Computing Mellin representations and asymptotics of nested binomial sums in a symbolic way: the RICA package

Johannes Blümlein, Nikolai Fadeev, Carsten Schneider

Research Institute for Symbolic Computation, Deutsches Elektronen-Synchrotron

July 25, 2023

Supported by the Austrian Science Foundation (FWF) grant P33530.

Different problems in combinatorics, analysis of algorithms or even physics involve binomially weighted sums

Example 1 (combinatorics): In the paper [Evaluation of Binomial Double Sums Involving Absolute Values of C. Krattenthaler and C. Schneider], sums of the following form appear for the study of double sums with binomial coefficients:

$$-2^{2m+1}n\binom{2n}{n}\sum_{i=0}^{m}\frac{2^{-2i\binom{2i}{i}}}{i+n}+2\binom{2m}{m}\binom{2n}{n}+2^{2m+2n}$$

If we want the asymptotic expansion at $m\to+\infty$ for fixed m, this involves in particular computing the asymptotics of the boxed sum

Motivation Notation

Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper $[The O(\alpha_s^3 T_F^2) \text{ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:$

$$\frac{1}{4^n} \binom{2n}{n} \left(\sum_{i=1}^n \frac{4^i}{i^2 \binom{2i}{i}} S_1(i-1) \right) - 7\zeta_3 \right), \quad S_1(i-1) := \sum_{k=1}^{i-1} \frac{1}{k}, \quad \zeta_k = \sum_{n=1}^\infty \frac{1}{n^k}$$

Motivation Notation

Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper $[The O(\alpha_s^3 T_F^2) \text{ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:$

$$\frac{1}{4^n} \binom{2n}{n} \left(\sum_{i=1}^n \frac{4^i}{i^2 \binom{2i}{i}} S_1(i-1) \right) - 7\zeta_3 \right), \quad S_1(i-1) := \sum_{k=1}^{i-1} \frac{1}{k}, \quad \zeta_k = \sum_{n=1}^\infty \frac{1}{n^k}$$

Sums can be nested, for example in [Iterated Binomial Sums and their Associated Iterated Integrals by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider], we also have sums such as:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^j$$

• Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper [$The O(\alpha_s^3 T_F^2)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:

$$\frac{1}{4^n} \binom{2n}{n} \left(\sum_{i=1}^n \frac{4^i}{i^2 \binom{2i}{i}} S_1(i-1) - 7\zeta_3 \right), \quad S_1(i-1) := \sum_{k=1}^{i-1} \frac{1}{k}, \quad \zeta_k = \sum_{n=1}^\infty \frac{1}{n^k}$$

Sums can be nested, for example in [Iterated Binomial Sums and their Associated Iterated Integrals by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider], we also have sums such as:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^j$$

Aim: Being able to deal automatically with those kind of sums in all generality, in particular **Mellin inversion** and **asymptotic expansion**

We define the binomially weighted sums as follows:

$$BS_{\{a_1,\dots,a_k\}}(n) := \sum_{i_1=1}^n a_1(i_1) \sum_{i_2=1}^{i_1} a_2(i_2) \cdots \sum_{i_k=1}^{i_{k-1}} a_k(i_k)$$

with

$$a_j(p) = a_j(p; b, c, m) = {\binom{2p}{p}}^b \frac{c^p}{p^m}, \quad b \in \{-1, 0, 1\}, \ c \in \mathbb{R}^*, \ m \in \mathbb{N}$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]

We define the binomially weighted sums as follows:

$$BS_{\{a_1,\dots,a_k\}}(n) := \sum_{i_1=1}^n a_1(i_1) \sum_{i_2=1}^{i_1} a_2(i_2) \cdots \sum_{i_k=1}^{i_{k-1}} a_k(i_k)$$

with

$$a_j(p) = a_j(p; b, c, m) = {\binom{2p}{p}}^b \frac{c^p}{p^m}, \quad b \in \{-1, 0, 1\}, \ c \in \mathbb{R}^*, \ m \in \mathbb{N}$$

Example:
$$\sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} \frac{(-1)^{j}}{j^{3}} \sum_{k=1}^{j} \frac{\left(\frac{1}{2}\right)^{k}}{k^{2}}$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]

