in RISCAL
best elaborated for procedures). We start by outlines some basic principles of verification
condition generation as implemented in RISCAL. The VCG of RISCAL is fundamentally based
on Dijkstra’s weakest precondition (wp) calculus. In order to prove the correctness of a procedure

proc p(x:T1):T2 requires P(x); ensures Q(x,result) { C; return r; }

we generate a theorem

theorem _p_Corr(x:T1) requires P(x); ⇔ wp(C, let result = r in Q);

where wp(C,Q) is a formula generated from the body C of the procedure and its postcondition Q
(called “the weakest precondition of C with respect to Q”). In a nutshell, the theorem states that
every argument x that satisfies the precondition P of the procedure also satisfies that weakest
precondition (as discussed above, we generate not only one such big formula but a lot of smaller
ones; however, in the following discussion we will stick to the basic calculus which produces a
single weakest precondition).
Figure 4 shows how the weakest precondition wp(C,Q) of command C with respect to post-

condition Q is generated for some basic commands C. For most commands, the computation
of the weakest precondition proceeds by processing the structure of the command recursively
giving rise to simple propositional formulas. However, the situation is fundamentally different
in case of a loop while E do C which we assume to be annotated by an invariant I (a formula)
and termination measure M (an integer term). Here the weakest precondition first captures for
all program variables x, . . . visible in the loop in the logical variables old_x, . . . the values of the
program variables (the invariant I may thus refer to these values). The remainder of the weakest
precondition is a conjunction of the following formulas:
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wp(assert E,Q) = E ∧Q

wp(var x;C,Q) = ∀x. wp(C,Q) (if x is not free in Q)
wp(x:=E,Q) = let x = E in Q

wp(C1;C2,Q) = wp(C1,wp(C2,Q))

wp(if E then C,Q) = (E ⇒ wp(C,Q)) ∧ (¬E ⇒ Q)

wp(if E then C1 else C2,Q) = (E ⇒ wp(C1,Q)) ∧ (¬E ⇒ wp(C2,Q))

wp(while E do invariant I; decreases M; C,Q) =

letpar old_x = x, . . . in

(∀x, . . . I ∧ ¬E ⇒ Q) ∧ (1)
I ∧ (∀x, . . . I ∧ E ⇒ wp(C, I)) ∧ (2a,2b)
(∀x, . . . I ⇒ M ≥ 0) ∧ (∀x, . . . I ∧ E ⇒ let m = M in wp(C,M < m)) (3a,3b)

Figure 4: The Weakest Precondition wp(C,Q)

• Condition (1) (∀x, . . . I ∧ ¬E ⇒ Q) states that the postcondition Q must follow from
invariant I and the negation of the loop condition E for all possible values of the program
variables x, . . .. All essential information for proving Q thus must come from I which
can be considered as the “specification” of the loop. If the loop does not modify some
program variable x declared in the body of the procedure, it is advisable to include in I
the formula x = old_x to preserve in the verification condition all information that the
context provides for this variable.

• Conditions (2a) I and (2b) (∀x, . . . I ∧ E ⇒ wp(C, I)) show by a kind of induction proof
that formula I is indeed an invariant, i.e., that that holds after the termination of the loop no
matter how often the loop has been iterated. Condition (2a) represents the induction base
that demonstrates that the invariant holds initially, i.e., after 0 iterations. Condition (2b)
shows that under the assumption that I holds (after an arbitrary number of iterations, the
induction base) and that E holds (the loop body is entered), I holds after the execution of
the loop body again (i.e., after one more iteration, the induction step).

• Conditions (3a) (∀x, . . . I ⇒ M ≥ 0) and (3b) (∀x, . . . I∧E ⇒ letm = M inwp(C,M <
m)) prove that the loop terminates. Condition (3a) shows that the termination measure M
remains non-negative after arbitrary many iterations of the loop (i.e., whenever invariant I
holds). Condition (3b) shows that, if the loop body C is executed, the new value of M is
smaller than the old value m of M before the execution.

In RISCAL, these five parts of the weakest precondition of a loop are indeed generated as distinct
verification conditions.
Figure 4 only shows the weakest precondition for the most important commands, in particular

only the while form of loops; other forms are handled by translation into this core form. For
instance, a loop
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Figure 5: The Correctness of the Algorithm
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Figure 6: Is Result Correct?

for var i:nat:=0; i<n; i:=i+1 do { C }

is translated into

var i:nat:=0; while i<n do { C; i:=i+1 }

from which the verification conditions are generated as discussed above.
Furthermore, RISCAL also generates conditions (not shown above) that demonstrate that the

evaluation of each expression E produces a valid result, i.e., that all operations in E are only
applied to arguments that satisfy the precondition of the operation.
In case of the greatest common divisor procedure gcdp that was introduced in Section 2.2 and

whose specification was validated in Section 2.6, RISCAL generates the verification conditions
listed in Figure 5. These conditions are initially indicated as red tasks; having successfully
checked them in RISCAL (by double clicking the tasks or right-clicking the task and selecting
in the pop-up menu the entry “Execute Task”), the tasks turn blue.

In more detail, we have the following verification conditions:

Is result correct? This task checks that the precondition of the procedure implies (the core of)
the weakest precondition of its body with respect to its postcondition (excluding loop-
oriented tasks and operation preconditions, see below). In case of a procedure body with a
single loop, this condition essentially stems from Condition (1) in Figure 4. Its definition
(displayed by right-clicking the condition and selecting in the pop-upmenu the entry “Print
Definition”) is as follows:

theorem _gcdp_5_CorrOp0(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ let a = m in (let b = n in
(letpar old_a = a, old_b = b in
(∀a:nat, b:nat. (((((a , 0) ∨ (b , 0)) ∧
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(gcd(a, b) = gcd(old_a, old_b))) ∧
(¬((a > 0) ∧ (b > 0)))) ⇒

(let result = if a = 0 then b else a in
(result = gcd(m, n)))))));

Furthermore, by selecting the condition with a single click, the editor displays the view
shown in Figure 6. The postcondition to be proved is underlined in green while grey
underlines indicate those parts of the program that contributed to the derivation of the
weakest precondition (in case of a loop, only the loop expression is underlined; actually,
most of the verification condition comes from the invariant of the loop). It should be noted
that the body of the loop does here play no role, because for the derivation of the weakest
precondition only the invariant of the loop is considered.
If a procedure lists multiple postconditions, a separate task is generated for each. It is
recommended to split a postcondition into multiple conditions, whenever possible, in
order to investigate the reason why a verification condition of this kind is invalid.

Does loop invariant initially hold? Furthermore, two tasks are generated to show that each of
the listed invariants holds initially, i.e., before the loop body is executed for the first time
(Condition (2a) in Figure 4). In case of the first invariant, its definition is

theorem _gcdp_5_LoopOp0(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ let a = m in (let b = n in ((a , 0) ∨ (b , 0)));

where again green and gray underlines in the editor mark the relevant parts of the program.

Is loop measure non-negative? Likewise, a task is generated to show that the listed termination
measure is always non-negative (Condition (3a) in Figure 4). Its definition is

theorem _gcdp_5_LoopOp2(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ let a = m in (let b = n in
(letpar old_a = a, old_b = b in
(∀a:nat, b:nat. ((((a , 0) ∨ (b , 0)) ∧

(gcd(a, b) = gcd(old_a, old_b))) ⇒
((a+b) ≥ 0)))));

Again underlines in the editor mark the relevant parts of the program.

Is loop invariant preserved? For each invariant, at least one task is generated to show that
the invariant is preserved by each iteration of the loop (Condition (2b) in Figure 4). In
our program, actually, two tasks are generated, one for each path through the conditional
command in the body of the loop. In case of the first invariant and the first path, we have
the following definition:

theorem _gcdp_5_LoopOp3(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ let a = m in (let b = n in
(letpar old_a = a, old_b = b in
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Figure 7: Is Loop Invariant Preserved?

(∀a:nat, b:nat. (((((a , 0) ∨ (b , 0)) ∧
(gcd(a, b) = gcd(old_a, old_b))) ∧
((a > 0) ∧ (b > 0))) ⇒

((a > b) ⇒ (let a = a%b in ((a , 0) ∨ (b , 0))))))));

A similar task is generated for the second branch. The editor highlights for each task the
corresponding branch of the conditional statement (see Figure 7).

Is loop measure decreased? Likewise, for the loop measure a task is generated to show that
the measure is decreased in each branch (Condition (3b) in Figure 4). In case of the first
branch, we have the following definition:

theorem _gcdp_5_LoopOp7(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ let a = m in (let b = n in
(letpar old_a = a, old_b = b in
(∀a:nat, b:nat. (((((a , 0) ∨ (b , 0)) ∧

(gcd(a, b) = gcd(old_a, old_b))) ∧
((a > 0) ∧ (b > 0))) ⇒

(letpar _measure = a+b in ((a > b) ⇒
(let a = a%b in ((a+b) < _measure))))))));

Again underlines in the editor mark the relevant parts of the program.

Does operation precondition hold? For each application of a (predefined or user-defined) op-
eration, the validity of its precondition has to be checked, giving rise to a number of
corresponding verification conditions. For instance, the first generated condition has the
following definition:

theorem _gcdp_5_PreOp0(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
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Figure 8: Does Operation Precondition Hold?

⇔ let a = m in (let b = n in
(((a , 0) ∨ (b , 0)) ⇒
(letpar m = a, n = b in ((m , 0) ∨ (n , 0)))));

As Figure 8 illustrates, this condition refers to the application gcd(a,b) of the operation
gcd in the loop invariant; the corresponding precondition of the operation is also marked.

All conditions can be easily checked; for N = 20, however, due to the occurrence of the
quantifiers in the conditions, some of the checks (e.g. the preservation of the invariants) start to
take some time (1–2 minutes) which suggests the use of smaller models (for N = 10 the checks
still need only 2–3 seconds) or the application of the parallel checking mechanism.

Deriving Counterexamples If the check of a verification condition fails, the entry “Show
Counterexample” in the corresponding task menu prints a sequence of values for the bound
variables that demonstrates the invalidity of the formula. As an example, take the erroneous
definition of the Euclidean algorithm given in Figure 9 where the second branch in the loop body
assigns to variable a rather than variable b.
Thus checking the Task “Is loop invariant preserved?” corresponding to the invariant

invariant gcd(a,b) = gcd(old_a,old_b);

fails with the corresponding specification/program lines marked as indicated in the figure. Se-
lecting in the task menu of the failed verification condition the entry “Show Counterexample”
gives the following output:
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Figure 9: An Invalid Verification Condition

Executing _gcdp_5_LoopOp6_refute().
This sequence of variable assignments leads to a counterexample
(run also "Print Definition" and note the underlined editor lines):
m=0,n=1
a=0
b=1
old_a=0,old_b=1
a=1,b=2
a=0
Execution completed (37 ms).

This output demonstrates that for procedure arguments m = 0 and n = 1 with corresponding
initial values a = 0 and b = 1 for the program variables (these values are also captured in the
variables old_a and old_b denoting the values of the program variables immediately before the
execution of the loop) it is possible that a loop iteration (executing the branch indicated by the
underlined lines in the editor window) leads from a prestate with values a = 1 and b = 2 that
satisfies the invariant to a poststate with value a = 0 that violates the invariant (the last two lines
of the output). To understand the counterexample in detail, we select the menu entry “Prints
Definition” which gives the definition of the invalid condition:

theorem _gcdp_5_LoopOp6(m:nat, n:nat)
requires (m , 0) ∨ (n , 0);
⇔ let a = m in
(let b = n in
(letpar old_a = a, old_b = b in
(∀a:nat, b:nat.
(((((a , 0) ∨ (b , 0)) ∧ (gcd(a, b) = gcd(old_a, old_b))) ∧
((a > 0) ∧ (b > 0))) ⇒ ((¬(a > b)) ⇒
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(let a = b%a in (gcd(a, b) = gcd(old_a, old_b))))))));

The sequence of value assignments in the printed counterexample corresponds to the sequence
of variable bindings in the verification condition; by substituting these values we can clearly see
a violation of the invariant.

2.8 Visualizing Execution Traces

If RISCAL is started and visualization is enabled (see Section A.5), the graphical user interface
depicts a row “Visualization” with two (mutually exclusive) check box options “Trace” and
“Tree”.
If any of these options is selected, every run/check of a RISCAL operation (procedure,

function, predicate, theorem) opens a window in which a visualization of this operation is
displayed provided that

• the option “Nondeterminism” is not selected,

• the options “Multi-Threaded” and “Distributed” are not selected.

In other words, visualization is restricted to the deterministic execution of RISCAL operations
in the sequential mode of the RISCAL software. The user may configure the size of the
visualization area by the fields “Width” and “Height” (independent of this setting, the minimum
size of a visualization area is 100 times 100 pixels).
The option “Tree” triggers the visualization of evaluation trees that will be discussed in

Section 2.9. In the remainder of this section, we will describe the trace-based visualization
of procedures that is triggered by the option “Trace”. This trace-based visualization displays
the changes of variables by the commands in the body of a procedure; for functions (including
predicates and theorems) whose result is determined by the evaluation of an expression the
computation of the result is displayed as a single step (except that also calls of other operations
are displayed). This mode of visualization is thus mainly useful for understanding the operational
behavior of a procedure.
We demonstrate this by a visualization of the following RISCAL model:

val N:�; val M:�;

type index = �[-N,N];
type elem = �[-M,M];
type array = Array[N, elem];

proc cswap(a:array, i:index, j:index): array
{
var b:array = a;
if b[i] > b[j] then
{
var x:elem := b[i];
b[i] := b[j];
b[j] := x;

}
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return b;
}

proc bubbleSort(a:array): array
{
var b:array = a;
for var i:index := 0; i < N-1; i := i+1 do
{
for var j:index := 0; j < N-i-1; j := j+1 do
b := cswap(b,j,j+1);

}
return b;

}

This model implements a version of the “Bubble sort” algorithm as a procedure bubbleSort
that uses an auxiliary procedure cswap for the conditional swap of two array elements.

If we select the operation bubbleSort and set with the button “Other Values” the parameters
N and M to 4 and 3, respectively, the first check of the procedure is performed with the argument
array a = [−3,−3,−3,−3]. Since here actually no swap is performed, we close the window that
pops up immediately (by clicking on the top-right button in the window frame). This lets the
execution proceed to the second check with a = [−2,−3,−3,−3] whose execution is displayed by
another window; it is this window that is shown on the top of Figure 10.
The window displays in the title the operation invocation bubbleSort([-2,-3,-3,-3])

whose execution is visualized; the tag “Level 0” indicates that this is the top-level of the execution
(every entry into the visualization of a nested procedure call increases this level by one). In the
window, we see a directed graph (a linear sequence of nodes) that are connected by directed
edges (arrows) and that are laid out in a two-dimensional manner from left to right and top to
bottom. This graph has three kinds of nodes:

• Numbered nodes represent the sequence of states constructed by performing assignments
to the variables of the procedure; such a node is always the target of a solid arrow (see
below). By hovering with the mouse pointer over such a node, a small window pops up
that displays the values of the various variables in that state (see the node numbered 17 in
the figure).

• Empty nodes represent “intermediate” states that have the same variable values as the
previous state; such a node is always the target of a dashed arrow (see below). An empty
node is displayed separately, because it indicates an event that helps to understand how the
state indicated by the next numbered node has been computed (see the explanation of the
dashed arrows below).

• Call nodes display a small window with a graph symbol; such a node represents the call
of another operation, the header of this window displays the call itself. A graph node is
always the target of a dashed arrow (see the explanations below).

Nodes may be selected by a mouse click and moved to another location in the display.
Nodes are connected by two types of arrows:
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Figure 10: Bubble Sort and Conditional Swap
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• Solid arrows (which lead to a numbered node) represent changes from one state to another
by the modification of a variable (thus generally some variable value in the target node
is different from the value of the corresponding variable in the source node). The label
associated to the arrow displays the name of the command that is responsible for the change
and in the second line (within parentheses) the new value of the variable. State changing
commands are variable assignments but also various kinds of choose statements that
nondeterministically set variables to values satisfying given conditions.

• Dashed arrows (which lead to an empty node) represent events within the change from one
state to the next that contribute to the change but do not change the state themselves. We
consider as such events on the one hand the testing of boolean conditions (respectively the
matching of recursive structures against patterns) that direct the control flow of statements
(conditionals and loops) and on the other hand the application of an operation (procedure
or function) whose execution yields a value. The label associated to the arrow displays the
test expression respectively the application expression in the first line and the result of the
test respectively of the application (within parentheses) in the second line.

The labels associated to the arrows (actually to the source nodes of the arrows) may be selected
by a mouse click and moved to another location in the display. In fact, some of the arrow labels
displayed in the figure have been manually moved for greater clarity.
By double-clicking on a call node which represents the application of an operation the content

of the window is modified to visualize the execution of that operation. The left diagram at the
bottom of Figure 10 displays the execution corresponding to one application of cswap(b,j,j+1)
where the test determines that the elements at positions j and j + 1 are not in the right order such
that it is necessary to swap the two elements by three assignments; the right diagram displays
an application where the test determines that the elements are already in the right order such
that no swap is necessary. The tag “Level 1” in the titles of the windows indicates that the
visualization refers to the application of an operation that was invoked on “Level 0”. If the
“Level 1” operation would involve another operation application, it would contain another call
node; by double-clicking on that node, we would move to “Level 2” and so on. A double click
on any empty part of the window moves the display back to the previous level.
By closing thewindow (via a click on the top right button of thewindow frame) the visualization

is terminated and the execution machine continues with the execution of the next invocation of
the operation being checked. By clicking on the button (Stop Execution) in the main window,
this process can be prematurely terminated (such that it is not necessary to step through the
visualizations of all possible calls of the operation).
The visualization of the execution trace of a procedure also displays the application of all

operations (typically functions and predicates) applied when checking the formal annotations
(pre- and postconditions, invariants, termination measures, assertions) of the procedure. If this
is not desired, those annotations should be temporarily commented out.

2.9 Visualizing Evaluation Trees

While the previous section discussed the visualization of execution traces of procedures, this
section is dedicated to the visualization of the evaluation of logic formulas. As an example, we
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Figure 11: The Visualization of the Evaluation of (∀x. p(x) ⇒ ∃y. q(x, y))

visualize in the following the evaluation of the formula introduced by the following definition of
predicate forallPexistsQFormula():

val N = 4;
type T = �[N];
pred p(x:T) ⇔ x < N;
pred q(x:T,y:T) ⇔ x+1 = y;
pred forallPexistsQFormula() ⇔ ∀x:T. p(x) ⇒ ∃y:T. q(x,y);

For this, we select in the RISCAL user interface, the operation forallPexistsQFormula(), the
visualization option “Tree”, and press the “Start Execution” button labeled with the green arrow.
After the execution of the operation has finished, the window depicted in Figure 11 pops up (by
closing this window, via a click on the top right button of the window frame the visualization is
terminated).
This header of the window displays the predicate forallPexistsQFormula() whose eval-

uation is visualized; the tag “Level 0” indicates that this is the top level of the evaluation (every
entry into the nested visualization of a predicate application increases this level by one). The
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main panel of the window depicts a tree whose nodes are laid out layer by layer from top to
bottom with directed edges (arrows) connecting the nodes from one layer to the next one.

Nodes A tree may have five kinds of nodes:

• The root node represents the evaluation of the predicate for all possible arguments. By
hovering with the mouse pointer over this node, a small window pops up that displays the
definition of the predicate and whether its execution for all possible arguments resulted in
an error or not. If there are n possible arguments and no error has occurred, the root has
n children each of which represents an evaluation with one of the arguments. However, if
an error occurs, the root one has one child representing the evaluation with the argument
that triggered the error.
In particular, if the operation is a “theorem” (keyword theorem) rather than a plain
“predicate” (keyword pred), the evaluation triggers an error if there is any argument for
which the formula defining the theorem has truth value “false”. In that case only the child
representing this evaluation is displayed.

• Numbered nodes are children of the root node each of which represents the evaluation of
the predicate for one particular argument. Nodes are numbered from 0 on, i.e., if there are
n nodes, they have numbers 0, . . . ,n− 1 (the nodes are not necessarily laid out in the order
of the numbers). By hovering with the mouse pointer over such a node, a small window
pops up that displays the definition of the predicate, the value(s) of its argument(s), and
the resulting truth value.

• Labeled nodes represent propositional formulas or quantified formulas where the label
denotes the formula’s outermost logical symbol (logical connective or quantifier). By
hovering with the mouse pointer over such a node, a small window pops up that displays
the formula, the values of its free variables (actually the values of all variables visible at
the occurrence of the formula), and the truth value of the formula.

• Empty nodes represent formulas whose outermost symbol is not a logical connective or
quantifier, in particular (but not exclusively) atomic formulas. By hovering with the mouse
pointer over such a node, the same information as for labeled nodes is displayed.

• Call nodes display a small window with a graph symbol; such a node represents the
application of a user-defined predicate. The header of this window displays the application
itself. By hovering with the mouse pointer over such a node, the same information as for a
labeled node is displayed. By double-clicking on such a node, the visualization switches
from the current formula to the formula defining the predicate (see the paragraph “Nested
Visualization” below).
Call nodes are also generated for the applications of functions and procedures; however,
the evaluation trees depicted for these entities are typically not very meaningful.

Nodes may be selected by a mouse click and moved to another location in the display.
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Figure 12: The Visualization of Predicates

Arrows Nodes are connected by two types of arrows:

• Solid arrows connect a formula to all those subformulas (respectively instances of subfor-
mulas) whose truth values are relevant for the truth value of the whole formula.

• Dashed arrows are used at the top of the tree to connect the root node to the numbered
nodes (representing the individual invocations of the predicate) and at the bottom of the
tree to connect empty nodes (representing atomic formulas) to call nodes (representing the
invocations of the predicates and functions within the atomic formula).

The targets of all arrows are annotated with labels of form n:v where n is the number of the
subexpression and v is its value. Numbers start with 0 (the arrows are not necessarily laid out
in the order of the numbers): a formula with a unary logical connective has one arrow with
number 0, a formula with a binary connective has at most two arrows with numbers 0 (the first
subformula) and 1 (the second subformula); a quantified formula whose variable can be assigned
n values has at most n arrows with numbers 0, . . . ,n − 1 denoting the individual instances of the
formula’s body. Furthermore, if an atomic formula contains n procedure/function applications,
the corresponding empty node has n arrows to the call nodes corresponding to these applications.
The labels associated to the arrows (actually to the target nodes of the arrows) may be selected

by a mouse click and moved to another location in the display.

Nested Visualization By double-clicking on a call node which represents the application of
an operation (in particular a predicate), the content of the window is modified to visualize the
execution of that operation (the depicted evaluation tree is essentially only helpful for predicates
since only these are defined by formulas). For instance, the left diagram in Figure 12 displays
the evaluation of the predicate application p(x) in branch 4 of Figure 11, while the right diagram
displays the evaluation of q(x, y) in branch 3. The tag “Level 1” in the titles of the window
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indicates that the visualization refers to an operation that was invoked on “Level 0”. If the “Level
1” operation would involve another operation application, it would contain another call node; by
double-clicking on that node, we would move to “Level 2” and so on. A double click on any
empty part of the window moves the display back to the previous level.

Tree Pruning Every evaluation tree is pruned such that it only displays the information neces-
sary to understand how its truth value was derived:

• If the truth value of a conjunction (F1∧F2) is “false”, only the first subformula is displayed
whose truth value is “false”.

• If the truth value of a disjunction (F1 ∨ F2) is “true”, only the first subformula is displayed
whose truth value is “true”.

• If the truth value of an implication (F1 ⇒ F2) is “true”, only one subformula is displayed
(either the “false” antecedent F1, or, if this antecedent is “true”, then the “true” consequent
F2).

• If the truth value of a universally quantified formula (∀x. F) is “false”, only one instance
F[x 7→ a] is displayed, where a is the first value encountered in the evaluation that makes
F “false”.

• If the truth value of an existentially quantified formula (∃x. F) is “true”, only one instance
F[x 7→ a] is displayed, where a is the first value encountered in the evaluation that makes
F “true”.

For example, in the tree depicted in Figure 11, all “true” implications (p(x) ⇒ ∃y. q(x, y)) are
pruned: in branch 0, only the evaluation tree for the “false” atomic formula p(x) is displayed; in
all other branches, the evaluation tree for the “true” existential formula (∃y. q(x, y)) is displayed.
In the evaluation tree of every such existential formula only one branch is displayed corresponding
to one “true” instance of atomic formula q(x, y). By hovering the mouse pointer over the nodes,
the corresponding variable values are displayed.
We further illustrate the role of tree pruning by the evaluation of the two “theorems”
forallPQR() and forallPQR2() depicted below:

val N = 4;
type T = �[N];
pred p(x:T) ⇔ x < N;
pred p2(x:T) ⇔ x ≤ x;
pred q(x:T,y:T) ⇔ x+1 = y;
pred r(x:T,y:T) ⇔ x = y+1;
theorem forallPQR() ⇔ ∀x:T. p(x) ⇒ x = 0 ∨ (∃y:T. q(x,y)) ∧ (∃y:T. r(x,y));
theorem forallPQR2() ⇔ ∀x:T. p2(x) ⇒ x = 0 ∨ (∃y:T. q(x,y)) ∧ (∃y:T. r(x,y));

The first theorem is indeed valid as illustrated by the top diagram in Figure 13. Since the
universally quantified formula is true, all branches of this formula are depicted. In each branch,
the implication is true which leads to a continuation with a single branch. In this branch, the
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Figure 13: Pruned Evaluation Trees
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disjunction is true, which again leads to a continuation with a single branch. In this branch, the
conjunction is true, which now leads to a split into two branches; each of these branches contains
a true existential formula, for which it again suffices to depict a single branch.
On the contrary, the second theorem is invalid as illustrated by the bottom diagram in Figure 13.

Since the universally quantified formula is false, only one branch of this formula is depicted.
The implication in this branch is false which leads to a split into two branches, the first of which
is immediately true. In the second branch, we have a false disjunction, which also leads to a
split into two branches, of which the first one is immediately false. In the second branch, we
have a false conjunction, of which only the first branch with a false existential formula needs to
be shown. To demonstrate the invalidity of this existential formula, all its branches have to be
depicted.

Large Trees The implementation of the algorithms employed by RISCAL for layouting the
evaluation trees has two drawbacks:

• The implementation becomes very slow for larger trees. This is deplorable all the more, as
the layout is computed by that thread that also handles the graphical user interface; thus the
RISCAL interface is blocked during this computation. In order to mitigate this problem,
we attempt to limit the blocking time by visualizing only trees up to a certain maximum
number of nodes (currently 250); for larger trees, RISCAL refuses any visualization
attempt. However, even with this limit, the layout time may be still substantial; thus
it is recommended to attempt the visualization first for very small model sizes before
proceeding to larger ones.

• If the visualization area is too small, the layout algorithm may only compute a partial
layout or no layout at all; this results in the placement of some/all nodes on the left upper
corner of the visualization window. To overcome this problem, the user may choose the
size of this visualization area by setting the values “Width” and “Height” in the RISCAL
user interface; if the resulting visualization is unsatisfactory, larger dimensions may be
chosen. These dimensions may also vastly exceed the dimensions of the physical screen;
e.g., we may choose a layout area of 16000 times 4000 pixel, even if our physical screen
size is just 1920 times 1080. In this case, the window will be maximized to the physical
screen size with scroll bars allowing to navigate within the layout area.

To illustrate the second problem and its solution, we show the visualization of formula
forallPQR() introduced in the previous section for N = 12:

val N = 12;
...
theorem forallPQR() ⇔
∀x:T. p(x) ⇒ x = 0 ∨ (∃y:T. q(x,y)) ∧ (∃y:T. r(x,y));

The top diagram in Figure 14 displays the visualization for the default dimension 800 times
600 pixels; here the algorithm fails to layout many of the nodes, in particular most of the call
nodes, which are placed all into the top left corner. Even the maximization of the window to the
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Figure 14: The Visualization of a Large Tree
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physical screen size 1920 times 1080 does not result in a fully satisfactory layout. However, if
we set the layout area to 4000 times 1000 pixels we get the visualization depicted in the lower
diagram of Figure 14. Clearly the tree exceeds horizontally the dimension of the window (in our
illustration reduced from the original maximal screen size to about 800 times 600 pixels again),
but we may use the horizontal scroll bar to investigate the currently not visible parts of the tree.

