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Abstract

The non-first-order-factorizable contributions1 to the unpolarized and polarized massive

operator matrix elements to three-loop order, A
(3)
Qg and ∆A

(3)
Qg, are calculated in the single-

mass case. For the 2F1-related master integrals of the problem, we use a semi-analytic
method based on series expansions and utilize the first-order differential equations for the
master integrals which does not need a special basis of the master integrals. Due to the
singularity structure of this basis a part of the integrals has to be computed to O(ε5) in
the dimensional parameter. The solutions have to be matched at a series of thresholds and
pseudo-thresholds in the region of the Bjorken variable x ∈]0,∞[ using highly precise series
expansions to obtain the imaginary part of the physical amplitude for x ∈]0, 1] at a high
relative accuracy. We compare the present results both with previous analytic results, the
results for fixed Mellin moments, and a prediction in the small-x region. We also derive
expansions in the region of small and large values of x. With this paper, all three-loop
single-mass unpolarized and polarized operator matrix elements are calculated.

1The terms ’first-order-factorizable contributions’ and ’non-first-order-factorizable contributions’ have been
introduced and discussed in Refs. [1,2]. They describe the factorization behaviour of the difference- or differential
equations for a subset of master integrals of a given problem.



1 Introduction

The heavy-flavor contributions both to the unpolarized and polarized deep-inelastic structure
functions form an essential part of these quantities. Their scaling violations are different from
those of the massless contributions. Since the experimental precision reached the 1% level in
the unpolarized case with HERA [3], which will also be the case for polarized deep-inelastic
scattering at EIC [4] and the proposed LHeC [5], the three-loop heavy-flavor corrections are
needed in the QCD analysis of these data.

In a previous paper [2], we have calculated the first-order factorizable contributions to the

constant parts of the unrenormalized three-loop massive operator matrix elements (OMEs) A
(3)
Qg

and ∆A
(3)
Qg (a

(3)
Qg and ∆a

(3)
Qg), which are based on 1009 of a total of 1233 Feynman diagrams. For all

contributions at least 1000 non-vanishing Mellin moments are known. Furthermore, 15 of the 25
color-ζ contributions of the OMEs have been calculated by using the method of arbitrarily high
Mellin moments [6]. Here ζn, n ∈ N, n ≥ 2 denote the values of Riemann’s ζ-function at integer
values of n. Their associated recurrences were computed by using the guessing method [7,8] and
solved using the package Sigma [9, 10] in all first-order-factorizing cases.

The major new aspect of the present calculation concerns the contribution of higher transcen-
dental letters in the iterated integrals forming the master integrals given by 2F1-solutions [11]
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of Heun differential equations [21,22]. The corresponding basic integrals have been computed to
O(ε0) in Ref. [1]. Here ε = D−4 denotes the dimensional parameter. The other master integrals
can be obtained by iterating Kummer-Poincaré [23–32] and square-root valued letters [2, 33] on
the former solutions, by which all master integrals can be obtained. Future work will be devoted
to this method of iterating non-iterative integrals, including higher transcendental letters.

In the present paper, we are following a different avenue. Here we do not compute the
analytic results for the previously mentioned OMEs, but we obtain highly precise semi-analytic
results. To derive these results, we start with the coupled first-order differential equation system
of master integrals, which is obtained from the integration by parts (IBP) reduction [34,35]. The
solution of these equations is performed in t-space [36, 37] via series expansions around various
points which are numerically matched in overlapping regions of convergence. Here t denotes the
resummation parameter. The initial conditions are given at t = 0 as the Mellin moments to the
required order in ε. In our set of master integrals one has to calculate up to O(ε5) in individual
cases. The initial values have been computed already before for determining the corresponding
recurrences in Mellin-N space, cf. [2,38]. After analytic continuation from t to x-space, cf. [1], one
obtains the final expression. The analytic continuation has to pass a series of pseudo-thresholds
and thresholds from x → ∞ (t = 0) to x = 0 (t → ∞) and matching conditions have to be
evaluated. The present approach uses large mantissa rational matching in this process. In this
way, we finally obtain the constant parts of the unrenormalized massive OMEs A

(3)
Qg and ∆A

(3)
Qg,

a
(3)
Qg and ∆a

(3)
Qg. This formalism is only applied to the part of the amplitude which is affected by

2F1-related letters.
The paper is organized as follows. In Section 2 we describe the basic computation method.

In Section 3 we compute a
(3)
Qg and ∆a

(3)
Qg in x-space, compare to previous partial results in the

literature, and present numerical results. The results for small and large values of Bjorken x are
presented in Section 4 and Section 5 contains the conclusions.

