Computing Mellin representations and asymptotics of nested binomial sums in a symbolic way: the RICA package

Johannes Blümlein, Nikolai Fadeev, Carsten Schneider

Research Institute for Symbolic Computation, Deutsches Elektronen-Synchrotron

July 25, 2023
Supported by the Austrian Science Foundation (FWF) grant P33530.

JOHANNES KEPLER JOHANNES KEPLER
UNIVERSITY LINZ

Different problems in combinatorics, analysis of algorithms or even physics involve binomially weighted sums

- Example 1 (combinatorics): In the paper [Evaluation of Binomial Double Sums Involving Absolute Values of C. Krattenthaler and C. Schneider], sums of the following form appear for the study of double sums with binomial coefficients:

$$
-2^{2 m+1} n\binom{2 n}{n} \sum_{i=0}^{m} \frac{2^{-2 i}\binom{2 i}{i}}{i+n}+2\binom{2 m}{m}\binom{2 n}{n}+2^{2 m+2 n}
$$

If we want the asymptotic expansion at $m \rightarrow+\infty$ for fixed m, this involves in particular computing the asymptotics of the boxed sum

- Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper [The $\mathcal{O}\left(\alpha_{s}^{3} T_{F}^{2}\right)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:

$$
\frac{1}{4^{n}}\binom{2 n}{n}\left(\sqrt{\sum_{i=1}^{n} \frac{4^{i}}{i^{2}\binom{2 i}{i}} S_{1}(i-1)}-7 \zeta_{3}\right), \quad S_{1}(i-1):=\sum_{k=1}^{i-1} \frac{1}{k}, \quad \zeta_{k}=\sum_{n=1}^{\infty} \frac{1}{n^{k}}
$$

- Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper [The $\mathcal{O}\left(\alpha_{s}^{3} T_{F}^{2}\right)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:

$$
\frac{1}{4^{n}}\binom{2 n}{n}\left(\sqrt{\sum_{i=1}^{n} \frac{4^{i}}{i^{2}\binom{2 i}{i}} S_{1}(i-1)}-7 \zeta_{3}\right), \quad S_{1}(i-1):=\sum_{k=1}^{i-1} \frac{1}{k}, \quad \zeta_{k}=\sum_{n=1}^{\infty} \frac{1}{n^{k}}
$$

Sums can be nested, for example in [Iterated Binomial Sums and their Associated Iterated Integrals by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider], we also have sums such as:

$$
\sum_{i=1}^{n}\binom{2 i}{i} S_{2}(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2 i}{i}} \sum_{j=1}^{i}\binom{2 j}{j}(-2)^{j}
$$

- Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper [The $\mathcal{O}\left(\alpha_{s}^{3} T_{F}^{2}\right)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al.], sums of the following form pop up:

$$
\frac{1}{4^{n}}\binom{2 n}{n}\left(\sqrt{\sum_{i=1}^{n} \frac{4^{i}}{i^{2}\binom{2 i}{i}} S_{1}(i-1)}-7 \zeta_{3}\right), \quad S_{1}(i-1):=\sum_{k=1}^{i-1} \frac{1}{k}, \quad \zeta_{k}=\sum_{n=1}^{\infty} \frac{1}{n^{k}}
$$

Sums can be nested, for example in [Iterated Binomial Sums and their Associated Iterated Integrals by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider], we also have sums such as:

$$
\sum_{i=1}^{n}\binom{2 i}{i} S_{2}(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2 i}{i}} \sum_{j=1}^{i}\binom{2 j}{j}(-2)^{j}
$$

Aim: Being able to deal automatically with those kind of sums in all generality, in particular Mellin inversion and asymptotic expansion

We define the binomially weighted sums as follows:

$$
B S_{\left\{a_{1}, \ldots, a_{k}\right\}}(n):=\sum_{i_{1}=1}^{n} a_{1}\left(i_{1}\right) \sum_{i_{2}=1}^{i_{1}} a_{2}\left(i_{2}\right) \cdots \sum_{i_{k}=1}^{i_{k-1}} a_{k}\left(i_{k}\right)
$$

with

$$
a_{j}(p)=a_{j}(p ; b, c, m)=\binom{2 p}{p}^{b} \frac{c^{p}}{p^{m}}, \quad b \in\{-1,0,1\}, c \in \mathbb{R}^{\star}, m \in \mathbb{N}
$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] [Harmonic Sums and Mellin transforms up to the two loop order by J. Blümlein and S. Kurth]