2.10 SMT Solving

The validity of RISCAL formulas (theorems) cannot only be checked by the builtin execution
mechanism of RISCAL but also by several external SMT (satisfiability modulo theories) solvers,
currently Boolector [25], CVC4 [4], Yices 2 [15], and Z3 [14]. If a formula is valid, the use
of these solvers can (depending on the solver and the nature of the formula) considerably speed
up the decision process for large models. However, if a formula is invalid, often RISCAL finds
the counterexample much quicker (and also gives insight into the nature of the counterexample);
it is thus advisable to first verify the validity of a formula with the RISCAL checker for small
values of the model parameters before trying to verify it with an SMT solver for larger values.
Furthermore, as a (current) implementation restriction, formulas to be decided by the application
of an SMT solver must not refer to recursive (or enumeration) types; all other constructions of
the RISCAL language are supported. Also be warned that in the check of a theorem by an SMT
solver we assume that all theorems that appear before the theorem to be checked are indeed valid
and all functions on which this theorem depends indeed satisfy their specification; also when
checking the correctness theorem of a function we assume the validity of the (specification and
implementation) preconditions theorems of the function. All these claims therefore have to be
checked as well before trusting the answer given by the SMT solver.
To apply SMT solving, in the “SMT”menu by the option “SMTSolver” one of the SMTSolvers

listed above must be selected and by the option “Configuration” the path to the executable file
of that solver must be determined (the RISCAL distribution includes in subdirectory etc GNU
Linux/x86-64 executables of all solvers). In the “Tasks” panel (opened by pressing the button

“Show/Hide Tasks”), the menu associated to every theorem (opened by right-clicking the
theorem) contains an entry “Apply SMT Solver”. If this entry is chosen, the selected SMT solver
is applied to decide the validity of the formula. Likewise every task folder contains an entry
“Apply SMT Solver to All Theorems” that applies the SMT solver to all tasks in that folder and
its subfolders. The console area then displays output similar to

The SMT solver Yices started execution.
Theorem is valid (112 ms, translation: 71 ms, decision: 5 ms).

respectively (if the supposed theorem does not hold)

The SMT solver Yices started execution.
ERROR: theorem is invalid (9 ms, translation: 4 ms, decision: 2 ms).

This output shows the validity/invalidity of the theorem and the time required for the computation
(in detail, the time is shown that it took for the translation of the theorem to the language of the
SMT solver as well as the time it took for the solver to come to its decision).
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To apply an SMT solver, the RISCAL theory is translated to the logic QF_UFBV of “unquan-
tified formulas over bit vectors with uninterpreted sort and function symbols” of the SMT-LIB
standard [5]. This involves two core translations (see [32] for details):

• The elimination of quantifiers: this proceeds by a combination of quantifier expansion (the
quantified formulas ∀x : T . F(x) respectively ∃x : T .Q(x) are replaced by conjunctions
F(v1) ∧ . . . ∧ F(vn) respectively disjunctions F(v1) ∨ . . . ∨ F(vn) for all values v1, . . . , vn
of type T) and skolemization (a formula ∀x : T . ∃y : T . F(x, y) is translated to a formula
∀x : T . F(x, f (x)) where the existential quantifier has been replaced by an uninterpreted
function f ; this preserves the satisfiability of the formula).

• The translation of types: every type and all associated operations are translated to the type
of “bit vectors” (finite sequences of bits) and operations on bit vectors; the size of the bit
vector (the number of bits) is chosen large enough to represent all values of the original
type and the operations are defined such that they are isomorphic to the original operations.

Some details of the translation can be configured in the “SMT Menu”, see Section A.3.
Reasonable default values have been chosen such that the user typically needs not be concerned
at all about the various configuration options. Most options do not affect the correctness of the
decision but only its speed. However, there are two exceptions:

• In themenu entry “SpecificationCutting” the default option “CutUnused Entities” removes
from the specification all those entities that are not (directly or indirectly) referenced by the
theoremwhose validity is to be decided; it also removes also all other axioms and theorems.
However, since the resulting theory has potentially more models than the original theory,
a theorem might be reported as “invalid” by the SMT solver, even if it actually holds in
all models where the removed theorems and axioms hold. If this is not desired, the option
“Use Full Specification” preserves all entities of the original theory (which, however, may
considerably slow down the decision process); the option “Retain Theorems and Axioms”
removes unused entities but preserves all theorems and axioms referring to entities that
are (directly or indirectly) referenced by the theorem to be decided; the option “Retain
Axioms” only retains the axioms.

• In the menu entry “Choice Guards” the default option “No Choice Guards” does in the
translation of a choose expression to an axiomatized “choice function” not consider the
logical context in which this expression occurs, i.e., it does not consider the “guard”
conditions that must be satisfied such that the value of the choice matters (e.g., in a
formula F ∧ . . . the value of a choice within the subformula . . . only matters if the
guard condition F holds). Thus the axiom generated for the choice function claims the
existence of an appropriately chosen value independently of whether its guard conditions
hold or not; consequently the SMT solver may report a theorem as “valid” under this
(stronger) assumption even if it is not valid under the original one. The option “Full Choice
Guards” solves this problem by generating a truly appropriate axiom which, however,
may considerably slow down the decision process. The option “Simple Choice Guards”
generates a simplified form of the axiom which leads to faster decisions but is correct only
if the chosen value just depends on a single argument.
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Futhermore, for the correct verification of an operation (function or procedure) by applying
SMT solving to the generated verification conditions, it is important to note the following:

• The correctness of the operation is actually only guaranteed if, in addition to the “correct-
ness of result” conditions and the “iteration and recursion” conditions, also the “imple-
mentation preconditions” have been verified; the SMT translation assumes their validity.

• If an operation calls another operation (or itself recursively), the called operation is in
general translated to an uninterpreted function that is axiomatized by the postcondition
of the operation (this is only then not the case, if the called operation is a non-recursive
function that is not marked as “modular” and the SMT option “Always use contract” is
not selected). Since the generated axiom implies for every argument that satisfies the
precondition the existence of a result that satisfies the postcondition, for every such called
operation the condition “Is postcondition always satisfiable?” has to be verified.

Only under these considerations the validity of the verification conditions indeed implies the
correctness of the verified operation with respect to its specification.

2.11 Nondeterministic Systems

Our presentation has so far focused on computations that derive from some given input some
desired output. However, we may also wish to model the behavior of a system that, starting from
some initial state, produces step by step new states, which results in a sequence of states. Such
a system may have multiple possible initial states and may in every state perform different steps
yielding different new states, i.e., it may be nondeterministic: it may perform different executions
resulting in different state sequences (which we subsequently call runs). RISCAL supports two
kinds of such systems, shared systems and distributed systems.

Shared Systems Consider the following declarations:

val N:�; axiom minN ⇔ N ≥ 3;
type elem = �[N]; type set = Set[elem];

shared system S1
{
var x:elem = 0;
invariant 1 ≤ x ∧ x ≤ N-1;
init(a:elem) with N/2 ≤ a ∧ a ≤ N/2+1; { x := x+a; }
action inc(a:elem) with a ≥ 1 ∧ x+a ≤ N-1; { x := x+a; }
action dec() with x ≥ 2; { x := x-1; }

}

These declarations introduce a shared (memory) system S1 whose state is represented by the
value of a variable x. In the variable declaration this variable is given the preliminary value 0 but
the initialization action declared with the keyword init updates this value as follows: the action
nondeterministically chooses some value for its parameter a that satisfies the guard condition
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N/2 ≤ a ∧ a ≤ N/2 + 1 and then performs the body of the action, which thus increases x to
either N/2 or N/2+1; this value is the actual initial value of the system (if no initialization value
is given in the variable declaration, the preliminary value of the variable is undefined and the
initialization action must not refer to it; if no initialization action is given, the preliminary value
of the variable becomes its actual initial value).

The subsequent execution of the system is determined by the repeated nondeterministic selec-
tion of some system action with some values for its parameters that satisfy the guard condition;
the execution of the selected action with the selected parameter values determines the next state
of the system. In above example, the system may thus, by executing the system action inc(a),
increment variable x by some value a ≥ 1 such that the resulting value is less equal N − 1; by
executing the action dec() it may decrement x by one, provided that its original value is not
less than 2. We may thus convince ourselves that every state of the system satisfies the property
1 ≤ x ∧ x ≤ N − 1; indeed we declare this conviction by an invariant clause.

In the “Operations” of the RISCAL GUI we may select the operation system S1 and execute
it, e.g., for N = 10 which results in the following output:

Executing system S1.
9 system states found with search depth 5.
Execution completed (109 ms).

This output indicates that RISCAL has elaborated the full state space of the system by performing,
for all possible initial states, all possible sequences of actions; this elaboration has yielded all
9 reachable states of the system (with values 1 ≤ x ≤ 9) by executing sequences of at most 5
actions. All states have satisfied the invariant, thus no error is reported. However, if we change
the invariant to

invariant 2 ≤ x ∧ x ≤ N-1;

the execution results in the following output:

ERROR in execution of system S1: evaluation of
invariant (1 ≤ x) ∧ (x ≤ (N-2));

at line 13 in file systems.txt:
invariant is violated

The system run leading to this error:
0:[x:5]->inc(1)->
1:[x:6]->inc(1)->
2:[x:7]->inc(1)->
3:[x:8]->inc(1)->
4:[x:9]

ERROR encountered in execution.

This output gives a counterexample, i.e., a sequence of steps that leads from an initial state to a
state violating the invariant; each step is labeled with an instance of the action (the name of the
action and the values of its parameters) that leads from one state to the next.
While the indicated counterexample leads to a violating state, it is not necessary the shortest

one. If we suspect that there is a shorter counterexample we may limit the length of execution
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sequences by setting in the RISCAL GUI the value of the input field “Depth” to, e.g., 3, which
gives the following output:

ERROR in execution of system S1: evaluation of
invariant (1 ≤ x) ∧ (x ≤ (N-2));

at line 13 in file systems.txt:
invariant is violated

The system run leading to this error:
0:[x:5]->inc(1)->
1:[x:6]->inc(1)->
2:[x:7]->inc(2)->
3:[x:9]

ERROR encountered in execution.

Indeed even setting “Depth” to 1 gives a violation:

Executing system S1.
ERROR in execution of system S1: evaluation of
invariant (1 ≤ x) ∧ (x ≤ (N-2));

at line 13 in file systems.txt:
invariant is violated

The system run leading to this error:
0:[x:5]->inc(4)->
1:[x:9]

ERROR encountered in execution.

Only setting “Depth” to 0 does not show this error:

Executing system S1.
2 system states found with search depth 0.
Execution completed (3 ms).
WARNING: only system runs with at most 0 steps have been considered.

This output thus demonstrates that both initial states satisfy the invariant, but it also warns us
that not the whole state space of the system has been investigated.

Furthermore, if a system is guaranteed to terminate (i.e., all possible runs of the system are
finite), we can equip it (similar to loops) by a decreases clause with a termination measure,
i.e., a value that is decreased by every action but that does not become negative. For example, if
we change the system definition by dropping the dec() action, we may annotate it as follows:

shared system S1
{
var x:elem = 0;
invariant 1 ≤ x ∧ x ≤ N-1;
decreases N-x;
init(a:elem) with N/2 ≤ a ∧ a ≤ N/2+1; { x := x+a; }
action inc(a:elem) with a ≥ 1 ∧ x+a ≤ N-1; { x := x+a; }

}
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The execution of this system leads to the following outputwhich confirms the eventual termination
of the system:

Executing system S1.
5 system states found with search depth 5.
Execution completed (3 ms).

However, if we include the dec() action again, we get the following counterexample:

Executing system S1.
ERROR in execution of system S1: evaluation of
decreases N-x;

at line 14 in file systems.txt:
variant value 2 is not less than old value 1

The system run leading to this error:
0:[x:5]->inc(1)->
1:[x:6]->inc(1)->
2:[x:7]->inc(1)->
3:[x:8]->inc(1)->
4:[x:9]->dec()->
5:[x:8]

ERROR encountered in execution.

By setting “Depth” to 1, we can minimize this counterexample as follows:

Executing system S1.
ERROR in execution of system S1: evaluation of
decreases N-x;

at line 14 in file systems.txt:
variant value 6 is not less than old value 5

The system run leading to this error:
0:[x:5]->dec()->
1:[x:4]

ERROR encountered in execution.

In above example, we have defined the initialization action and the system action by commands,
but also alternative description formats are possible:

• In the functional format, the results of actions are defined by expressions that describe the
result state:

shared system S2
{
var x:elem = 0;
invariant 1 ≤ x ∧ x ≤ N-1;
init(a:elem) with N/2 ≤ a ∧ a ≤ N/2+1; = x+a;
action inc(a:elem) with a ≥ 1 ∧ x+a ≤ N-1; = x+a;
action dec() with x ≥ 2; = x-1;

}
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If the system state consists of multiple variables, these expressions must be tuples whose
components define the new values of the variables in the order of their declaration.

• In the logical format, actions are defined by formulas that describe the transition relations
of the system:

shared system S3
{
var x:elem = 0;
invariant 1 ≤ x ∧ x ≤ N-1;
init(a:elem) with N/2 ≤ a ∧ a ≤ N/2+1; ⇔ x0 = x+a;
action inc(a:elem) with a ≥ 1 ∧ x+a ≤ N-1; ⇔ x0 = x+a;
action dec() with x ≥ 2; ⇔ x0 = x-1;

}

Here in every action formula the variable x0 (digit “0” appended to name “x”) refers
to the value of the state variable x in the poststate of the transition. The action allows
nondeterministically all poststates for which the action formula is true; thus, if there are
multiple state variables and the poststate value of a variable y should not be changed,
explicitly the condition y0 = y must be added.

A single system description may mix the various formats, i.e., it may contain actions defined
in the command-based style as well as in the functional or in the logical style.

Distributed Systems Consider the following declarations:

val M: �; type Value = �[M];
distributed system PingPong
{
component Ping
{
var x: Value;
init()
{
x := 0;
send Pong.value(x);

}
action value(y:Value) with y < M;
{
x := y+1;
send Pong.value(x);

}
}
component Pong
{
var y: Value = 0;
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action value(x:Value) with x < M;
{
y := x+1;
send Ping.value(y);

}
}

}

These declarations introduce a distributed (memory) system PingPong with two components
Ping and Pong. Ping has a local variable x and Pong has a local variable y; each component
may only read or write its own variables. However, the component may interact with each other
by exchanging messages. After the initialization of x to 0, Ping sends the message value(x) to
Pong which triggers the execution of the corresponding action of that component. Pong uses
the received value to set y to the successor of x and then sends a message value(y) to Ping
which triggers the execution of the corresponding action of that component. Ping uses the
received value to set x to the successor of y and sends again value(x) to Pong. The unbounded
continuation of these actions would eventually cause x or y to overflow the maximum M of their
types; however this is prevented by the guard conditions with x < M respectively with y <
M; if one of x or y reaches M , these conditions disable the corresponding actions and thus the
ping-pong game eventually ends.
We may annotate this system by the invariant

invariant Ping.x+Pong.y ≤ 2·M-1;

where by the notations Ping.x and Pong.yw refer to the variables of the respective components.
If we then execute the system for M = 5, RISCAL reports

Executing system PingPong.
6 system states found with search depth 6.
Execution completed (2 ms).

which demonstrates that after 5 transitions the system has ended and that none of the 6 states
reached (including the initial state) violates the invariant. However, if we attempt to check

invariant Ping.x+Pong.y ≤ 2·M-2;

the software tells us the following:

Executing system PingPong.
ERROR in execution of system PingPong: evaluation of
invariant (Ping.x+Pong.y) ≤ ((2·M)-2);

at line 59 in file systems.txt:
invariant is violated

The system run leading to this error:
0:[Ping:[0,[null],0],Pong:[0,[[0]],1]]->Pong.value(0)->
1:[Ping:[0,[[1]],1],Pong:[1,[null],0]]->Ping.value(1)->
2:[Ping:[2,[null],0],Pong:[1,[[2]],1]]->Pong.value(2)->
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3:[Ping:[2,[[3]],1],Pong:[3,[null],0]]->Ping.value(3)->
4:[Ping:[4,[null],0],Pong:[3,[[4]],1]]->Pong.value(4)->
5:[Ping:[4,[[5]],1],Pong:[5,[null],0]]

ERROR encountered in execution.

which demonstrates a run that violates the invariant. Likewise, a check without the guard clauses
results in the following error:

Executing system PingPong.
ERROR in execution of system PingPong: evaluation of
x := y+1;

at line 74 in file systems.txt:
size constraint of type �[0,5] violated by value 6

The system run leading to this error:
0:[Ping:[0,[null],0],Pong:[0,[[0]],1]]->Pong.value(0)->
1:[Ping:[0,[[1]],1],Pong:[1,[null],0]]->Ping.value(1)->
2:[Ping:[2,[null],0],Pong:[1,[[2]],1]]->Pong.value(2)->
3:[Ping:[2,[[3]],1],Pong:[3,[null],0]]->Ping.value(3)->
4:[Ping:[4,[null],0],Pong:[3,[[4]],1]]->Pong.value(4)->
5:[Ping:[4,[[5]],1],Pong:[5,[null],0]]->Ping.value(5)->...

ERROR encountered in execution.

This demonstrates the failed attempt to execute the final action Ping.value(5). The states in
these counterexample runs consist of the states of the components Ping and Pong displayed as
tuples with the variables x respectively y as their first components; the other components denote
the message buffers of the component actions and the number of elements in these buffers (we
will discuss these below).
By default, we create one instance of every component, but consider the following declarations:

val R: �;
distributed system PingPongRepl
{
component Ping[R]
{
var x: Value;
init()
{
x := 0;
send Pong[this].value(x);

}
action [B] value(y:Value) with y < M;
{
x := y+1;
send Pong[this].value(x);

}
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}
component Pong[R]
{
var y: Value = 0;
action [B] value(x:Value) with x < M;
{
y := x+1;
send Ping[this].value(y);

}
}

}

Here the headers Ping[R] and Pong[R] indicate that we replicate every component R times,
i.e., we have R instances of each component. Each component i may refer by the variable this
to its instance number i and each send command may indicate to which instance of a particular
component the message is to be sent. For example, instance Ping[i] uses the command send
Pong[this].value(x) to send a message to instance Pong[i] which in turn sends by the
execution of send Ping[this].value(x) a message back to Ping[i]. Thus, in fact, we have
created R simultaneous ping-pong games, each game played by one pair of instances. Since these
games are played asynchronously (different pairs may exchange messages at different speeds),
we get a large combination of possible states. For instance, the execution for M = 6 and R = 3
yields the following output:

Executing system PingPongRepl.
216 system states found with search depth 16.
Execution completed (104 ms).

We may generalize the invariants for the replicated version of the game as follows:

invariant ∀i:�[R-1]. Ping[i].x+Pong[i].y ≤ 2·M-1;

Here the notations Ping[i].x respectively Pong[i].y are used to refer to the local state
variables in instance i of the respective components.
The state of each component (respectively component instance) is not only determined by the

contents of the state variables but also by the content of the message buffer associated to every
action. This buffer holds all the messages that were sent to the action but were not yet processed
by the action. Every message buffer has a fixed size such that an action a cannot send a message
to another action b if the buffer of b is full; the execution of a is not enabled in such situations.
By default, the size of every message buffer is 1, i.e., every received message must be processed
before another message can be received. However, a declaration such as

action [B] value(x:Value) with x < M;

associates to an action a message buffer of arbitrary size B ≥ 1 (in above examples, there can
never be more than one message in a buffer, so the default is satisfactory there).
Invariants may refer to the content of a message buffer. In system PingPong, we may have for

example the invariant:
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invariant ∀k:�[B-1] with k < Ping.value_number.
(Ping.value[k].y ≥ 1);

Here the notation Ping.value_number denotes the number of messages in the buffer of action
value of component Ping; the notation Ping.value[k] refers to message k in that buffer
(messages are sorted according to the time of their arrival, i.e., Ping.value[0] is the message
that has arrived first and is the next one to be processed). Each message is a record whose com-
ponents are named as the parameters of the action, i.e., Ping.value[k].y refers to the message
value destined for parameter y of action Ping.value. In the replicated system PingPongRepl we
may have the analogous invariant

∀i:�[R-1], k:�[B-1] with k < Ping[i].value_number.
(Ping[i].value[k].y ≥ 1);

which contains the buffers in every instance Ping[i].
Section 3 gives an example of more complex (shared and distributed) systems.

3 More Examples

We continue by presenting some more examples of RISCAL specifications.

3.1 Linear and Binary Search

We start by modeling the linear search algorithm for looking in an array a of N natural numbers
with maximum value M for an element x. The corresponding RISCAL specification is thus based
on the following parameters and type declarations (see Appendix C.3 for the full specification):

val N:Nat;
val M:Nat;
type int = �[-N,N];
type elem = �[M];
type array = Array[N,elem];

Here array denotes the type of all arrays of length N of values of type elem; type int denotes
the domain of integers with absolute value less than or equal N (which includes the legal array
indices 0, . . . ,N − 1 but also the values −1 and N , which will be subsequently required).
The algorithm search(a,x) for searching in array a for element x can then be modeled,

specified, and annotated as follows:

proc search(a:array, x:elem): int
ensures result = -1 ⇒ ∀k:int with 0 ≤ k ∧ k < N. a[k] , x;
ensures result , -1 ⇒ 0 ≤ result ∧ result < N ∧

a[result] = x ∧ ∀k:int with 0 ≤ k ∧ k < result. a[k] , x;
{
var i:int = 0;
var r:int = -1;
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while i < N ∧ r = -1 do
invariant 0 ≤ i ∧ i ≤ N;
invariant ∀j:int. 0 ≤ j ∧ j < i ⇒ a[j] , x;
invariant r = -1 ∨ (r = i ∧ i < N ∧ a[r] = x);
decreases if r = -1 then N-i else 0;

{
if a[i] = x
then r := i;
else i := i+1;

}
return r;

}

The postcondition of search states that there are two cases:

• If the result is −1, a does not hold x.

• Otherwise, the result is a legal index at which a holds x and it is the smallest such index.

The invariants state

• a range condition on the loop variable i,

• the fact that all indices less than i do not hold x, and

• the fact that the auxiliary variable r is either −1 or identical to i which is then a legal index
at which a holds x.

As long as r is −1, the loop measure is N − i; once r is set to a different value, the measure drops
to 0, which demands the immediate termination of the loop.

Selecting N = 4 and M = 3, the algorithm and the its annotation can be very quickly checked:

Using N=4.
Using M=3.
Type checking and translation completed.
Executing search(Array[�],�) with all 1024 inputs.
Execution completed for ALL inputs (65 ms, 1024 checked, 0 inadmissible).

Moreover, RISCAL generates the verification conditions illustrated in the left part of Figure 15:
each of these conditions is indeed valid and can be checked in less than half a second.

To demonstrate the problem arises from underspecification, let us assume that we would have
formulated the last invariant of the loop in a slightly weaker way:

invariant r = -1 ∨ (r = i ∧ a[r] = x);

With that weaker version of the invariant (which has dropped the clause i < N), most of the
verification conditions are not valid, as indicated in the right part of Figure 15; these checks fail
with an error of form
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Figure 15: The Correctness of Linear Search
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Figure 16: The Violation of a Condition “Is index value legal?”

ERROR in execution of ...: evaluation of
a[r]

at unknown position:
array index 4 out of bounds

which indicates an error in some precondition; actually, among the failed conditions are also
most of the preconditions. Indeed, clicking on one of the failed preconditions of type “Is index
value legal?” lets the editor point to the exact source of the problem (see Figure 16): if a[i] = x,
the assignment of i + 1 to i violates the index access in the evaluation of a[r] in the invariant.
Adding the clause i < N to the invariant solves this problem.

If the array a is sorted, we may also apply the binary search algorithm which can be modeled
by a recursive function as follows:

fun bsearch(a:array, x:elem, from: int, to: int): int
requires 0 ≤ from ∧ from-1 ≤ to ∧ to < N;
requires ∀k:int with from ≤ k ∧ k ≤ to-1. a[k] ≤ a[k+1];
ensures result = -1 ⇒ ∀k:int with from ≤ k ∧ k ≤ to. a[k] , x;
ensures result , -1 ⇒ from ≤ result ∧ result ≤ to ∧ a[result] = x;
decreases to-from+1;

= if from > to then
-1

else
let m = (from+to)/2 in
if a[m] = x then m else
if a[m] < x then bsearch(a, x, m+1, to)

else bsearch(a, x, from, m-1);
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Figure 17: The Correctness of Binary Search

fun bsearch(a:array, x:elem): int
requires ∀k:int with 0 ≤ k ∧ k < N-1. a[k] ≤ a[k+1];
ensures result = -1 ⇒ ∀k:int with 0 ≤ k ∧ k < N. a[k] , x;
ensures result , -1 ⇒ 0 ≤ result ∧ result < N ∧ a[result] = x;

= bsearch(a, x, 0, N-1);

Themain algorithm bsearch(a,x) is based on an auxiliary operation bsearch(a,x,from,to)
which searches in array a for x within the index interval [from, to] assuming that the array is
sorted within that interval. The result of the function is −1, if x does not occur in a within that
interval, or some index (not necessarily the smallest one) within that interval at which a holds x.
This operation is modeled as a recursive function where the interval size to− from+ 1 shrinks in
every recursive invocation, which ensures the termination of the algorithm.
Figure 17 displays the verification conditions generated both for the recursive auxiliary function
bsearch(a,x,from,to) and the main function bsearch(a,x). The validity of each condition
can be checked in less than half a second.

3.2 Insertion Sort

We are going to specify the Insertion Sort algorithm for sorting arrays of length N that hold
natural numbers up to size M , based on the following declarations (see Appendix C.4 for the full
specification):

val N:Nat;

53



val M:Nat;

We make use of the following type definitions

type elem = Nat[M];
type array = Array[N,nat];
type index = Nat[N-1];

Here type array is the type of all arrays of length N of values of type elem to be accessed by
indices 0, . . . ,N − 1; type index denotes the domain of legal indices.
The insertion sort algorithm is then defined as follows:

proc sort(a:array): array
ensures ∀i:nat. i < N-1 => result[i] ≤ result[i+1];
ensures ∃p:Array[N,index].

(∀i:index,j:index. i , j ⇒ p[i] , p[j]) ∧
(∀i:index. a[i] = result[p[i]]);

{
var b:array = a;
for var i:Nat[N]:=1; i<N; i:=i+1 do
decreases N-i;

{
var x:nat := b[i];
var j:Int[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do
decreases j+1;

{
b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

}

The postcondition of this algorithm states that the resulting array is sorted in ascending order
and that that it is a permutation of the input array, i.e., that there exists a permutation p of indices
such that the result array holds at position p[i] the value of the input array at position i. The loop
is annotated with appropriate termination measures (invariants will be discussed below).
The specification demonstrates that arrays can be used in a style similar to most imperative

programming languages. Semantically, however, arrays in RISCAL differ from programming
language arrays in that an array assignment a[i] := e does not update the existing array but
overwrites the program variable a with a new array that is identical to the original one except
that it holds at position i value e. RISCAL arrays thus have value semantics rather than pointer
semantics. Correspondingly, above procedure does not update the argument array a; it rather
creates a new array b that is returned as the result of the procedure (actually, because of the
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semantics of the array assignment, the use of a separate variable b is not necessary; the program
could have just used a and terminated with the statement return b).
We can demonstrate a single run of the system by defining the procedure

proc main(): Unit
{
choose a: array;
print a, sort(a);

}

and selecting in menu “Operation” the entry main(). Executing this specification for N = 3 and
in “Deterministic” mode gives output

Run of deterministic function main():
[0,0,0,0],[0,0,0,0]
Result (6 ms): ()
Execution completed (46 ms).
WARNING: not all nondeterministic branches have been considered.

which however only demonstrates that the array holding 0 everywhere is appropriately “sorted”.
By setting the option Nondeterministic, the output

Executing main().
Branch 0 of nondeterministic function main():
[0,0,0],[0,0,0]
Result (8 ms): ()
Branch 1 of nondeterministic function main():
[1,0,0],[0,0,1]
Result (8 ms): ()
Branch 2 of nondeterministic function main():
[2,0,0],[0,0,2]
...
Branch 255 of nondeterministic function main():
[3,3,3,3],[3,3,3,3]
Result (10 ms): ()
Branch 256 of nondeterministic function main():
No more results (5056 ms).
Execution completed (5062 ms).

demonstrates that this is the case for all other inputs as well. Setting the option Silent and
selecting the operation sort(Map[Array[�]]), gives with the output

Executing sort(Array[�]) with all 256 inputs.
Execution completed for ALL inputs (327 ms, 256 checked, 0 inadmissible).
WARNING: not all nondeterministic branches have been considered.
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the core information in much shorter time.
To enable a proof-based verification of the algorithm, we have to annotate it with appropriate

invariants. To simplify their formulation, we introduce the following predicates:

pred sorted(a:array, n:�[N]) ⇔
∀i:index. i < n-1 ⇒ a[i] ≤ a[i+1];

pred permuted(a:array, b:array) ⇔
∃p:Array[N,index].
(∀i:index,j:index with i < j ∧ j < N. p[i] , p[j]) ∧
(∀i:index with i < N. a[i] = result[p[i]]);

pred equals(a:array, b:array, from:�[N], to:�[-1,N-1]) ⇔
∀k:index with from ≤ k ∧ k ≤ to. a[k] = b[k];

Here sorted(a,n) states that array a is sorted in the first n positions, permuted(a, b) states
that array b is a permutation of a, and equals(a,b,from,to) states that arrays a and b have
identical elements in the index interval [from, to].

With the help of these predicates, the postconditions of the algorithm can be reformulated and
the invariants expressed as follows:

proc sort(a:array): array
ensures sorted(result, N);
ensures permuted(a, result);

{
var b:array = a;
for var i:�[N]:=1; i<N; i:=i+1 do
invariant 1 ≤ i ∧ i ≤ N;
invariant sorted(b, i);
invariant permuted(a, b);
invariant equals(b, old_b, i, N-1);
decreases N-i;

{
var x:elem := b[i];
var j:�[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do
invariant i = old_i;
invariant x = old_b[i];
invariant -1 ≤ j ∧ j ≤ i-1;
invariant equals(b, old_b, i+1, N-1);
invariant equals(b, old_b, 0, j+1);
invariant ∀k:index with j+1 < k ∧ k ≤ i. b[k] = old_b[k-1];
invariant ∀k:index with j+1 ≤ k ∧ k < i. b[k] > x;
decreases j+1;

{
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b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

}

Apart from a range condition on the loop variable i, the invariants of the outer loop essentially
state that the algorithm’s postconditions hold up to position i and that from position i on, array b
has not changed. The invariants of the inner loop are a bit more subtle: apart from stating a
range condition on the loop variable j, that variable i is not changed by the inner loop (invariants
should always explicitly state which variables remain unchanged), and that x is the original value
of b[i], they claim the following:

• array b has not been changed from position i + 1 on,

• array b has not been changed up to position j + 1,

• in the interval [ j + 1, i], the elements of b are shifted by one position,

• in the interval [ j + 1, i[, the elements of b are greater than x.