2They are related to complete elliptic integrals and modular forms, cf. Refs. [12–19] and the surveys in Ref. [20].

2



2 The main steps of the calculation

The calculation of the contributing Feynman diagrams from their generation to the reduction
to the master integrals has been described in Ref. [2]. Here we use the packages QGRAF, Form,

Color and Reduze 2 [34, 35, 39–42], and apply the Feynman rules given in Refs. [43, 44]. In the
polarized case we compute the OME in the Larin scheme [45]. The OMEs are calculated using
the method described in Ref. [1]. This means the operators defined for discrete integer values of
N are resummed into a generating function which depends on the continuous real variable t. The
master integrals are computed in this variable by solving linear systems of coupled differential
equations, see also Refs. [2, 46–49]. The initial values are provided by the Mellin moments [38],
which are the expansion coefficients at t = 0. The system of differential equations is solved at
a series of thresholds and pseudo-thresholds in the region t ∈ [0,∞[. The variables t and the
Bjorken variable x are related by

x =
1

t
. (2.1)

The set of thresholds and pseudo-thresholds in the differential equations of all master integrals,
resp. the necessary expansion points, given the convergence radius of the respective local series,
are

x ∈

{
0,

1

32
,
1

16
,
1

8
,
1

6
,
1

4
,
1

2
,
2

3
,
3

4
,
5

6
,
8

9
, 1

}
(2.2)

for x ∈ [0, 1] in the present problem. Imaginary parts of the amplitude develop only at the
transition point x = 1, and for no other points in the regions x ∈]0, 1[ and x ∈]1,∞[. The
expansion points for x > 1 were

x ∈

{
8

7
,
4

3
, 2, 4,∞

}
. (2.3)

The analysis starts at x = ∞ using the previously computed moments as initial values. The
expansion order in ε depends on the individual master integral. In the present case one
needs to expand up to O(ε5) for some integrals. One performs series expansions around the
(pseudo-)thresholds by inserting a suitable ansatz into the differential equation. Comparing co-
efficients in ε, the expansion parameter t− t0 (and possible powers of logarithms) one obtains a
large system of equations for the symbolic expansions. This system of linear equations is solved
with FireFly [50,51] using modular methods in terms of a small number of boundary constants.
These are determined by matching two neighboring expansions in the middle with 250 digits
accuracy. In order to solve this linear system, we rationalize the arising floating point numbers,
which allows for a stable solution. Except for the expansions around x = 0 and x = 1, we
compute 100 expansion coefficients, while at the latter points, which contain in addition powers
of the logarithms ln(x) and ln(1− x), respectively, 50 expansion terms are used.

The initial values at x → ∞ are real, as are also the coefficients of the linear differential
equation systems. For the expansion points for x > 1, the series expansions are real-valued
Taylor series in x and their contribution to the massive OMEs vanish, see [1]. The analytic
continuation at x = 1 implies logarithmic-modulated series containing powers of lnk(1− x) and
thus an imaginary part after analytic continuation. The imaginary part is proportional to the
x-space representation of the massive OMEs, see Ref. [1].
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3 a
(3)
Qg(x) and ∆a

(3)
Qg(x)

In Ref. [2], we computed all color-ζ contributions which can be obtained by solving difference
equations that factorize into first-order factors. Furthermore, we calculated all remaining irre-
ducible Feynman diagrams with contributions from master integrals, whose associated differential
equations factorize into first-order factors. The remaining 224 Feynman diagrams are related to

2F1-solutions [1, 11] and are calculated in the present paper by solving the first order differen-
tial equations obtained from the IBP-relations directly in a highly precise numerical approach,
adding the previous results to the complete solution.

On top of the irreducible Feynman diagrams mentioned before, there are also reducible Feyn-
man diagrams and ghost contributions to the amplitudes A

(3)
Qg(x) and ∆A

(3)
Qg(x), contributing to

the final result, which we would like to characterize briefly. In the unpolarized case, in Mellin
N -space, they are spanned by the harmonic and generalized harmonic sums [32,52,53]{

S−4, S−3, S−2, S1, S2, S3, S4, S−3,1, S−2,1, S−2,2, S3,1, S2,1, S2,1,1, S−2,1,1, 2
N , S1

({
1

2

})
,

S1({2}), S1,3

({
1

2
, 2

})
, S2,1({1, 2}), S2,1({2, 1}), S1,1,1({2, 1, 1}), S1,1,2

({
1

2
, 2, 1

})
,

S1,2,1

({
1

2
, 2, 1

})
, S1,1,1,1

({
1

2
, 2, 1, 1

})}
(3.1)

with rational and 2N -prefactors. In x-space, these terms convert to harmonic polylogarithms [54]
at argument x or 1−2x, as in Ref. [55]. The generalized sums stem from the ghost contributions,
which are absent in the polarized case.