More generic summands can also be considered, such as:

$$\frac{c^n}{(2n+1)\binom{2n}{n}} \text{ or } \frac{p(i)}{q(i)}\binom{2i}{i}, \ p,q \in \mathbb{C}[X], \ \deg p \leq \deg q, \ \operatorname{roots}(q) \subset \mathbb{C} \backslash \mathbb{R}_+$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]

More generic summands can also be considered, such as:

$$\frac{c^n}{(2n+1)\binom{2n}{n}} \text{ or } \frac{p(i)}{q(i)}\binom{2i}{i}, \ p,q \in \mathbb{C}[X], \ \deg p \leq \deg q, \ \operatorname{roots}(q) \subset \mathbb{C} \setminus \mathbb{R}_+$$
Example :
$$\sum_{i=1}^n \frac{1+i}{i^2+5i+6} \sum_{j=1}^i \frac{(-2)^j}{(2j+1)\binom{2j}{j}} \sum_{k=1}^j \frac{3^k}{k^2}$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]

We remind here some definitions and useful properties of Mellin transforms:

Definition:

$$M[f(x)](n) := \int_0^1 \mathrm{d}x \, x^n f(x)$$

Summation formula ($c \in \mathbb{C}$):

$$\sum_{i=1}^{n} c^{i} M\left[f(x)\right](i) = c^{n} M\left[\frac{x}{x-\frac{1}{c}}f(x)\right](n) - M\left[\frac{x}{x-\frac{1}{c}}f(x)\right](0) \quad (1)$$

Convolution:

$$f(x) * g(x) := \int_0^1 \mathrm{d}x_1 \, \int_0^1 \mathrm{d}x_2 \, \delta(x - x_1 x_2) f(x_1) g(x_2) = \int_x^1 \mathrm{d}y \, \frac{f(y)}{y} g\left(\frac{x}{y}\right)$$
$$M\left[f(x) * g(x)\right](n) = M\left[f(x)\right](n) \cdot M\left[g(x)\right](n)$$

Question: How to represent them as Mellin integrals?

▶ First method (used by HarmonicSums for general Mellin inversion): given *M* [*f*(*x*)] (*n*) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for *f*(*x*)

► First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and flexible

Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and flexible **Cons**: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their

Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and flexible **Cons**: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

 $\ensuremath{\text{Pros:}}$ Simple principles, faster, easy to extend, symbolic expressions for constants

Cons: Different cases have to be identified and implemented individually

First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and flexible **Cons**: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

 $\ensuremath{\text{Pros:}}$ Simple principles, faster, easy to extend, symbolic expressions for constants

Cons: Different cases have to be identified and implemented individually

The second method is the one we have implemented in our RICA (Rule-Induced Convolutions for Asymptotics) package

► First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and flexible **Cons**: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Pros: Simple principles, faster, easy to extend, symbolic expressions for constants

Cons: Different cases have to be identified and implemented individually

The second method is the one we have implemented in our RICA (Rule-Induced Convolutions for Asymptotics) package

Note: RICA relies on C. Schneider's Sigma and J. Ablinger's HarmonicSums

Note: These Mellin representations will involve general polylogarithms

$$\mathrm{H}^*_{\emptyset}(x):=1, \ \mathrm{H}^*_{\mathrm{b}(\mathrm{t}),\overrightarrow{c}\,(\mathrm{t})}(x)=\mathrm{H}^*_{\mathrm{b},\overrightarrow{c}}(x):=\int_x^1\mathrm{d}t\,b(t)\mathrm{H}^*_{\overrightarrow{c}}(t)$$

Defined over a 37 letter alphabet $\{f_0, \ldots, f_{w_{32}}\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions, and obeying shuffle algebra

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]

[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Note: These Mellin representations will involve general polylogarithms

$$\mathrm{H}^*_{\emptyset}(x) := 1, \ \mathrm{H}^*_{\mathrm{b}(\mathrm{t}), \overrightarrow{c}(\mathrm{t})}(x) = \mathrm{H}^*_{\mathrm{b}, \overrightarrow{c}}(x) := \int_x^1 \mathrm{d}t \, b(t) \mathrm{H}^*_{\overrightarrow{c}}(t)$$

