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Abstract

Let N(≤ m,n) denote the number of partitions of n with rank not greater than
m and let M(≤ m,n) denote the number of partitions of n with crank not greater
than m. Bringmann and Mahlburg observed that N(≤ m,n) ≤M(≤ m,n) ≤ N(≤
m + 1, n) for m < 0 and 1 ≤ n ≤ 100 and conjectured that these two inequalities
may also be restated in terms of ordered lists of partitions.

Andrews, Dyson, and Rhoades showed that the conjectured inequality N(≤
m,n) ≤ M(≤ m,n) of Bringmann and Mahlburg is equivalent to their conjecture
on the unimodal of spt-crank. We have proved the conjecture of Andrews, Dyson,
and Rhoades by a purely combinatorial argument. Recently, we also proved that
the inequality M(≤ m,n) ≤ N(≤ m + 1, n) holds for m < 0 and n ≥ 1. Based
on these two inequalities, we are led to a bijection τn between the set of partitions
of n and the set of partitions of n such that |crank(λ)| − |rank(τn(λ))| = 0, or 1.
We then use this bijection to show that spt(n) ≤

√
2np(n), where spt(n) counts the

total number of smallest parts in all partitions of n.
Let N(m,n) be the number of partitions of n with rank m. Recently, Chan

and Mao showed that N(m,n) ≥ N(m,n − 1) for n ≥ 12 and n 6= m + 2, and
N(m,n) ≥ N(m + 2, n) for n ≥ 0 and 0 ≤ m ≤ n − 2. They raised the question
of establishing similar inequalities for M(m,n), the number of partitions of n with
crank m. We establish two monotonicity properties of M(m,n). More precisely,
we show that M(m,n) ≥ M(m,n − 1) for n ≥ 14 and 0 ≤ m ≤ n − 2, and
M(m− 1, n) ≥ M(m,n) for n ≥ 43 and 1 ≤ m ≤ n− 1. As a corollary, we deduce
that M(m,n) ≥M(m+ 2, n) for n ≥ 4 and 0 ≤ m ≤ n− 2.
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