Expanding their contribution around x = 0 terms of order

ln4(x)

x
,

ln3(x)

x
,

ln2(x)

x
(3.2)

with

C2
ATF

1

x

[
1

54
ln4(x) +

1

18
ln3(x) +

(
61

36
+

1

3
ζ2

)
ln2(x)

]
, (3.3)

are present, which are not expected in the complete result. Here the color factors are CA =
Nc, CF = (N2

c − 1)/(2Nc), TF = 1/2 for SU(Nc) and Nc = 3 for Quantum Chromodynamics
(QCD). Indeed, the calculation shows that these terms are canceled at a relative accuracy of{

−2.7134 · 10−17,−1.1975 · 10−13,−1.4327 · 10−15
}

(3.4)

in the complete result numerically. Contributions of this kind do not emerge in the polarized
case.

Our present results can be tested also in various other ways. Next we compare the result in
x-space with the moments computed in Ref. [44] by a totally different method, using MATAD [56].
For the moments N = 2, 4, 6, 8, 10 we obtain agreement up to relative accuracies of{

−4.3039 · 10−8, 1.0758 · 10−9, 6.9438 · 10−10,−4.3401 · 10−11,−1.4872 · 10−10

}
(3.5)
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in the unpolarized case. Since the first moment of ∆a
(3)
Qg turns out to be zero, we compare here

the relative deviation of the moments N = 3, 5, 7, 9, 11, for which we obtain{
−8.9221 · 10−10, 9.6270 · 10−10,−2.4977 · 10−10,−1.7849 · 10−10, 3.1817 · 10−11

}
. (3.6)
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Figure 1: a
(3)
Qg(x) as a function of x, rescaled by the factor x(1 − x). Left panel: smaller x

region. Full line (red): a
(3)
Qg(x); dashed line (blue): leading small-x term ∝ ln(x)/x [57]; dot-

ted line (green): ln(x)/x and 1/x term; dash-dotted line (black): all small-x terms, including

also lnk(x), k ∈ {1, . . . , 5}. Right panel: larger x region. Full line (red): a
(3)
Qg(x); dashed line

(brown): leading large-x terms up to the terms ∝ (1− x), covering the logarithmic contributions of
O(lnk(1− x)), k ∈ {1, . . . , 4}.

A further test of accuracy consists in the comparison of the present differential equation
method with the analytic results obtained by N -space techniques for the NF terms in a

(3)
Qg(x)

and ∆a
(3)
Qg(x) before, where NF denotes the number of massless flavors. For

(∆)r(x) =
(∆)a

(3),NF ,deq
Qg (x)

(∆)a
(3),NF ,ex
Qg (x)

− 1 (3.7)

we obtain

x →

{
1

100
,
1

10
,
3

10
,
5

10
,
7

10
,
9

10
,
99

100

}
, (3.8)

r(x) →

{
−1.66 · 10−17,−1.18 · 10−16,−4.97 · 10−16,−4.01 · 10−16,−1.88 · 10−15,

−4.42 · 10−17, 8.56 · 10−18

}
. (3.9)
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∆r(x) →

{
−2.91 · 10−17, 9.09 · 10−16,−1.71 · 10−15,−1.38 · 10−15,−1.88 · 10−15,

7.89 · 10−16,−1.06 · 10−15

}
. (3.10)
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Figure 2: a
(3)
Qg(x) as a function of x, rescaled by the factor x(1−x). Left panel: smaller x region. Full

line (red): a
(3)
Qg(x); dashed line (blue): leading small-x term ∝ ln(x)/x [57]; gray region: estimates

of [62]. Right panel: larger x region. Full line (red): a
(3)
Qg(x); gray region: estimates of [62].
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Figure 3: ∆a
(3)
Qg(x) as a function of x, rescaled by the factor x(1 − x). Left panel: full line (red):

∆a
(3)
Qg(x); dashed line (green): the small-x terms lnk(x), k ∈ {1, . . . , 5}; dotted line (blue): the

large-x terms lnl(1 − x), l ∈ {1, . . . , 4}. Right panel: larger x region. Full line (red): ∆a
(3)
Qg(x);

dotted line (blue): the large-x terms lnl(1− x), l ∈ {1, . . . , 4}.
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For smaller values of x, the deviations are even smaller. A comparable accuracy has been
obtained for the pole terms of the unrenormalized amplitudes A

(3)
Qg(x) and ∆A

(3)
Qg(x), which are

also known in analytic form.
Now we turn to the results of a

(3)
Qg(x) and ∆a

(3)
Qg(x). In Figures 1 and 2 we illustrate the

analytic result for a
(3)
Qg(x) for QCD and by setting NF = 3 in the smaller and larger x regions.