Defined over a 37 letter alphabet $\{f_0, \ldots, f_{w_{32}}\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions, and obeying shuffle algebra

Example:

$$\begin{aligned} \mathbf{H}_{\mathbf{f}_{w_{11}},\mathbf{f}_{2},\mathbf{f}_{w_{8}}}^{*} &= \int_{x}^{1} \mathrm{d}t_{1} \, f_{w_{11}}(t_{1}) \int_{t_{1}}^{1} \mathrm{d}t_{2} \, f_{2}(t_{2}) \int_{t_{2}}^{1} \mathrm{d}t_{3} \, f_{w_{8}}(t_{3}) \\ &= \int_{x}^{1} \mathrm{d}t_{1} \, \frac{1}{t_{1}\sqrt{1-t_{1}}\sqrt{2-t_{1}}} \int_{t_{1}}^{1} \mathrm{d}t_{2} \, \frac{1}{2-t_{2}} \int_{t_{2}}^{1} \mathrm{d}t_{3} \, \frac{1}{t_{3}\sqrt{t_{3}-\frac{1}{4}}} \end{aligned}$$

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]

[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Note: These Mellin representations will involve general polylogarithms

$$\mathrm{H}^*_{\emptyset}(x) := 1, \ \mathrm{H}^*_{\mathrm{b}(\mathrm{t}), \overrightarrow{c}(\mathrm{t})}(x) = \mathrm{H}^*_{\mathrm{b}, \overrightarrow{c}}(x) := \int_x^1 \mathrm{d}t \, b(t) \mathrm{H}^*_{\overrightarrow{c}}(t)$$

Defined over a 37 letter alphabet $\{f_0, \ldots, f_{w_{32}}\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions, and obeying shuffle algebra

Example: (linearization by shuffle relations)

$$\mathbf{H}^{*}_{\mathbf{f}_{1}}(x)\mathbf{H}^{*}_{\mathbf{f}_{0},\mathbf{f}_{-1}}(x) = \mathbf{H}^{*}_{\mathbf{f}_{1},\mathbf{f}_{0},\mathbf{f}_{-1}}(x) + \mathbf{H}^{*}_{\mathbf{f}_{0},\mathbf{f}_{-1},\mathbf{f}_{1}}(x) + \mathbf{H}^{*}_{\mathbf{f}_{0},\mathbf{f}_{1},\mathbf{f}_{-1}}(x)$$

where

$$f_0(x) = \frac{1}{x}, \quad f_1(x) = \frac{1}{1-x}, \quad f_{-1}(x) = \frac{1}{1+x}$$

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]

[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Example:

$$BS(n) = \sum_{k=1}^{n} {\binom{2i}{i}} S_2(i) = \sum_{k=1}^{n} {\binom{2i}{i}} \sum_{j=1}^{i} \frac{1}{i^2}$$

First we compute the Mellin representation of $\frac{1}{i^2}$ by convolving $\frac{1}{i} = M\left[\frac{1}{x}\right](i)$ with itself. We get:

$$\frac{1}{i^2} = M\left[\frac{1}{x}\right](i) \cdot M\left[\frac{1}{x}\right](i) = M\left[\frac{1}{x} * \frac{1}{x}\right](i) = M\left[\frac{\mathrm{H}_0^*(x)}{x}\right](i)$$

where

$$H_0^*(x) := \int_x^1 dt \, f_0(t) = \int_x^1 dt \, \frac{1}{t} = -\log x$$

Using the summation formula (1), we can then obtain:

$$S_{2}(i) = \sum_{k=1}^{i} M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i) = \underbrace{\int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} - \underbrace{\int_{0}^{1} \mathrm{d}x \, \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} = \int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1} + \zeta_{2}$$

where

$$\zeta_2 = \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$$

Using the summation formula (1), we can then obtain:

$$S_{2}(i) = \sum_{k=1}^{i} M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i) = \underbrace{\int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} - \underbrace{\int_{0}^{1} \mathrm{d}x \, \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](0)} = \int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1} + \zeta_{2}$$