From these annotations, RISCAL generates the conditions depicted in Figure 18:

• The two tasks labeled as “Is result correct?” verify the two postconditions.

• The first set of tasks in the folder “Verify iteration and recursion” verifies the correctness
of the outer loop under the assumption that the invariant of the inner loop is correct.

• The second set of tasks in the folder “Verify iteration and recursion” verifies the correctness
of the inner loop and its invariant.

• The tasks in the folder “Verify implementation preconditions” verify, in addition to the
usual operation preconditions, that arrays are only accessed with valid indices (“Is index
value legal?”) and that variables are only assigned values in the range of the variable types
(“Is assigned value legal?”); the later can be inferred mostly automatically from the types
of the values except for the assignments j := j − 1 and i := i + 1.

As usual, by clicking on the conditions, the editor underlines those parts relevant to the condition.
Using the parameter values N = 4 and M = 2 (considering arrays of length 4 with values in the
range [−2,+2]), every condition can be with 4 threads checked in less than 5 seconds.

3.3 DPLL Algorithm

As a somewhat bigger example, we present the core of the DPLL (Davis, Putnam, Logemann,
Loveland) algorithm for deciding the satisfiability of propositional logic formulas with at most
n variables in conjunctive normal form. We start with the following declaration (the full specifi-
cation is given in Appendix C.5):
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Figure 18: The Correctness of Insertion Sort
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val n: �;

A literal (a propositional variable in positive or negated form) is represented by a positive
respectively negative integer; a clause (a conjunction of literals) is represented by a set of literals;
a formula (a disjunction of clauses) is represented by a set of clauses. A valuation of a formula
(a mapping of propositional variables to truth values) is represented by the set of literals that are
mapped to “true”. All of this gives rise to the following type definitions:

type Literal = �[-n,n];
type Clause = Set[Literal];
type Formula = Set[Clause];
type Valuation = Set[Literal];

Actually, these definitions only introduce “raw types”: not every value of this type is meaningful.
Based on the predicate

pred consistent(l:Literal,c:Clause) ⇔ ¬(l∈c ∧ -l∈c);

we introduce side conditions that all meaningful values of the corresponding types must satisfy:

pred literal(l:Literal) ⇔ l,0;
pred clause(c:Clause) ⇔ ∀l∈c. literal(l) ∧ consistent(l,c);
pred formula(f:Formula) ⇔ ∀c∈f. clause(c);
pred valuation(v:Valuation) ⇔ clause(v);

We can define the predicates that state when a valuation satisfies a literal, a clause, and a formula,
respectively:

pred satisfies(v:Valuation, l:Literal) ⇔ l∈v;
pred satisfies(v:Valuation, c:Clause) ⇔ ∃l∈c. satisfies(v, l);
pred satisfies(v:Valuation, f:Formula) ⇔ ∀c∈f. satisfies(v,c);

We thus define the core notion of the satisfiability of a formula respectively, it’s counterpart,
validity:

pred satisfiable(f:Formula) ⇔
∃v:Valuation. valuation(v) ∧ satisfies(v,f);

pred valid(f:Formula) ⇔
∀v:Valuation. valuation(v) ⇒ satisfies(v,f);

We define the negation of a formula

fun not(f: Formula):Formula =
{ c | c:Clause with clause(c) ∧ ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula)
requires formula(f);

⇔ formula(not(f));
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and define core relationship between both notions: a formula is valid, if its negation is not
satisfiable:

theorem notValid(f:Formula)
requires formula(f);

⇔ valid(f) ⇔ ¬satisfiable(not(f));

Having established the basic theory of propositional formulas and their satisfiability, we introduce
some auxiliary notions used by the DPLL algorithm, namely the set of all literals of a formula

fun literals(f:Formula):Set[Literal] =
{l | l:Literal with ∃c∈f. l∈c};

and the result of setting a literal l in formula f to “true”:

fun substitute(f:Formula,l:Literal):Formula =
{c\{-l} | c∈f with ¬(l∈c)};

We are now in the position to give the recursive version of the algorithm (omitting for brevity
the optimizations that actually make the algorithm efficient):

multiple pred DPLL(f:Formula)
requires formula(f);
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;

⇔

if f = ∅[Clause] then
>

else if ∅[Literal] ∈ f then
⊥

else
choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));

The specification of the algorithm states that for every well-formed formula f the algorithm
yields “true” if and only if f is satisfiable. If it cannot easily decide the satisfiability of f , the
algorithm chooses a literal in that is substituted once by “true” and once by “false” and calls
itself recursively on the resulting formulas; if one of them is satisfiable, also f is satisfiable.
The algorithm terminates because in every recursive invocation the number of literals in the
formula is decreased. The keyword multiple in front of the definition is necessary for recursive
functions/predicates with nondeterministic semantics, as in the case of this function that applies
the choose operator.
For asserting the termination the iterative version of the algorithm, we introduce a couple of

auxiliary notions

fun vars(f:Formula): Set[�[n]] =
{ if l>0 then l else -l | l ∈ literals(f) };

val m = 2^(n+1)-1;
fun size(f:Formula): �[m] = 2^(|vars(f)|+1)-1;
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which ultimately give a measure for the complexity of the work that is still to be performed for
every formula stored on the stack (see the explanations below).
The iterative version of the algorithm can then be formulated and provided with correctness

annotations as follows:

proc DPLL2(f:Formula): Bool
requires formula(f);
ensures result ⇔ satisfiable(f);

{
var satisfiable: Bool := ⊥;
var stack: Array[n+1,Formula] := Array[n+1,Formula](∅[Clause]);
var number: �[n+1] := 0;
stack[number] := f;
number := number+1;
while ¬satisfiable ∧ number>0 do
invariant 0 ≤ number ∧ number ≤ n+1;
invariant number > 0 ∧ stack[number-1] , ∅[Clause] ∧

¬∅[Literal] ∈ stack[number-1] ⇒ number < n+1;
invariant satisfiable(f) ⇔ satisfiable ∨
∃i:�[n+1] with i<number. satisfiable(stack[i]);

decreases if satisfiable then 0 else∑
k:�[n] with k<number. size(stack[k]);

{
number := number-1;
var g:Formula := stack[number];
if g = ∅[Clause] then
satisfiable := >;

else if ¬∅[Literal]∈g then
{
choose l∈literals(g);
stack[number] := substitute(g,-l);
number := number+1;
stack[number] := substitute(g,l);
number := number+1;

}
}
return satisfiable;

}

The algorithm operates on a stack to which it initially pushes the original formula f . It then
iteratively pops the top formula g from the stack; if the formula is not trivially satisfiable, it
chooses a literal in g that is substituted once by “true” and once by “false”; the resulting formulas
are pushed to the stack again. The algorithm terminates when the stack becomes empty ( f is
then not satisfiable) or if the top formula g is satisfiable (then also f is satisfiable).
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In addition to the specification of pre- and postcondition, the algorithm is also annotated with
the core invariants from which the correctness of the algorithms can be deduced: the original
formula is satisfiable if the variable satisfiable is set to “true” or if any of the formulas on the
stack is satisfiable. It terminates, because the complexity of the work which remains on the stack
(essentially the sum of the number of corresponding applications of the recursive algorithm to
these formulas) decreases.
By setting n = 3 and defining

proc main0(): ()
{
val f = {{1,2,3},{-1,2},{-2,3},{-3}};
val r = DPLL2(f);
print f,r;

}

we can validate the correctness of the (iterative version of the) algorithm for one particular input:

Executing main0().
Run of deterministic function main0():
{{1,2,3},{-1,2},{-2,3},{-3}},false
Result (36 ms): ()
Execution completed (100 ms).
Not all nondeterministic branches may have been considered.

However, when attempting to check the algorithm for all inputs

Executing DPLL2(Set[Set[�]]) with all (at least 2^63) inputs.
PARALLEL execution with 4 threads (output disabled).
434480 inputs (768 checked, 140278 inadmissible, 0 ignored, 293434 open)...
434480 inputs (1792 checked, 429562 inadmissible, 0 ignored, 3126 open)...
711986 inputs (2545 checked, 587520 inadmissible, 0 ignored, 121921 open)...
1217971 inputs (3583 checked, 853627 inadmissible, 0 ignored, 360761 open)...
1500591 inputs (4096 checked, 1055731 inadmissible, 0 ignored, 440764 open)...
1724104 inputs (4096 checked, 1594493 inadmissible, 0 ignored, 125515 open)...
...

we first realize that there are extremely many (more than 263) of these and second that only a
small minority of them are well-formed (most sets of sets of integers violate some of the type
constraints). Unless we have an overwhelming amount of time (a couple of thousands of years)
at our hand, we better restrict our input space. We therefore stop the execution and introduce
constants for the maximum number of literals per clause and the maximum number of clauses
per formula:

val cn: �; // e.g. 2;
val fn: �; // e.g. 20;

We then define a function that gives us all formulas with these constraints:

62



fun formulas(): Set[Formula] =
let
literals = { l | l:Literal with literal(l) },
clauses = { c | c ∈ Set(literals) with |c| ≤ cn ∧ clause(c) },
formulas = { f | f ∈ Set(clauses) with |f| ≤ fn ∧ formula(f) }

in formulas;

Now we define a test program

proc main1(): ()
{
// apply check to a specific set of formulas
check DPLL with formulas();

}

in which the command check applies the algorithm to the specific set of formulas. By multi-
threaded and distributed execution we then may check for cn = 2 and fn = 20 the selected subset
of inputs in a quite limited amount of time:

Executing main1().
Executing DPLL(Set[Set[�]]) with selected 524288 inputs.
Executing "/software/RISCAL/etc/runssh qftquad2.risc.jku.at 4"...
Connecting to qftquad2.risc.uni-linz.ac.at:56371...
Executing "/software/RISCAL/etc/runmach 4"...
Connecting to localhost:9999...
Connected to remote servers.
PARALLEL execution with 4 local threads and 2 remote servers (output disabled).
8668 inputs (4674 checked, 0 inadmissible, 0 ignored, 3994 open)...
22126 inputs (10737 checked, 0 inadmissible, 0 ignored, 11389 open)...
...
503297 inputs (477221 checked, 0 inadmissible, 0 ignored, 26076 open)...
Execution completed for SELECTED inputs (61037 ms, 524288 checked, 0 inadmissible).
Execution completed (89457 ms).
WARNING: not all nondeterministic branches have been considered.

As this example demonstrates, model checking experiments may have to be planned with care to
yield meaningful results with restricted (time and space) resources.

3.4 DPLL Algorithm with Subtypes

As the previous example has shown, checking operations on large domains of “raw” values from
which the meaningful values have to be filtered by auxiliary preconditions can become quite
cumbersome. In many cases, the use of “subtypes” may make our lives considerably easier.

For this, we start with the following declarations that introduce the same constants as in the
previous example (the full specification is given in Appendix C.6):
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val n: �;
val cn: �;
val fn: �;

Now we define the domain of literals as follows:

type LiteralBase = �[-n,n];
type Literal = LiteralBase with value , 0;

Here the type LiteralBase denotes the type of all “raw literals”; the type LiteralBase then is
defined as a subtype of Literal that only includes the meaningful (non-zero) values. The clause
with value , 0 describes the side condition that every value of type Literal must fulfill; the
special name value denotes the value to which the condition is applied.
Correspondingly, we can introduce the other types as subtypes of raw types based on the same

auxiliary predicates that we have defined in the previous example; additionally we immediately
restrict the sizes of the types such that exhaustive checking becomes feasible:

type ClauseBase = Set[Literal];
pred clause(c:ClauseBase) ⇔ ∀l∈c. ¬(l∈c ∧ -l∈c);
type Clause = ClauseBase with |value| ≤ cn ∧ clause(value);

type FormulaBase = Set[Clause];
pred formula(f:FormulaBase) ⇔ ∀c∈f. clause(c);
type Formula = FormulaBase with |value| ≤ fn ∧ formula(value);

type Valuation = ClauseBase with clause(value);

When we now process the specification, we get the following output which shows the processing
of the subtype definitions:

Using n=3.
Using cn=2.
Using fn=20.
Evaluating the domain of Literal...
Evaluating the domain of Clause...
Evaluating the domain of Formula...
Evaluating the domain of Valuation...
Computing the value of m...
Type checking and translation completed.

Now, in the following definitions all occurrences of the side conditions can be removed, e.g.
rather than writing

fun not(f: Formula):Formula =
{ c | c:Clause with clause(c) ∧ ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula)
requires formula(f);

⇔ formula(not(f));
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(as we did in the previous example), we can now write

fun not(f: Formula):Formula =
{ c | c:Clause with ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula) ⇔ formula(not(f));

Furthermore, we can drop from predicate DPLL and procedure DPLL2 the precondition clause
requires formula(f) which is now subsumed by the definition of subtype Formula.
When now checking the algorithm for all inputs, we get the following output:

Executing DPLL2(Formula) with all 524288 inputs.
PARALLEL execution with 4 threads (output disabled).
2081 inputs (1519 checked, 0 inadmissible, 0 ignored, 562 open)...
3507 inputs (2842 checked, 0 inadmissible, 0 ignored, 665 open)...
4153 inputs (3974 checked, 0 inadmissible, 0 ignored, 179 open)...
5247 inputs (5082 checked, 0 inadmissible, 0 ignored, 165 open)...
6334 inputs (6123 checked, 0 inadmissible, 0 ignored, 211 open)...
7344 inputs (7151 checked, 0 inadmissible, 0 ignored, 193 open)...
...

Compared to the output from the previous example, we see that the domain of the check has been
automatically restricted to the values of interest.

Figure 19 displays the verification conditions generated for the function DPLL respectively
the procedure DPLL2 (for DPLL2, only some of the tasks in the folder “Verify implementation
preconditions” are shown, in total there are more than 30 such tasks). Checking these conditions
is possible under the following constraints:

• For DPLL, the check of a condition like “Is result correct?” takes for n = 3 with 4 threads
4–5 minutes, which requires quite some patience. However, choosing n = 2 reduces the
checking time even with a single thread to less than half a second.

• For DPLL2, even a check with n = 2 is not feasible for most of the verification conditions,
because these involve a universal quantification of the stack variable which has a huge
domain of values. Only for n = 1 all checks succeed within less than half a second (with
limited evidential value, of course).

Checking verification conditions in such small models is apparently of very limited value to
justify their general validity. However, even with n = 1 errors/inadequacies in the annotations
of the loop of the DPLL2 procedure could be detected, which demonstrates that even very small
models may help to falsify sloppy correctness arguments.

3.5 A Client-Server System (Shared Variant)

Consider a concurrent system whose pseudo-code is given as follows:
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Figure 19: The Correctness of DPLL respectively DPLL2
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Client(i):
loop
0: sendServer(i);
1: waitServer();
... // critical region
2: sendServer(i);

Server:
var given := N, waiting := {}
loop
var i := receiveClient();
if i = given then
if waiting = {} then
given := N

else
choose given in waiting;
waiting := waiting\{given};
sendClient(given)

else if given = N then
given := i;
sendClient(given)

else
waiting := waiting U {i}

This system consists of N clients and one server. Each client iteratively sends a message to a
server which asks for permission to enter a critical region. The client then waits for the answer
giving this permission and, once received, enters the region. When it exists the region, it sends
another message to the server which returns the permission.

The task of the server is to ensure that only one client at a time is in the critical region. It
thus maintains a variable given which contains the identity 0 ≤ i < N of the client to which the
server has given permission to enter the region; if no client has this permission, then i = N holds.
Furthermore, the server maintains a variablewaiting that contains the identities of all clients from
which the server has received a request which it could not yet answer (because the permission
was given to another client). The various cases of the server code describe the protocol by which
the server handles the requests.
This scenario can be modeled in RISCAL as the following shared system:

val N:�; axiom minN ⇔ N ≥ 1;
type Client = �[N-1]; type Client0 = �[N]; type PC = �[2];

shared system ClientServer1
{
var given: Client0; var waiting: Set[Client];
var pc: Array[N,PC]; var req: Set[Client]; var ans: Set[Client];
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...
}

The state of the system is defined by the variables given and waiting as well as by the following
variables:

• pc[i] denotes the value of the program counter of client i according to the three commands
in the pseudo-code of the clients.

• req denotes the set of client messages that are pending, i.e., that have been sent by the
clients but not yet been received by the server; these messages are mostly requests to enter
the critical region but may include also a message indicating the return of a permission.

• ans denotes the set of server messages that are pending, i.e., that have been sent by the
server but not yet received by the clients (actually, if the protocol is correct, there can be
only one message of the server pending which gives one client the permission to enter the
critical region).

The initial state of the system is defined by the following initialization action:

init()
{
given := N; waiting := ∅[Client];
pc := Array[N,PC](0); req := ∅[Client]; ans := ∅[Client];

}

The following three system actions describe the activities of the clients corresponding to the
three statements in the pseudo-code of the clients:

action cask(i:Client) with pc[i] = 0 ∧ i < req;
{ pc[i] := 1; req := req ∪ {i}; }
action cget(i:Client) with pc[i] = 1 ∧ i ∈ ans;
{ pc[i] := 2; ans := ans \ {i}; }
action cret(i:Client) with pc[i] = 2 ∧ i < req;
{ pc[i] := 0; req := req ∪ {i}; }

Each action is parameterized by the identity i of the client performing the action. The action is
only enabled if the program counter of the client has a particular value; its execution updates this
value which enables the “next” action in turn. In more detail:

• Action cask(i) lets client i ask for permission to enter the critical region by adding value i
to set req; this action is only enabled if i is not already in req (otherwise, a message of this
client is still pending; the client then has to wait until this message has been delivered).

• Action cget(i) lets client i wait for the permission of the server. This action is only
enabled if the permission is given, i.e., i is in set ans; its execution removes i from ans.

• Action cret(i) lets client i return the permission to the server; its behavior is similar to
that of action cask(i).
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The following four system actions describe the activities of the server corresponding to the four
cases in the pseudo-code of the server:

action sget(i:Client) with i ∈ req ∧ given = N ∧ i < ans;
{ req := req \ {i}; given := i; ans := ans ∪ {i}; }
action swait(i:Client) with i ∈ req ∧ given , N ∧ given , i;
{ req := req \ {i}; waiting := waiting ∪ {i}; }
action sret1(i:Client)
with i ∈ req ∧ given = i ∧ waiting = ∅[Client];
{ req := req \ {i}; given := N; }
action sret2(i:Client,j:Client)
with i ∈ req ∧ given = i ∧ j ∈ waiting ∧ j < ans;
{ req := req \ {i};
given := j; waiting = waiting \ {j}; ans := ans ∪ {j}; }

Each action is parameterized with the identity i of the client from which a message is received.
The action is only enabled if i is in set req; its execution removes i from this set. The other
parts of the guard condition correspond to the conditions in the conditional statements of the
pseudo-code that lead to the corresponding execution branch whose effect is described in the
action. The action sret2(i, j) is additionally parameterized with the identity j of the client
chosen from set waiting (the guard condition of the action contains the formula j ∈ waiting); the
execution of this action removes this client from the set and sends it the permission.

The core requirement of the system is that it maintains the mutual exclusion of client access
to the critical region, which we formulate by the following invariant:

invariant ¬∃i1:Client,i2:Client with i1 < i2.
pc[i1] = 2 ∧ pc[i2] = 2;

We may then check the protocol for, e.g., N = 5 clients, which leads to the following output:
invariant:

Executing system ClientServer1.
1247 system states found with search depth 768.
Execution completed (326 ms).

This output indicates that the protocol is correct; none of the 1247 reachable states violates the
invariant. Now we deliberately introduce an error to the protocol by changing the definition of
the last server action as follows:

action sret2(i:Client,j:Client)
with i ∈ req ∧ given = i ∧ j ∈ waiting ∧ j < ans;
{ req := req \ {i};
given := N; waiting = waiting \ {j}; ans := ans ∪ {j}; }

The execution of the system then indeed exhibits this error:
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Executing system ClientServer1.
ERROR in execution of system ClientServer1: evaluation of
invariant ¬(∃i1:Client, i2:Client with i1 < i2. ...);

at line 21 in file server.txt:
invariant is violated

The system run leading to this error:
0:[given:5,waiting:{},pc:[0,0,0,0,0],req:{},ans:{}]->cask(0)->
1:[given:5,waiting:{},pc:[1,0,0,0,0],req:{0},ans:{}]->cask(1)->
2:[given:5,waiting:{},pc:[1,1,0,0,0],req:{0,1},ans:{}]->cask(2)->
...
26:[given:0,waiting:{2,3,4},pc:[2,2,1,1,1],req:{1},ans:{}]

ERROR encountered in execution.

In the last state indeed two clients have program counter 2 and thus violate mutual exclusion.
However, the counterexample is pretty long. We thus experiment with smaller values of the
execution option “Depth” until for value 11 we find the following minimal counterexample:

The system run leading to this error:
0:[given:5,waiting:{},pc:[0,0,0,0,0],req:{},ans:{}]->cask(0)->
1:[given:5,waiting:{},pc:[1,0,0,0,0],req:{0},ans:{}]->cask(1)->
2:[given:5,waiting:{},pc:[1,1,0,0,0],req:{0,1},ans:{}]->cask(2)->
3:[given:5,waiting:{},pc:[1,1,1,0,0],req:{0,1,2},ans:{}]->sget(0)->
4:[given:0,waiting:{},pc:[1,1,1,0,0],req:{1,2},ans:{0}]->cget(0)->
5:[given:0,waiting:{},pc:[2,1,1,0,0],req:{1,2},ans:{}]->cret(0)->
6:[given:0,waiting:{},pc:[0,1,1,0,0],req:{1,2,0},ans:{}]->swait(1)->
7:[given:0,waiting:{1},pc:[0,1,1,0,0],req:{2,0},ans:{}]->sret2(0,1)->
8:[given:5,waiting:{},pc:[0,1,1,0,0],req:{2},ans:{1}]->cget(1)->
9:[given:5,waiting:{},pc:[0,2,1,0,0],req:{2},ans:{}]->sget(2)->
10:[given:2,waiting:{},pc:[0,2,1,0,0],req:{},ans:{2}]->cget(2)->
11:[given:2,waiting:{},pc:[0,2,2,0,0],req:{},ans:{}]

ERROR encountered in execution.

For a subsequent proof-based verification of the system we may actually describe the set of
reachable states in much more detail by the following invariants:

invariant ∀i:Client with i = given.
(pc[i] = 0 ∧ i ∈ req) ∨ (pc[i] = 1 ∧ i ∈ ans) ∨
(pc[i] = 2 ∧ i < req ∧ i < ans);

invariant ∀i:Client with i ∈ waiting.
i , given ∧ pc[i] = 1 ∧ i < req ∧ i < ans;

invariant ∀i: Client with i ∈ req. i < ans;
invariant ∀i: Client with i ∈ ans. given = i;
invariant ∀i: Client with pc[i] = 0.
i < ans ∧ (i ∈ req ⇒ i = given);

invariant ∀i: Client with pc[i] = 1.
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i ∈ req ∨ i ∈ waiting ∨ i ∈ ans;
invariant ∀i: Client with pc[i] = 2. i = given;

Indeed also the correctness of these invariants can be confirmed:

Executing system ClientServer1.
1247 system states found with search depth 768.
Execution completed (295 ms).

Appendix C.7 includes the complete specification of the system and also two alternative formu-
lations of the system actions in the functional style and in the logical style.

3.6 A Client-Server System (Distributed Variant)

Consider the following pseudo-code of a distributed client server system:

Client(i):
loop
send Server.request(i)
receive enter()
...
send Server.giveback(i)

Server:
loop
receive request(i)
send Client(i).enter()
receive giveback(i)

As in the example of the previous section, this system consists of a server and N clients; every
client repeatedly asks by a request message the server for permission to enter a critical region,
waits for an answer of the server in the form of an enter message, enters the region, and finally,
when it leaves the critical region, returns the permission to the server by sending a giveback
message. The task of the server is to ensure that only one client at a time enters the region; for
this it repeatedly waits for a requestmessage from an arbitrary client i, sends to that client an enter
message, and then waits for a giveback message from that client. Different from the example in
the previous section, in this example messages are tagged, and the receiver of a message may
indicate that it only accepts a message with a certain tag.
In RISCAL we can model this distributed system as follows:

val N:�; val B:�; type Id = �[N];
distributed system ClientServer
{
component Server
{
var client: Id;
init() { client := N; }
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action[B] request(i:Id) with client = N;
{ client := i; send Client[i].enter(); }
action[B] giveback(i:Id) { client := N; }

}
component Client[N]
{
var req: �[1]; var use: �[1];
init() { req := 0; use := 0; send Client[this].ask(); }
action ask() { req := 1; send Server.request(this); }
action enter() { req := 0; use := 1; send Client[this].exit(); }
action exit()
{ use := 0; send Server.giveback(this); send Client[this].ask(); }

}
}

This system consists of one server component and N instances of the client component where
the server actions have message buffers of size B and the client actions have message buffers of
default size 1.
The server uses the state variable client to indicate to which client it has given permission to

enter the critical region. If client = N , no client has that permission; only in this state the server
is ready to accept a request from a client.
Every client records in variable req whether it has sent a request that was not yet answered and

in variable use whether it has been given permission to enter the critical region; these variables
are not needed for the protocol itself but will be later used to formulate its correctness properties
(while these properties could be also expressed by referring to the message buffers associated to
the client actions, the use of the additional variables makes the formulation more transparent).
In addition to the messages exchanged between the server and its clients, every client also sends
messages to itself: in the initialization action every client initiates its own execution by sending
an ask message to itself; furthermore, the progress of the client from entering to leaving the
critical region is triggered by the client sending an exit message to itself; finally, the progress of
the client to sending another request to the server is triggered by sending a ask message to itself.

The required mutual exclusion property of this system is expressed by the following invariant:

invariant ∀i1:Id with i1 < N, i2:Id with i2 < N.
(Client[i1].use = 1 ∧ Client[i2].use = 1 ⇒ i1 = i2);

Indeed for N = 5 and B = N RISCAL can quickly confirm the correctness of the system:

Executing system ClientServer.
2606 system states found with search depth 736.
Execution completed (248 ms).

However, if we invalidate the protocol by commenting out the assignment client := i in the
server, a check with option “Depth” set to 6 gives the following minimal counterexample run:

Executing system ClientServer.
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ERROR in execution of system ClientServer: evaluation of
invariant ∀i1:Id with i1 < N, i2:Id with i2 < N.
(((Client[i1].use = 1) ∧ (Client[i2].use = 1)) ⇒ (i1 = i2));

at line 20 in file server2.txt:
invariant is violated

The system run leading to this error:
0:[Server:[5,...],Client:[...]]->Client[0].ask()->
1:[Server:[5,...],Client:[...]]->Server.request(0)->
2:[Server:[5,...],Client:[...]]->Client[1].ask()->
3:[Server:[5,...],Client:[...]]->Server.request(1)->
4:[Server:[5,...],Client:[...]]->Client[0].enter()->
5:[Server:[5,...],Client:[...]]->Client[1].enter()->
6:[Server:[5,...],Client:[...]]

ERROR encountered in execution.ERROR encountered in execution.

We see that both clients 0 and 1 enter the critical region thus violating the required mutual
exclusion property.

Above invariant is actually a consequence of the following more detailed invariants:

invariant ∀i:Id with i < N.
(Client[i].ask_number + Client[i].enter_number + Client[i].exit_number
+ number(Server.request, Server.request_number, i) = 1);

invariant ∀i:Id with i < N.
number(Server.giveback, Server.giveback_number, i) ≤ 1;

invariant ∀i:Id with i < N.
number(Server.giveback, Server.giveback_number, i) = 1 ⇒
Client[i].enter_number = 0 ∧ Client[i].exit_number = 0;

invariant ∀i:Id with i < N.
(Client[i].req = 1 ⇔
number(Server.request, Server.request_number, i) = 1 ∨
Client[i].enter_number = 1);

invariant ∀i:Id with i < N.
(Client[i].use = 1 ⇔ Client[i].exit_number = 1);

invariant ∀i:Id with i < N.
(Server.client = i ⇔
Client[i].enter_number = 1 ∨ Client[i].exit_number = 1 ∨
number(Server.giveback, Server.giveback_number, i) = 1);

These invariants use the following auxiliary function that returns the number of the first bn
messages in buffer b whose value equals i.

fun number(b:Array[B,Record[i:Id]],bn:�[B],i:Id):�[B] =
#k:�[B] with k < bn ∧ b[k].i = i;

The invariants are inductive, i.e., they are strong enough to show their validity by an induction
proof. However, their validity can be also quickly checked in RISCAL:
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Executing system ClientServer.
2606 system states found with search depth 736.
Execution completed (1077 ms).

Appendix C.8 includes the complete specification of the system.