- We define the binomially weighted sums as follows:

$$
B S_{\left\{a_{1}, \ldots, a_{k}\right\}}(n):=\sum_{i_{1}=1}^{n} a_{1}\left(i_{1}\right) \sum_{i_{2}=1}^{i_{1}} a_{2}\left(i_{2}\right) \cdots \sum_{i_{k}=1}^{i_{k-1}} a_{k}\left(i_{k}\right)
$$

with

$$
a_{j}(p)=a_{j}(p ; b, c, m)=\binom{2 p}{p}^{b} \frac{c^{p}}{p^{m}}, \quad b \in\{-1,0,1\}, c \in \mathbb{R}^{\star}, m \in \mathbb{N}
$$

Example :

$$
\sum_{i=1}^{n} \frac{1}{i\binom{2 i}{i}} \sum_{j=1}^{i}\binom{2 j}{j} \frac{(-1)^{j}}{j^{3}} \sum_{k=1}^{j} \frac{\left(\frac{1}{2}\right)^{k}}{k^{2}}
$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] [Harmonic Sums and Mellin transforms up to the two loop order by J. Blümlein and S. Kurth]

- More generic summands can also be considered, such as:

$$
\frac{c^{n}}{(2 n+1)\binom{2 n}{n}} \text { or } \frac{p(i)}{q(i)}\binom{2 i}{i}, p, q \in \mathbb{C}[X], \operatorname{deg} p \leq \operatorname{deg} q, \operatorname{roots}(q) \subset \mathbb{C} \backslash \mathbb{R}_{+}
$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] [Harmonic Sums and Mellin transforms up to the two loop order by J. Blümlein and S. Kurth]

- More generic summands can also be considered, such as:

$$
\begin{aligned}
& \frac{c^{n}}{(2 n+1)\binom{2 n}{n}} \text { or } \frac{p(i)}{q(i)}\binom{2 i}{i}, p, q \in \mathbb{C}[X], \operatorname{deg} p \leq \operatorname{deg} q, \operatorname{roots}(q) \subset \mathbb{C} \backslash \mathbb{R}_{+} \\
& \text {Example : } \quad \sum_{i=1}^{n} \frac{1+i}{i^{2}+5 i+6} \sum_{j=1}^{i} \frac{(-2)^{j}}{(2 j+1)\binom{2 j}{j}} \sum_{k=1}^{j} \frac{3^{k}}{k^{2}}
\end{aligned}
$$

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] [Harmonic Sums and Mellin transforms up to the two loop order by J. Blümlein and S. Kurth]

We remind here some definitions and useful properties of Mellin transforms:

- Definition:

$$
M[f(x)](n):=\int_{0}^{1} \mathrm{~d} x x^{n} f(x)
$$

- Summation formula $(c \in \mathbb{C})$:

$$
\begin{equation*}
\sum_{i=1}^{n} c^{i} M[f(x)](i)=c^{n} M\left[\frac{x}{x-\frac{1}{c}} f(x)\right](n)-M\left[\frac{x}{x-\frac{1}{c}} f(x)\right] \tag{1}
\end{equation*}
$$

- Convolution:

$$
\begin{aligned}
f(x) * g(x):= & \int_{0}^{1} \mathrm{~d} x_{1} \int_{0}^{1} \mathrm{~d} x_{2} \delta\left(x-x_{1} x_{2}\right) f\left(x_{1}\right) g\left(x_{2}\right)=\int_{x}^{1} \mathrm{~d} y \frac{f(y)}{y} g\left(\frac{x}{y}\right) \\
& M[f(x) * g(x)](n)=M[f(x)](n) \cdot M[g(x)](n)
\end{aligned}
$$

Question: How to represent them as Mellin integrals?

Question: How to represent them as Mellin integrals?

- First method (used by HarmonicSums for general Mellin inversion): given $M[f(x)](n)$ as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for $f(x)$

Question: How to represent them as Mellin integrals?

- First method (used by HarmonicSums for general Mellin inversion): given $M[f(x)](n)$ as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for $f(x)$

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Question: How to represent them as Mellin integrals?

- First method (used by HarmonicSums for general Mellin inversion): given $M[f(x)](n)$ as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for $f(x)$

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

- Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Question: How to represent them as Mellin integrals?

- First method (used by HarmonicSums for general Mellin inversion): given $M[f(x)](n)$ as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for $f(x)$

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

- Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Pros: Simple principles, faster, easy to extend, symbolic expressions for constants
Cons: Different cases have to be identified and implemented individually

Question: How to represent them as Mellin integrals?

- First method (used by HarmonicSums for general Mellin inversion): given $M[f(x)](n)$ as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for $f(x)$

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

- Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Pros: Simple principles, faster, easy to extend, symbolic expressions for constants
Cons: Different cases have to be identified and implemented individually

- The second method is the one we have implemented in our RICA (Rule-Induced Convolutions for Asymptotics) package

Question: How to represent them as Mellin integrals?