where

$$\zeta_2 = \sum_{i=1}^{\infty} \frac{1}{i^2} = \frac{\pi^2}{6}$$

Now that the innermost sum has as integral representation, we shift to the next and last level. First, one can show (e.g. direct integration) that:

$$\binom{2i}{i} = \frac{4^i}{\pi} M \left[\frac{1}{\sqrt{x(1-x)}} \right] (i)$$

So that

$$\sum_{i=1}^{k} \binom{2i}{i} S_2(i) = \frac{1}{\pi} \sum_{i=1}^{n} 4^i M \left[\frac{1}{\sqrt{x(1-x)}} \right] (i) \cdot M \left[\frac{\mathrm{H}_0^*(x)}{x-1} \right] (i) + \frac{\zeta_2}{\pi} \sum_{i=1}^{k} 4^i M \left[\frac{1}{\sqrt{x(1-x)}} \right] (i)$$

• We apply again the summation formula to obtain first the second part:

$$\frac{\zeta_2}{\pi} \sum_{i=1}^k 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) = \frac{\zeta_2}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}}$$

We apply again the summation formula to obtain first the second part:

$$\frac{\zeta_2}{\pi} \sum_{i=1}^k 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) = \frac{\zeta_2}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}}$$

Then we switch to the first part of the binomial and convolve the functions:

$$M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i) = M\left[\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}}\right](i)$$

where

$$H_0^*(y) := \int_y^1 dt \, f_0(t) = \int_y^1 dt \, \frac{1}{t} = -\log y$$

We apply again the summation formula to obtain first the second part:

$$\frac{\zeta_2}{\pi} \sum_{i=1}^k 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) = \frac{\zeta_2}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}}$$

Then we switch to the first part of the binomial and convolve the functions:

$$M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i) = M\left[\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}}\right](i)$$

where

$$H_0^*(y) := \int_y^1 dt \, f_0(t) = \int_y^1 dt \, \frac{1}{t} = -\log y$$

A set of several "rule-theorems" have been proven in [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] to simplify further such expressions. One of them allows us to get:

$$\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}} = \frac{\mathrm{H}_{\mathrm{b},\mathrm{w}_{1}}^{*}(x)}{\sqrt{x-1}}, \ f_{b}(x) = \frac{1}{\sqrt{x(x-1)}}, \ f_{w_{1}}(x) = \frac{1}{\sqrt{x(1-x)}}$$

Using the shuffle algebra, we can reduce the expression down to:

$$M\left[\frac{\mathbf{H}_{\mathbf{b},\mathbf{w}_{1}}^{*}(x)}{\sqrt{x(x-1)}}\right](i) = -M\left[\frac{\mathbf{H}_{\mathbf{w}_{1}}^{*}(x)^{2}}{2\sqrt{x(1-x)}}\right](i)$$

Using the shuffle algebra, we can reduce the expression down to:

$$M\left[\frac{\mathrm{H}_{\mathrm{b,w_1}}^*(x)}{\sqrt{x(x-1)}}\right](i) = -M\left[\frac{\mathrm{H}_{\mathrm{w_1}}^*(x)^2}{2\sqrt{x(1-x)}}\right](i)$$

Finally, using once again the summation formula we get:

$$\sum_{i=1}^{n} 4^{i} M\left[\frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2\sqrt{x(1-x)}}\right](i) = \int_{0}^{1} \mathrm{d}x \, \frac{(4x)^{n} - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}} \frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2}$$

and resumming everything, we get:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i) = -\frac{1}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1 - x}} \left(\frac{\mathrm{H}_{w_1}^*(x)^2}{2} - \zeta_2 \right)$$

We now want to obtain an asymptotic expansion for $n \to +\infty$ up to order p of a general expression of the form:

$$\tilde{M}_{a}[f(x)](n) := \int_{0}^{1} \mathrm{d}x \, \frac{(ax)^{n} - 1}{x - \frac{1}{a}} f(x) = \int_{0}^{1} \mathrm{d}x \, [(ax)^{n} - 1] \, \tilde{f}(x) \tag{2}$$

where

$$\tilde{f}(x) := \frac{f(x)}{x - \frac{1}{a}}$$

- There exist several method to compute this expansion, depending mostly on the regularity of f and whether the integral can be split [*terated Binomial Sums and their Associated Iterated Integrals* by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]
- We will present one of the methods, all of them are implemented in RICA