4 Related Work

RISCAL is related to a large body of prior research; we only give a short account of the work
that seems most relevant.
Various languages arisen in the context of automated reasoning systems, while being designed

for specifying logical theories, have some executable flavor: Theorema [10, 41] has been de-
signed at RISC as a system for computer supported mathematical theorem proving and theory
exploration; its PCS (Prove-Compute-Solve) paradigm considers computing as a special kind
of proving. Also a compiler for an executable subset of the Theorema language to Java was
developed. The language of the formal proof management system Coq [6, 12] allows to write
executable algorithms from which functional programs in the programming languages OCaml,
Haskell, and Scheme can be extracted; since the correctness of the algorithms can be formulated
and verified in Coq, the programs are guaranteed to be correct. Similarly, the higher order
logic HOL of the generic proof assistant Isabelle [27, 19] embeds a functional programming
language in which algorithms can be defined and verified and converted to programs in OCaml,
Haskell, SML, and Scala. In [26], Isabelle is used to define the formal semantics of a simple
imperative semantics from which executable code can be generated. However, all this work is
targeted towards generating executable code from verified algorithms; it does not really address
the problem stated in Section 1 of validating the correctness of algorithms before verification.
Automated reasoners may also provide support for counterexample generation which demon-

strates the invalidity of formulas; however this is necessarily unreliable, because every sufficiently
rich logic (such as first order predicate logic) is undecidable. For instance, the counterexam-
ple generator Nitpick [7] for Isabelle supports higher order logic but may (due to the presence
of unbounded quantifiers) fail to find counterexamples; in an “unsound mode” quantifiers are
artificially bounded, but then invalid counterexamples may be reported. While counterexample
generators such as Nitpick are usually based on SAT/SMT-solving techniques, RISCAL’s im-
plementation is actually closer to that of the test case generator Smallcheck [35]. This system
generates for the parameters of a Haskell function in an exhaustive way argument values up to
a certain bound; the results of the corresponding function applications may be checked against
properties expressed in first-order logic (encoded as executable higher-order Haskell functions).
However, unlike RISCAL, the value generation bound is specified by global constants rather than
by the types of parameters and quantified variables such that separate mechanisms have to be
used to restrict searches for counterexamples.
Also the abstract data type specification languages of the OBJ family [18, 17] include a large

executable subset, essentially generalizations of functional programming languages. Using the
supporting rewriting engines, programs in these languages can be also model-checked. However,
the logics of these languages are based on equational logic which is much more restricted than
predicate logic by enforcing the formulation of predicates in a low-level executable style.
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As for algorithm languages, SETL [40, 39] is an old very high-level programming language
based on set theory; it supports set comprehensions and quantified formulas as programming
language constructs but not formal specifications. Alloy [20, 2] is a language for describing
structures and their relationships, e.g., the configurations of a data structure arising from a
sequence of modifying operations. The language is based on a relational logic; the Alloy
Analyzer is a satisfiability solver that finds structures satisfying given constraints. While Alloy
can be used to formulate algorithms/programs, this can become quite challenging [33], because
the language differs very much from conventional languages. Event-B [1, 16] is a formal method
for the modeling and analysis of systems, based on set theory as a modeling notation and the
concept of refinement to represent systems at different abstraction levels; the supporting Rodin
tool embeds an interactive proving assistant for verifying the correctness of system designs and
refinements. The Event-B language is more oriented towards modeling reactive systems than
conventional algorithms/programs [33].
RISCAL has been more directly influenced by the temporal logic of actions (TLA) [22, 42]

which has evolved into a specification language TLA+ for describing concurrent systems. It
also supports a the more conventional algorithm language PlusCal by translation to TLA+
specifications; PlusCal can be used to describe iterative algorithms but does not support recursion.
TLA+/PlusCal is based on classical first order logic and set theory and supported by the TLC
model checker and the TLA+ proof system. The RISCAL use of externally defined constants to
restrict domains has been inspired by the corresponding use of constants by TLA+/PlusCal to
restrict the sizes of sets. However, while RISCAL is statically typed, TLA+/PlusCal has no static
type system; indeed all values are ultimately sets. PlusCal demonstrates its heritage from TLA+
in that it has no direct means of specifying an algorithm’s pre- or post-conditions, invariants,
and termination measures; such properties have to be expressed via assertions or via temporal
formulas that refer to the value of the program counter.
The algorithm language with probably the longest tradition is VDM [23, 28] that supports in

a typed framework with a rich set of types an expressive language for modeling both recursive
and iterative algorithms with algorithms specified in terms of pre- and post-conditions. The
supporting softwareOverture also provides an execution-basedmodel checker similar to RISCAL
(while a supporting proof tool is still in its infancy). However, there are some language glitches
which make the use of the system somewhat cumbersome [33]: for instance, it is not possible to
introduce named predicates in invariants; furthermore, invariants can be only used to constrain
global state changes but not individual loops.
The language WhyML of the program verification environment Why3 environment [8, 43],

while being a real programming language, can due its high-level also be considered as an algo-
rithm language supporting pre- and postconditions, assertions, loop invariants, and termination
measures. However, due to its actual nature as a programming language, WhyML does not
support nondeterministic constructions like TLA+/PlusCal, VDM, or RISCAL. WhyML pro-
grams can be executed via translation to the language OCaml and verified by various external
theorem provers; runtime assertion checking and model checking are not supported. Similarly
Dafny [24, 13] is a high-level programming language developed at Microsoft with built-in spec-
ification constructs. A program can be compiled to executable .NET code and verified via the
SMT solver Z3. Also Dafny does not support nondeterministic constructions, runtime assertion
checking or model checking.
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Also for various more wide-spread programming languages such as C, Ada, Java, C#, exten-
sions for specifications do exist. Considering only the Java world, around the Java Modeling
Language (JML) [11, 21] an ecosystem of supporting tools have been developed, including
runtime assertion checkers, extended static checkers, and full-fledged verifiers. However, all of
these tools have to struggle with the complex semantics of an “industrial” programming lan-
guage which is only partially covered by JML respectively the corresponding tools, partially also
with the complexity of JML itself. For instance, the runtime assertion checking supported by
the old “Common JML Tools” or the newer “OpenJML” toolset has to deal with the fact that
not all quantified formulas expressible in JML are easily executable such that not all parts of a
specification are necessarily considered in checks.
The thesis [33] has compared some of the languages/tools mentioned above (notably JML,

TLA+/PlusCal, Alloy, VDM/Overture, Event-B/Rodin) and their suitability for modeling and
verifying mathematical algorithms; in a nutshell, while none was considered as ideal, the system
TLA+/PlusCal was judged as the best on for model checking (with VDM as an alternative for
recursive algorithms, which are not supported by PlusCal).

5 Conclusions and Future Work

Since Version 1, the RISCAL software has allowed to validate the correctness of mathematical
algorithms and their formal annotations by executing respectively evaluating them on finite
subsets of the generally infinite domains. Thus it can be e.g. detected that a loop invariant is
too strong, i.e., does not hold for all inputs and loop iterations. However, this is only a first step
towards an environment for the general verification of mathematical algorithms. Version 2 of the
software now also includes a verification condition generator for the specification language. The
conditions are parameterized over the unspecified domain bounds; for concrete values of these
bounds, the resulting model is finite and conditions are decidable by evaluation in that model.
If such concrete instances are invalid, also the general condition is invalid and a proof need not
be attempted. Thus we are also able to detect that a loop invariant is too weak, i.e., that it does
not describe the value space of the loop variables accurately enough to prove that the invariant
holds in the post-state of the loop, even if it holds in the pre-state. The expectation is that thus
the formal annotations can be further validated to carry a subsequent proof-based verification of
the algorithms for domains of arbitrary size.
Further work will concentrate to extend the software along various lines, e.g., to extend our

concurrent system models with specifications in linear temporal logic (LTL) and checking the
correctness of such specifications. Ultimately, we aim to connect the RISCAL software to a
computer-aided interactive proof assistant such as the RISC ProofNavigator [36, 31] in order to
perform general verifications.
The main use of RISCAL is envisioned in educational scenarios [38]; for this we will de-

velop formal models and supporting lecture material in areas such as discrete mathematics [9],
fundamental algorithms [29], logic, and computer algebra.
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A The Software System

In the following sections, we describe the software that implements the RISCAL language.

A.1 Installing the Software

The README file of the installation is included below.

------------------------------------------------------------------------------
README
Information on RISCAL.

Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
Copyright (C) 2016-, Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria, http://www.risc.jku.at

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
------------------------------------------------------------------------------

RISC Algorithm Language (RISCAL)
================================
http://www.risc.jku.at/research/formal/software/RISCAL

This is the RISC Algorithm Language (RISCAL), a specification language and
associated software system for describing mathematical algorithms, formally
specifying their behavior based on mathematical theories, and validating the
correctness of algorithms, specifications, and theories by execution/evaluation.

This software has been developed at the Research Institute for Symbolic
Computation (RISC) of the Johannes Kepler University (JKU) in Linz, Austria. It
is freely available under the terms of the GNU General Public License, see file
COPYING. RISCAL runs on computers with x86-compatible processors supporting Java
and the Eclipse Standard Widget Toolkit (SWT); it has been developed and tested
on a computer with the GNU/Linux operating system and a x86-64 processor. For
learning how to use the software, see the file "main.pdf" in the directory
"manual"; examples can be found in the directory "spec".

Please send bug reports to the main author of this software:

Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
http://www.risc.jku.at/home/schreine
Research Institute for Symbolic Computation (RISC)
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Johannes Kepler University
A-4040 Linz, Austria

The SMT extension has been developed by

Franz-Xaver Reichl <franz.x.reichl@gmail.com>

A Virtual Machine with RISCAL
=============================
On the RISCAL web site, you can find a virtual GNU/Linux machine that has
RISCAL preinstalled. This virtual machine can be executed with the free
virtualization software VirtualBox (http://www.virtualbox.org) on any
computer with an x86-compatible processor running under Linux, MS Windows,
or MacOSx. You just need to install VirtualBox, download the virtual
machine, and import the virtual machine into VirtualBox. The virtual machine
runs a 64-bit operating system and thus requires from your computer
hardware support for virtualization (Intel VT-x or AMD-V); it may be
necessary to enable this support in the BIOS of your computer.

This may be for you the easiest option to run the software; if you choose this
option, see the web site for further instructions on how to get the virtual
machine. After installation and login as "guest" you have the command

RISCAL &

The Distribution
================
The distribution has the following contents:

README ... this file
COPYING ... the GNU General Public Licence Version 3
CHANGES ... the version history of the software
etc/
RISCAL ... the execution script
run* ... examples of server execution scripts
boolector ... Boolector (GNU Linux/x86-64 executable)
cvc4 ... CVC4 (GNU Linux/x86-64 executable)
yices-smt2 ... Yices 2 (GNU Linux/x86-64 executable)
z3 ... Z3 (GNU Linux/x86-64 executable)

lib/
*.jar ... the Java compiled libraries
swt64/swt.jar ... the SWT library for GNU/Linux and x86-64 processors

doc/
main.pdf ... the manual

spec/
*.txt ... sample specifications

src/
*/*.java ... the Java source code

Installation
============
First make sure that you have installed the third party software described
below (Java Development Kit is required, JavaFX and WebKitGTK are optional).
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Then copy file etc/RISCAL to a directory in your PATH and adapt in this file the
variable JAVA to point to the Java executable "java" of your JDK. Adapt LIB to
point to the directory "lib" of the RISCAL distribution and make sure that the
subdirectory $LIB/swt64 contains the SWT library intended for your operating
system and processor. Also configure the graphical user interface options
SWT_GTK3, TRACE, JAVAFX and JAVAFX11 as described in this file.

You should then be able to execute

RISCAL &

You may configure by the environment variables "RISCALFontDefault" and
"RISCALFontMethod" the names of the fonts to be used in the input/output
areas respectively the method menu.

Third Party Software That You Have to Install
=============================================
RISCAL assumes that the following third party software is installed on your
computer (if it is not already provided by your GNU/Linux distribution, you have
to downlad and install it manually).

Java Development Kit (Oracle JDK 11 recommended)
http://www.oracle.com/technetwork/java/javase/downloads/index.html
------------------------------------------------------------------
Go to the "Downloads" section to download the JDK.

Oracle JDK 11 is recommended. Oracle JDK 8,9,10 and OpenJDK 8,9,10,11 are also
supported (potentially with some limitations of the RISCAL graphical user
interface and the visualization options, see below). JDK 12 and 13
may work but have not been tested.

For the (optional) use of the visualization features of RISCAL, Oracle JDK 11
respectively OpenJDK 11 also need an installation of JavaFX 11.

JavaFX (OpenJFX 11 recommended)
https://openjfx.io/
https://gluonhq.com/products/javafx/
------------------------------------
Press the "Download" button to download the library.

JavaFX is a framework for graphical user interfaces. It is only needed if RISCAL
is started with the command line option "-visual" to enable the visualization of
the execution traces of procedures and of the evaluation of formulas.

JavaFX 11 is not part of the Oracle JDK 11/OpenJDK 11 distribution; it has
to be downloaded and installed separately (the older versions Oracle JDK
8,9,10 have JavaFX included, OpenJDK 9 and 10 do not support JavaFX). On a
Debian 10 "buster" GNU/Linux distribution JavaFX11 can be installed as
package "openjfx" by executing (as superuser)

apt-get install openjfx

OpenJFX 8 does not work with GTK3 (only with the outdated GTK2). For using
this version, you therefore have to set the environment variable "SWT_GTK3"
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to 0:

SWT_GTK3=0

However, be warned that you then lose all the improvements of GTK3, which
lets the look and feel of RISCAL suffer.

WebKitGTK 1.2.0
https://webkitgtk.org/
----------------------
Select the latest version of the "Releases" section.

For the builtin "Help" to work properly, WebKitGTK 1.2.0 or newer must
be installed; e.g. on a Debian 10 "buster" GNU/Linux distribution, just install
the package "libwebkit2gtk-4.0-37" by executing (as superuser) the command

apt-get install libwebkit2gtk-4.0-37

If you use OpenJDK 8 with OpenJFX and SWT_GTK3=0, you must install the older
version WebKitGTK 1.0; e.g. on Debian 9 "stretch" execute

apt-get install libwebkitgtk-1.0-0

Third Party Software That Comes with RISCAL
===========================================
RISCAL also uses the the following open source software developed by third
parties. This software is already included in the distribution, but if you want
or need, you can download the source code from the denoted locations and compile
it on your own. Many thanks to the respective developers for making this great
software freely available!

The Eclipse Standard Widget Toolkit 4.12
http://www.eclipse.org/swt
---------------------------------------
This is a widget set for developing GUIs in Java.

Go to section "Stable" and download the version "Linux (x86_64/GTK 2)" (if you
use Linux with a 64bit x86 processor).

Eclipse GEF/Zest 5.0
https://www.eclipse.org/gef
---------------------------
This is a framework for visualizing graphs. It is only needed if RISCAL
is started with the command line option "-visual" to enable the visualization
of the execution traces of procedures and the evaluation of formulas.

Go to the "Download" link and download the latest "5.0.x" release build.

ANTLR 4.7
http://www.antlr.org
--------------------
This is a framework for constructing parsers and lexical analyzers used for
processing the programming/specification language of RISCAL.
Go to the "Download" section to download the latest 4.* version of the library.
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On a Debian 10 "buster" GNU/Linux distribution, just install the package
"antlr4" by executing (as superuser) the command

apt-get install antlr4

Tango Icon Library 0.8.90
http://tango.freedesktop.org
----------------------------
This library provides the button/menu icons used by RISCAL.

Go to the section "Base Icon Library", subsection "Download", to download the
library.

Boolector 3.1.0: https://boolector.github.io/
CVC4 1.7: https://cvc4.github.io/
Yices 2.6.1: https://yices.csl.sri.com/
Z3 4.8.7: https://github.com/Z3Prover
---------------------------------------------
To use the SMT extension, at least one of these SMT solvers has to
be installed (above versions have been tested, other versions may
or may not work).

The RISCAL distribution is bundled with GNU Linux/x86-64 executables of
these solvers.

------------------------------------------------------------------------------
End of README.
------------------------------------------------------------------------------

A.2 Running the Software

The RISCAL software is intended to be used in interactive mode by executing the shell script

RISCAL &

which prints out the copyright message

RISC Algorithm Language 3.0 (April 8, 2020)
http://www.risc.jku.at/research/formal/software/RISCAL
(C) 2016-, Research Institute for Symbolic Computation (RISC)
This is free software distributed under the terms of the GNU GPL.
Execute "RISCAL -h" to see the available command line options.
-----------------------------------------------------------------

However, if we execute (as indicated in this message)

RISCAL -h

we get the following output which displays the following options:
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RISCAL [ <options> ] [ <path> ]
<path>: path to a specification file
<options>: the following command line options
-h: print this message and exit
-o: print help including all options and exit
-oa: print help including the ’Analysis’ options and exit
-os: print help including the ’SMT’ options and exit
-visual: enable visualization
-nogui: do not use graphical user interface
-p: print the parsed specification
-t: print the typed specification with symbols
-e <F>: execute first operation named <F>
-en <F> <N>: execute operation <N> (>= 1) named <F>
-s <T>: run in server mode with <T> threads
FAILURE termination.

Options -h and -o print help messages and exit. Option -visual enables the visualization of
execution traces and formula evaluations (see also Section A.5). Option -nogui switches off the
graphical user interface (which is mainly useful with one of the following operations). Option -p
prints the parsed specification, option -t also includes symbol information in the output. Option
-e executes the operation with the given name; if there are multiple operations with the same
name, the first one is selected. Option -en executes the N-th operation with the given name.
With option -s it is possible to execute the software in “server mode”, e.g. as

RISCAL -s 4

which indicates that the software shall run as a server with 4 threads. It then prints a line such as

amir.risc.jku.at 41459 27pn3agrgjc5c1mcu14r4rcr8n

where the first string represents the Internet name of themachine running the software, the second
word represents the number of the port where the server is listening for a connection request
and the last word represents a one-time password for authenticating the connection request. This
information can be used by another RISCAL process that runs in “Distributed” mode to connect
to the server process and forward computations to the server. See Appendix A.4 for more details.

If RISCAL -o or RISCAL -oa is executed, then also the following options with name
-opt-key are printed:

<options> includes the following ’Analysis’ options:
-opt-nd <O>: if <O> = 1, select ’Nondeterminism’
-opt-dv <V>: set ’Default Value’ to <V>
-opt-ov <N> <V>: set in ’Other Values’ <N> to <V>
-opt-si <O>: if <O> = 1, select ’Silent’
-opt-in <I>: set ’Inputs’ to <I>
-opt-pm <P>: set ’Per Mille’ to <P>
-opt-br <B>: set ’Branches’ to <B>
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-opt-dp <D>: set ’Depth’ to <D>
-opt-ta <O>: if <O> = 1, select ’Trace’
-opt-te <O>: if <O> = 1, select ’Tree’
-opt-wi <W>: set ’Width’ to <W>
-opt-he <H>: set ’Height’ to <H>
-opt-mt <O>: if <O> = 1, select ’Multi-Threaded’
-opt-tr <T>: set ’Threads’ to <T>
-opt-di <O>: if <O> = 1, select ’Distributed’
-opt-se <S>: set ’Servers’ to <S>

These options allow to set all the options and configuration values provided by the “Analysis”
panel of the interactive user interface.
If RISCAL -o or RISCAL -os is executed, then also the following options with name -smt

or -smt-key are printed:

<options> includes the following ’SMT’ options:
-smt: use SMT solver to decide validity of formula
-smt-solver <S>: select solver <S> (default: preferences)
<S> = yices | boolector | z3 | cvc4

-smt-execName <path>: use <path> for solver executable (default: preferences)
-smt-fileName <path>: write generated SMT-LIB script to <path>
-smt-timeout <T>: abort SMT solver after <T> seconds (default: preferences)
-smt-mod <M>: set mode <M> for function handling (default: preferences)
<M> = 0: use definition
<M> = 1: use definition, if not specified as ’modular’
<M> = 2: use specification

-smt-cut <M>: set mode <M> for specification cutting (default: preferences)
<M> = 0: keep complete specification
<M> = 1: only keep entities to which formula refers
<M> = 2: also keep axioms and theorems referring to these entities
<M> = 3: also keep axioms referring to these entities

-smt-af <M>: set mode <M> for quantified expressions (default: preferences)
<M> = 0: always generate auxiliary functions for expression body
<M> = 1: generate auxiliary functions if it is likely to pay off
<M> = 2: never generate auxiliary functions for expression body

-smt-skol <M>: set mode <M> for skolemization (default: preferences)
<M> = 0: always skolemize
<M> = 1: skolemize if it is likely to pay off
<M> = 2: never skolemize

-smt-choice <M>: set mode <M> for choice guards (default: preferences)
<M> = 0: no choice guards
<M> = 1: simple choice guards
<M> = 2: full choice guards

-smt-varOrd <M>: set mode <M> for quantified variable ordering (default: 0)
<M> = 0: order in descending type size
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<M> = 1: order in asscending type size
<M> = 2: arbitrary ordering

-smt-pluginVals <M>: set mode <M> for inlining values (default: 1)
<M> = 0: do not inline values but use named constants
<M> = 1: inline values

-smt-UFinEnum <M>: set mode <M> for tuple/map enumerations (default: 0)
<M> = 0: do not use uninterpreted function but direct encoding
<M> = 1: use uninterpreted function for enumeration table

-smt-quant <O>: if <O> = 1, preserve quantifiers
-smt-dep <O>: if <O> = 1, check dependencies
-smt-iterative <O>: if <O> = 1, check theorems iteratively

These options allow to set all the options and configuration values provided by the “SMT” panel
of the interactive user interface (and more).
The RISCAL program terminates with a negative exit code if an error has occurred and with

a non-negative code, otherwise.
You may set the environment variables

RISCALFontDefault
RISCALFontMethod

to the names of fonts to be used in the input/output area respectively themethodmenu of RISCAL.

A.3 The User Interface

Main Window The user interface depicted in Figure 20 is divided into two parts. The left
part mainly embeds an editor panel with the current specification. The right part is mainly filled
by an output panel that shows the output of the system when analyzing the specification that
is currently loaded in the editor. The top of both parts contains some interactive elements for
controlling the editor respectively the analyzer.

Selecting the Operation To the right of the tag “Operation” there is the menu from which the
operation can be selected that is subsequently executed by pressing the button [Start Execution]
(see below). Furthermore, if the button [Show/Hide Tasks] is pressed, the window is extended
to the right to display a panel (respectively hide it again) that contains additional tasks that may be
performed to further validate the correctness of the currently selected operation (see Sections 2.6
and 2.7). Figure 21 displays this extended view.

Menu Bar The bar at the top of the window holds three menus:

File Option “New” starts the editing of a new specification; while “Open. . . ” opens an existing
one. “Save” saves the current specification to disk; “Save As. . . ” saves it under a new
name to be chosen. “Quit” terminates the software.
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Figure 20: The RISCAL User Interface (Enlarged)
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Figure 21: The GUI with the “Tasks” Panel
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Figure 22: SMT Configuration

Edit Option “Undo” reverts the last editing operation while “Redo” performs it again. Options
“Bigger Font” and “Smaller Font” allow to resize the fonts used for the display of text in
the editor and in the output panel. Option “Symbols” opens a panel with a selectable list
of all the Unicode symbols that may be used in specifications.

SMT Option “SMT Solver” opens a menu that allows to select the SMT solver; option “Config-
uration” opens a panel (see Figure 22) that allows to select the executables for the various
SMT solvers and the path of a file into which the generated SMT-LIB script is written (if
the option “Write Script to File” is selected; if the option “Use Single File” is not selected,
the path points to a directory into which multiple files are written).
The option “Function Handling” opens a panel that allows to select how user-defined func-
tions are handled (by using their definitions or their contracts). The option “Specification
Cutting” allows to select which parts of a specification are used when deciding the validity
of a formula (the whole specification or only selected parts). The option “Quantifier Bod-
ies” allows to configure the translation of the bodies of quantified expressions (by inlining
or by generating auxiliary functions). The option “Skolemization” allows to configure
the treatment of existentially quantified variables (by skolemization or by expanding the
quantifier). The option “Choice Guards” configures the translation of choose expressions
to axiomatized functions (by not considering “guard conditions” at all, by only considering
a simplified form of these conditions, or by considering the full conditions).
The experimental option “Preserve Quantifiers” keeps quantifiers in the generated script;
this is supported by some SMT solvers (but often only in a limited form) and may save
a substantial amount of memory in the decision process (which may by thus get faster
but also slower). The experimental option “Check Dependencies” runs the SMT solver
in incremental mode; if the SMT solver reports an error, this shows that the theory is
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inconsistent, which may indicate that full choice guards are required (see the option
above). The experimental option “Check Iteratively” affects the behavior of the option
“Apply SMT Solver to All Theorems” in the folder of a task menu: the SMT solver is
applied in incremental mode to all theorems in the folder at once, which may considerably
reduce the total time for checking these theorems.
The option “Restore Defaults” resets all options to their default values (but preserves the
selected paths for the solver executables respectively the SMT-LIB script).

Help Option “Online Manual” opens a web browser with an online version of this manual;
“About” opens a window with a copyright message.

Most menu entries have keyboard shortcuts which are displayed in the corresponding menus.
The file actions “New”, “Open. . . ”, “Save”, and “Symbols” are also bound to three buttons ,

, , and displayed at the top of the editor panel.
The translation respectively execution of a specification is controlled by various buttons,

check boxes, and input fields on the top of the right panel; moving the mouse cursor over a button
displays a corresponding description.

Executing a Specification We have the following buttons:

[Process Specification] This triggers the re-processing of a specification. However, since
a specification is automatically processed when it is loaded or saved after editing or
before executing the specification after some of the “Translation” options below have been
changed, there is usually no reason to explicitly trigger the processing.

[Start Execution] This starts execution respectively model checking of that operation that
has been selected in the “Operation” menu described below.

[Stop Execution] This stops any ongoing execution triggered by the “Start Execution” but-
ton.

[Clear Output] This clears the output panel. The output displayed in that panel is automat-
ically truncated when it gets too long; to avoid truncation, the panel may me explicitly
cleared by this button.

[Start Logging] This opens a file selection dialog by which the name and directory of a file
may be specified to which the content of the output panel is logged for later investigation.

[Stop Logging] This stops logging the content of the output panel triggered by the “Start
Logging” button.

[Reset System] This resets the software to the initial state; it clears the editor window and
resets all options to their defaults.
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Figure 23: The “Other Values” Window

Configuring the Translation The label “Translation” displays all options/values that affect the
processing of the specification to an executable representation (whenever one of these is changed,
the specification is automatically re-processed before execution):

Nondeterminism If this option is not selected, the specification is executed in a deterministic
mode where value choices performed by a nondeterministic language construct such as
choose are resolved by choosing a single eligible value, respectively by aborting, if no
such value exists. However, if this option is selected, the specification is executed in a
nondeterministic mode where each choice splits the execution into multiple branches each
of which is executed in turn. If an execution contains multiple subsequent choices, this
yields exponentially many execution branches whose execution takes exponentially more
time than executing the single branch chosen in deterministicmode. Since the deterministic
mode also produces a more efficient executable version of the specification, this option
should be only used with care.

Default Value In this field, the user can define the value (a non-negative integer in decimal rep-
resentation) that is given to every unspecified natural number constant in the specification.
Actually, this value is used for a constant c only if the “Other Values” table explained
below does not give a specific value for c.

Other Values If this button is pressed, the window displayed in Figure 23 pops up where
values for specific natural number constants can be given. If for a constant c used in the
specification no value is provided, the “Default Value” explained above is chosen.

Configuring the Execution The label “Execution” displays all options/values that affect the
execution of a specification (it is not necessary to re-process a specification whenever one of
these is changed):

Silent If this option is not selected, every application of the operation selected in the “Operation”
menu explained below yields some output (the value of the function and some execution
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statistics). If this option is selected, only infrequently (every 2s or so) statistics about the
applications executed so far is printed.

Inputs If this field is empty, the operation selected in the “Operation” menu is applied to all
argument tuples from the domain of the operation. If this field is not empty, it must contain
a natural number N (a non-negative integer in decimal representation). Then the operation
is applied to at most N argument tuples (if “Parallelism” is applied as explained below, N
is not a sharp bound but only a guideline; actually some more applications are possible).

Per Mille If this field is not empty, it must contain a natural number N (a non-negative integer
in decimal representation) with 0 ≤ N ≤ 1000. Then every possible argument tuple for
the operation selected in the “Operation” menu is chosen with a probability of N/1000; as
a consequence the operation is applied to only a fraction of approximately N/1000 of all
possible inputs.

Branches If this field is not empty, it must contain a natural number N (a non-negative integer
in decimal representation). Then, if the option “Nondeterminism” explained above is
selected, at most N values are chosen in a nondeterministic language construct such as
choose, i.e., the execution splits into at most N branches at each choice point.

Depth If this field is not not empty, it must contain a natural number N (a non-negative integer
in decimal representation). Then in the execution of a system the depth of the search for
reachable states is limited to length N , i.e., the search only considers system runs with at
most N steps.

Configuring the Visualization The following options are only available, if RISCAL is started
with the option -visual and visualization support is actually available (see Section A.5).

Trace If this option is selected and the options “Nondeterminism”, “Multi-Threaded” and “Dis-
tributed” are not selected, every subsequent execution of an operation creates a window
in which the execution trace for the operation is visualized; when the window is closed,
the visualization of the next operation execution is started. The process can be stopped
(without the visualization of all executions) by pressing the button (Stop Execution).

