@techreport{RISC6620,author = {Koustav Banerjee and Peter Paule and Cristian-Silviu Radu and Carsten Schneider},
title = {{Error bounds for the asymptotic expansion of the partition function}},
language = {english},
abstract = {Asymptotic study on the partition function $p(n)$ began with the work of Hardy and Ramanujan. Later Rademacher obtained a convergent series for $p(n)$ and an error bound was given by Lehmer. Despite having this, a full asymptotic expansion for $p(n)$ with an explicit error bound is not known. Recently O'Sullivan studied the asymptotic expansion of $p^{k}(n)$-partitions into $k$th powers, initiated by Wright, and consequently obtained an asymptotic expansion for $p(n)$ along with a concise description of the coefficients involved in the expansion but without any estimation of the error term. Here we consider a detailed and comprehensive analysis on an estimation of the error term obtained by truncating the asymptotic expansion for $p(n)$ at any positive integer $n$. This gives rise to an infinite family of inequalities for $p(n)$ which finally answers to a question proposed by Chen. Our error term estimation predominantly relies on applications of algorithmic methods from symbolic summation. },
number = {22-13},
year = {2022},
month = {September},
note = {arXiv:2209.07887 [math.NT]},
keywords = {partition function, asymptotic expansion, error bounds, symbolic summation},
length = {43},
license = {CC BY 4.0 International},
type = {RISC Report Series},
institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},
address = {Altenberger Straße 69, 4040 Linz, Austria},
issn = {2791-4267 (online)}
}