We suppose that f is regular on [0;1] and a < -1, so that $\frac{1}{x-\frac{1}{a}}$ is regular on [0;1] and we can simply split the integral in two, then use a **change of variables**

Split the Mellin integral, factor out the aⁿ:

$$\int_0^1 \mathrm{d}x \, \frac{ax^n - 1}{x - \frac{1}{a}} f(x) = a^n M\left[\frac{f(x)}{x - \frac{1}{a}}\right](n) - \underbrace{M\left[\frac{f(x)}{x - \frac{1}{a}}\right](0)}_{=:C}$$

Note: When |a| > 1, the constant C is exponentially suppressed

We suppose that f is regular on [0;1] and a < -1, so that $\frac{1}{x-\frac{1}{a}}$ is regular on [0;1] and we can simply split the integral in two, then use a **change of variables**

▶ Split the Mellin integral, factor out the *a*^{*n*}:

$$\int_0^1 \mathrm{d}x \, \frac{ax^n - 1}{x - \frac{1}{a}} f(x) = a^n M\left[\frac{f(x)}{x - \frac{1}{a}}\right](n) - \underbrace{M\left[\frac{f(x)}{x - \frac{1}{a}}\right](0)}_{=:C}$$

Note: When |a| > 1, the constant C is exponentially suppressed In $M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n)$, we make the following change of variables:

$$x = e^{-z}, \quad \mathrm{d}x = -e^{-z}\mathrm{d}z$$

and end up with:

$$M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n) = a^n \int_0^{+\infty} dz \, e^{-zn} \underbrace{\frac{e^{-z}}{e^{-z}-1} f(e^{-z})}_{=:g(z)}$$

Setting
Mellin inversion
Asymptotic expansions
Mathematica session

• We expand g(z) around z = 0 up to the order p:

$$g(z) \underset{z \to 0}{=} \sum_{\alpha \le p} g_{\alpha} z^{\alpha} + \mathcal{O}(z^{\alpha+1}), \quad \alpha \in \frac{1}{2} \mathbb{Z}_{\ge -1}, \ g_{\alpha} \in \mathbb{R}$$

• We expand g(z) around z = 0 up to the order p:

$$g(z) \underset{z \to 0}{=} \sum_{\alpha \le p} g_{\alpha} z^{\alpha} + \mathcal{O}(z^{\alpha+1}), \quad \alpha \in \frac{1}{2} \mathbb{Z}_{\ge -1}, \ g_{\alpha} \in \mathbb{R}$$

Finally we integrate $M[\frac{f(x)}{x-\frac{1}{a}}](n)$ using the expansion above, and adding the a^n coefficient back:

$$\tilde{M}_{a}[f(x)](n) =_{n \to +\infty} a^{n} \sum_{\alpha \le p} \int_{0}^{+\infty} dz \, e^{-zn} g_{\alpha} z^{\alpha}$$
$$= a^{n} \sum_{\alpha \le p} \frac{h_{\alpha}}{n^{\alpha}}, \quad h_{\alpha} \in \mathbb{R}$$

First we preload Sigma and HarmonicSums:

 $\ln[1] = << {\bf Sigma.m};$

Sigma - A summation package by Carsten Schneider - © RISC

ln[2] = << HarmonicSums.m;

HarmonicSums by Jakob Ablinger – © RISC

And then our package:

ln[3] := << RICA.m;

Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU

First we preload Sigma and HarmonicSums:

 $ln[6] = \langle \mathbf{Sigma.m};$

Sigma - A summation package by Carsten Schneider - © RISC

ln[7] = << HarmonicSums.m;

HarmonicSums by Jakob Ablinger - © RISC

And then our package:

ln[8] := << RICA.m;

Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU

We define the sum that we want to study using HarmonicSums' GS function: $In[9]:= \mathbf{sum1} = \mathbf{GS} \left[\left\{ \mathsf{Binomial}[2 \; \mathsf{VarGL}, \mathsf{VarGL}], \frac{1}{\mathsf{VarGL}^2} \right\}, n \right];$

