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Goals

1 Elaborate on the phenomenon of Giant, Freak, Monster, or Rogue Waves in the ocean.

2 Give the simplest possible explanation: in a linear approximation (sic!).

3 Present computer simulations.

4 Discuss some related nonlinear models – second Painlevé transcendents, etc.
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Rogue Wave: A Perfect Storm
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Rogue Wave: A Moon Night
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Ivan Aivazovsky: The Ninth Wave
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Rogue Waves: Internet Sources

National Weather Center: official website

http : //www.opc.ncep.noaa.gov/perfectstorm/mpc_ps_rogue.shtml

Wikipedia: article

http : //en.wikipedia.org/wiki/Rogue_wave

YouTube: movie

http : //www.youtube.com/watch?v = yLzgzvVxUV4

Draupner Monster Wave: from BBC documentary

http : //www.youtube.com/watch?v = KJOBOvJEOg

The Deep Blue Monsters: web article

http : //mylifeatsea.blogspot.co.at/2008/01/deep− blue−monsters.html
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A Marine Legend: Basic Facts and How to Explain Them?

1 Rogue waves have been a part of marine folklore for centuries — single waves, which
are extremely unlikely as judged by the Raleigh distribution, are usually called freak
waves.

2 They are generally considered to be unexpectedly high waves which in some instances
come from a direction different from the predominant waves in the local area. A single
rogue wave has certainly been known to spell disaster for the mariner.

3 The freak event that occurred on January 1, 1995 under the Draupner platform in the
North Sea provides evidence that such waves can occur in the open ocean. During this
first scientifically recorded event, an extreme crest with an amplitude of 18.5 m occurred.
The maximal wave height of 25.6 m was much more than twice the significant wave
height of about 10.8 m.

4 Rogue waves have, over the past twenty or thirty years, come to be recognized as a
unique phenomena albeit with several possible causes (from The National Weather
Center Website):
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Possible Causes:

1 Constructive interference: Several different wave trains of differing speeds and directions meet at
the same time. The heights of the crests are additive so that an extreme wave may result when very
high waves are included in the wave trains. The effect is normally short lived since the wave trains
continue to separate and move on.

2 Focusing of wave energy: When storm forced waves are developed in a water current counter to
the wave direction an interaction can take place which results in a shortening of the wave frequency.
The result is the superimposing of the wave trains and the generation of extreme waves. Examples
of currents where these are sometimes seen are the Gulf Stream and Agulhas current. Extreme wave
developed in this regime tend to be longer lived.

3 Normal part of the wave spectrum: The generation of waves on water results not in a single wave
height but in a spectrum of waves distributed from the smallest capillary waves to large waves.
Within this spectrum there is a finite possibility of each of the wave heights to occur with the largest
waves being the least likely. The wave height most commonly observed and forecast is the
significant wave height. The random nature of waves implies that individual waves can be
substantially higher than the significant wave height. Observations and theory show that the highest
individual waves in a typical storm with typical duration to be approximately two times the
significant wave height. Waves higher than roughly twice the significant wave height fall into the
category of extreme or rogue waves.
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Hydrodynamics, Water Waves, and Modulation Instability

Stokes wave

The theory of deep water waves, nonlinear Schrödinger equation, and wave statistics:

V. E. Zakharov and A. B. Shabat, Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in
nonlinear media, Zh. Eksp. Teor. Fiz. 61 (1971), 118–134 [Sov. Phys. JETP 34 (1972) #1, 62–69].

G. B. Whitham, Linear and Nonlinear Waves , Wiley-Interscience, New York, 1974.

R. Smith, Giant waves, J. Fluid Mech. 77 (1976) #3, 417–431.

R. S. Johnson, On the modulation of water waves in the neighbourhood of kh ≈ 1.363, Proc. Royal Soc. London, Ser. A 357
(1977), 131–141.

H. T. Wist, D. Myrhang, and H. Rue, Joint distributions of successive wave crest heights and successive wave trouth depths for
second-order nonlinear waves, Journal of Ship Research 46 (2002) # 3, 175–185.