Here we add different lines for the small-x and large-x contributions to show their validity.
The so-called leading small-x result [57] turns out not to describe the physical quantity a

(3)
Qg(x)

quantitatively; see, however, the discussion in Section 4. This is, as in all known other cases, see
e.g. [55,58–61], due to sub-leading terms which cancel the leading behaviour.

Here the inclusion of the 1/x term, not predicted by small-x methods, leads to a description
up to x ∼ 10−4. To describe the region to x ∼ 2 · 10−2 one needs also all contributing lnk(x)-
terms, with k ∈ {1, . . . , 5}. In the large-x region no expansion terms have been predicted. Here
one obtains a description down to x ∼ 0.9 by considering all lnk(1− x) terms for k ∈ {1, . . . , 4},
including the (1− x)0 and (1− x) contributions.

In Ref. [62] estimates on the size of the charm quark contributions in F2(x,Q
2) were made

based on five moments for A
(3)
Qg and six moments for A

(3),PS
Qq calculated in Ref. [44], the two-loop

contributions of Refs. [63,64], and the NF -terms from our calculation in Ref. [65]. Furthermore,

the small-x behaviour from [57] for A
(3)
Qg and a corresponding color-rescaled leading small-x term

for A
(3),PS
Qq were assumed. The latter has only later been proven in Ref. [55] by calculating A

(3),PS
Qq

in complete form analytically. In [62] the three other contributing OMEs A
(3)
qg,Q, A

(3),NS
qq,Q , A

(3),PS
qq,Q ,

as well as the two-mass corrections, were not taken into account. In Figure 2 we illustrate the
former estimate on a

(3)
Qg(x) in the region of smaller and larger values of x (gray band) and compare

it to the exact result (red lines), which lie close to the upper end of the former estimate in the
region of small values of x.

Let us now turn to the polarized case. The quantity ∆a
(3)
Qg(x) is shown in Figure 3, where we

also indicate the small- and large-x terms, cf. Section 4. We note that the latter approximations
match the exact result only in the extreme regions. ∆a

(3)
Qg(x) shows an oscillatory behaviour as

also known for the polarized structure functions g1,2(x,Q
2). One reason for this behaviour is that

the first moment of ∆a
(3)
Qg(x) vanishes. Also at the first and second order in the strong coupling

constant the first moment vanishes, cf. Ref. [66].

4 The small- and large-x limits

In this section, we discuss in more detail the small- and large-x limits which have already been
illustrated in Section 3. The leading small-x contribution to the unpolarized quantity a

(3)
Qg(x) has

been predicted in Ref. [57], within a leading order calculation based on k⊥-factorization. The
result is given by

a
(3),x→0
Qg (x) =

64

243
C2

ATF [1312 + 135ζ2 − 189ζ3]
ln(x)

x
. (4.1)

As we saw in Section 3, this result is interesting for the theoretical comparison to the corre-
sponding term in the complete calculation, but cannot be used for phenomenology due to the
destructive sub-leading corrections. We obtained the term ∝ ζ2 in Ref. [2] since it results from
first order factorizing contributions only. From the small-x expansion of the present result, we
obtain an agreement on the purely rational and ζ3 term of Eq. (4.1) at a relative accuracy of

{−8.0143 · 10−16}. (4.2)
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This is the first independent recalculation of the result of Ref. [57] using a different method, and
it also establishes the rescaling to the corresponding analytic result in the pure-singlet case [55].

Since we knew the coefficient of the ζ2-term, cf. [2], in (4.1), the question is whether integer
relations allow to determine the other two terms in (4.1) at the level of 15 known digits. At
least there could be a conditional answer in assuming a certain rational prime factor pattern,
starting out with 2, 3, 5, 7 to reasonably small powers watching out for matches by using the LLL
algorithm [67] lindep in the package Pari [68]. David Broadhurst has been so kind to do this
for us. He obtained

C2
ATF

[
211 · 41

35
− 26 · 7

32
ζ3

]
(4.3)

very quickly, by which (4.1) can be considered to be confirmed using methods of experimental
mathematics.3

The small-x terms for a
(3)
Qg are given numerically by4

a
(3),x→0
Qg ≃ 1548.891667

ln(x)

x
+ [8956.649545 − 88.20492033NF ]

1

x
+ [4.844444444− 0.4444444444NF ] ln

5(x)

+ [−21.75925926− 2.506172840NF ] ln
4(x)

+ [514.0912722− 35.20953611NF ] ln3(x)

+ [−720.0483828− 90.85414199NF ] ln
2(x)

+ [10739.21741− 468.0849296NF ] ln(x). (4.4)

The alternating sign of the first two coefficients is the main reason why the leading small-x
contributions are not sufficient to describe the final result even at very small values of x. For a
precise description also the sub-leading terms are needed.