First we preload Sigma and HarmonicSums:

 $\ln[11] = << {\bf Sigma.m};$

Sigma - A summation package by Carsten Schneider - © RISC

ln[12] = << HarmonicSums.m;

HarmonicSums by Jakob Ablinger – © RISC

And then our package:

ln[13] = << RICA.m;

Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU

We define the sum that we want to study using HarmonicSums' GS function: $In[14]:= \mathbf{sum1} = \mathbf{GS} \left[\left\{ Binomial[2 VarGL, VarGL], \frac{1}{VarGL^2} \right\}, \mathbf{n} \right];$

We can now compute the Mellin representation:

ln[15] = mel1 = SumToMellin[sum1, C, x]

$$Out[15]= \left\{-\frac{2\mathsf{Mellin}\left(4^nx^n-1,\frac{\sqrt{x}(\mathsf{Hwb}[\{\mathsf{fw1}\},x]^2-2z2)}{\sqrt{1-x}(4x-1)}\right)}{\pi},\{\}\right\}$$

We can now compute the asymptotics, either from the Mellin representation...

 $\label{eq:lin_lin} \ensuremath{\mathsf{ln}}{\sc 16}{\sc :=} \ensuremath{\operatorname{asymptoticsMellint}}{\sc 16}{\sc 16}{\sc$

Out[16]=

$$-\frac{2}{\pi} \left(-\frac{(\pi-12)(12+\pi)\sqrt{\pi}2^{2n-3}}{27n^{3/2}} - \frac{\left(288+59\pi^2\right)\sqrt{\pi}2^{2n-7}}{27n^{5/2}} - \frac{97\left(25\pi^2-432\right)\sqrt{\pi}2^{2n-10}}{81n^{7/2}} - \frac{17\left(33929\pi^2-440640\right)\sqrt{\pi}2^{2n-15}}{243n^{9/2}} - \frac{\pi^{5/2}2^{2n}}{9\sqrt{n}} \right)$$

We can now compute the asymptotics, either from the Mellin representation...

 $\label{eq:ln[17]:=asymp1 = AsymptoticsMellint[mel1[[1]], x, n, 4]} \\ \\$

$$-\frac{2}{\pi} \left(-\frac{(\pi-12)(12+\pi)\sqrt{\pi}2^{2n-3}}{27n^{3/2}} - \frac{\left(288+59\pi^2\right)\sqrt{\pi}2^{2n-7}}{27n^{5/2}} - \frac{97\left(25\pi^2-432\right)\sqrt{\pi}2^{2n-10}}{81n^{7/2}} - \frac{17\left(33929\pi^2-440640\right)\sqrt{\pi}2^{2n-15}}{243n^{9/2}} - \frac{\pi^{5/2}2^{2n}}{9\sqrt{n}} \right)$$

... or directly from the sum representation:

ln[18] = asymptoticsSum[sum1, n, x, 3]

$$\begin{array}{l} \text{Out}[18]= & -\frac{2}{\pi} \left(-\frac{(\pi-12)(12+\pi)\sqrt{\pi}2^{2n-3}}{27n^{3/2}} - \frac{\left(288+59\pi^2\right)\sqrt{\pi}2^{2n-7}}{27n^{5/2}} - \frac{97 \left(25\pi^2-432\right)\sqrt{\pi}2^{2n-10}}{81n^{7/2}} \right. \\ & \left. -\frac{17 \left(33929\pi^2-440640\right)\sqrt{\pi}2^{2n-15}}{243n^{9/2}} - \frac{\pi^{5/2}2^{2n}}{9\sqrt{n}} \right) \end{array}$$

We can now compute the asymptotics, either from the Mellin representation...

