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Motivation
Notation

Different problems in combinatorics, analysis of algorithms or even physics involve
binomially weighted sums

I Example 1 (combinatorics): In the paper [Evaluation of Binomial Double Sums Involving

Absolute Values of C. Krattenthaler and C. Schneider], sums of the following form appear for
the study of double sums with binomial coefficients:
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If we want the asymptotic expansion at m→ +∞ for fixed m, this involves in
particular computing the asymptotics of the boxed sum
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I Example 2 (physics): Particle physics computations are often done in Mellin
space, and for example in the paper [The O(α3

sT
2
F ) contributions to the gluonic operator matrix

element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:
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Sums can be nested, for example in [Iterated Binomial Sums and their Associated Iterated

Integrals by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider], we also have sums such as:
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Aim: Being able to deal automatically with those kind of sums in all generality, in
particular Mellin inversion and asymptotic expansion
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I We define the binomially weighted sums as follows:

BS{a1,...,ak}(n) :=
n∑

i1=1

a1(i1)
i1∑
i2=1

a2(i2) · · ·
ik−1∑
ik=1

ak(ik)

with

aj(p) = aj(p; b, c,m) =
(

2p
p

)b
cp

pm
, b ∈ {−1, 0, 1}, c ∈ R?, m ∈ N

[Harmonic Sums and Mellin transforms up to the two loop order by J. Blümlein and S. Kurth]

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]

[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider]

[Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]
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I More generic summands can also be considered, such as:
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We remind here some definitions and useful properties of Mellin transforms:
I Definition:

M [f(x)] (n) :=
∫ 1

0
dxxnf(x)

I Summation formula (c ∈ C):
n∑
i=1

ciM [f(x)] (i) = cnM
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]

(n)−M
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(0) (1)

I Convolution:

f(x) ∗ g(x) :=
∫ 1

0
dx1
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0
dx2 δ(x− x1x2)f(x1)g(x2) =

∫ 1

x

dy f(y)
y
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(
x
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M [f(x) ∗ g(x)] (n) = M [f(x)] (n) ·M [g(x)] (n)
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Question: How to represent them as Mellin integrals?

I First method (used by HarmonicSums for general Mellin inversion): given
M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic
differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic
method doesn’t work), a Mellin representation cannot be obtained

I Second method: compute it recursively from the BS using fundamental
properties of Mellin transforms and ”rule-theorems” that allow us to
compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their

Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Pros: Simple principles, faster, easy to extend, symbolic expressions for
constants
Cons: Different cases have to be identified and implemented individually

I The second method is the one we have implemented in our RICA
(Rule-Induced Convolutions for Asymptotics) package

Note: RICA relies on C. Schneider’s Sigma and J. Ablinger’s HarmonicSums
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Note: These Mellin representations will involve general polylogarithms

H∗∅(x) := 1, H∗b(t),−→c (t)(x) = H∗b,−→c (x) :=
∫ 1

x

dt b(t)H∗−→c (t)

Defined over a 37 letter alphabet {f0, . . . , fw32} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions, and
obeying shuffle algebra

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]

[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider]

[Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]
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Defined over a 37 letter alphabet {f0, . . . , fw32} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions, and
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Example:

H∗fw11 ,f2,fw8
=
∫ 1

x

dt1 fw11 (t1)
∫ 1

t1

dt2 f2(t2)
∫ 1

t2

dt3 fw8 (t3)

=
∫ 1

x

dt1
1

t1
√

1− t1
√

2− t1

∫ 1

t1

dt2
1

2− t2

∫ 1

t2

dt3
1

t3
√
t3 − 1

4
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x

dt b(t)H∗−→c (t)

Defined over a 37 letter alphabet {f0, . . . , fw32} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions, and
obeying shuffle algebra

Example: (linearization by shuffle relations)

H∗f1 (x)H∗f0,f−1 (x) = H∗f1,f0,f−1 (x) + H∗f0,f−1,f1 (x) + H∗f0,f1,f−1 (x)

where
f0(x) = 1

x
, f1(x) = 1

1− x , f−1(x) = 1
1 + x
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Example:

BS(n) =
n∑
k=1

(
2i
i

)
S2(i) =

n∑
k=1

(
2i
i

) i∑
j=1

1
i2

I First we compute the Mellin representation of 1
i2 by convolving 1

i
= M

[
1
x

]
(i)

with itself. We get:

1
i2

= M
[ 1
x

]
(i) ·M

[ 1
x

]
(i) = M

[ 1
x
∗ 1
x

]
(i) = M

[
H∗0(x)
x

]
(i)

where

H∗0(x) :=
∫ 1

x

dt f0(t) =
∫ 1

x

dt 1
t

= − log x
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I Using the summation formula (1), we can then obtain:

S2(i) =
i∑

k=1

M

[
H∗0(x)
x

]
(i) =

∫ 1

0

dx xi
H∗0(x)
x− 1︸ ︷︷ ︸

M

[
x
x−1

H∗0 (x)
x

]
(i)

−

∫ 1

0

dx
H∗0(x)
x− 1︸ ︷︷ ︸

M

[
x
x−1

H∗0 (x)
x

]
(0)

=

∫ 1

0

dx xi
H∗0(x)
x− 1

+ζ2

where

ζ2 =
∞∑
i=1

1
i2

= π2

6

I Now that the innermost sum has as integral representation, we shift to the
next and last level. First, one can show (e.g. direct integration) that:(

2i
i

)
= 4i

π
M

[
1√

x(1− x)

]
(i)

So that
k∑
i=1

(2i

i

)
S2(i) =

1

π

n∑
i=1

4iM

[
1√

x(1 − x)

]
(i)·M

[
H∗0 (x)

x − 1

]
(i)+

ζ2
π

k∑
i=1

4iM

[
1√

x(1 − x)

]
(i)

Johannes Blümlein, Nikolai Fadeev, Carsten Schneider
Computing Mellin representations and asymptotics of nested binomial sums in a symbolic way: the RICA package
9 / 19



Setting
Mellin inversion

Asymptotic expansions
Mathematica session

I Using the summation formula (1), we can then obtain:

S2(i) =
i∑

k=1

M

[
H∗0(x)
x

]
(i) =

∫ 1

0

dx xi
H∗0(x)
x− 1︸ ︷︷ ︸

M

[
x
x−1

H∗0 (x)
x

]
(i)

−

∫ 1

0

dx
H∗0(x)
x− 1︸ ︷︷ ︸

M

[
x
x−1

H∗0 (x)
x

]
(0)

=

∫ 1

0

dx xi
H∗0(x)
x− 1

+ζ2

where

ζ2 =
∞∑
i=1

1
i2

= π2

6

I Now that the innermost sum has as integral representation, we shift to the
next and last level. First, one can show (e.g. direct integration) that:(

2i
i

)
= 4i

π
M

[
1√

x(1− x)

]
(i)

So that
k∑
i=1

(2i

i

)
S2(i) =

1

π

n∑
i=1

4iM

[
1√

x(1 − x)

]
(i)·M

[
H∗0 (x)

x − 1

]
(i)+

ζ2
π

k∑
i=1

4iM

[
1√

x(1 − x)

]
(i)
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I We apply again the summation formula to obtain first the second part:

ζ2

π

k∑
i=1

4iM

[
1√

x(1− x)

]
(i) = ζ2

π

∫ 1

0
dx (4x)n − 1

x− 1
4

√
x

1− x

I Then we switch to the first part of the binomial and convolve the functions:

M

[
1√

x(1− x)

]
(i) ·M

[
H∗0(x)
x− 1

]
(i) = M

[∫ 1

x

dy H∗0(y)
(y − 1)

√
y − x

]
(i)

where

H∗0(y) :=
∫ 1

y

dt f0(t) =
∫ 1

y

dt 1
t

= − log y

I A set of several ”rule-theorems” have been proven in [Iterated Binomial Sums and their

Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] to simplify further
such expressions. One of them allows us to get:∫ 1

x

dy H∗0(y)
(y − 1)

√
y − x

=
H∗b,w1 (x)
√
x− 1

, fb(x) = 1√
x(x− 1)

, fw1 (x) = 1√
x(1− x)
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I Using the shuffle algebra, we can reduce the expression down to:

M

[
H∗b,w1 (x)√
x(x− 1)

]
(i) = −M

[
H∗w1 (x)2

2
√
x(1− x)