Tree If this option is selected and the options “Nondeterminism”, “Multi-Threaded” and “Dis-
tributed” are not selected, after the execution of an operation for all inputs has terminated, a
window pops up that visualizes the evaluation tree for the formula(s) evaluated during this
execution. The layouting of this tree may take quite some time, thus small models should
be visualized before attempting larger ones. Anyway, the software refuses to visualize
trees whose node number exceeds a preconfigured maximum (currently 500).

Width/Height These text fields can be set to the desired size of the visualization area (which
may be significantly larger than the actual screen size). In particular, if the algorithm for
the layouting of evaluation trees fails to place tree nodes adequately (by putting them all
into the left upper corner) larger dimensions should be chosen.
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Figure 24: The “Servers” Window

Configuring Parallelism The label “Parallelism” groups all options/values that speed up the
model checker by multi-threaded and/or distributed parallel execution:

Multi-Threaded If this option is selected, the applications of the operation selected in the
“Operation” menu are performed by multiple (at least 2) threads in parallel, which may
significantly speed up the execution.

Threads If this field is empty, multi-threaded execution proceeds with 2 threads. If this field
is not empty, it must contain a natural number N (a non-negative integer in decimal
representation). Then multi-threaded execution proceeds with max{N,2} threads.

Distributed If this option is selected, the model checker applies (possibly in addition to multiple
threads as described above) additional RISCAL processes which may be also executed on
remote computers. The creation of these processes is configured in the “Servers” menu:

Servers By pressing this button, the window depicted in Figure 24 pops up. The text fields in
this window contains a list of commands, one command (possibly with arguments) per
line. Each of the listed commands is executed by the software when the “Distributed”
option explained above is selected to startup another RISCAL process; the output of this
command gives the current process the information it needs to connect to the other process
which may be executed on another computer, e.g., a high performance compute server.
More information on this topic is given in Appendix A.4.

A.4 Distributed Execution

The RISCAL software may be executed in a “Distributed” mode where the “client process”
running with the graphical user interface on the user’s local computer connects to one more
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“server processes” that potentially run on remote computers (e.g., high-performance servers);
the client process then forwards part of the model checking work to the server processes.
For this purpose, every command listed in the “Server” window depicted in Figure 24 on

page 95 must start an instance of the RISCAL software with the option -s T which indicates
that the software is executed in “server” mode with T threads. A possible such command is

java -cp LIB/* riscal.Main -s 4

where LIB is to be replaced by the absolute path of the directory that contains the .jar files of
the RISCAL software on the computer that runs the server process; actually from this library
only the files antlr4.jar and riscal.jar are required to run the server. The process then
prints to the standard output a line of form host port password e.g.

host.mydomain.org 9876 qnb2l0083e6a5g3b0h18q2ad4

where the first string is the internet name/address of the host where the process is executed, the
second string denotes the number of the port on which the process listens for connection requests
and the last string is a randomly generated one-time password. The current process uses this
information to connect to the remote process on that host via the denoted port and provides the
password to prove that it is entitled to the connection.

If the server process is to run on the same computer under the GNU/Linux operating system,
the command may be wrapped into a shell script runsh that may be e.g. invoked as

/PATH/runsh 4

and whose content is as follows:

#!/bin/bash
# uses bash-specific process substitution below
if [ $# -ne 1 ] ; then
echo "usage: runsh <threads>"
exit

fi
THREADS=$1
JAVA=/software/java8/bin/java
LIB=/home/schreine/repositories/RISCAL/trunk/lib
head -1 <( $JAVA -cp "$LIB/*" -Xmx2G -Xms1G riscal.Main -s $THREADS )

where the variable JAVA has to be replaced by the absolute path of the java runtime engine and
the variable LIB has to be replaced by the path of the RISCAL installation.
If the server process is to run on another computer under the GNU/Linux operating system

to which we may connect by the “Secure Shell” (SSH) software, the command may be wrapped
into a shell script runssh that may be e.g. invoked as

/PATH/runssh host.mydomain.org 4

and whose content is as follows:
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#!/bin/bash
# uses bash-specific process substitution below
if [ $# -ne 2 ] ; then
echo "usage: runssh <host> <threads>"
exit

fi
HOST=$1
THREADS=$2
JAVA=/zvol/formal/java8_64/bin/java
LIB=/home/schreine/repositories/RISCAL/trunk/lib
DIR=/home/schreine/tmp/riscal
head -1 <( ssh $HOST $JAVA -cp \"$DIR/*\" -Xmx2G -Xms1G riscal.Main -s $THREADS )

where again the variable JAVA has to be replaced by the absolute path of the java runtime
engine and the variable LIB has to be replaced by the path of the RISCAL installation. The SSH
software must be then configured (by the use of a certificate) such that remote login is possible
without a password, e.g.

ssh host.mydomain.org echo hi

must print “hi” without asking for a password.

A.5 Visualization

Due to dependencies on external software (see below), the visualization features of RISCAL are
only enabled, if the command line option -visual is provided (this is hidden from the user: the
local installation of the RISCAL script may or may not set this option).
In more detail, the visualization has been implemented with the help of the Eclipse GEF/Zest

framework for graph visualization1. This software depends on the graphics framework JavaFX2

which is not part of recent versions of OpenJDK or Oracle JDK any more but has to be installed
separately to enable the RISCAL visualization features.
The README file of the distribution (see Section A.1) contains more detailed information on

the configuration of RISCAL for the use of the visualization extension.

B The Specification Language

In the following sections, we describe the specification language.

B.1 Lexical and Syntactic Structure

On the lowest level, a RISCAL specification is a file encoded in UTF-8 format. RISCAL uses
several Unicode characters that cannot be found on keyboards, but for each such character there
exists an equivalent string in ASCII format that can be typed on a keyboard. While the RISCAL

1https://www.eclipse.org/gef, https://github.com/eclipse/gef/wiki/Zest
2https://openjfx.io/
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grammar supports both alternatives, the use of the Unicode characters yields much prettier
specifications and is thus recommended.
Fortunately the RISCAL editor can be used to translate the ASCII string to the Unicode

character by first typing the string and then (when the editor caret is immediately to the right of
this string) pressing <Ctrl>-#, i.e, the Control key and simultaneously the key depicting #. Also
later such textual replacements can be performed by positioning the editor caret to the right of
the string and pressing <Ctrl>-#. The current table of replacements is as depicted in Figure 25.

A specification file may include two kinds of comments which are ignored when processing
the file:

• Comments starting with // and ranging till the end of the file.

• Comments starting with /* and ending with */ (such comments must not be nested).

Likewise white space characters (blanks, tabulators, new lines, returns, form feeds) are ignored.
The syntactical grammar of RISCAL uses the following kinds of terminal symbols:

• An identifier 〈ident〉 is a non-empty sequence of (lower and upper case) ASCII letters,
decimal digits, and the underscore character _ starting with a letter, e.g. pos0.

• A decimal number literal 〈decimal〉 is a non-empty sequence of decimal digits, e.g. 123.

• A string literal 〈string〉 is a sequence of characters of form "..." where the characters
between the double quotes may include the escape sequences \\ (backslash), \" (double
quote), and \n (new line), e.g. "output: \"{1}\"\n\"{2}\"".

The RISCAL grammar (for both lexical analysis and syntax analysis) is formally defined in
Appendix B.7 as an ANTLR4 grammar file. The following sections explain the various kinds of
phrases in a form that is modeled after that syntax but edited for readability.
In the subsequent presentation, a rule

〈domain〉 ::= 〈alternative1〉 | ... | 〈alternativeN〉

introduces a syntactic domain with N construction alternatives. Within each alternative, we have
the following meta-syntax:

• A phrase in teletype letters like Int or [ denotes a literal token.

• Also special Unicode characters like � are literals that stand for themselves.

• ( 〈phrase1〉 | ... | 〈phraseN〉 ) denotes one of the phrases 〈phrase1〉, . . . , 〈phraseN〉.

• ( 〈phrase〉 )? denotes 0 or 1 occurrence of 〈phrase〉.

• ( 〈phrase〉 )* denotes 0 or more occurrences of 〈phrase〉.

• ( 〈phrase〉 )+ denotes 1 or more occurrences of 〈phrase〉.

Furthermore, parentheses (. . .) may be used to group phrases.
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ASCII String Unicode Character
Int �

Nat �

:= :=
true >

false ⊥

~ ¬

/\ ∧

\/ ∨

=> ⇒

<=> ⇔

forall ∀

exists ∃

sum
∑

product
∏

~= ,

<= ≤

>= ≥

* ·

times ×

{} ∅

intersect ∩

union ∪

Intersect
⋂

Union
⋃

isin ∈

notin <

subseteq ⊆

notsubseteq *

<< 〈

>> 〉

Figure 25: ASCII Strings and their Equivalent Unicode Characters
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B.2 Specifications and Declarations

A specification is a sequence of declarations:

〈specification〉 ::= ( 〈declaration〉 )*

A declaration introduces at least one name into the environment; the namemay be subsequently
referenced. The name space is divided into three categories of names:

• Types

• Values (constants, parameter-less predicates and theorems)

• Functions (functions, parameterized predicates and theorems, procedures)

• Systems (shared memory systems)

It is an error to declare in the same category two entities with the same name (but it is okay, if
entities in different categories have the same name). As an exception, different functions may
have the same name, if they differ in the number or types of their parameters (i.e., function names
may be “overloaded”).
In the following we describe the domain

〈declaration〉 ::= . . .

of declarations.

B.2.1 Types

Grammar

type 〈ident〉 = 〈type〉 ( with 〈exp〉 )? ;
rectype ( 〈exp〉 ) 〈ritem〉 ( and 〈ritem〉 )* ;
enumtype 〈ritem〉 ;

〈ritem〉 ::= 〈ident〉 = 〈rident〉 ( | 〈rident〉 )*
〈rident〉 ::= 〈ident〉 ( ( 〈type〉 ( , 〈type〉 )* ) )?

Description We have the following definitions of types:

• A type definition type id = T; introduces a name id as a synonym for type T . If also a
clause with b is given, then b must be a formula (an expression of type Bool) where the
identifier value may appear as a free variable. In this case, id is a subtype of T , which
contains every value v of T for which, if value is set to v, the evaluation of b yields “true”.

• A recursive type defintion rectype(n) id = c | f(T1,. . . ,Tn) | . . . ; introduces a new
type id with constant id!c and constructor id! f , a function with parameters of types
T1, . . . ,Tn and a result of type id. Different constants denote different values, applications
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of different constructors yield different results, and applications of the same constructor to
different arguments yield different results.
The type name id may itself appear as a parameter type of a constructor (thus the name
“recursive type”). While thus arbitrarily deep nestings of constructor applications are
possible, a variable/constant of the recursive type may only hold a value whose number of
recursive constructor applications does not exceed the bound set by the constant expression
n ≥ 0. In particular, if n = 0, then only constant values (or non-recursive constructor
applications) may be used; if n = 1, only applications of constructors to constants (or
non-recursive constructor applications) are allowed. This constraint is checked at runtime;
if it is violated, execution is aborted. See Section B.5.10 for a detailed description of how
recursive constructors are defined and how the number of recursive constructor applications
(determining the “height” of a recursive type value) is calculated.
A recursive type definition rectype(n) id1 = . . . and . . . and idn = . . . ; introduces n types
id1, . . . , idn that may mutually recursively depend on each other, i.e., one type may appear
as a parameter type of a constructor of another type. The bound n applies to all types in
common: not more than n nested recursive constructor applications are allowed, even if
these are applications of constructors of different types in the recursive type definition.

• An enumerated type definition enumtype id = c1 | . . . | cn ; is an abbreviation for the
recursive type definition rectype(0) id = c1 | . . . | cn ;.

Pragmatics The bound n in a recursive type definition rectype(n) id = . . . ensures that (like
all other types) also a recursive type has only finitely many values. The function height(e)
described in Section B.5.10 allows to determine the actual “height” of the value of expression e
of a recursive type. Examples of recursive type definitions are the following:

type T = ... ; value L:� ; value H:� ; value N:� ;
rectype(L) List = nil | cons(T,List) ;
rectype(H) Tree = empty | node(T,Tree,Tree) ;
rectype(H) NTree = empty | node(T,Array[N,NTree]) ;
enumtype Color = red | black | blue ;

Here type List denotes the type of lists whose length is at most L, type Tree denotes the type of
binary trees whose height is at most H, while type NTree denotes the type of N-ary trees whose
height is at most H. The enumeration type Color consists of the values red, black, and blue.

The definition of subtypes allows to check operations on smaller domains: let us assume that
a type T with n values is constrained by a formula b to m < n values of interest. If we then define
for instance an operation with argument S of type Set(T) and a precondition ∀x ∈ S. b(x) that
restricts the arguments to the only interesting sets (those with only interesting values), then the
checker generates 2n possible argument values from which the precondition filters the 2m � 2n
interesting ones to which the operation is ultimately applied. If, however, we define a subtype T ′

of T with condition b(value) and give argument S type Set(T ′), then the checker generates in
the first place only 2m values to which the operation is applied.
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B.2.2 Values

Grammar

val 〈ident〉 : ( � | Nat ) ;
val 〈ident〉 ( : 〈type〉 )? = 〈exp〉 ;
pred 〈ident〉 (⇔ | <=> ) 〈exp〉 ;
theorem 〈ident〉 (⇔ | <=> ) 〈exp〉 ;
axiom 〈ident〉 (⇔ | <=> ) 〈exp〉 ;

Description We have the following definitions of “values” (which also encompass “predicates”
and “theorems”):

• val n: � (alternatively, val n: Nat) introduces a new natural number constant n. The
value of this constant is not defined in the specification itself but chosen externally (before
the specification is processed). The remainder of the specification is thus processed for
one particular choice of the constant value.

• val c: T = e; introduces a new constant c and binds it to the value of e; the type of id is
the type of e. If the optional type T is given, e must be of type T .

• pred p⇔ b; (where the symbol⇔ can be alternatively written as <=>) defines a “predi-
cate” p, i.e., a constant of type Bool and binds it to the value of formula b (an expression
of type Bool).

• theorem t ⇔ b; (where the symbol⇔ can be alternatively written as <=>) introduces a
“theorem” t, i.e., a predicate whose value is “true”. Here b must be a formula with value
“true”; if its value is “false”, execution aborts.

• axiom t ⇔ b; is interpreted in the same way as a corresponding theorem declaration
(however, see below for the pragmatic distinction between theorems and axioms).

Pragmatics External constants may serve as bounds in type definitions respectively may be
used to compute such bounds in constant expressions.

Value (also predicate or theorem) definitions are evaluated by the type checker, which may
considerably delay the checking. An alternative to the definition of a value is the definition of
a corresponding function (respectively parameterized predicate or theorem) with argument type
() (i.e, type Unit); such a function is only evaluated when it is applied.
Axioms shall describe constraints on the unspecified (externally defined) constant values

such that for those values that satisfy these constraints the specification is well-defined and the
theorems hold; consequently only such values may be externally chosen for the constants. While
the distinction of axioms and theorems is technically not utilized by the RISCAL checker, it
allows external provers respectively satisfiability solvers to verify a RISCAL specification for
infinitely many constant values: they may assume that all these values satisfy the axioms and
from these assumptions prove the theorems.
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B.2.3 Functions

( multiple )? fun 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? ) : 〈type〉
( ( 〈funspec〉 )* ’=’ 〈exp〉 )? ;
( multiple )? pred 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? )
( ( 〈funspec〉 )* ( ’⇔’ | ’〈=〉’ ) 〈exp〉 )? ;
( multiple )? theorem 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? )
( ( 〈funspec〉 )* ( ’⇔’ | ’〈=〉’ ) 〈exp〉 )? ;
( multiple )? axiom 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? )
( ( 〈funspec〉 )* ( ’⇔’ | ’〈=〉’ ) 〈exp〉 )? ;
( multiple )? proc 〈ident〉 ( ( 〈ident〉:〈type〉 ( , 〈ident〉:〈type〉 )* )? ) : 〈type〉
( ( 〈funspec〉 )* { ( 〈command〉 )* ( return 〈exp〉 ; )? } )?

〈funspec〉 ::= requires 〈exp〉 ; | ensures 〈exp〉 ;
decreases 〈exp〉 (, 〈exp〉)* ; | modular ;

Description We have the following definitions of “functions” (which encompass “parameter-
ized predicates”, “parameterized theorems and axioms”, and “procedures”):

• fun f (p1:T1,. . . ,pn:Tn):T = e ; introduces a function f with n parameters p1, . . . , pn
of types T1, . . . ,Tn, respectively; the value of the function is defined by the expression e of
type T .

• pred p(p1:T1,. . . ,pn:Tn) ⇔ b ; (where the symbol⇔ can be alternatively written as
<=>) introduces a predicate pwith n parameters p1, . . . , pn of typesT1, . . . ,Tn, respectively;
the value of the predicate is defined by the formula b (an expression of type Bool).

• theorem t(p1:T1,. . . ,pn:Tn) ⇔ b ; (where the symbol⇔ can be alternatively written
as <=>) introduces a theorem t, i.e., a predicate for which we claim that all applications
yield truth value “true”. If an application yields “false”, this application aborts. A theorem
must not be annotated with an ensures clause.

• axiom t(p1:T1,. . . ,pn:Tn) ⇔ b ; is interpreted in the same way as the corresponding
theorem declaration (but see Section B.2.2 for the pragmatic distinction). An axiom must
not be annotated with an ensures clause.

• proc p(p1:T1,. . . ,pn:Tn):T { c1; . . . ; cn; return e; } introduces a procedure p
with n parameters p1, . . . , pn of types T1, . . . ,Tn, respectively; the value of the procedure is
computed by executing the commands c1, . . . , cn in sequence and evaluating the expression
e of type T in the resulting store; the value of e is the value of the procedure. Parameters
are local constants, their values thus cannot be changed by the command execution.
proc p(p1:T1,. . . ,pn:Tn):() { c1; . . . ; cn; } introduces a procedure p with result
type () (i.e., type Unit); this procedure executes commands c1, . . . , cn in sequence and
then returns the value ().
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A function definition yields an error, if a function with the same name, the same number
of arguments, and the same argument types has been already defined (but it is okay to define
multiple functions with the same name, if they differ in the number or types of arguments, i.e.
function names may be “overloaded”).
A function is visible from the point of the definition on, including its defining expression

respectively command sequence; thus a function may apply itself recursively.
A function may be first declared (by omitting the defining expression respectively command

sequence) and later defined. From the point of the declaration on, the function is known and may
be applied by other functions. Thus functions may apply themselves mutually recursively.
If the value of a (mutually) recursive function is not uniquely determined from its arguments

(because the function makes choices to compute its result), the function must be tagged with the
keyword multiple; if this is omitted, the processing of the specification reports an error.
A function definition may be annotated by multiple “preconditions”, i.e., clauses of form
requires b;where b is a formula that may refer to the parameters of the function. The function
may be only applied to arguments for which the evaluation of all preconditions (where the formal
parameters are substituted by the actual arguments) yields “true”; if some precondition yields
“false”, execution is aborted.
A function definition may be annotated by multiple “postconditions”, i.e., clauses of form
ensures b; where b is a formula that may refer to the parameters of the function and to the
special constant result whose type is the result type of the function. The function may only
return values for which the evaluation of all postconditions (where the formal parameters are
substituted by the actual arguments and result is bound to the result value of the function)
yields “true”; if some precondition yields “false”, execution is aborted.
A function definition may be annotated by multiple “termination measures”, i.e., clauses of

form decreases e with integer expression e. This expression is evaluated after before/after
every (directly or indirectly) recursive application of the function; if the value of e becomes
negative or is not less than the value in the last application, execution aborts, otherwise the clause
has no effect. The existence of at least one such clause thus ensures that a recursive function
eventually terminates. In general, every clause may have the form decreases e1,. . . ,en with
n ≥ 1 in which case no ei with 1 ≤ i ≤ n may become negative and the sequence of values must
be decreased by every recursive function application with respect to the “lexicographical order”
of integer sequences (there must exist some position i with 1 ≤ i ≤ n in the sequence such that ei
is decreased and all ej with 1 ≤ j < i remain the same). The verification condition generator has
some stronger requirements on termination measures (see the paragraph “Pragmatics” below).
The definition of a function f may be annotated by a clause modular, which affects the

generation of verification conditions that involve some application f (a) of the function. Without
using modular, if f is not a procedure and not (directly or indirectly) recursively called by the
function for which the verification condition is generated, the verification condition generator
treats f as a “mathematical” function whose application f (a) is plainly inserted in the verification
condition. The effect on the verification condition is thus as if the definition of f would have been
inserted literally; any change on the definition of f may thus affect the validity of the condition.
However, if f is a procedure or recursively called, then an application f (a) is essentially replaced
by the expression let x=a in choose result:T with Q where x is the parameter of f , T the
result type of f , and Q its postcondition (true, if f has no postcondition). The verification thus
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considers all possible results of f allowed by its specification independent of its actual definition
(which may thus change without effect on the validity of the verification condition, provided that
the result still satisfies the postcondition). However, if f is annotated as modular, this kind of
“modular reasoning” is also applied if f is not a procedure and not recursively called.

Pragmatics See Section B.2.2 for the pragmatic difference between theorems and axioms.
Theorems and axioms must not be annotated with ensures clauses to simplify their semantics
by ruling out additional obligations for their validity; corresponding constraints should be part
of the body formulas.
The externally visible behavior of a procedure is that of a function in that it returns a value

but otherwise has no side effect (apart from potentially printing output which however cannot
affect the computation). This is because the store of a procedure is local to the procedure; there
is no “global store” that might be affected by the execution of the procedure; also the values of
variables passed as arguments to a procedure cannot be changed by the procedure.
The keyword multiple simplifies the translation process; it could be made superfluous by a

more powerful static analysis than currently implemented.
The clause return e is not a general command may may only appear at the end of a procedure

definition; this simplifies the later development of a verification calculus.
In (mutually) recursive functions or procedures, the verification condition generator only

considers the termination measure e1, . . . , en provided by the first decreases e1, . . . , en clause
in each of the functions of the recursion cycle. Furthermore, all functions have to use the same
number n of terms in their termination measures and every invocation of a function or procedure
in the recursion cycle must decrease the measure. This requirement is actually stronger than
ensured by the type checker respectively the model checker, because when checking the execution
of recursive functions it is only required that every function decreases its own termination
measures. If the stronger requirement if violated, the generated verification conditions are not
true (i.e., invalid), and the termination of the functions respectively procedures cannot be verified.
The clause modular enablesmodular reasoning also for functions that look “mathematical” but

are to be considered as program functions. The default for “mathematically-looking” functions
is non-modular reasoning in order to avoid the necessity to annotate every such function with a
postcondition (which would often just repeat the definition of the function).

B.2.4 Systems

shared ( system )? 〈ident〉 { ( 〈var〉 )* ( 〈systemspec〉 )*
( init 〈action〉 )? ( action 〈ident〉 〈action〉 )* }
distributed ( system )? 〈ident〉 { ( 〈systemspec〉 )* ( 〈component〉 )* }
〈component〉 ::= component 〈ident〉 ( [ 〈exp〉 ] )? { ( 〈var〉 )*
( init 〈action〉 )? ( action ( [ 〈exp〉 ] )? 〈ident〉 〈action〉 )* }
〈var〉 ::= var 〈ident〉 : type ( ( := | := | = ) 〈exp〉 )? ;
〈systemspec〉 ::= invariant 〈exp〉 ; | decreases 〈exp〉 ( , 〈exp〉 )* ;
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〈action〉 ::=
( ( 〈param〉 ( , 〈param〉 )* )? ) ( with 〈exp〉 ; )? { ( 〈command〉 )* } |
( ( 〈param〉 ( , 〈param〉 )* )? ) ( with 〈exp〉 ; )? = 〈exp〉 |
( ( 〈param〉 ( , 〈param〉 )* )? ) ( with 〈exp〉 ; )? ( ’⇔’ | ’〈=〉’ ) 〈exp〉

Description A system is an entity whose execution yields a run, i.e., a sequence of states.
A run starts with some initial state; every successor state is derived from its predecessor state
by a step, i.e., the execution of some action. A system may have multiple initial states and in
every state there may be multiple actions enabled for execution; a system is therefore generally
nondeterministic, i.e., its execution may yield different runs. A run ends in some final state, if
there is no action enabled in that state; in general, however, a run may be infinite, i.e., consist of
an infinite sequence of states. In RISCAL every system has a finite state space, i.e., if a run is
infinite, then it infinitely often reaches the same state.
RISCAL implements two kinds of systems, shared (memory) systems, and distributed (mem-

ory) systems:

• A declaration shared system S { var x1:T1;. . . ;var xn:Tn; init . . . action I1
. . . action In . . . } introduces a shared system S with n state variables x1, . . . , xn of types
T1, . . . ,Tn, respectively. The initial states and the actions of the system are described in
more detail below.
The initial state of every system variable var x:T = e is defined in two steps. In the first
step, the optional initialization expression e is evaluated to yield the preliminary value
of the variable; if no initialization expression is given, this value is undefined. In the
second step, the optional initialization action init . . . is executed to yield the real initial
values of the variables; this action may refer to their preliminary values (if they have been
defined). If no initialization action is given, the state variables retain their preliminary
values (if any) as their initial values. If an initialization expression or the initialization
action is nondeterministic, the system may have multiple initial values.
The subsequent execution of the system is determined by the repeated nondeterministic
execution of some of the system actions action I1 . . . action In . . . . The core of
each (initialization or system) action is a phrase (p1:T1,. . . ,pn:Tn) with b; A. This
phrase introduces parameters p1, . . . , pn of types T1, . . . ,Tn, an optional guard condition (a
predicate, i.e., an expression of type Bool) b, and an action body A. The execution of the
action is enabled if for some values of the parameters b yields “true”; the body A of the
action may then be executed for these parameter values to yield the (initial or next) state
of the system. If b is true for multiple (combinations of) parameter values, the action may
be performed for any of these values. If no guard condition is given, then the action may
be performed for any values of its parameters.

• A declaration distributed system S { component C1 { . . . } component Cn { . . . }
} introduces a distributed system with n components C1, . . . ,Cn. Each component is
similar to a shared system in that it has state variables, an optional initialization action,
and arbitrary many system actions. However, every action may only read and write the
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variables of that component in which the action is defined, not those of other components.
The state of the whole system is determined by the states of the individual components
where each component state consists of the values of its state variables and the states of
the message buffers associated to the actions (see below).
By default, there exists one instance of a component (we call such a component non-
replicated). However, for a replicated component declared as component C [N] there
exist N instances; here N must be a constant expression (see Subsection B.4) which denotes
a non-zero natural number. Each component instance has its own state; the system state
is determined by the states of all component instances. Within the actions of a replicated
component with N instances, the variable this with 0 ≤ this < N denotes the index of
the instance executing the action.
The initial state of the system is defined by defining the initial state of each component
(instance) in turn, i.e., sequentially one after each other; if some components have multiple
initial states, every combination of the initial component states defines an initial system
state. The initial state of the message buffer associated to each action is empty unless some
initialization action has sent a message to that action (see below).
The subsequent execution of the system is determined by the repeated execution of some
action of some component (instance). In a component C, the execution of an action
declared as action a(p1:T1,. . . ,pn:Tn) with b; A is enabled if its associated message
buffer contains as its first message a tuple 〈v1, . . . , vn〉 such that the assignment of the values
v1, . . . , vn to the parameters p1, . . . , pn makes the guard condition b true (additionally, the
action body A must be able to execute all its send commands, see below). The execution
of the action removes this message from the buffer and sets the parameters to its values.
By default, every action has a message buffer of size 1, i.e, the buffer may hold at most one
message. However, for an action declared as action [B] a(. . .) the size of the message
buffer is B; here B must be a constant expression (see Subsection B.4) which denotes a
non-zero natural number.

An action body A has one of the following forms:

• In a command action, the body has form { c1;. . . ;cn } with commands c1, . . . , cn. The
state resulting from the action is the state after the execution of these commands.
In a distributed system, a command action generates a new message by the execution of
the command send C.a(e1, . . . , en); which sends a message 〈e1, . . . , en〉 to action a of
the non-replicated component C. Likewise send C[e0].a(e1, . . . , en); sends a message
to the instance e0 of the replicated component C. The message is added to the buffer of
the corresponding action provided that this buffer is not yet full. However, if the buffer is
already full, the attempt to execute the send command “retrocatively” disables the action
without any change on the component state (i.e., the component state remains as it was
before the failed attempt to execute the action).

• In a function action, the body has form = e with expression e. If the system has a single
state variable var x:T , the type of e must be T ; the resulting state has for x the value of e.
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If the system has multiple state variables var x1:T1;. . . ;var xn:Tn; the type of e must
be Tuple[T1,. . . ,Tn]; the resulting state has for each xi the value of component i of the
tuple value of e.

• In a predicate action, the body has form⇔ b (alternatively: <=> b) with predicate b (an
expression of type Bool). This predicate refers by the name x to the value of variable x
in the state before the execution of the action and by x0 (digit “0” appended to variable
name “x”) to the value of the variable in the state after the execution of the action. The
state after the execution can be any state for which this predicate yields “true”.

A system may have initialization and system actions with bodies of different forms. The names
of two system actions must be different from each other unless they differ in the number or in the
types of their parameters.

A system may be annotated with multiple system invariants, i.e., clauses of form invariant
b; with predicate b (an expression of type Bool).

• In a shared system, b may refer by the name x to the value of state variable x in the
“current” state of the system execution and by old_x to its value in the initial state of the
execution.

