@inproceedings{RISC4706,author = {Shaoshi Chen and Maximilian Jaroschek and Manuel Kauers and Michael F. Singer},
title = {{Desingularization Explains Order-Degree Curves for Ore Operators}},
booktitle = {{Proceedings of ISSAC'13}},
language = {english},
abstract = { Desingularization is the problem of finding a left multiple of a given Ore
operator in which some factor of the leading coefficient of the original
operator is removed.
An order-degree curve for a given Ore operator is a curve in the $(r,d)$-plane
such that for all points $(r,d)$ above this curve, there exists a left
multiple of order~$r$ and degree~$d$ of the given operator.
We give a new proof of a desingularization result by Abramov and van Hoeij
for the shift case, and show how desingularization implies order-degree curves
which are extremely accurate in examples.
},
pages = {157--164},
isbn_issn = {isbn 978-1-4503-2059-7/13/06},
year = {2013},
editor = {Manuel Kauers},
refereed = {yes},
length = {8}
}