]
(i)

I Finally, using once again the summation formula we get:

n∑
i=1

4iM

[
H∗w1 (x)2

2
√
x(1− x)

]
(i) =

∫ 1

0
dx (4x)n − 1

x− 1
4

√
x

1− x
H∗w1 (x)2

2

and resumming everything, we get:
n∑
i=1

(
2i
i

)
S2(i) = − 1

π

∫ 1

0
dx (4x)n − 1

x− 1
4

√
x

1− x

(
H∗w1 (x)2

2 − ζ2

)
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Change of variables approach

We now want to obtain an asymptotic expansion for n→ +∞ up to order p of a
general expression of the form:

M̃a[f(x)](n) :=
∫ 1

0
dx (ax)n − 1

x− 1
a

f(x) =
∫ 1

0
dx [(ax)n − 1] f̃(x) (2)

where
f̃(x) := f(x)

x− 1
a

I There exist several method to compute this expansion, depending mostly on
the regularity of f and whether the integral can be split [Iterated Binomial Sums and

their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

I We will present one of the methods, all of them are implemented in RICA
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Change of variables approach

We suppose that f is regular on [0; 1] and a < −1, so that 1
x− 1

a

is regular on [0; 1]
and we can simply split the integral in two, then use a change of variables
I Split the Mellin integral, factor out the an:∫ 1

0
dx ax

n − 1
x− 1

a

f(x) = anM

[
f(x)
x− 1

a

]
(n)−M

[
f(x)
x− 1

a

]
(0)︸ ︷︷ ︸

=:C

Note: When |a| > 1, the constant C is exponentially suppressed

I In M
[
f(x)
x− 1

a

]
(n), we make the following change of variables:

x = e−z, dx = −e−zdz

and end up with:

M

[
f(x)
x− 1

a

]
(n) = an

∫ +∞

0
dz e−zn e−z

e−z − 1f(e−z)︸ ︷︷ ︸
=:g(z)
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Johannes Blümlein, Nikolai Fadeev, Carsten Schneider
Computing Mellin representations and asymptotics of nested binomial sums in a symbolic way: the RICA package
13 / 19



Setting
Mellin inversion

Asymptotic expansions
Mathematica session

Change of variables approach

I We expand g(z) around z = 0 up to the order p:

g(z) =
z→0

∑
α≤p

gαz
α +O(zα+1), α ∈ 1

2Z≥−1, gα ∈ R

I Finally we integrate M [ f(x)
x− 1

a

](n) using the expansion above, and adding the
an coefficient back:

M̃a[f(x)](n) =
n→+∞

an
∑
α≤p

∫ +∞

0
dz e−zngαzα

= an
∑
α≤p

hα
nα

, hα ∈ R
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First we preload Sigma and HarmonicSums:
In[1]:= << Sigma.m;

Sigma - A summation package by Carsten Schneider – c© RISC

In[2]:= << HarmonicSums.m;

HarmonicSums by Jakob Ablinger – c© RISC

And then our package:
In[3]:= << RICA.m;

Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev c© RISC-JKU

We define the sum that we want to study using HarmonicSums’ GS function:
In[4]:= sum1 = GS

[{
Binomial[2 VarGL, VarGL],

1
VarGL2

}
, n
]

;

We can now compute the Mellin representation:
In[5]:= mel1 = SumToMellin[sum1, C, x]

Out[5]=

− 2Mellin
(

4nxn − 1,
√

x(Hwb[{fw1},x]2−2z2)√
1−x(4x−1)

)
π

, {}


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We can now compute the asymptotics, either from the Mellin representation...
In[16]:= asymp1 = AsymptoticsMellint[mel1[[1]], x, n, 4]

Out[16]=

−
2
π

(
−

(π − 12)(12 + π)
√
π22n−3

27n3/2
−

(
288 + 59π2

)√
π22n−7

27n5/2
−

97
(

25π2 − 432
)√

π22n−10

81n7/2

−
17
(

33929π2 − 440640
)√

π22n−15

243n9/2
−
π5/222n

9
√

n

)
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Out[17]=

−
2
π

(
−

(π − 12)(12 + π)
√
π22n−3

27n3/2
−

(
288 + 59π2

)√
π22n−7

27n5/2
−

97
(

25π2 − 432
)√

π22n−10

81n7/2

−
17
(

33929π2 − 440640
)√

π22n−15

243n9/2
−
π5/222n

9
√

n

)
...or directly from the sum representation:
In[18]:= asymp1P = AsymptoticsSum[sum1, n, x, 3]