• In a distributed system b may refer by the name C.x to the value of state variable x in
non-replicated componentC respectively by the nameC[i].x to the value of state variable x
in instance i of the replicated componentC. Likewise it may refer by old_C.x respectively
old_C[i].x to the value of the variable in the initial state.
Furthermore, b may refer by C.a (respectively C[i].a) to the content of the message buffer
of action a as an array b of B records; here B is the buffer size of the action and each
record r holds in component r .p the message value determined for parameter p of a. By
C.a_number (respectively C[i].a_number) it may refer to the number n of the messages
b[0], . . . , b[n− 1] in the buffer (these messages are ordered in the sequence of their arrival;
b[0] is the oldest message in the buffer, i.e., the message to be processed next by a).

The value of the predicate must be “true” for every state of the execution as the current state
(i.e., it must also be true for old_x=x); otherwise the execution is aborted in the first state that
violates the predicate.
Likewise a system may be annotated with multiple termination measures, i.e., clauses of form
decreases e;. Here e must be an integer expression expressions whose value in every state
of the system execution (except for the initial state) is smaller than its value in the predecessor
state but does not become negative. This ensures the termination of the system. The clause must
be also given in the form decreases e1,. . . ,en with multiple integer expressions e1, . . . , en;
in this case there must exist some expression ei with 1 ≤ i ≤ n whose value is decreased but
does not become negative and all ej with 1 ≤ j < i have their values unchanged (lexicographical
order). The termination measures may refer to the state variables of the system in the same way
as invariants may (see above).
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Pragmatics The logical format of action definitions may lead to very large execution times for
checking a system: for every state all possible successor states are enumerated in order to choose
those that satisfy the action predicate.

In a distributed system, only a command action may generate messages by the execution of the
send command; function and predicate actions may only change the local state of the component.

In a distributed system, the components (respectively component instances) are for simplicity
initialized sequentially in turn, which does not affect the set of initial values of the state variables
but may affect the set of initial contents of the message buffers: if the initialization actions send
messages, not all possible interleavings of these messages in the message buffers are considered,
because messages of preceding components (instances) are sent first. If the truly general (fully
nondeterministic) initialization behavior is desired, the corresponding send operations should be
performed not in initialization actions but in component actions.

B.3 Commands

In this section, we are going to describe the domain
〈command〉 ::= . . . | 〈exp〉 | { ( 〈command〉 )* } | ;

of commands, i.e., syntactic phrases that cause effects but have no values. However, also every
expression of type () (i.e., type Unit) can serve as a command, in particular applications of
functions with return type (). Furthermore, a sequence of commands may be grouped by curly
braces {. . . } into a single command. Finally, a command can be empty (indicated by the sole
occurrence of the command terminator ;), which allows redundant occurrences of ;.

B.3.1 Declarations and Assignments

Grammar

val 〈ident〉 ( : 〈type〉 )? ( := | := | = ) 〈exp〉 ;
var 〈ident〉 : 〈type〉 ( ( := | := | = ) 〈exp〉 )? ;
〈ident〉 ( 〈sel〉 )* ( := | := | = ) 〈exp〉 ;

〈sel〉 ::= [ 〈exp〉 ] | . 〈decimal〉 | . 〈ident〉

Description

• A declaration val id:T := e (where the definition symbol :=may be alternatively written
as the two characters := or the single character =) introduces a local constant of name id
and gives it the value of expression e. If the optional type T is given, the type of e must
be T . It is an error, if another local constant (or variable) with name id has been already
declared (but it is okay, if the declaration overshadows a global value declaration).

• A declaration var id:T := e (where :=may be alternatively written as := or =) introduces
a variable of name id and type T . If the optional expression e is given, the type of e must
be T and the variable is initialized with that value; otherwise, the value of the variable
is undefined. It is an error, if another variable (or local constant) with name id has been
already declared (but it is okay, if a global value declaration is overshadowed).
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• A variable assignment id := e (where := may be alternatively written as := or =) assigns
to a previously declared variable id the value of expression e. It is an error, if no variable
of name id has been declared or if the type of e is not the type given in the declaration.
An array/map assignment a[i] := e is just an abbreviation for the plain variable assignment
a := a with [i] = e which assigns to variable a the new array denoted by the array update
expression a with [i] = e, i.e., an array that is a duplicate of a except that it holds at i the
value e. Likewise, a tuple assignment t.d := e is an abbreviation for the plain assignment
t := t with .d = e and a record assignment r.id := e is an abbreviation for the plain
assignment r := r with .id = e. The component selectors for the various kinds of data
structures may be also combined, e.g. a[i].id := e is an abbreviation for:

a := a with [i] := (a[i] with .id = e)

Pragmatics Arrays/maps, tuples, and records have “value semantics”, i.e. an element assign-
ment like a[i] := e creates a new array and assigns it to variable a; the original array is not
modified in any way. Thus the code

var a:Array[10,�[3]] := Array[10,�[3]](0);
var b:Array[10,�[3]] := a;
a[0] := 1;
print b[0];

prints 0, not 1.

B.3.2 Choices

Grammar

choose 〈qvar〉 ;
choose 〈qvar〉 then 〈command〉 else 〈command〉

Description These commands introduce new constants whose values are chosen from a finite
set of possibilities. If RISCAL is executed in “deterministic” mode, for each constant an arbitrary
value is chosen; if RISCAL is executed in “nondeterministic” mode, all values are chosen in turn
(resulting in multiple computation branches that are executed in turn).
choose q ; introduces new local constants whose names are those of the quantified variables

in q and binds them to chosen values. In deterministic execution, if no choice is possible, the
computation is aborted.
choose q then c1 else c2 either executes command c1 or it executes command c2. Com-

mand c1 is executed, if some values can be chosen for the quantified variables in q; the execution
of c1 then takes place in the context of the choice. Only if no choice is possible, command c2 is
executed.
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Pragmatics The constants introduced by choose q ; are visible in the subsequent commands.
The constants introduced by choose q then c1 else c2 are only visible in command c1; they
are not visible afterwards.
Before RISCAL Version 2.9.0, the semantics of choose q then c1 else c2 allowed the

execution of c2 also if a choice was possible; thus in non-deterministic execution mode c2 was
always executed (as the last execution branch). Since this contradicts the expectation of an else
branch, the semantics of the command has been strengthened to prevent the execution of c2, if a
choice is possible.

B.3.3 Conditionals

Grammar

if 〈exp〉 then 〈command〉
if 〈exp〉 then 〈command〉 else 〈command〉

match 〈exp〉 with { ( 〈pattern〉 -> 〈command〉 )+ }
〈pattern〉 ::= 〈ident〉 | 〈ident〉 ( 〈param〉 ( , 〈param〉 )* ) | _

Description We have the following kinds of conditional statements:

• The one-sided conditional statement if b then c evaluates formula b (an expression of
type Bool). If this evaluation yields “true”, the statement executes command c, otherwise
it has no effect.

• The two-sided conditional statement if b then c1 else c2 evaluates formula b. If this
yields “true”, the statement executes command c1, otherwise it executes command c2.

• The matching command match e with { p1->c1; . . . ; pn->cn;} attempts to “match”
the value of e (which must be of some recursive type T) to the patterns p1, . . . , pn. Each
pattern can be either the name id of a constant of type T or an application id(p1,. . . ,pn)
of a constructor id of type T or the “wildcard” pattern _. A match succeeds if the value of
e is the denoted constant or the result of an application of the denoted constructor or if the
pattern is the wildcard _.
The matches are attempted in the stated order of patterns; the first successful match of
the value of e to some pattern pi determines the effect of the whole command in that
the command ci is executed. If the match succeeds for a pattern pi = id(p1,. . . ,pn),
the parameters p1, . . . , pn receive the arguments to which constructor id was applied to
yield the value of e; these parameters can be consequently referenced in ci. If there is no
successful match, the effect of the command is undefined (i.e. the computation aborts).

B.3.4 Loops

Grammar
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while 〈exp〉 do ( 〈loopspec〉 )* 〈command〉
do ( 〈loopspec〉 )* 〈command〉 while 〈exp〉 ;
for 〈command〉 ; 〈exp〉 ; 〈command〉 do ( 〈loopspec〉 )* 〈command〉

for 〈qvar〉 do ( 〈loopspec〉 )* 〈command〉
choose 〈qvar〉 do ( 〈loopspec〉 )* 〈command〉

〈loopspec〉 ::= invariant 〈exp〉 ; | decreases 〈exp〉 ( , 〈exp〉 )* ;

Description We have the following kinds of loops:

• while b do c evaluates formula b (an expression of type Bool); if its value is “false”, the
loop terminates. Otherwise it executes command c and repeats its behavior with the next
evaluation of b).
Variables and constants introduced in c are only visible in c.

• do c while b executes command c and then evaluates formula b; if its value is “false”, the
loop terminates. Otherwise it repeats its behavior with the next execution of c.
Variables and constants introduced in c are only visible in c.

• for c1; b; c2 do c3 first executes command c1. It then evaluates formula b; if its value
is “false”, the loop terminates. Otherwise it executes command c3 and then command c2
and then repeats its behavior with the next evaluation of b.
Variables and constants introduced in c1 are visible in the whole command (but not outside
the command). Variables and constants introduced in c2 are only visible in c2. Variables
and constants introduced in c3 are only visible in c3.

• for q do c executes command c in the contexts arising from all possible choices of values
for the quantified variables in q, i.e., in contexts that contain constants for the quantified
variables to which chosen values are assigned. If n choices are possible, c is therefore
executed n times.
However, the order of choices is arbitrary; therefore n! such executions are possible, one
for each permutation of the n choices. If executed in “deterministic” mode, one of these
executions is performed; if executed in “nondeterministic” mode, the execution yields n!
branches each of which proceeds according to one permutation.

• choose q do c attempts to choose a value for the quantified variables in q. If no such
choice is possible, the loop terminates. Otherwise it executes c in a context arising from
this choice (i.e., in a context that contains constants for the quantified variables to which the
chosen values are assigned). It then repeats its behavior with the next attempt to perform
a choice.
When executed in “deterministic” mode, the loop repeatedly makes a choice until no
more choice is possible. When executed in “nondeterministic” mode, each choice with n
possibilities yields n execution branches. By the repeated choice in each branch, ultimately
the execution may ultimately yield super-exponentially many branches.
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Every kind of loop may be annotated by multiple “loop invariants”, i.e., clauses of form
invariant b where b is a formula that is evaluated before/after every loop iteration. If the
value of b is “false” for any evaluation, execution aborts, otherwise the clause has no effect.
Formula b may refer to identifiers of form old_id, the values of such an identifiers is the value
of the program variable id immediately before the loop started execution. In a loop for q do
c, the invariant may refer to the identifier forSet which denotes the set of all values chosen
in the previous iterations of the loop (initially this set is empty, ultimately it holds all choices).
Likewise, in a loop choose q do c, the invariant may refer to the identifier chooseSet which
denotes the set of all values chosen in the previous iterations of the loop.
Furthermore, every loop may be annotated by multiple “termination measures”, i.e., clauses

of form decreases e with integer expression e. This expression is evaluated after before/after
every loop iteration; if the value of e becomes negative or is not less than the value before
the iteration, execution aborts, otherwise the clause has no effect. The existence of at least
one such clause thus ensures that the loop eventually terminates. In general, every clause may
have the form decreases e1,. . . ,en with n ≥ 1 in which case no ei with 1 ≤ i ≤ n may
become negative and the sequence of values must be decreased by every iteration of the loop
with respect to the “lexicographical order” of integer sequences (there must exist some position
i with 1 ≤ i ≤ n in the sequence such that ei is decreased and all ej with 1 ≤ j < i remain
the same). While a loop may be annotated with multiple measures that are also checked during
execution of the loop, the verification condition generator only considers the first measure (see
also the paragraph “Pragmatics” below).

Pragmatics In a loop for c1; b; c2 do c3, command c2 is for syntactic reasons restricted to
some special commands (see Appendix B.7); typically c2 is an assignment.
The difference between the two loops for q do c and choose q do c is that in the for loop the

values of the program variables occurring in q are considered when the loop starts execution: this
determines once and for all possible choices and permutations of these choices. In the choose
loop, after every iteration of the loop a new choice is performed for the new values of the program
variables. Thus to print the elements of a set S of type Set[T], we may apply either the first
form

for x∈S do
print x;

or the second form

var X:Set[T] := S;
choose x∈X do
{
print x;
X := X\{x};

}

The later form is more verbose but also more flexible: it enables the loop to modify in every
iteration the set of possibilities for performing the next choice.
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The verification condition generator only considers the terminationmeasure e1, . . . , en provided
by the first decreases e1, . . . , en clause in each loop for generating verification conditions;
subsequent measures are silently ignored.

B.3.5 Miscellaneous

Grammar

assert 〈exp〉 ;
print ( 〈string〉 , )? 〈exp〉 ( , 〈exp〉 )* ;
print 〈string〉 ;
printtrace ;
check 〈ident〉 ( with 〈exp〉 | 〈qvar〉 )? ;
send 〈ident〉 ( [ 〈exp〉 ] )? . 〈ident〉 ( ( 〈exps〉 )? ) ;

Description We are now going to describe those commands that do not fit the previously listed
categories:

• The assertion command assert b; first evaluates formula b; if the result is “false”, the
computation aborts, otherwise the command has no effect.

• The print command print e1,. . . ,en; prints the values of e1, . . . , en. A command like
print ". . . {i} . . . ", e1,. . . ,en; prints these values in a context defined by the given
string. This string is printed literally, except that every occurrence of a token {i} with
1 ≤ i ≤ n is replaced by the value of ei.

• The print command print ". . . "; prints the given literal string.

• During the execution of a nondeterministic system, the print command printtrace;
prints a trace of the states leading to the current state.

• The formula check f applies the function (predicate, theorem, procedure) f to all values
of its parameter domain; execution aborts, if some of the executions resulted in an error,
and continues normally, otherwise. The command check f with S applies f to all
values of set S. If f has one parameter of type T , S must have type Set[T]. If f has
multiple parameters of typesT1, . . . ,Tn, S must have type Set[T1×. . . ×Tn]. The command
check f with x1 : T1, . . . , xn : Tn with p(x1, . . . , xn) applies f (x1, . . . , xn) to all values
x1, . . . , xn of the types T1, . . . ,Tn for which the predicate p(x1, . . . , xn) holds.

• In a distributed system, the command send C[e].a(e1,. . .,en); send the message
〈e1, . . . , en〉 to action a of instance e of component C; see Section B.2 for details on
distributed systems.
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Pragmatics The assert and print commands are convenient for debugging a specification.
The printtrace command allows to monitor the sequences of states leading to a certain state of
a nondeterministic system. The check command allows to write model checking scripts whose
control flow guides the checks; the with clause allows to restrict the domain of the check to
some computed values.
The form check f with S of the check command has been made redundant by the newly

introduced more general form check f with x1 : T1, . . . , xn : Tn with p(x1, . . . , xn); it is
nevertheless retained to preserve compatibility.

B.4 Types

Grammar

〈type〉 ::=
Bool

| ( � | Int ) [ 〈exp〉 , 〈exp〉 ]
| ( � | Nat ) [ 〈exp〉 ]
| Set [ 〈type〉 ]
| Tuple [ 〈type〉 ( , 〈type〉 )* ]
| Record [ 〈ident〉 : 〈type〉 ( , 〈ident〉 : 〈type〉 )* ]
| Array [ 〈exp〉 , 〈type〉 ]
| Map [ 〈type〉 , 〈type〉 ]
| ( ) | Unit
| 〈ident〉

Description Every constant or variable has a type that constrains the values to which the
constant can be bound respectively that the variable can hold. Types may depend on the values of
certain integer-valued expressions which we subsequently call “constant expressions”. Constant
expressions may be of arbitrary form (i.e., they may contain arithmetic operations and function
calls) but their values must depend only on constants that are declared on the top-level of a
specification (i.e., they must not depend on function parameters or variables/constants that are
locally defined in a function).
We have the following types:

• Bool denotes the type of the two values > (alternatively, true) and ⊥ (alternatively,
false).
We denote by the term “truth value” a value of this type. Expressions of this type are also
called “formulas”, functions with this result type are also called “predicates” or “theorems”
(if the predicate always returns >).

• �[min,max] (alternatively, Int[min,max]) denotes the type of every integer number i
with min ≤ i ≤ max where min and max are constant expressions.
In the following, we denote by the term “integer (number)” a value of such a type.
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• �[max] (alternatively, Nat[max]) is a synonym for �[0,max] where max ≥ 0 is a
constant expression.
In the following, we denote by the term “natural number” a value of such a type.

• Set[T] denotes the type of all sets whose elements have type T .
In the following, we denote by the term “set” a value of such a type.

• Tuple[T1,. . . ,Tn] denotes the type of all tuples with n ≥ 1 components that have types
T1, . . . ,Tn; the components are numbered 1, . . . ,n.
In the following, we denote by the term “tuple” a value of such a type.

• Record[id1:T1,. . . ,idn:Tn] denotes the type of all records with n ≥ 1 components that
have types T1, . . . ,Tn; the components are identified by names idn, . . . , idn.
In the following, we denote by the term “record” a value of such a type.

• Array[n,T] denotes the type of all arrays with n elements that have type T where n ≥ 0
is a constant expression; the elements are identified by indices 0, . . . ,n − 1.
In the following, we denote by the term “array” a value of such a type.

• Map[K,E] denotes the type of all values that map values of type K (the “key type”) to
values of type E (the “element type”); the elements are identified by the keys.
In the following, we denote by the term “map” a value of such a type.

• () (alternatively, Unit) denotes the type that has a single value () which we call “unit”.

• Identifier id denotes a type that has been defined on the top level of the specification by a
type or rectype definition; the later kind of definition introduces “recursive types” that
are described in the section on type declarations.

Pragmatics The type system is deliberately designed in such a way that every type (with
evaluated constant expressions) has only finitelymany values, whichmakes all formulas involving
variables of such types decidable.

The type system also ensures that every type has at least one value such that quantified formulas
over variables of an empty type are not trivial.
Array[n,T] is essentially a synonym for Map[�[n-1],T]. However, arrays and maps have

different runtime representations, which makes the use of arrays more efficient.
Type () may serve as the return type of procedures that produce output but do not return

meaningful result values.
Types are partially checked via static analysis by a type checker, partially by runtime assertions

during execution:

• The static analysis checks that the value assigned to a variable has the same base type as
the variable and rejects a specification, if this is not the case. Thus e.g. a specification that
tries to assign a Bool value to a variable of type�[1] is rejected. However, a specification
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is not rejected, if it assigns a value of type�[2] to a variable of type�[1], i.e., the static
analysis does not consider the values of the constant expressions in a type.

• Runtime assertions check that the value assigned to a variable iswithin the range determined
by the constant expressions of a type. Thus e.g. the execution of a specification that tries
to assign the value 2 to a variable of type �[1] aborts with an error message.

B.5 Expressions

In this section, we are going to describe the domain

〈exp〉 ::= . . . | ( 〈exp〉 )

of expressions, i.e., syntactic phrases that denote values, including truth values (i.e., expressions
encompass both terms and formulas of classical logic). All possible values of an expression have
the same type, see Section B.4.
In the following grammar snippets, the various kinds of expressions are listed in the order of

decreasing binding power; as usual, an expression ( 〈exp〉 ) with parentheses may be used to
indicate the intended parsing structure.

B.5.1 Constants and Applications

Grammar

〈ident〉
〈ident〉 ( ( 〈exp〉 ( , 〈exp〉 )* )? )

Description An identifier id denotes the value to which the name id has been bound in the
current environment. This binding may arise from the definition of a global constant or theorem
(a constant whose value is a truth value), from the value assigned to a parameter of a function,
predicate, theorem, or procedure, from the definition of a local constant or variable in a procedure,
from the definition of a local constant by a binder in an expression, or from the value assigned to
a variable by a quantifier.
An application id(e1,. . . ,en) denotes the value of the application of the “parameterized

entity” denoted by id to the values of expressions e1, . . . , en whose types must be those given to
the parameters of the entity. This parameterized entity may be a function, a predicate, a theorem,
or a procedure that has been previously declared on the top level of the specification.

B.5.2 Formulas

Grammar

> | true
⊥ | false
( ¬ | ~ ) 〈exp〉
〈exp〉 ( ∧ | /\ ) 〈exp〉
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〈exp〉 ( ∨ | \/ ) 〈exp〉
〈exp〉 (⇒ | => ) 〈exp〉
〈exp〉 (⇔ | <=> ) 〈exp〉
( ∀ | forall ) 〈qvar〉 . 〈exp〉
( ∃ | exists ) 〈qvar〉 . 〈exp〉

Description By a “formula” we mean every expression of type Bool, i.e., every expression
that denotes a truth value. Formulas can be constructed by the usual operators of predicate logic:

• The literal > (respectively true) denotes the truth value “true”; likewise the literal ⊥
(respectively false) denotes “false”.

• The logical connectives that combine formulas to bigger formulas are represented as
follows: the unary operator ¬ (respectively ~) denotes logical negation, while the binary
operators ∧ (respectively /\), ∨ (respectively \/), ⇒ (respectively =>),⇔ (respectively
<=>) denote logical conjunction, disjunction, implication, and equivalence, respectively.
The operators are listed in the order of decreasing binding power, i.e. a ∨ ¬b ∧ c is parsed
as a ∨ ((¬b) ∧ c).

• The logical quantifiers that bind a variable in a formula are represented as follows: the
quantifier ∀ respectively forall denotes universal quantification, the quantifier ∃ respec-
tively exists denotes existential quantification.

In addition, we have various atomic predicates which are listed in the subsequent sections;
by an “atomic predicate” we mean every operator that takes non-truth values as arguments and
returns a truth value as a result.

B.5.3 Equalities and Inequalities

Grammar

〈exp〉 = 〈exp〉
〈exp〉 ( , | ~= ) 〈exp〉
〈exp〉 < 〈exp〉
〈exp〉 ( ≤ | <= ) 〈exp〉
〈exp〉 > 〈exp〉
〈exp〉 ( ≥ | >= ) 〈exp〉

Description Two values of the same arbitrary (also compound) type may be compared by
application of the atomic predicates = denoting “equals” and (respectively ~=) denoting “not
equals”; the result of the comparison is of type Bool.
Furthermore, two integers, i.e., values of an integer type (not necessarily with the same type

bounds) may be compared by application of the atomic predicates < denoting “less than”, ≤
(respectively <=) denoting “less than or equal”, > denoting “greater than”, or ≥ (respectively >=)
denoting “greater than or equal”.
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B.5.4 Integers

Grammar

〈decimal〉
〈exp〉 !
- 〈exp〉
〈exp〉 ( · | * ) 〈exp〉
〈exp〉 ( · | * ) .. ( · | * ) 〈exp〉
〈exp〉 ^ 〈exp〉
〈exp〉 / 〈exp〉
〈exp〉 % 〈exp〉
〈exp〉 - 〈exp〉
〈exp〉 + 〈exp〉
〈exp〉 + .. + 〈exp〉
(
∑

| Σ | sum ) 〈qvar〉 . 〈exp〉
(
∏

| Π | product ) 〈qvar〉 . 〈exp〉
min 〈qvar〉 . 〈exp〉
max 〈qvar〉 . 〈exp〉
# 〈qvar〉

Description The following kinds of expressions denote integers:

• A sequence d1 . . . dn of n ≥ 1 decimal digits denotes an integer in decimal representation.

• Application of the unary prefix operator - denotes arithmetic negation. Application of
the unary postfix operator ! denotes the computation of the factorial, i.e., n! denotes the
product

∏n
i=1 i (whose value is 1, if n < 1).

• Applications of the binary operators +, -, · (center dot, alternatively *), /, %, and ^
denote addition, subtraction, multiplication, truncated division, the remainder of truncated
division, and the exponentiation of two integers, respectively.
The sign of the remainder denoted by % is the sign of the dividend, i.e., of the first argument.
The result of / respectively % is undefined (i.e., the computation of the value aborts), if the
divisor, i.e., the second argument, is 0. The result of ^ is undefined (i.e., the computation
of the value aborts), if the second argument is negative. The operators are listed in above
grammar in the order of decreasing binding power, i.e., -a+b·c is parsed as (-a)+(b·c).

• The expression a + .. + b denotes the sum
∑b

i=a i; its value is 0, if a > b. Likewise,
a · .. · b (alternatively, a * .. * b) denotes the product

∏b
i=a i; its value is 1, if a > b.

• The numerical quantifier
∑

(alternatively Σ, i.e., capital Sigma, or sum) computes the sum
of the values of the quantified expression while the quantifier

∏
(alternatively Π, i.e.,

capital Pi, or product) computes the product of these values; the result is 0 respectively 1,
if the quantification does not yield any value. The quantifiers min and max compute the
smallest respectively the largest value; the result is undefined (i.e., the computation of the
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value aborts), if the quantification does not yield any value. The quantifier # computes the
number of values that the quantification yields.

B.5.5 Sets

Grammar

( ∅ | { } ) [ 〈type〉 ]
(
⋂

| Intersect ) 〈exp〉
(
⋃

| Union ) 〈exp〉
{ 〈exp〉 ( , 〈exp〉 )* }
〈exp〉 .. 〈exp〉
| 〈exp〉 |
〈exp〉 ( ∩ | intersect ) 〈exp〉
〈exp〉 ( ∪ | union ) 〈exp〉
〈exp〉 \ 〈exp〉
{ 〈exp〉 | 〈qvar〉 }
〈exp〉 ( ( × | times ) 〈exp〉 )+
Set ( 〈exp〉 )
Set ( 〈exp〉 , 〈exp〉 )
Set ( 〈exp〉 , 〈exp〉 , 〈exp〉 )
〈exp〉 ( ∈ | isin ) 〈exp〉
〈exp〉 ( < | notin ) 〈exp〉
〈exp〉 ( ⊆ | subseteq ) 〈exp〉
〈exp〉 ( * | notsubseteq ) 〈exp〉

Description We have the following operations on sets:

• The literal ∅[T] (alternatively {}[T]) denotes the empty set of type Set[T].

• {e1,. . . ,en} denotes the set that consists of the values e1, . . . , en (which must have all the
same type).

• a..b denotes the set of all integers i with a ≤ i ≤ b. If a > b, this set is empty.

• |S| denotes the cardinality (the number of elements) contained in set S.

• The operator ∩ (alternatively intersect) denotes the intersection of two sets of the same
type, the operator ∪ (alternatively union) denotes their union, the operator \ denotes
their difference (which consists of all elements of the first set that are not contained in
the second one). The operators are listed in the order of decreasing binding power, thus
S1 ∪ S2 ∩ S3 is parsed as S1 ∪ (S2 ∩ S3).

•
⋂

S (alternatively Intersect S) denotes the intersection of all sets contained in set S
while

⋃
S (alternatively Union S) denotes their union.
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• The set builder { e | q } denotes the set of all values of e that result from the values of the
quantified variables in q.

• The Cartesian product S1×. . . ×Sn (alternatively, S1 times . . . times Sn) denotes the set
of all tuples whose component i is an element of set Si. If this type serves as the component
type of another Cartesian product, it has to be written with parentheses as (S1×. . . ×Sn).

• The power set Set(S) denotes the set of all subsets of set S. Set(S,n) denotes the set of
all subsets of S whose cardinality (number of elements) is n. Set(S,a,b) denotes the set
of all subsets of S whose cardinality n satisfies a ≤ n ≤ b.

• The atomic formula e∈S (alternatively e isin S) is true if e is an element of set S (where
the type of e must be the element type of the type of S). S1⊆S2 (alternatively S1 subseteq
S2) is true if every element of set S1 is an element of set S2 (where S1 and S2 must have
the same types). The atomic formulas e<S (alternatively e notin S) respectively S1*S2
(alternatively S1 notsubseteq S2) are the negated counterparts of above formulas.

Pragmatics The computations of Set(S,n) respectively Set(S,a,b) are more memory-
efficient than the computation of the same sets by the expressions

{s | s∈Set(S) with |s|=n}
{s | s∈Set(S) with a≤|s| ∧ |s|≤b}

because in the later all elements of Set(S) are simultaneously stored in memory, which is not
in the case for the computation of the former expressions.

B.5.6 Tuples

Grammar

( 〈 | << ) 〈exp〉 ( ’,’ 〈exp〉 )* ( 〉 | >> )
〈exp〉 . 〈decimal〉
〈exp〉 with . 〈decimal〉 = 〈exp〉

Description We have the following operations on tuples:

• 〈e1,. . . ,en〉 (alternatively, <<e1,. . . ,en>>) denotes a tuple of type Tuple[T1,. . . ,Tn]
whose components are the values e1, . . . , en of types T1, . . . ,Tn, respectively.

• t.d denotes the value that tuple t holds in the component with number d. Components are
numbered from 1, i.e., if t holds n components, these are denoted by t.1,. . . ,t.n.

• t with .d = e denotes the tuple that is identical to t except that it holds in the component
with number d value e (whose type must be the corresponding component type of t).
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B.5.7 Records

Grammar

( 〈 | << ) 〈ident〉 : 〈exp〉 ( ’,’ 〈ident〉 : 〈exp〉 )* ( 〉 | >> )
〈exp〉 . 〈ident〉
〈exp〉 with . 〈ident〉 = 〈exp〉

Description We have the following operations on records:

• 〈id1:e1,. . . ,idn:en〉 (alternatively, <<id1:e1,. . . ,idn:en>>) denotes a record of type
Record[id1:T1,. . . ,idn:Tn]whose components are values e1, . . . , en of types T1, . . . ,Tn,
respectively.