In the large-x limit a
(3)
Qg is given by

a
(3),x→1
Qg ≃ 3.703703704 ln5(1− x) + [−8.20987654 + 0.4938271605NF ] ln

4(1− x)

+ [4.380199906 + 1.646090535NF ] ln
3(1− x)

+ [−332.5368214− 0.4183246058NF ] ln
2(1− x)

+ [737.165347− 73.1297935NF ] ln(1− x). (4.5)

In the polarized case the leading small-x terms are

∆a
(3),x→0
Qg ≃ [−12.60493827 + 0.4444444444NF ] ln

5(x)

+ [−145.2160494 + 7.839506173NF ] ln
4(x)

+ [−856.9645724 + 63.82682006NF ] ln
3(x)

+ [−852.7889255 + 298.2461398NF ] ln
2(x)

+ [25006.51309 + 544.6633205NF ] ln(x). (4.6)

Here the coefficients of the terms ln(x)/x and 1/x have been shown to be zero in [2]. The NF

term ∝ ln5(x) has been derived in Ref. [2] as CFT
2
FNF (4/3) ln

5(x). The coefficients in (4.6) are
alternating, except for the last term.

3So, the answer to the ultimate leading small-x question of inclusive heavy-flavor physics is actually 41. For
differing answers to similar questions, see [69].

4Here we present 10 digits for brevity, although our results are more accurate.
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The expansion coefficients in the large-x region are

∆a
(3),x→1
Qg ≃ 3.703703704 ln5(1− x) + [−8.20987654 + 0.49382716105NF ] ln

4(1− x)

+ [4.380199906 + 1.646090535NF ] ln
3(1− x)

+ [−332.5368214− 0.4183246058NF ] ln
2(1− x)

+ [737.165347− 73.1297935NF ] ln(1− x). (4.7)

The large-x expansions, Eqs. (4.5, 4.7) are the same in the unpolarized and polarized case. The
same behaviour has already been seen for the factorizing contributions before, cf. [2]. The results
in the unpolarized and polarized cases were obtained by separate calculations.

5 Conclusions

We have calculated the non-first-order-factorizable contributions to the three-loop massive op-
erator matrix elements A

(3)
Qg and ∆A

(3)
Qg in the single-mass case. This completes the computation

of these matrix elements and thereby of all of the three-loop single-mass unpolarized and polar-
ized OMEs [2, 55, 65, 70–76]. Also the two-mass three-loop corrections [77–82], except those for

(∆)A
(3)
Qg, have already been computed. The solution of the first-order differential equation system

of master integrals in different sub-intervals of x ∈]0,∞[ at very high numerical precision and
high precision matching using the methods [1,46] allowed us to derive the three-loop corrections
tied up to iterated non-iterative integrals containing 2F1-letters in terms of local series expan-
sions. The latter are logarithmic-modulated with powers of ln(x) around x = 0, and ln(1 − x)
around x = 1.

We confirm the leading small-x prediction for the O(ln(x)/x) term in the unpolarized case in
an independent calculation using a different method for the first time. We compared our results
with the moments of Ref. [44] and other terms, which were calculated by us using different
methods and found agreement.

The present results are important for future measurements of the strong coupling con-
stant αs(M

2
Z) [83–86], the charm quark mass, mc, [87], and the parton distribution functions,

see e.g. [88, 89]. All the three loop single-and two-mass corrections to deep-inelastic scattering
will be released in form of a numerical code in a forthcoming publication.
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[55] J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel and C. Schneider, The 3-loop pure
singlet heavy flavor contributions to the structure function F2(x,Q

2) and the anomalous dimension, Nucl.
Phys. B 890 (2014) 48–151 [arXiv: 1409.1135 [hep-ph]].

[56] M. Steinhauser, MATAD: A Program package for the computation of MAssive TADpoles, Comput. Phys.
Commun. 134 (2001) 335–364 [hep-ph/0009029].

[57] S. Catani, M. Ciafaloni and F. Hautmann, High-energy factorization and small x heavy flavor production,
Nucl. Phys. B 366 (1991) 135–188.
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