 $\label{eq:lins} \ensuremath{\mathsf{ln}}\xspace{19]:=} asymptoticsMellint[mel1[[1]], x, n, 4]$

$$\begin{array}{l} \text{Out}[19]=\\ &-\frac{2}{\pi}\left(-\frac{(\pi-12)(12+\pi)\sqrt{\pi}2^{2n-3}}{27n^{3/2}}-\frac{\left(288+59\pi^2\right)\sqrt{\pi}2^{2n-7}}{27n^{5/2}}-\frac{97\left(25\pi^2-432\right)\sqrt{\pi}2^{2n-10}}{81n^{7/2}}\right.\\ &-\frac{17\left(33929\pi^2-440640\right)\sqrt{\pi}2^{2n-15}}{243n^{9/2}}-\frac{\pi^{5/2}2^{2n}}{9\sqrt{n}}\right)\\ \text{In}[20]:=\text{DiscretePlot}\left[\frac{|\text{sum1}-\text{asymp1}|}{|\text{sum1}|},\{\text{n},1,50\}\right]\\ \text{Out}[10] \end{array}$$

Out[20]=

Here's another example:

$$\label{eq:lin21:=sum2} \mbox{In[21]:= sum2} = \mathbf{GS} \left[\left\{ (-2)^{\mbox{VarGL}} \mbox{Binomial[2VarGL, VarGL]}, \frac{\left(\frac{1}{2}\right)^{\mbox{VarGL}}}{\mbox{VarGL}}, \frac{1}{\mbox{VarGL}^2} \right\}, \mathbf{n} \right];$$

Setting Mellin inversion Asymptotic expansions Mathematica session

Here's another example:

$$\label{eq:linear} \mbox{In[22]:= sum2 = GS} \left[\left\{ (-2)^{\mbox{VarGL}} \mbox{Binomial[2VarGL, VarGL]}, \frac{\left(\frac{1}{2}\right)^{\mbox{VarGL}}}{\mbox{VarGL}}, \frac{1}{\mbox{VarGL}^2} \right\}, n \right];$$

 $\label{eq:ln[23]:=} In[23]:= ToHarmonicSumsSum[sum2]$

$$\operatorname{Out}[23]= \sum_{\tau_1=1}^{n} (-2)^{\tau_1} \operatorname{Binomial}[2\tau_1, \tau_1] \left(\sum_{\tau_2=1}^{\tau_1} \frac{2^{-\tau_2} \left(\sum_{\tau_3=1}^{\tau_2} \frac{1}{\tau_3^2} \right)}{\tau_2} \right)$$

Here's another example:

$$\label{eq:In[24]:=} \mbox{sum2} = \mathbf{GS} \left[\left\{ (-2)^{\mbox{VarGL}} \mbox{Binomial}[2\mbox{VarGL},\mbox{VarGL}], \frac{\left(\frac{1}{2}\right)^{\mbox{VarGL}}}{\mbox{VarGL}}, \frac{1}{\mbox{VarGL}^2} \right\}, n \right];$$

 ${\tt ln[25]:= mel2 = SumToMellin[sum2, C, x, ToGLbBasis \rightarrow False]}$

$$\begin{array}{l} \text{Out}[25]= \end{array} \left\{ \frac{2\sqrt{2} \; \texttt{Mellin}\left((-4)^n x^n - 1, \frac{\sqrt{x}(\texttt{Hwb}[\{\texttt{fw6},\texttt{fw1},\texttt{fw1}\},\texttt{x}] - \texttt{22} \; \texttt{Hwb}[\{\texttt{fw6}\},\texttt{x}])}{\sqrt{1 - \frac{x}{2}}(4\texttt{x} + 1)}\right)}{\pi} \\ + \frac{5 \; \texttt{z3} \; \texttt{Mellin}\left((-8)^n x^n - 1, \frac{\sqrt{x}}{\sqrt{1 - x}\left(\texttt{x} + \frac{1}{8}\right)}\right)}{8\pi}, \{\} \end{array} \right\} \end{array}$$

where

$$f_{w_1}(x) = \frac{1}{\sqrt{x(1-x)}}, \quad f_{w_6}(x) = \frac{1}{\sqrt{1-x}\sqrt{2-x}}$$

ln[26]:= asymp2 = AsymptoticsSum[sum2, n, x, 5]

$$5\left(-\frac{13\sqrt{\pi}(-8)^n}{818^{3/2}}-\frac{13\sqrt{\pi}(-1)^n2^{3n-4}}{2438^{5/2}}+\frac{2195\sqrt{\pi}(-1)^n2^{3n-7}}{2187n^{7/2}}+\frac{806953\sqrt{\pi}(-1)^n8^{n-4}}{196838^{9/2}}+\frac{\sqrt{\pi}(-1)^n8^{n+1}}{9\sqrt{n}}\right)z3^{3/2}$$