Out[18]= −
2
π

(
−

(π − 12)(12 + π)
√
π22n−3

27n3/2
−

(
288 + 59π2

)√
π22n−7

27n5/2
−

97
(

25π2 − 432
)√

π22n−10

81n7/2

−
17
(

33929π2 − 440640
)√

π22n−15

243n9/2
−
π5/222n

9
√

n

)
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We can now compute the asymptotics, either from the Mellin representation...
In[19]:= asymp1 = AsymptoticsMellint[mel1[[1]], x, n, 4]

Out[19]=

−
2
π

(
−

(π − 12)(12 + π)
√
π22n−3

27n3/2
−

(
288 + 59π2

)√
π22n−7

27n5/2
−

97
(

25π2 − 432
)√

π22n−10

81n7/2

−
17
(

33929π2 − 440640
)√

π22n−15

243n9/2
−
π5/222n

9
√

n

)
In[20]:= DiscretePlot

[
|sum1− asymp1|
|sum1|

, {n, 1, 50}
]

Out[20]=
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Here’s another example:

In[21]:= sum2 = GS

[{
(−2)VarGLBinomial[2VarGL, VarGL],

(
1
2

)VarGL

VarGL
,

1
VarGL2

}
, n

]
;
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Here’s another example:

In[22]:= sum2 = GS

[{
(−2)VarGLBinomial[2VarGL, VarGL],

(
1
2

)VarGL

VarGL
,

1
VarGL2

}
, n

]
;

In[23]:= ToHarmonicSumsSum[sum2]

Out[23]=

n∑
τ1=1

(−2)τ1 Binomial[2τ1, τ1]


τ1∑
τ2=1

2−τ2

(
τ2∑
τ3=1

1
τ2

3

)
τ2


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1
2
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VarGL
,

1
VarGL2

}
, n

]
;

In[25]:= mel2 = SumToMellin[sum2, C, x, ToGLbBasis→ False]

Out[25]=


2
√

2 Mellin

(
(−4)nxn − 1,

√
x(Hwb[{fw6,fw1,fw1},x]−z2 Hwb[{fw6},x])√

1− x
2 (4x+1)

)
π

+

5 z3 Mellin

(
(−8)nxn − 1,

√
x√

1−x
(

x+ 1
8

))
8π

, {}


where

fw1 (x) = 1√
x(1− x)

, fw6 (x) = 1√
1− x

√
2− x
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In[26]:= asymp2 = AsymptoticsSum[sum2, n, x, 5]

Out[26]=

5
(
− 13
√
π(−8)n

81n3/2 − 13
√
π(−1)n23n−4

243n5/2 + 2195
√
π(−1)n23n−7

2187n7/2 + 806953
√
π(−1)n8n−4

19683n9/2 +
√
π(−1)n8n+1

9
√

n

)
z3

8π

In[27]:= DiscretePlot
[
|sum2− asymp2|
|sum2|

, {n, 1, 50}
]

Out[27]=
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Conclusion

I Both Mellin inversion and asymptotics computation presented [Iterated Binomial

Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

implemented in the package
I We have extended the inversion method to make it work with some new

classes of binomial nested sums (e.g. involving some classes of rational
functions)

I Fully symbolic representation of constants
I Asymptotic expansion of sums with several possible schemes

Work in progress
I Explicit computation/simplification of constants is highly non-trivial, structure

of binomial sums needs to be explored further (building a basis of binomial
sums, unicity of root alphabet/relation between letters,...)

I Some classes of convolution involve difficult integrals that need to be tackled
properly

Thank you for listening!
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Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]
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functions)
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I Asymptotic expansion of sums with several possible schemes

Work in progress
I Explicit computation/simplification of constants is highly non-trivial, structure

of binomial sums needs to be explored further (building a basis of binomial
sums, unicity of root alphabet/relation between letters,...)

I Some classes of convolution involve difficult integrals that need to be tackled
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