@**techreport**{RISC5981,author = {David M. Cerna},

title = {{On the Complexity of Unsatisfiable Primitive Recursively defined $\Sigma_1$-Sentences}},

language = {english},

abstract = {We introduce a measure of complexity based on formula occurrence within instance proofs of an inductive statement. Our measure is closely related to {\em Herbrand Sequent length}, but instead of capturing the number of necessary term instantiations, it captures the finite representational difficulty of a recursive sequence of proofs. We restrict ourselves to a class of unsatisfiable primitive recursively defined negation normal form first-order sentences, referred to as {\em abstract sentences}, which capture many problems of interest; for example, variants of the {\em infinitary pigeonhole principle}. This class of sentences has been particularly useful for inductive formal proof analysis and proof transformation. Together our complexity measure and abstract sentences allow use to capture a notion of {\em tractability} for state-of-the-art approaches to inductive theorem proving, in particular {\em loop discovery} and {\em tree grammar} based inductive theorem provers. We provide a complexity analysis of an important abstract sentence, and discuss the analysis of a few related sentences, based on the infinitary pigeonhole principle which we conjecture represent the upper limits of tractability and foundation of intractability with respect to the current approaches.},

year = {2019},

length = {17},

type = {RISC Report Series},

institution = {Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz},

address = {Schloss Hagenberg, 4232 Hagenberg, Austria}

}