A. Scott, Nonlinear Science: Emergence and Dynamics of Coherent Structures , Second Edition, Oxford University Press, Oxford,
2003.

A. Scott (Editor), Encyclopedia of Nonlinear Science , Routledge, New York and London, 2005.

F. Fedele, Extreme events in nonlinear random seas, Journal of Offshore Mechanics and Arctic Engineering 128 (2006), 11–16.

V. E. Zakharov and L. A. Ostrovsky, Modulation instability: The beginning, Physica D 238 (2009), 540–548.

(See also the numerous references therein.)
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Hydrodynamical Models (second Painlevé transcendents)

From hydrodynamics to the nonlinear Schrödinger equations and giant waves:

Ronald Smith, Giant waves, J. Fluid Mech. 77 (1976) #3, 417–431. pdf

R. S. Johnson, On the modulation of water waves in the neighbourhood of kh ≈ 1.363, Proc. Royal

Soc. London, Ser. A 357 (1977), 131–141. pdf

(Smith) It is suggested that giant waves, as observed on the Agulhas Current, occur where the wave groups
are reflected by the current. The local behavior of the wave amplitude is modelled by the nonlinear
Schrödinger equation

iaτ = aρρ − ρa+ β|a|2a.
For waves of a given incident wave amplitude the steady solutions are stable.

1. Introduction During the closure of the Suez Canal a number of ships, particularly oil tankers, have
reported extensive damage caused by giant waves off the southeast coast of South Africa (Mallory 1974;
Sturm 1974; Sanderson 1974). Two particularly unfortunate vessels are the World Glory, which broke in
two and sank in June 1968, and the Neptune Xapphire, which lost 60 m of its bow section in August 1973.
We can only speculate that giant waves may account for many of the ships which have been lost without
trace off this coast. When returning from the Persian Gulf the tankers take advantage of the rapid Agulhas
Current, and all except one of the eleven incidents listed by Captain Mallory (1974) involved vessels riding
on the current. By examining weather charts, Mallory showed that when the incidents occurred the
dominant wind-produced waves were opposed by the current...

ROGUE WAVES Sergei Suslov SoMSS 10 / 25
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Hydrodynamical Model (higher nonlinear approximations)

(Johnson) In I967, T. Brooke Benjamin showed that periodic wave-trains on the surface of water could be
unstable. If the undisturbed depth is h, and k is the wavenumber of the fundamental, then the Stokes wave
is unstable if kh ≥ σ0, where σ0 ≈ 1.363. The instability is provided by the growth of waves with a
wavenumber close to k. This result is associated with an almost resonant quartet wave interaction and can
be obtained by examining the cubic nonlinearity in the nonlinear Schrödinger equation for the modulation
of harmonic water waves: this term vanishes (sic!) at kh = σ0. In this paper the multiple-scales
technique is adapted in order to derive the appropriate modulation equation for the amplitude of the
fundamental when kh is near to σ0. The resulting equation takes the form

iAT − a1Aζζ − a2A|A|2 + a3A|A|4 + i(a4|A|2Aζ − a5A(|A|2)ζ)− a6AψT = 0,

where ψζ = |A|2, and the ai are real numbers. [Coefficients a3 − a6 are given on kh ≈ 1.363 only.]
This equation is uniformly valid in that it reduces to the classical non-linear Schrödinger equation in the
appropriate limit and is correct when a2 = 0, i. e. at kh = σ0.

The equation is used to examine the stability of the Stokes wave and the new inequality for stability is
derived: this now depends on the wave amplitude. If the wave is unstable then it is expected that solitons
will be produced: the simplest form of soliton is therefore examined by constructing the corresponding
ordinary differential equation. Some comments are made concerning the phase-plane of this equation, but
more analytical details are extracted by treating the new terms as perturbations of the classical Schrödinger
soliton. It is shown that the soliton is both flatter (symmetrically) and skewed forward, although the
skewing eventually gives way to an oscillation above the mean level. pdf
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Draupner Monster Wave: A Linear Model? Yes! - I think so!