• r.id denotes the value that record r holds in the component denoted by identifier id.

• r with .id = e denotes the record that is identical to r except that it holds in the component
with identifier id value e (whose type is the corresponding component type of r).

B.5.8 Arrays

Grammar

Array [ 〈exp〉 , 〈type〉 ] ( 〈exp〉 ( ’,’ 〈exp〉 )* )
〈exp〉 [ 〈exp〉 ]
〈exp〉 with [ 〈exp〉 ] = 〈exp〉

Description We have the following operations on arrays:

• Array[n,T](e) denotes an array of type Array[n,T] (i.e., an array with n elements of
type T) that holds at all indices the value e (whose type must be T).
Similarly, Array[n,T](e, e1, . . . , em) denotes an array of type Array[n,T] that holds
at all indices the value e except that it holds at indices 1, . . . ,m (m must be less than n) the
values e1, . . . , em (whose types must be T), respectively.

• a[i] denotes the element that array a holds at index i. Indices are counted from 0, i.e., if a
has length n, its elements are a[0], . . . ,a[n− 1]. The value at any other index is undefined,
i.e., the computation of such a value aborts.

• a with [i] = e denotes the array that is identical to array a except that it holds at index i
value e (whose type must be the element type of a). The resulting array is undefined, if i
is not a valid index in a, i.e., the computation of such an array aborts.

Pragmatics The term Array[n,T](e, e1, . . . , em) is just syntactic sugar for the term
Array[n,T](e) with [1]=e1 . . . with [m]=em (to which it is actually internally translated).
Its main use is the form Array[n,T](e1, . . . , en) which denotes an array of length n whose
elements are e1, . . . , en.
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B.5.9 Maps

Grammar

Map [ 〈type〉 , 〈type〉 ] ( 〈exp〉 )
〈exp〉 [ 〈exp〉 ]
〈exp〉 with [ 〈exp〉 ] = 〈exp〉

Description We have the following operations on maps:

• Map[K,E](e) denotes a map of type Map[K ,E] (i.e., whose keys are of type K and
whose elements are of type E) that maps all keys to the value e (whose type must be E).

• m[k] denotes the element to which map m maps key k (whose type is the key type of m).

• m with [k] = e denotes the map that is identical to m except that it maps key k (whose
type must be the key type of m) to value e (whose type must be the element type of m).

Pragmatics RISCAL implements maps by hash tables that map hash values of the keys to the
corresponding elements which in average gives constant time access similar to arrays (but with
a higher overhead factor).

B.5.10 Recursive Values

Grammar

〈ident〉 ! 〈ident〉
〈ident〉 ! 〈ident〉 ( 〈exp〉 ( , 〈exp〉 )* )
height ( 〈exp〉 )

Description A recursive value is a value whose type T has been introduced by a definition
rectype(n) T = . . . where constant expression n ≥ 0 denotes an upper bound on the number
of nested constructor applications. We have the following operations on recursive values:

• T!id denotes a constant id of the recursive type T whose definition must introduce such a
constant.

• T!id(e1,. . . ,en) denotes the application of a constructor id of recursive type T . The
definition of this type must introduce such a constructor whose parameter types are the
types of e1, . . . , en.

• height(e) denotes the “height” of the “expression tree” of the value e of some recursive
type T . This height is the maximum number of applications of “recursive constructors”
in any path rom the root of the tree to some of its leaves; a constructor of T is recursive
if T (respectively some other type defined in the same rectype declaration as T) occurs
as the type of some parameter of the constructor, respectively (if the parameter type is
constructed from a builtin type constructor) as a part of this type. In detail, the height of e
is defined as follows:
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– a constant T!id has height 0; likewise, a a non-recursive constructor application
T!id(e1,. . . ,en) has height 0;

– a recursive constructor application T!id(e1,. . . ,en) has height 1 + m where m is
the maximum height of all ei;

– an atomic value (Boolean, natural number, or integer) has height 0; a container value
(array, map, set, tuple, record) has as its height is the maximum height of its elements.

If e is to be the value of a variable or constant of type T , this height must range from 0 to
the bound n given in the rectype declaration of T .

Pragmatics Take the declarations

type T = ... ; value L:� ; value H:� ; value N:� ;
rectype(L) List = nil | cons(T,List) ;
rectype(H) Tree = empty | node(T,Tree,Tree) ;
rectype(H) NTree = empty | node(T,Array[N,NTree]) ;

Then the height of some constant l of recursive type List denotes the length of list l (from 0
to L inclusively) by counting the number of applications of recursive constructor cons in the
construction of l. Likewise, the height of some constant t of recursive type Tree denotes the
usual notion of the height of binary tree t (from 0 to H inclusively) by counting the maximum
number of applications of recursive constructor node in any path of t. Analogously, the height of
some constant u of recursive type NTree denotes the usual notion of the height of N-ary tree u.

B.5.11 Units

Grammar

( )

Description The literal () denotes the only value of type () (i.e., type Unit).

Pragmatics The value () is returned by every procedure with result type () (also implicitly,
i.e., if the procedure omits the return statement).

B.5.12 Conditionals

Grammar

if 〈exp〉 then 〈exp〉 else 〈exp〉

match 〈exp〉 with { ( 〈pattern〉 -> 〈exp〉 ; )+ }
〈pattern〉 ::= 〈ident〉 | 〈ident〉 ( 〈param〉 ( , 〈param〉 )* ) | _
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Description

• The conditional expression if b then t else f first evaluates the formula b; if this yields
the value “true”, the result is the value of t, otherwise it is the value of f (both t and f
must have the same type).

• The matching expression match e with { p1->e1; . . . ; pn->en;} attempts to “match”
the value of e (which must be of some recursive type T) to the patterns p1, . . . , pn. Each
pattern can be either the name id of a constant of type T or an application id(p1,. . . ,pn)
of a constructor id of type T or the “wildcard” pattern _. A match succeeds if the value of
e is the denoted constant or the result of an application of the denoted constructor or if the
pattern is the wildcard _.
The matches are attempted in the stated order of patterns; the first successful match of the
value of e to some pattern pi determines the result of the whole expression as the value of
the expression ei. If the match succeeds for a pattern pi = id(p1,. . . ,pn), the parameters
p1, . . . , pn receive the arguments to which constructor id was applied to yield the value
of e; these parameters can be consequently referenced in ei. If there is no successful match,
the result is undefined (i.e. the computation aborts).

B.5.13 Binders

Grammar

let 〈ident〉 = 〈exp〉 ( , 〈ident〉 = 〈exp〉 )* in 〈exp〉
letpar 〈ident〉 = 〈exp〉 ( , 〈ident〉 = 〈exp〉 )* in 〈exp〉

Description The binder expression let id1=e1,. . . ,idn=en in e binds in turn each constant
idi to the value of ei (each subsequent binding can already refer to the previously introduced
ones) and then returns the value of e when evaluated in this environment.

In contrast, the binder expression letpar id1=e1,. . . ,idn=en in e binds simultaneously each
constant idi to the value of ei (no binding can refer to the previously introduced ones) and then
returns the value of e when evaluated in this environment.

Pragmatics The letpar binder allows to avoid a syntactic replacement E[E1/x1, . . . ,En/xn]
of free occurrences of variables x1, . . . , xn in expression E by the expressions E1, . . . ,En; rather
we may use the expression letpar x1 = E1, . . . , xn = En in E instead. This feature is heavily
used in the automatically generated verification conditions.

B.5.14 Choices

Grammar

choose 〈qvar〉
choose 〈qvar〉 in 〈exp〉
choose 〈qvar〉 in 〈exp〉 else 〈exp〉
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Description The values of these expressions can be chosen from a finite set of possibilities. If
RISCAL is executed in “deterministic” mode, an arbitrary value is chosen; if RISCAL is executed
in “nondeterministic” mode, all values are chosen in turn (resulting in multiple computation
branches that are executed in turn).

• choose q chooses a value that may be assigned to the quantified variable in q (if q
introduces more than one variable, the result is a tuple of the variable values). The result
is undefined, if no choice is possible. In deterministic execution, if no choice is possible,
the computation is aborted.

• choose q in e denotes the value of e for some values chosen for the quantified variables in
q (to which e may refer). The result is undefined, if no choice is possible. In deterministic
execution, if no choice is possible, the computation is aborted.

• choose q in e1 else e2 denotes the value of e1 or of e2. It denotes the value of e1 for
some choice of values for the quantified variables in q (to which e1 may refer), if such a
choice is possible. Only if no choice is possible, it denotes the value of e2 (which must
not refer to the quantified variables). Thus also in deterministic execution, the evaluaton
of this expression cannot abort the computation.

Pragmatics The expression choose x:T is equivalent to choose x:T in x. While the other
variants of choice are more general, it has been introduced due to its prominence in classical
logic (Hilbert’s ε-operator).
The variant choose q in e1 else e2 has been introduced since it allows to simplify the

typical pattern where first the existence of a choice is checked, then, if such a choice exists, it
is performed, and, if not, another value is taken. However, before RISCAL Version 2.9.0, the
semantics of this expression actually allowed the evaluation of e2 also if a choice was possible;
thus in non-deterministic execution mode e2 was always evaluated (in the last execution branch).
Since this contradicts the expectation of an else branch, the semantics of the expression has
been strengthened to prevent the evaluation of e2, if a choice is possible.
If a choice is performed in deterministic mode, RISCAL always chooses the same value (i.e.,

it does not perform a random choice).

B.5.15 Miscellaneous

Grammar

assert 〈exp〉 in 〈exp〉
print ( 〈string〉 , )? 〈exp〉
print ( 〈string〉 , )? 〈exp〉 ( , 〈exp〉 )* in 〈exp〉
print 〈string〉 in 〈exp〉
printtrace in 〈exp〉
check 〈ident〉 ( with 〈exp〉 )?
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Description We are now going to describe those expressions that do not fit the previously listed
categories:

• The assertion expression assert b in e first evaluates formula b; if the result is “false”,
the value of the expression is undefined (i.e., the computation aborts). Otherwise, its value
is the value of e.

• The print expression print e prints the value of e and returns it as a result. An expression
like print ". . . {1}. . . ", e prints this value in a context defined by the given string. This
string is printed literally, except that every occurrence of the token {1} is replaced by the
value of e.

• The print expression print e1, . . . , en in e prints the values of e1, . . . , en and returns the
value of e as a result. An expression like print ". . . {i} . . . ", e1,. . . ,en in e prints
these values in a context defined by the given string. This string is printed literally, except
that every occurrence of a token {i} with 1 ≤ i ≤ n is replaced by the value of ei.

• The print expression print ". . ." in 〈exp〉 prints the given string and returns the value
of e as a result; the string must not contain any token of form {i}.

• During the execution of a nondeterministic system, the print expression printtrace in
〈exp〉 prints a trace of the sequence of states leading to the current state; it then returns the
value of e as a result.

• The formula check f applies the function (predicate, theorem, procedure) f to all values
of its parameter domain; its result is “true” if none of the executions resulted in an error,
and “false”, otherwise. The formula check f with S applies f to all values of S. If f
has one parameter of type T , S must have type Set[T]. If f has multiple parameters of
types T1, . . . ,Tn, S must have type Set[T1×. . . ×Tn].

Pragmatics The assert and print expressions are convenient for debugging a specification.
The printtrace expression allows to monitor the traces leading to certain states of a nonde-
terministic system. The check expression allows to write model checking scripts whose control
flow is guarded by the results of the checks.

B.6 Quantified Variables

Grammar

〈qvar〉 ::= 〈qvcore〉 ( , 〈qvcore〉 )* ?

〈qvcore〉 ::= 〈ident〉 : 〈type〉 ( with 〈exp〉 )
| 〈ident〉 ( ∈ | isin ) 〈exp〉 ( with 〈exp〉 )
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Description

• A phrase x:T with b introduces a quantified variable x of typeT . If the optional formula b
is given (which may refer to x), b yields for the value of this variable “true”.

• A phrase x∈S with b (alternatively, x in S with b) introduces a quantified variable x
whose value is an element of set S; consequently, if S has type Set[T], then x has type T .
If the optional formula b is given (which may refer to x), b yields for the value of this
variable “true”.

• A phrase x1:T1 with b1,. . . ,xn:Tn with bn introduces n quantified variables x1, . . . , xn
of types T1, . . . ,Tn. If the optional formulas b1, . . . , bn are given (where each bi may
refer to variables x1, . . . , xi), the formulas yield for the value of these variables “true”.
Analogously, each clause xi:Ti can be replaced by a clause xi∈Si where the value of
variable xi must be an element of set Si.

Pragmatics The particular syntax of quantified variables makes them usable for multiple kinds
of quantified constructs, for instance in the set expression

{ x/y | x∈S, y:T with y , 0 ∧ x > y }

in the formula

∀x∈S, y:T with y , 0 ∧ x > y. x/y ≥ 1

or in the following choice statement:

choose x∈S, y:T with y , 0 ∧ x > y;

If there are multiple quantified variables, multiple predicates may restrict the space of the
enumerated variable values and thus speed up the evaluation of phrases. For instance, in

∀x∈S with x%2 = 0, y:T with y , 0 ∧ x > y. x/y ≥ 1

only for every even value of x all values of y are enumerated, while in

∀x∈S, y:T with x%2 = 0 ∧ y , 0 ∧ x > y. x/y ≥ 1

for all possible values of x this enumeration takes place.

B.7 ANTLR 4 Grammar

In the following, we list the grammar used by the parser generator ANTLR 4 [3] to generate the
lexical and syntactic analyzer for the language.

// ---------------------------------------------------------------------------
// RISCAL.g4
// RISC Algorithm Language ANTLR 4 Grammar
//
// Author: Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>
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// Copyright (C) 2016-, Research Institute for Symbolic Computation (RISC)
// Johannes Kepler University, Linz, Austria, http://www.risc.jku.at
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// ----------------------------------------------------------------------------

grammar RISCAL;

options
{
language=Java;

}

@header
{
package riscal.parser;

}
@members {boolean cartesian = true;}

// ---------------------------------------------------------------------------
// modules, declarations, commands
// ---------------------------------------------------------------------------

specification: ( declaration )* EOF ;

declaration:
// declarations (value externally defined, others forward defined)
’val’ ident ’:’ ( ’Nat’ | ’�’ ) EOS #ValueDeclaration

| multiple ’fun’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type EOS #FunctionDeclaration
| multiple ’pred’ ident ’(’ ( param ( ’,’ param)* )? ’)’ EOS #PredicateDeclaration
| multiple ’proc’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type #ProcedureDeclaration

// definitions
| ’type’ ident ’=’ type ( ’with’ exp )? EOS #TypeDefinition
| ’rectype’ ’(’ exp ’)’ ritem ( ’and’ ritem)* EOS #RecTypeDefinition
| ’enumtype’ ritem EOS #EnumTypeDefinition
| ’val’ ident ( ’:’ type )? ’=’ exp EOS #ValueDefinition
| ’pred’ ident ( ’⇔’ | ’<=>’ ) exp EOS #PredicateValueDefinition
| ’theorem’ ident ( ’⇔’ | ’<=>’ ) exp EOS #TheoremDefinition
| ’axiom’ ident ( ’⇔’ | ’<=>’ ) exp EOS #AxiomDefinition
| multiple ’fun’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type
( funspec )* ’=’ exp EOS #FunctionDefinition

| multiple ’pred’ ident ’(’ ( param ( ’,’ param)* )? ’)’
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( funspec )* ( ’⇔’ | ’<=>’ ) exp EOS #PredicateDefinition
| multiple ’proc’ ident ’(’ ( param ( ’,’ param)* )? ’)’ ’:’ type
( funspec )* ’{’ ( command )* ( ’return’ exp EOS )? ’}’ #ProcedureDefinition

| multiple ’theorem’ ident ’(’ ( param ( ’,’ param)* )? ’)’
( funspec )* ( ’⇔’ | ’<=>’ ) exp EOS #TheoremParamDefinition

| multiple ’axiom’ ident ’(’ ( param ( ’,’ param)* )? ’)’
( funspec )* ( ’⇔’ | ’<=>’ ) exp EOS #AxiomParamDefinition

| ’shared’ ( ’system’ )? ident ’{’ ( var )* ( systemspec )*
( ’init’ action )? ( ’action’ ident action )* ’}’ #SharedSystem

| ’distributed’ ( ’system’ )? ident
’{’ ( systemspec )* ( component )* ’}’ #DistributedSystem

;

funspec :
’requires’ exp EOS #RequiresSpec

| ’ensures’ exp EOS #EnsuresSpec
| ’decreases’ exp ( ’,’ exp)* EOS #DecreasesSpec
| ’modular’ EOS #ContractSpec
;

// commands terminated by a semicolon
scommand:

#EmptyCommand
| ident ( sel )* ( ’:=’ | ’:=’ | ’=’ ) exp #AssignmentCommand
| ’choose’ qvar #ChooseCommand
| ’do’ ( loopspec )* command ’while’ exp #DoWhileCommand
| ’var’ ident ’:’ type ( ( ’:=’ | ’:=’ | ’=’ ) exp )? #VarCommand
| ’val’ ident ( ’:’ type )? ( ’:=’ | ’:=’ | ’=’ ) exp #ValCommand
| ’assert’ exp #AssertCommand
| ’print’ ( STRING ’,’ )? exp ( ’,’ exp)* #PrintCommand
| ’print’ STRING #Print2Command
| ’printtrace’ #PrintTraceCommand
| ’check’ ident ’with’ qvar #CheckCommandQuantified
| ’check’ ident ( ’with’ exp )? #CheckCommand
| ’send’ ident ( ’[’ exp ’]’ )? ’.’ ident ’(’ ( exps )? ’)’ #SendCommand
| exp #ExpCommand
;

command:
scommand EOS #SemicolonCommand

| ’choose’ qvar ’then’ command ’else’ command #ChooseElseCommand
| ’if’ exp ’then’ command #IfThenCommand
| ’if’ exp ’then’ command ’else’ command #IfThenElseCommand
| ’match’ exp ’with’ ’{’ ( pcommand )+ ’}’ #MatchCommand
| ’while’ exp ’do’ ( loopspec )* command #WhileCommand
| ’for’ scommand EOS exp EOS scommand ’do’ ( loopspec )* command #ForCommand
| ’for’ qvar ’do’ ( loopspec )* command #ForInCommand
| ’choose’ qvar ’do’ ( loopspec )* command #ChooseDoCommand
| ’{’ ( command )* ’}’ #CommandSequence
;

loopspec :
’invariant’ exp EOS #InvariantLoopSpec

| ’decreases’ exp ( ’,’ exp)* EOS #DecreasesLoopSpec
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;

// ---------------------------------------------------------------------------
// expressions, types
// ---------------------------------------------------------------------------

exp :
// literals
’(’ ’)’ #UnitExp

| ( ’>’ | ’true’ ) #TrueExp
| ( ’⊥’ | ’false’ ) #FalseExp
| decimal #IntLiteralExp
| ( ’∅’ | ’{’ ’}’ ) ’[’ type ’]’ #EmptySetExp

// identifier-like
| ident ’!’ ident #RecIdentifierExp
| ident ’!’ ident ’(’ exp ( ’,’ exp)* ’)’ #RecApplicationExp
| ident #IdentifierExp
| ident ’(’ ( exp ( ’,’ exp)* )? ’)’ #ApplicationExp
| ’Array’ ’[’ exp ’,’ type ’]’ ’(’ exp ’)’ #ArrayBuilderExp
| ’Array’ ’[’ exp ’,’ type ’]’ ’(’ exp ( ’,’ exp )+ ’)’ #ArrayInitializerExp
| ’Map’ ’[’ type ’,’ type ’]’ ’(’ exp ’)’ #MapBuilderExp
| ’Set’ ’(’ exp ’)’ #PowerSetExp
| ’Set’ ’(’ exp ’,’ exp ’)’ #PowerSet1Exp
| ’Set’ ’(’ exp ’,’ exp ’,’ exp ’)’ #PowerSet2Exp
| ’height’ ’(’ exp ’)’ #HeightExp

// selections
| exp ’[’ exp ’]’ #ArraySelectionExp
| exp ’.’ decimal #TupleSelectionExp
| exp ’.’ ident #RecordSelectionExp

// postfix-term-like
| exp ’!’ #FactorialExp

// prefix-term-like
| ’-’ exp #NegationExp
| (’

⋂
’ | ’Intersect’) exp #BigIntersectExp

| (’
⋃
’ | ’Union’) exp #BigUnionExp

// infix-term-like
| exp ’^’ exp #PowerExp
| exp ( ’*’ | ’·’ ) exp #TimesExp
| exp ( ’*’ | ’·’ ) ’..’ ( ’*’ | ’·’ ) exp #TimesExpMult
| exp ’/’ exp #DividesExp
| exp ’%’ exp #RemainderExp
| exp ’-’ exp #MinusExp
| exp ’+’ exp #PlusExp
| exp ’+’ ’..’ ’+’ exp #PlusExpMult
| ’{’ exp ( ’,’ exp)* ’}’ #EnumeratedSetExp
| exp ’..’ exp #IntervalExp
| ( ’〈’ | ’〈’ | ’〈’ | ’<<’ ) exp ( ’,’ exp )* ( ’〉’ | ’〉’ | ’〉’ | ’>>’ ) #TupleExp
| ( ’〈’ | ’〈’ | ’〈’ | ’<<’ ) eident ( ’,’ eident )* ( ’〉’ | ’〉’ | ’〉’ | ’>>’ ) #RecordExp
| ’|’ exp ’|’ #SetSizeExp
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| exp ( ’∩’ | ’intersect’) exp #IntersectExp
| exp ( ’∪’ | ’union’ ) exp #UnionExp
| exp ’\\’ exp #WithoutExp

// n-ary infix-term-like (hack allows non-associative parsing without parentheses)
| ’(’ exp ( ( ’×’ | ’times’ ) exp )+ ’)’ #CartesianExp
| exp ( {cartesian}? ( ’×’ | ’times’ ) {cartesian=false;} exp {cartesian=true;} )+ #CartesianExp

// term-quantifier like
| ’#’ qvar #NumberExp
| ’{’ exp ’|’ qvar ’}’ #SetBuilderExp
| ’choose’ qvar #ChooseExp
| ( ’

∑
’ | ’Σ’ | ’sum’ ) qvar ’.’ exp #SumExp

| ( ’
∏
’ | ’Π’ | ’product’ ) qvar ’.’ exp #ProductExp

| ’min’ qvar ’.’ exp #MinExp
| ’max’ qvar ’.’ exp #MaxExp

// updates
| exp ’with’ ’[’ exp ’]’ ’=’ exp #ArrayUpdateExp
| exp ’with’ ’.’ decimal ’=’ exp #TupleUpdateExp
| exp ’with’ ’.’ ident ’=’ exp #RecordUpdateExp

// relations
| exp ’=’ exp #EqualsExp
| exp ( ’,’ | ’~=’ ) exp #NotEqualsExp
| exp ’<’ exp #LessExp
| exp ( ’≤’ | ’<=’ ) exp #LessEqualExp
| exp ’>’ exp #GreaterExp
| exp ( ’≥’ | ’>=’ ) exp #GreaterEqualExp
| exp ( ’∈’ | ’isin’ ) exp #InSetExp
| exp ( ’<’ | ’notin’ ) exp #NotInSetExp
| exp ( ’⊆’ | ’subseteq’ ) exp #SubsetExp
| exp ( ’*’ | ’notsubseteq’ ) exp #NotSubsetExp

// propositions
| ( ’¬’ | ’~’ ) exp #NotExp
| exp ( ’∧’ | ’/\\’ ) exp #AndExp
| exp ( ’∨’ | ’\\/’ ) exp #OrExp
| exp ( ’⇒’ | ’=>’ ) exp #ImpliesExp
| exp ( ’⇔’ | ’<=>’ ) exp #EquivExp

// conditionals
| ’if’ exp ’then’ exp ’else’ exp #IfThenElseExp
| ’match’ exp ’with’ ’{’ ( pexp ’;’ )+ ’}’ #MatchExp

// quantified formulas
| ( ’∀’ | ’forall’ ) qvar ’.’ exp #ForallExp
| ( ’∃’ | ’exists’ ) qvar ’.’ exp #ExistsExp

// binders
| ’let’ binder ( ’,’ binder )* ’in’ exp #LetExp
| ’letpar’ binder ( ’,’ binder )* ’in’ exp #LetParExp
| ’choose’ qvar ’in’ exp #ChooseInExp
| ’choose’ qvar ’in’ exp ’else’ exp #ChooseInElseExp
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// assertions
| ’assert’ exp ’in’ exp #AssertExp

// print expression
| ’print’ ( STRING ’,’ )? exp ( ’,’ exp)* ’in’ exp #PrintInExp
| ’print’ STRING ’in’ exp #PrintIn2Exp
| ’print’ ( STRING ’,’ )? exp #PrintExp
| ’printtrace’ ’in’ exp #PrintTraceInExp

// check operation
| ’check’ ident ( ’with’ exp )? #CheckExp

// parenthesized expressions
| ’(’ exp ’)’ #ParenthesizedExp
;

// types
type :
( ’Unit’ | ’(’ ’)’ ) #UnitType

| ’Bool’ #BoolType
| ( ’Int’ | ’�’ ) ’[’ exp ’,’ exp ’]’ #IntType
| ’Map’ ’[’ type ’,’ type ’]’ #MapType
| ’Tuple’ ’[’ type ( ’,’ type)* ’]’ #TupleType
| ’Record’ ’[’ param ( ’,’ param)* ’]’ #RecordType
| ( ’Nat’ | ’�’ ) ’[’ exp ’]’ #NatType
| ’Set’ ’[’ type ’]’ #SetType
| ’Array’ ’[’ exp ’,’ type ’]’ #ArrayType
| ident #IdentifierType
;

// ---------------------------------------------------------------------------
// system entities
// ---------------------------------------------------------------------------

// system specification
systemspec :
’invariant’ exp EOS #InvariantSystemSpec

| ’decreases’ exp ( ’,’ exp)* EOS #DecreasesSystemSpec
;

// system variable
var :
’var’ ident ’:’ type ( ( ’:=’ | ’:=’ | ’=’ ) exp )? EOS

;

// system action
action :
’(’ ( param ( ’,’ param)* )? ’)’ ( ’with’ exp EOS )? ’{’ ( command )* ’}’

# CommandAction
| ’(’ ( param ( ’,’ param)* )? ’)’ ( ’with’ exp EOS )? ’=’ exp EOS

# FunctionAction
| ’(’ ( param ( ’,’ param)* )? ’)’ ( ’with’ exp EOS )? ( ’⇔’ | ’<=>’ ) exp EOS

# PredicateAction
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;

// components
component :
’component’ ident ( ’[’ exp ’]’ )?
’{’ ( var )* ( ’init’ action )? ( caction )* ’}’

;

// component actions
caction:
’action’ ( ’[’ exp ’]’ )? ident action

;

// ---------------------------------------------------------------------------
// auxiliaries
// ---------------------------------------------------------------------------

qvar :
qvcore ( ’,’ qvcore )* #QuantifiedVariable

;

qvcore :
ident ’:’ type ( ’with’ exp )? #IdentifierTypeQuantifiedVar

| ident ( ’∈’ | ’isin’ ) exp ( ’with’ exp )? #IdentifierSetQuantifiedVar
;

binder : ident ’=’ exp ;

pcommand :
ident’->’ command #IdentifierPatternCommand

| ident’(’ param ( ’,’ param)* ’)’ ’->’ command #ApplicationPatternCommand
| ’_’ ’->’ command #DefaultPatternCommand
;

pexp :
ident’->’ exp #IdentifierPatternExp

| ident’(’ param ( ’,’ param)* ’)’ ’->’ exp #ApplicationPatternExp
| ’_’ ’->’ exp #DefaultPatternExp
;

param : ident ’:’ type ;

ritem: ident ’=’ rident ( ’|’ rident)* ;

eident : ident ’:’ exp ;

rident :
ident #RecIdentifier

| ident ’(’ type ( ’,’ type)* ’)’ #RecApplication
;

sel :
’[’ exp ’]’ #MapSelector

| ’.’ decimal #TupleSelector
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| ’.’ ident #RecordSelector
;

multiple :
#IsNotMultiple

| ’multiple’ #IsMultiple
;

ident : IDENT ;
decimal : DECIMAL ;

// ---------------------------------------------------------------------------
// lexical rules
// ---------------------------------------------------------------------------

// reserve leading underscore for internal identifiers
IDENT : [a-zA-Z][a-zA-Z_0-9]* ;
DECIMAL : [0-9]+ ;
EOS : ’;’ ;

// format string literals
STRING : ’"’ (ESC|.)*? ’"’ ;
fragment ESC : ’\\"’ | ’\\n’ | ’\\%’ | ’\\\\’;

WHITESPACE : [ \t\r\n\f]+ -> skip ;
LINECOMMENT : ’//’ .*? ’\r’? (’\n’ | EOF) -> skip ;
COMMENT : ’/*’ .*? ’*/’ -> skip ;

// matches any other character
ERROR : . ;

// ---------------------------------------------------------------------------
// end of file
// ---------------------------------------------------------------------------

C Example Specifications

In the following, we list the example specifications used in the tutorial.