 8π

ln[28]:= asymp2 = AsymptoticsSum[sum2, n, x, 5]

Conclusion

- Both Mellin inversion and asymptotics computation presented [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] implemented in the package
- We have extended the inversion method to make it work with some new classes of binomial nested sums (e.g. involving some classes of rational functions)
- Fully symbolic representation of constants
- Asymptotic expansion of sums with several possible schemes

Work in progress

- Explicit computation/simplification of constants is highly non-trivial, structure of binomial sums needs to be explored further (building a basis of binomial sums, unicity of root alphabet/relation between letters,...)
- Some classes of convolution involve difficult integrals that need to be tackled properly

Conclusion

- Both Mellin inversion and asymptotics computation presented [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] implemented in the package
- We have extended the inversion method to make it work with some new classes of binomial nested sums (e.g. involving some classes of rational functions)
- Fully symbolic representation of constants
- Asymptotic expansion of sums with several possible schemes

Work in progress

- Explicit computation/simplification of constants is highly non-trivial, structure of binomial sums needs to be explored further (building a basis of binomial sums, unicity of root alphabet/relation between letters,...)
- Some classes of convolution involve difficult integrals that need to be tackled properly

Thank you for listening!

J. Ablinger, J. Blümlein, and C.Schneider. "Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms". In: *Journal of Mathematical Physics* 54.8 (Aug. 2013), p. 082301. DOI: 10.1063/1.4811117. URL: https://doi.org/10.1063%2F1.4811117.

- J. Ablinger et al. "Iterated binomial sums and their associated iterated integrals". In: Journal of Mathematical Physics 55.11 (Nov. 2014), p. 112301. DOI: 10.1063/1.4900836. URL: https://doi.org/10.1063%2F1.4900836.
- J. Ablinger et al. "The O(as3 TF2) contributions to the gluonic operator matrix element". In: *Nuclear Physics B* 885 (Aug. 2014), pp. 280–317. DOI: 10.1016/j.nuclphysb.2014.05.028. URL: https://doi.org/10.1016%2Fj.nuclphysb.2014.05.028.
- Jakob Ablinger, Johannes Blumlein, and Carsten Schneider. "Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials". In: J. Math. Phys. 52 (2011), p. 102301. DOI: 10.1063/1.3629472. arXiv: 1105.6063 [math-ph].

- Jakob Ablinger et al. "Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms". In: *Nuclear Physics B* 885 (Aug. 2014), pp. 409–447. DOI: 10.1016/j.nuclphysb.2014.04.007. URL: https://doi.org/10.1016%2Fj.nuclphysb.2014.04.007.
- Johannes Blumlein and Stefan Kurth. "Harmonic sums and Mellin transforms up to two loop order". In: *Phys. Rev. D* 60 (1999), p. 014018. DOI: 10.1103/PhysRevD.60.014018. arXiv: hep-ph/9810241.
- Christian Krattenthaler and Carsten Schneider. Evaluation of binomial double sums involving absolute values. 2020. arXiv: 1607.05314 [math.CO].
- N. Nielsen. Handbuch der Theorie der Gammafunktion. B.G.Teubner, Leipzig, 1906.
- E. Remiddi and J. A. M. Vermaseren. "Harmonic polylogarithms". In: *Int. J. Mod. Phys. A* 15 (2000), pp. 725–754. DOI: 10.1142/S0217751X00000367. arXiv: hep-ph/9905237.
 - J. A. M. Vermaseren. "Harmonic sums, Mellin transforms and integrals". In: Int. J. Mod. Phys. A 14 (1999), pp. 2037–2076. DOI: 10.1142/S0217751X99001032. arXiv: hep-ph/9806280.

Open position at RISC: Professorship of Computation Science

Possible topics:

- Algorithmic Number Theory
- Applied Algebraic Geometry
- Applications of Algebraic or Discrete Methods in Biology, Chemistry, or Physics and other research areas
- Discrete and Combinatorial Optimization
- Mathematical Aspects of AI

Details: www.risc.jku.at