THE SHAPE OF THE DRAUPNER WAVE OF 1ST JANUARY 1995 pdf

P. H. Taylor (paul.taylor@eng.ox.ac.uk)
Department of Engineering Science
University of Oxford

On 1st January 1995 during a relatively severe winter storm at the Draupner platform in the central North
Sea, a downwards-pointing laser sensor recorded a time history containing a remarkably large wave. This
presentation will discuss the characteristics of this wave with a peak crest elevation of 18.5m, showing that
most of its features can be explained in terms of

1. the average shape of an extreme in a linear random Gaussian process being the scaled auto-correlation function
2. the bound wave structure familiar from Stokes regular wave theory
3. local spectral broadening that occurs when deep water 3rd order wave-wave interactions are important.

However, there are several curious features of the large wave still to be explained.

Firstly, there is the absence of any local wave group set-down beneath the large crest, instead there is a
considerable local set-up. This set-up is a robust feature of the ‘freak’, distinguishing it all other large (but
admittedly not as large) waves in the Draupner records for 1st January.

Secondly, the statistics of the 2nd order sum bound harmonics imply that the non-dimensional water depth
is kd∼1.6, surprisingly close to the critical value of kd=1.36 where the 3rd order wave-wave
interactions in the 1-D NLS-equation switch from focusing to de-focusing. (sic!)

ROGUE WAVES Sergei Suslov SoMSS 12 / 25
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Linear Model: Self-Accelerating Solutions

The time-dependent Schrödinger equation for a free particle

iψt + ψxx = 0, (1)

by the following substitution

ψ (x, t) = eig(x−2gt2/3)t g1/3F
(
g1/3

(
x− gt2

))
, g = a/2 (2)

(a is the acceleration) can be transformed into the Airy equation

F ′′ = zF, z = g1/3
(
x− gt2

)
, (3)

whose bounded solutions are the Airy functions F = kAi(z) (up to a multiplication constant k) with

well-known asymptotics as z → ±∞.

ROGUE WAVES Sergei Suslov SoMSS 13 / 25
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Linear Model: Self-Accelerating Solutions (cont.)

Combining with the familiar Galilean transformation,

ψ (x, t) = ei(x−vt/2)v/2 χ (x− vt, t) (4)

(v is the velocity), one obtains a more general solution of this type

ψ (x, t) = ei(x−vt/2)v/2+ig(x−vt−2gt2/3)t

×g1/3F
(
g1/3

(
x− vt− gt2

))
. (5)

These freely accelerating Airy beams were theoretically predicted by Berry and Balazs in 1979 in the

context of quantum mechanics. They reveal certain remarkable features. The quantity |ψ (x, t)|2 not only

remains unchanged in form but also constantly accelerates in empty space. There is no violation of

Ehrenfest’s theorem because the Airy function is not square integrable. The center of mass of this solution

does not exist.

ROGUE WAVES Sergei Suslov SoMSS 14 / 25
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Free Particle: Maximum Kinematical Invariance Group

The largest (known) set of space-time transformations that leaves the system invariant:

iψt + ψxx = 0 → iχτ + χξξ = 0, (6)

under the following transformation:

ψ (x, t) =
1√

µ (0) (1 + 4α (0) t)
(7)

× exp i
(
α (0)x2 + δ (0)x− δ2 (0) t

1 + 4α (0) t
+ κ (0)

)
×χ
(
β (0)x− 2β (0) δ (0) t

1 + 4α (0) t
+ ε (0) ,

β2 (0) t
1 + 4α (0) t

− γ (0)
)
.

(It is usually called the Schrödinger group for a free particle.)

U. Niederer, The maximum kinematical invariance group of the free Schrödinger equation, Helv. Phy. Acta 45 (1972), 802–810.

U. Niederer, The maximum kinematical invariance group of the harmonic oscillator, Helv. Phy. Acta 46 (1973), 191–200.

R. M. López, S. K. Suslov, and J. M. Vega-Guzmán, Reconstructing the Schrödinger groups, (to appear in Physica Scripta, 12–2012).
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Harmonic Oscillator: Maximum Kinematical Invariance Group

The largest set of space-time transformations that leaves the system invariant.