C.1 Euclidean Algorithm
// ----------------------------------------------------------------------------
// Computing the greatest common divisor by the Euclidean Algorithm
// ----------------------------------------------------------------------------

val N: �;
type nat = �[N];

pred divides(m:nat,n:nat) ⇔ ∃p:nat. m·p = n;

fun gcd(m:nat,n:nat): nat
requires m , 0 ∨ n , 0;
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= choose result:nat with
divides(result,m) ∧ divides(result,n) ∧
¬∃r:nat. divides(r,m) ∧ divides(r,n) ∧ r > result;

val g:nat = gcd(N,N-1);

theorem gcd0(m:nat) ⇔ m,0 ⇒ gcd(m,0) = m;
theorem gcd1(m:nat,n:nat) ⇔ m , 0 ∨ n , 0 ⇒ gcd(m,n) = gcd(n,m);
theorem gcd2(m:nat,n:nat) ⇔ 1 ≤ n ∧ n ≤ m ⇒ gcd(m,n) = gcd(m%n,n);

proc gcdp(m:nat,n:nat): nat
requires m,0 ∨ n,0;
ensures result = gcd(m,n);

{
var a:nat := m;
var b:nat := n;
while a > 0 ∧ b > 0 do
invariant a , 0 ∨ b , 0;
invariant gcd(a,b) = gcd(old_a,old_b);
decreases a+b;

{
if a > b then
a := a%b;

else
b := b%a;

}
return if a = 0 then b else a;

}

fun gcdf(m:nat,n:nat): nat
requires m,0 ∨ n,0;
ensures result = gcd(m,n);
decreases m+n;

= if m = 0 then n
else if n = 0 then m
else if m > n then gcdf(m%n, n)
else gcdf(m, n%m);

proc gcdr(m:nat,n:nat): nat
requires m,0 ∨ n,0;
ensures result = gcd(m,n);
decreases m+n;

{
var result:nat = 0;
if m = 0 then
result := n;

else if n = 0 then
result := m;

else if m > n then
result := gcdr(m%n, n);

else
result := gcdr(m, n%m);

return result;
}
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proc main(): ()
{
choose m:nat, n:nat with m , 0 ∨ n , 0;
print m,n,gcdp(m,n);

}

C.2 Bubble Sort
// ----------------------------------------------------------------------------
// Sorting arrays by the Bubble Sort Algorithm
// ----------------------------------------------------------------------------

val N:�; val M:�;

type index = �[-N,N];
type elem = �[-M,M];
type array = Array[N, elem];

proc cswap(a:array, i:index, j:index): array
{
var b:array = a;
if b[i] > b[j] then
{
var x:elem := b[i];
b[i] := b[j];
b[j] := x;

}
return b;

}

proc bubbleSort(a:array): array
{
var b:array = a;
for var i:index := 0; i < N-1; i := i+1 do
{
for var j:index := 0; j < N-i-1; j := j+1 do
b := cswap(b,j,j+1);

}
return b;

}

C.3 Linear and Binary Search
// ----------------------------------------------------------------------------
// Linear and binary search in arrays
// ----------------------------------------------------------------------------

val N:�;
val M:�;

type int = �[-N,N];
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type elem = �[M];
type array = Array[N,elem];

proc search(a:array, x:elem): int
ensures result = -1 ⇒ ∀k:int with 0 ≤ k ∧ k < N. a[k] , x;
ensures result , -1 ⇒ 0 ≤ result ∧ result < N ∧

a[result] = x ∧ ∀k:int with 0 ≤ k ∧ k < result. a[k] , x;
{
var i:int = 0;
var r:int = -1;
while i < N ∧ r = -1 do
invariant 0 ≤ i ∧ i ≤ N;
invariant ∀j:int. 0 ≤ j ∧ j < i ⇒ a[j] , x;
invariant r = -1 ∨ (r = i ∧ a[r] = x);
decreases if r = -1 then N-i else 0;

{
if a[i] = x
then r := i;
else i := i+1;

}
return r;

}

proc bsearchp(a:array, x:elem, from: int, to: int): int
requires 0 ≤ from ∧ from-1 ≤ to ∧ to < N;
requires ∀k:int with from ≤ k ∧ k ≤ to-1. a[k] ≤ a[k+1];
ensures result = -1 ⇒ ∀k:int with from ≤ k ∧ k ≤ to. a[k] , x;
ensures result , -1 ⇒ from ≤ result ∧ result ≤ to ∧ a[result] = x;
decreases to-from+1;

{
var result:int;
if from > to then
result := -1;

else
{
val m:int = (from+to)/2;
if a[m] = x then
result := m;

else if a[m] < x then
result := bsearchp(a, x, m+1, to);

else
result := bsearchp(a, x, from, m-1);

}
return result;

}

fun bsearch(a:array, x:elem, from: int, to: int): int
requires 0 ≤ from ∧ from-1 ≤ to ∧ to < N;
requires ∀k:int with from ≤ k ∧ k ≤ to-1. a[k] ≤ a[k+1];
ensures result = -1 ⇒ ∀k:int with from ≤ k ∧ k ≤ to. a[k] , x;
ensures result , -1 ⇒ from ≤ result ∧ result ≤ to ∧ a[result] = x;
decreases to-from+1;

= if from > to then
-1
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else
let m = (from+to)/2 in
if a[m] = x then m else
if a[m] < x then bsearch(a, x, m+1, to)

else bsearch(a, x, from, m-1);

fun bsearch(a:array, x:elem): int
requires ∀k:int with 0 ≤ k ∧ k < N-1. a[k] ≤ a[k+1];
ensures result = -1 ⇒ ∀k:int with 0 ≤ k ∧ k < N. a[k] , x;
ensures result , -1 ⇒ 0 ≤ result ∧ result < N ∧ a[result] = x;

= bsearch(a, x, 0, N-1);

C.4 Insertion Sort
// ----------------------------------------------------------------------------
// Sorting arrays by the Insertion Sort Algorithm
// ----------------------------------------------------------------------------

val N:�;
val M:�;

type elem = �[M];
type array = Array[N,elem];
type index = �[N-1];

pred sorted(a:array, n:�[N]) ⇔
∀i:index. i < n-1 ⇒ a[i] ≤ a[i+1];

pred permuted(a:array, b:array) ⇔
∃p:Array[N,index].
(∀i:index,j:index with i < j ∧ j < N. p[i] , p[j]) ∧
(∀i:index with i < N. a[i] = b[p[i]]);

pred equals(a:array, b:array, from:�[N], to:�[-1,N-1]) ⇔
∀k:index with from ≤ k ∧ k ≤ to. a[k] = b[k];

proc sort(a:array): array
ensures sorted(result, N);
ensures permuted(a, result);

{
var b:array = a;
for var i:�[N]:=1; i<N; i:=i+1 do
invariant 1 ≤ i ∧ i ≤ N;
invariant sorted(b, i);
invariant permuted(a, b);
invariant equals(b, old_b, i, N-1);
decreases N-i;

{
var x:elem := b[i];
var j:�[-1,N] := i-1;
while j ≥ 0 ∧ b[j] > x do
invariant i = old_i;
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invariant x = old_b[i];
invariant -1 ≤ j ∧ j ≤ i-1;
invariant equals(b, old_b, i+1, N-1);
invariant equals(b, old_b, 0, j+1);
invariant ∀k:index with j+1 < k ∧ k ≤ i. b[k] = old_b[k-1];
invariant ∀k:index with j+1 ≤ k ∧ k < i. b[k] > x;
decreases j+1;

{
b[j+1] := b[j];
j := j-1;

}
b[j+1] := x;

}
return b;

}

proc main(): Unit
{
choose a: array;
print a, sort(a);

}

C.5 DPLL Algorithm
// ----------------------------------------------------------------------------
// SAT solving by the DPLL Algorithm
// ----------------------------------------------------------------------------

// the number of literals
val n: �; // e.g. 3;

// the raw types
type Literal = �[-n,n];
type Clause = Set[Literal];
type Formula = Set[Clause];
type Valuation = Set[Literal];

// a consistency condition
pred consistent(l:Literal,c:Clause) ⇔ ¬(l∈c ∧ -l∈c);

// the type restrictions
pred literal(l:Literal) ⇔ l,0;
pred clause(c:Clause) ⇔ ∀l∈c. literal(l) ∧ consistent(l,c);
pred formula(f:Formula) ⇔ ∀c∈f. clause(c);
pred valuation(v:Valuation) ⇔ clause(v);

// the satisfaction relation
pred satisfies(v:Valuation, l:Literal) ⇔ l∈v;
pred satisfies(v:Valuation, c:Clause) ⇔ ∃l∈c. satisfies(v, l);
pred satisfies(v:Valuation, f:Formula) ⇔ ∀c∈f. satisfies(v,c);

// the satisfiability and the validity of a relation
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pred satisfiable(f:Formula) ⇔
∃v:Valuation. valuation(v) ∧ satisfies(v,f);

pred valid(f:Formula) ⇔
∀v:Valuation. valuation(v) ⇒ satisfies(v,f);

// the negation of a formula
fun not(f: Formula):Formula =
{ c | c:Clause with clause(c) ∧ ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula)
requires formula(f);

⇔ formula(not(f));
theorem notValid(f:Formula)
requires formula(f);

⇔ valid(f) ⇔ ¬satisfiable(not(f));

// the literals of a formula
fun literals(f:Formula):Set[Literal] =
{l | l:Literal with ∃c∈f. l∈c};

// the result of setting a literal l in formula f to true
fun substitute(f:Formula,l:Literal):Formula =
{c\{-l} | c∈f with ¬(l∈c)};

// the recursive DPLL algorithm (without optimizations)
multiple pred DPLL(f:Formula)
requires formula(f);
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;

⇔

if f = ∅[Clause] then
>

else if ∅[Literal] ∈ f then
⊥

else
choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));

// the variables in a formula
fun vars(f:Formula): Set[�[n]] =
{ if l>0 then l else -l | l ∈ literals(f) };

// the maximum number of nodes in the search tree
val m = 2^(n+1)-1;

// the number of nodes in the search tree for f
fun size(f:Formula): �[m] = 2^(|vars(f)|+1)-1;

// the iterative DPLL algorithm (without optimizations)
proc DPLL2(f:Formula): Bool
requires formula(f);
ensures result ⇔ satisfiable(f);

{
var satisfiable: Bool := ⊥;
var stack: Array[n+1,Formula] := Array[n+1,Formula](∅[Clause]);

141



var number: �[n+1] := 0;
stack[number] := f;
number := number+1;
while ¬satisfiable ∧ number>0 do
invariant 0 ≤ number ∧ number ≤ n+1;
invariant number > 0 ∧ stack[number-1] , ∅[Clause] ∧

¬∅[Literal] ∈ stack[number-1] ⇒ number < n+1;
invariant satisfiable(f) ⇔ satisfiable ∨
∃i:�[n+1] with i<number. satisfiable(stack[i]);

decreases if satisfiable then 0 else∑
k:�[n] with k<number. size(stack[k]);

{
number := number-1;
var g:Formula := stack[number];
if g = ∅[Clause] then
satisfiable := >;

else if ¬∅[Literal]∈g then
{
choose l∈literals(g);
stack[number] := substitute(g,-l);
number := number+1;
stack[number] := substitute(g,l);
number := number+1;

}
}
return satisfiable;

}

proc main0(): ()
{
val f = {{1,2,3},{-1,2},{-2,3},{-3}};
val r = DPLL2(f);
print f,r;

}

// maximal sizes of clauses and formulas
val cn: �; // e.g. 2;
val fn: �; // e.g. 20;

// get set of formulas satisfying above restrictions
fun formulas(): Set[Formula] =
let
literals = { l | l:Literal with literal(l) },
clauses = { c | c ∈ Set(literals) with |c| ≤ cn ∧ clause(c) },
formulas = { f | f ∈ Set(clauses) with |f| ≤ fn ∧ formula(f) }

in formulas;

proc main1(): ()
{
// apply check to a specific set of formulas
check DPLL with formulas();

}

proc main2(): ()
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{
// apply non-determinism to checking
val formulas: Set[Formula] = formulas();
print "number: {1}", |formulas|;
choose f ∈ formulas;
val r = DPLL(f);
print f, r;

}

proc main3(): ()
{
// check formulas deterministically
val formulas: Set[Formula] = formulas();
print "number: {1}", |formulas|;
var i:�[2^20] := 0;
for f ∈ formulas do
{
val r = DPLL(f);
// print i, f, r;
if (i%100 = 0) then print i;
i := i+1;

}
}

C.6 DPLL Algorithm with Subtypes
// ----------------------------------------------------------------------------
// SAT solving by the DPLL Algorithm
// ----------------------------------------------------------------------------

// the number of literals
val n: �; // e.g. 3;

// maximal sizes of clauses and formulas
val cn: �; // e.g. 2;
val fn: �; // e.g. 20;

// the raw types and the variously constrained subtypes

type LiteralBase = �[-n,n];
type Literal = LiteralBase with value , 0;

type ClauseBase = Set[Literal];
pred clause(c:ClauseBase) ⇔ ∀l∈c. ¬(l∈c ∧ -l∈c);
type Clause = ClauseBase with |value| ≤ cn ∧ clause(value);

type FormulaBase = Set[Clause];
pred formula(f:FormulaBase) ⇔ ∀c∈f. clause(c);
type Formula = FormulaBase with |value| ≤ fn ∧ formula(value);

type Valuation = ClauseBase with clause(value);
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// the satisfaction relation
pred satisfies(v:Valuation, l:Literal) ⇔ l∈v;
pred satisfies(v:Valuation, c:Clause) ⇔ ∃l∈c. satisfies(v, l);
pred satisfies(v:Valuation, f:Formula) ⇔ ∀c∈f. satisfies(v,c);

// the satisfiability and the validity of a relation
pred satisfiable(f:Formula) ⇔ ∃v:Valuation. satisfies(v,f);
pred valid(f:Formula) ⇔ ∀v:Valuation. satisfies(v,f);

// the negation of a formula
fun not(f: Formula):Formula =
{ c | c:Clause with ∀d∈f. ∃l∈d. -l∈c };

theorem notFormula(f:Formula) ⇔ formula(not(f));
theorem notValid(f:Formula) ⇔ valid(f) ⇔ ¬satisfiable(not(f));

// the literals of a formula
fun literals(f:Formula):Set[Literal] =
{l | l:Literal with ∃c∈f. l∈c};

// the result of setting a literal l in formula f to true
fun substitute(f:Formula,l:Literal):Formula =
{c\{-l} | c∈f with ¬(l∈c)};

// the recursive DPLL algorithm (without optimizations)
multiple pred DPLL(f:Formula)
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;

⇔

if f = ∅[Clause] then
>

else if ∅[Literal] ∈ f then
⊥

else
choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));

// the variables in a formula
fun vars(f:Formula): Set[�[n]] =
{ if l>0 then l else -l | l ∈ literals(f) };

// the maximum number of nodes in the search tree
val m = 2^(n+1)-1;

// the number of nodes in the search tree for f
fun size(f:Formula): �[m] = 2^(|vars(f)|+1)-1;

// the iterative DPLL algorithm (without optimizations)
proc DPLL2(f:Formula): Bool
ensures result ⇔ satisfiable(f);

{
var satisfiable: Bool := ⊥;
var stack: Array[n+1,Formula] := Array[n+1,Formula](∅[Clause]);
var number: �[n+1] := 0;
stack[number] := f;
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number := number+1;
while ¬satisfiable ∧ number>0 do
invariant 0 ≤ number ∧ number ≤ n+1;
invariant number > 0 ∧ stack[number-1] , ∅[Clause] ∧

¬∅[Literal] ∈ stack[number-1] ⇒ number < n+1;
invariant satisfiable(f) ⇔ satisfiable ∨
∃i:�[n+1] with i<number. satisfiable(stack[i]);

decreases if satisfiable then 0 else∑
k:�[n] with k<number. size(stack[k]);

{
number := number-1;
var g:Formula := stack[number];
if g = ∅[Clause] then
satisfiable := >;

else if ¬∅[Literal]∈g then
{
choose l∈literals(g);
stack[number] := substitute(g,-l);
number := number+1;
stack[number] := substitute(g,l);
number := number+1;

}
}
return satisfiable;

}

C.7 A Client-Server System (Shared Variant)
// -------------------------------------------------------------------
// A client-server system. The server ensures mutual exclusion among
// clients: only one client at a time may enter the critical region.
// -------------------------------------------------------------------

val N = 3; axiom minN ⇔ N ≥ 1;
type Client = �[N-1];
type Client0 = �[N];
type PC = �[2];

// a command-oriented formulation of the system
shared system ClientServer1
{
var given: Client0; // the client allowed to enter (N, if none)
var waiting: Set[Client]; // the set of clients waiting to enter
var pc: Array[N,PC]; // the program counters of the clients
var req: Set[Client]; // the set of pending client requests
var ans: Set[Client]; // the set of pending server answers

// the mutual exclusion property
invariant ¬∃i1:Client,i2:Client with i1 < i2. pc[i1] = 2 ∧ pc[i2] = 2;

// further invariants (inductive, imply mutual exclusion)
invariant ∀i:Client with i = given.
(pc[i] = 0 ∧ i ∈ req) ∨ (pc[i] = 1 ∧ i ∈ ans) ∨

145



(pc[i] = 2 ∧ i < req ∧ i < ans);
invariant ∀i:Client with i ∈ waiting.
i , given ∧ pc[i] = 1 ∧ i < req ∧ i < ans;

invariant ∀i: Client with i ∈ req. i < ans;
invariant ∀i: Client with i ∈ ans. given = i;
invariant ∀i: Client with pc[i] = 0. i < ans ∧ (i ∈ req ⇒ i = given);
invariant ∀i: Client with pc[i] = 1. i ∈ req ∨ i ∈ waiting ∨ i ∈ ans;
invariant ∀i: Client with pc[i] = 2. i = given;

init()
{
given := N;
waiting := ∅[Client];
pc := Array[N,PC](0);
req := ∅[Client];
ans := ∅[Client];

}

// client i asks to enter the critical region
action cask(i:Client) with pc[i] = 0 ∧ i < req;
{
pc[i] := 1; req := req ∪ {i};

}

// client i gets permission to enter the critical region
action cget(i:Client) with pc[i] = 1 ∧ i ∈ ans;
{
pc[i] := 2; ans := ans \ {i};

}

// client i leaves the critical region and returns the permission
action cret(i:Client) with pc[i] = 2 ∧ i < req;
{
pc[i] := 0; req := req ∪ {i};

}

// server receives request from client i and immediately answers it
action sget(i:Client) with i ∈ req ∧ given = N ∧ i < ans;
{
req := req \ {i}; given := i; ans := ans ∪ {i};

}

// server receives request from client i and puts it on hold
action swait(i:Client) with i ∈ req ∧ given , N ∧ given , i;
{
req := req \ {i}; waiting := waiting ∪ {i};

}

// server gets permission back from client i
action sret1(i:Client) with i ∈ req ∧ given = i ∧ waiting = ∅[Client];
{
req := req \ {i}; given := N;

}
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// server gets permission back from client i and forwards it to client j
action sret2(i:Client,j:Client) with i ∈ req ∧ given = i ∧ j ∈ waiting ∧ j < ans;
{
req := req \ {i}; given := j; waiting = waiting \ {j}; ans := ans ∪ {j};

}
}

// a functional formulation of the system
shared system ClientServer2
{
var given: Client0; // the client allowed to enter (N, if none)
var waiting: Set[Client]; // the set of clients waiting to enter
var pc: Array[N,PC]; // the program counters of the clients
var req: Set[Client]; // the set of pending client requests
var ans: Set[Client]; // the set of pending server answers

// the mutual exclusion property
invariant ¬∃i1:Client,i2:Client with i1 < i2. pc[i1] = 2 ∧ pc[i2] = 2;

// further invariants (inductive, imply mutual exclusion)
invariant ∀i:Client with i = given.
(pc[i] = 0 ∧ i ∈ req) ∨ (pc[i] = 1 ∧ i ∈ ans) ∨
(pc[i] = 2 ∧ i < req ∧ i < ans);

invariant ∀i:Client with i ∈ waiting.
i , given ∧ pc[i] = 1 ∧ i < req ∧ i < ans;

invariant ∀i: Client with i ∈ req. i < ans;
invariant ∀i: Client with i ∈ ans. given = i;
invariant ∀i: Client with pc[i] = 0. i < ans ∧ (i ∈ req ⇒ i = given);
invariant ∀i: Client with pc[i] = 1. i ∈ req ∨ i ∈ waiting ∨ i ∈ ans;
invariant ∀i: Client with pc[i] = 2. i = given;

init() = 〈N,∅[Client],Array[N,PC](0),∅[Client],∅[Client]〉;

// client i asks to enter the critical region
action cask(i:Client) with pc[i] = 0 ∧ i < req;

= 〈given,waiting,pc with [i] = 1,req ∪ {i},ans〉;

// client i gets permission to enter the critical region
action cget(i:Client) with pc[i] = 1 ∧ i ∈ ans;

= 〈given,waiting,pc with [i] = 2,req,ans\{i}〉;

// client i leaves the critical region and returns the permission
action cret(i:Client) with pc[i] = 2 ∧ i < req;

= 〈given,waiting,pc with [i] = 0,req ∪ {i},ans〉;

// server receives request from client i and immediately answers it
action sget(i:Client) with i ∈ req ∧ given = N ∧ i < ans;

= 〈i,waiting,pc,req\{i},ans ∪ {i}〉;

// server receives request from client i and puts it on hold
action swait(i:Client) with i ∈ req ∧ given , N ∧ given , i;

= 〈given,waiting ∪ {i},pc,req\{i},ans〉;

// server gets permission back from client i
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action sret1(i:Client) with i ∈ req ∧ given = i ∧ waiting = ∅[Client];
= 〈N,waiting,pc,req\{i},ans〉;

// server gets permission back from client i and forwards it to client j
action sret2(i:Client,j:Client) with i ∈ req ∧ given = i ∧ j ∈ waiting ∧ j < ans;

= 〈j,waiting\{j},pc,req\{i},ans ∪ {j}〉;
}

// a logical formulation of the system (only manageable for N ≤ 3)
shared system ClientServer3
{
var given: Client0; // the client allowed to enter (N, if none)
var waiting: Set[Client]; // the set of clients waiting to enter
var pc: Array[N,PC]; // the program counters of the clients
var req: Set[Client]; // the set of pending client requests
var ans: Set[Client]; // the set of pending server answers

// the mutual exclusion property
invariant ¬∃i1:Client,i2:Client with i1 < i2. pc[i1] = 2 ∧ pc[i2] = 2;

// further invariants (inductive, imply mutual exclusion)
invariant ∀i:Client with i = given.
(pc[i] = 0 ∧ i ∈ req) ∨ (pc[i] = 1 ∧ i ∈ ans) ∨
(pc[i] = 2 ∧ i < req ∧ i < ans);

invariant ∀i:Client with i ∈ waiting.
i , given ∧ pc[i] = 1 ∧ i < req ∧ i < ans;

invariant ∀i: Client with i ∈ req. i < ans;
invariant ∀i: Client with i ∈ ans. given = i;
invariant ∀i: Client with pc[i] = 0. i < ans ∧ (i ∈ req ⇒ i = given);
invariant ∀i: Client with pc[i] = 1. i ∈ req ∨ i ∈ waiting ∨ i ∈ ans;
invariant ∀i: Client with pc[i] = 2. i = given;

init() ⇔
given0 = N ∧ waiting0 = ∅[Client] ∧
pc0 = Array[N,PC](0) ∧ req0 = ∅[Client] ∧ ans0 = ∅[Client];

// client i asks to enter the critical region
action cask(i:Client) with pc[i] = 0 ∧ i < req;

⇔ given0 = given ∧ waiting0 = waiting ∧
pc0 = pc with [i] = 1 ∧ req0 = req ∪ {i} ∧ ans0 = ans;

// client i gets permission to enter the critical region
action cget(i:Client) with pc[i] = 1 ∧ i ∈ ans;

⇔ given0 = given ∧ waiting0 = waiting ∧
pc0 = pc with [i] = 2 ∧ req0 = req ∧ ans0 = ans\{i};

// client i leaves the critical region and returns the permission
action cret(i:Client) with pc[i] = 2 ∧ i < req;

⇔ given0 = given ∧ waiting0 = waiting ∧
pc0 = pc with [i] = 0 ∧ req0 = req ∪ {i} ∧ ans0 = ans;

// server receives request from client i and immediately answers it
action sget(i:Client) with i ∈ req ∧ given = N ∧ i < ans;

⇔ given0 = i ∧ waiting0 = waiting ∧
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pc0 = pc ∧ req0 = req\{i} ∧ ans0 = ans ∪ {i};

// server receives request from client i and puts it on hold
action swait(i:Client) with i ∈ req ∧ given , N ∧ given , i;

⇔ given0 = given ∧ waiting0 = waiting ∪ {i} ∧
pc0 = pc ∧ req0 = req\{i} ∧ ans0 = ans;

// server gets permission back from client i
action sret1(i:Client) with i ∈ req ∧ given = i ∧ waiting = ∅[Client];

⇔ given0 = N ∧ waiting0 = waiting ∧
pc0 = pc ∧ req0 = req\{i} ∧ ans0 = ans;

// server gets permission back from client i and forwards it to client j
action sret2(i:Client,j:Client) with i ∈ req ∧ given = i ∧ j ∈ waiting ∧ j < ans;

⇔ given0 = j ∧ waiting0 = waiting\{j} ∧
pc0 = pc ∧ req0 = req\{i} ∧ ans0 = ans ∪ {j};

}
// ------------------------------------------------------------------------
// end of file
// ------------------------------------------------------------------------

C.8 A Client-Server System (Distributed Variant)
// -------------------------------------------------------------------
// A client-server system (distributed version). The server ensures
// mutual exclusion among clients: only one client at a time
// may enter the critical region.
// -------------------------------------------------------------------

val N = 5; axiom minN ⇔ N ≥ 1; // the number of clients
val B = N; // the size of the server action buffers

// the client identifiers (including the special value N)
type Id = �[N];

// the number of requests in buffer b of size bn from client i
fun number(b:Array[B,Record[i:Id]],bn:�[B],i:Id):�[B] =
#k:�[B] with k < bn ∧ b[k].i = i;

distributed system ClientServer
{
// the mutual exclusion property
invariant ∀i1:Id with i1 < N, i2:Id with i2 < N.
(Client[i1].use = 1 ∧ Client[i2].use = 1 ⇒ i1 = i2);

// an inductive invariant that implies mutual exclusion
invariant ∀i:Id with i < N.
(Client[i].ask_number + Client[i].enter_number + Client[i].exit_number
+ number(Server.request, Server.request_number, i) = 1);

invariant ∀i:Id with i < N.
number(Server.giveback, Server.giveback_number, i) ≤ 1;

invariant ∀i:Id with i < N.
number(Server.giveback, Server.giveback_number, i) = 1 ⇒
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Client[i].enter_number = 0 ∧ Client[i].exit_number = 0;
invariant ∀i:Id with i < N.
(Client[i].req = 1 ⇔
number(Server.request, Server.request_number, i) = 1 ∨
Client[i].enter_number = 1);

invariant ∀i:Id with i < N.
(Client[i].use = 1 ⇔ Client[i].exit_number = 1);

invariant ∀i:Id with i < N.
(Server.client = i ⇔
Client[i].enter_number = 1 ∨ Client[i].exit_number = 1 ∨
number(Server.giveback, Server.giveback_number, i) = 1);

// the server component with action buffers of size B
component Server
{
var client:Id;
init()
{
client := N;

}
action[B] request(i:Id) with client = N;
{
client := i;
send Client[i].enter();

}
action[B] giveback(i:Id)
{
client := N;

}
}

// the N client components (with action buffers of size 1)
component Client[N]
{
var req: �[1];
var use: �[1];
init()
{
req := 0;
use := 0;
send Client[this].ask();

}
action ask()
{
req := 1;
send Server.request(this);

}
action enter()
{
req := 0;
use := 1;
send Client[this].exit();

}
action exit()
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{
use := 0;
send Server.giveback(this);
send Client[this].ask();

}
}

}

// ------------------------------------------------------------------------
// end of file
// ------------------------------------------------------------------------

151


	Introduction
	A Quick Start
	System Overview
	Specification Language
	Language Features
	Execution and Model Checking
	Parallelism
	Validating Specifications
	Verifying Implementations
	Visualizing Execution Traces
	Visualizing Evaluation Trees
	SMT Solving
	Nondeterministic Systems

	More Examples
	Linear and Binary Search
	Insertion Sort
	DPLL Algorithm
	DPLL Algorithm with Subtypes
	A Client-Server System (Shared Variant)
	A Client-Server System (Distributed Variant)

	Related Work
	Conclusions and Future Work
	The Software System
	Installing the Software
	Running the Software
	The User Interface
	Distributed Execution
	Visualization

	The Specification Language
	Lexical and Syntactic Structure
	Specifications and Declarations
	Types
	Values
	Functions
	Systems

	Commands
	Declarations and Assignments
	Choices
	Conditionals
	Loops
	Miscellaneous

	Types
	Expressions
	Constants and Applications
	Formulas
	Equalities and Inequalities
	Integers
	Sets
	Tuples
	Records
	Arrays
	Maps
	Recursive Values
	Units
	Conditionals
	Binders
	Choices
	Miscellaneous

	Quantified Variables
	ANTLR 4 Grammar

	Example Specifications
	Euclidean Algorithm
	Bubble Sort
	Linear and Binary Search
	Insertion Sort
	DPLL Algorithm
	DPLL Algorithm with Subtypes
	A Client-Server System (Shared Variant)
	A Client-Server System (Distributed Variant)