€ 

iψ t +ψxx = x 2ψ

€ 

iψ 't ' +ψ'x 'x' = x '2ψ'

€ 

iχτ + χξξ = 0

€ 

iχ 'τ ' +χ 'ξ 'ξ ' = 0
€ 

T0

€ 

T1 € 

S

€ 

S−1

U. Niederer, The maximum kinematical invariance group of the Free Schrödinger equation, Helv. Phy. Acta 45 (1972), 802–810.

U. Niederer, The maximum kinematical invariance group of the harmonic oscillator, Helv. Phy. Acta 46 (1973), 191–200.

R. M. López, S. K. Suslov, and J. M. Vega-Guzmán, Reconstructing the Schrödinger groups, (to appear in Physica Scripta, December
2012).
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Subgroups of the Schrödinger Group

The Schrödinger group includes the familiar Galilean transformations given by:

ψ (x, t) = exp
[
i

(
V

2
x−

V 2

4
t

)]
χ (x− V t+ x0, t− t0) , (8)

when α (0) = κ (0) = 0, β (0) = µ (0) = 1, γ (0) = t0, ε (0) = x0 and δ (0) = V/2. These are
supplemented by dilatations,

ψ (x, t) = χ
(
lx, l2t

)
, (9)

where α (0) = γ (0) = δ (0) = ε (0) = κ (0) = 0, µ (0) = 1 and β (0) = l; and expansions,

ψ (x, t) =
1

√
1 +mt

exp
(
i

mx2

4 (1 +mt)

)
χ

(
x

1 +mt
,

t

1 +mt

)
(10)(

µ (0) = 1 ( 6= 0) , µ′ (0) = m
)
,

ψ (x, t) =
1
√

2t
exp
(
i
x2

4t

)
χ

(
−
x

2t
, −

1
4t

)
(11)(

µ (0) = 0, µ′ (0) = 2 ( 6= 0)
)

with β (0) = 1, δ (0) = ε (0) = κ (0) = 0. (Action of any of these transformations on a given
solution results in another solution.)

ROGUE WAVES Sergei Suslov SoMSS 17 / 25
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Linear Case: Self-Acceleration and Self-Compressing Solutions

Freak Wave Solutions: An expansion transformation, namely formula (10) with m = −1/t1, gives the
following self-accelerating solution of the free particle equation, iψt + ψxx = 0, in terms of Airy
function:

ψ (x, t) =

√
|t1|
t1 − t

exp
(
ig

(
x−

2g
3

t1t2

t1 − t

)
t21t

(t1 − t)2 −
ix2

4 (t1 − t)

)
(12)

×g1/3Ai

(
g1/3

(
x− g

t1t2

t1 − t

)
t1

t1 − t

)
,

which holds for t < t1. The degenerate case, when t1 = 0, can be analyzed with the help of
transformation (11):

ψ (x, t) =
1
√

2t
exp
(
i

4t

(
x2 +

(
x+

g

12t

)
g

2t

))
g1/3Ai

(
−
g1/3

2t

(
x+

g

8t

))
. (13)

From now on, we choose t1 > 0 for the sake of simplicity. It is worth noting that the most general
six-parameter solution of this kind can be obtained by formula (7).

A. Mahalov and S. K. Suslov, An “Airy gun”: Self-accelerating solutions of the time-dependent Schrödinger equation in vacuum,

Phys. Lett. A 377 (2012), 33–38. PLA

ROGUE WAVES Sergei Suslov SoMSS 18 / 25
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Finite Energy Airy Beams

Quasi-diffraction free Airy beams are experimentally demonstrated in paraxial optics:

G. A. Siviloglou and D. N. Christodoulides, Accelerating finite energy Airy beams, Opt. Lett. 32 (2007) #2, 979–981.

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, Observation of accelerating Airy beams, Phys. Rev. Lett. 99
(2007), 213901 (4 pages).

Finite Energy Solution: Applying formula (10) with m = −1/t1 to (5), one obtains a more general
solution of this kind:

ψ (x, t) =

√
|t1|
t1 − t

exp
(
i
x− vt/2
t1 − t

vt1

2
−

ix2

4 (t1 − t)

)
(14)

× exp
(
ig

(
x− vt−

2g
3

t1t2

t1 − t

)
t21t

(t1 − t)2

)
×g1/3Ai

(
g1/3

(
x− vt− g

t1t2

t1 − t

)
t1

t1 − t

)
,

which simplifies to (12) when v = 0. The corresponding initial condition is given by

ψ (x, 0) = e−ix
2/4t1eivx/2g1/3Ai

(
g1/3x

)
. (15)

ROGUE WAVES Sergei Suslov SoMSS 19 / 25
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Finite Energy Airy Beams (cont.)

By choosing Im v = −ε with ε > 0, we arrive at a variant of quasi-diffraction-free finite energy Airy
beam which is convenient for experimental observation. Their L2-norm is finite:

||ψ||2 =
∫ ∞
−∞
|ψ (x, t)|2 dx =

∫ ∞
−∞
|ψ (x, 0)|2 dx =

√
g

4πε
exp
(

ε3

12g

)
. (16)

Mathematica allows to derive all (Airy-type) solutions automatically!

Koutschan’s E-Mail: Dec 4, 2012

Mathematica Notebook: deriving Airy solutions automatically

General analytical approach: Proc. Amer. Math. Soc. J. Russian Laser Res.

Koutschan’s Mathematica Proof: Koutschan.nb
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AiryCheckingDirectlyPDE.nb
http://www.ams.org/journals/proc/2012-140-09/S0002-9939-2011-11176-6/
http://link.springer.com/article/10.1007/s10946-011-9223-1?null
Koutschan.nb
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Computer Simulation of a Killer Wave

Features of Killer Waves:
Mallory (1974) describes freak waves as having
a steeper forward face preceded by a deep
trough, or ‘hole in the sea’.
In Bacon’s words (1991), these waves ‘do not
belong to the traditional short term statistical
distributions used for ocean waves. The waves
are too high, too asymmetric and too steep.’

(Loading movie...)

See Mathematica notebook AiryAnimatePLA for more information: nb
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GWaveVideo.mov
Media File (video/quicktime)

AiryAnimatePLA.nb
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Back to Nonlinear Models and Other Applications

1 The study of propagating nonlinear Airy–Painlevé optical pulses in dispersive fibers was initiated
by Giannini and Joseph in 1989 (see also Smith 1976 for an earlier application of the second
Painlevé transcendent in hydrodynamics) and has been continued in recent publications. Similar
results hold for a nonlinear parabolic equation in the ionospheric plasma physics.

2 In the linear case, where self-accelerating Airy beams were first introduced by Berry and Balazs in
1979, we use the symmetry of free Schrödinger equation in order to obtain a more general solution.
On the contrary, the 1D cubic nonlinear Schrödinger equation is no longer preserved under the
expansion transformation. But the same symmetry holds for the quintic nonlinear Schrödinger
equation, which is thus invariant under the action of this group of transformations. This is where the
blow up, namely a singularity such that the wave amplitude tends to infinity in finite time, does
exist. Another classical blow up example, where the same symmetry holds, is the 2D cubic
nonlinear Schrödinger equation (Talanov 1970, Kuznetsov and Turitsyn 1985). The corresponding
effects also deserve an experimental study in nonlinear optics.

3 Advanced nonlinear models of rogue waves include the framework of the generalized NL
Schrödinger equation accounting for six- and eight-wave interactions, Zakharov’s integral equation,
two-dimensional models, extensive numerical simulations of wave statistics, stochastic models, etc.
(See, for example, a recent preprint arXiv:1202.5763 , articles PLA and JOMAE , and the
references therein.)
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http://arxiv.org/pdf/1202.5763.pdf 
http://www.sciencedirect.com/science/article/pii/S0375960108017945 
http://asmedl-demo.aip.org/OffshoreMechanics/resource/1/jmoeex/v128/i1/p11_s1?isAuthorized=no 
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