- First method (used by HarmonicSums for general Mellin inversion): given $M[f(x)](n)$ as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for $f(x)$

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

- Second method: compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow us to compute in an automatic way Mellin convolutions [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Pros: Simple principles, faster, easy to extend, symbolic expressions for constants
Cons: Different cases have to be identified and implemented individually

- The second method is the one we have implemented in our RICA (Rule-Induced Convolutions for Asymptotics) package

Note: RICA relies on C. Schneider's Sigma and J. Ablinger's HarmonicSums

Note: These Mellin representations will involve general polylogarithms

$$
\mathrm{H}_{\emptyset}^{*}(x):=1, \mathrm{H}_{\mathrm{b}(\mathrm{t}), \vec{c}(\mathrm{t})}^{*}(x)=\mathrm{H}_{\mathrm{b}, \overrightarrow{\mathrm{c}}}^{*}(x):=\int_{x}^{1} \mathrm{~d} t b(t) \mathrm{H}_{\vec{c}}^{*}(t)
$$

Defined over a 37 letter alphabet $\left\{f_{0}, \ldots, f_{w_{32}}\right\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions, and obeying shuffle algebra
[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Note: These Mellin representations will involve general polylogarithms

$$
\mathrm{H}_{\emptyset}^{*}(x):=1, \mathrm{H}_{\mathrm{b}(\mathrm{t}), \vec{c}(\mathrm{t})}^{*}(x)=\mathrm{H}_{\mathrm{b}, \vec{c}}^{*}(x):=\int_{x}^{1} \mathrm{~d} t b(t) \mathrm{H}_{\vec{c}}^{*}(t)
$$

Defined over a 37 letter alphabet $\left\{f_{0}, \ldots, f_{w_{32}}\right\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions, and obeying shuffle algebra

Example:

$$
\begin{aligned}
\mathrm{H}_{\mathrm{f}_{11}, \mathrm{f}_{2}, \mathrm{f}_{\mathrm{w}}^{8}}
\end{aligned}=\int_{x}^{1} \mathrm{~d} t_{1} f_{w_{11}}\left(t_{1}\right) \int_{t_{1}}^{1} \mathrm{~d} t_{2} f_{2}\left(t_{2}\right) \int_{t_{2}}^{1} \mathrm{~d} t_{3} f_{w_{8}}\left(t_{3}\right) ~(1) \int_{t_{1}}^{1} \mathrm{~d} t_{2} \frac{1}{2-t_{2}} \int_{t_{2}}^{1} \mathrm{~d} t_{3} \frac{1}{t_{3} \sqrt{t_{3}-\frac{1}{4}}} .
$$

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Note: These Mellin representations will involve general polylogarithms

$$
\mathrm{H}_{\emptyset}^{*}(x):=1, \mathrm{H}_{\mathrm{b}(\mathrm{t}), \vec{c}(\mathrm{t})}^{*}(x)=\mathrm{H}_{\mathrm{b}, \overrightarrow{\mathrm{c}}}^{*}(x):=\int_{x}^{1} \mathrm{~d} t b(t) \mathrm{H}_{\vec{c}}^{*}(t)
$$

Defined over a 37 letter alphabet $\left\{f_{0}, \ldots, f_{w_{32}}\right\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions, and obeying shuffle algebra

Example: (linearization by shuffle relations)

$$
\mathrm{H}_{\mathrm{f}_{1}}^{*}(x) \mathrm{H}_{\mathrm{f}_{0}, \mathrm{f}_{-1}}^{*}(x)=\mathrm{H}_{\mathrm{f}_{1}, \mathrm{f}_{0}, \mathrm{f}_{-1}}^{*}(x)+\mathrm{H}_{\mathrm{f}_{0}, \mathrm{f}_{-1}, \mathrm{f}_{1}}^{*}(x)+\mathrm{H}_{\mathrm{f}_{0}, \mathrm{f}_{1}, \mathrm{f}_{-1}}^{*}(x)
$$

where

$$
f_{0}(x)=\frac{1}{x}, \quad f_{1}(x)=\frac{1}{1-x}, \quad f_{-1}(x)=\frac{1}{1+x}
$$

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Blümlein and C. Schneider] [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]

Example:

$$
B S(n)=\sum_{k=1}^{n}\binom{2 i}{i} S_{2}(i)=\sum_{k=1}^{n}\binom{2 i}{i} \sum_{j=1}^{i} \frac{1}{i^{2}}
$$

- First we compute the Mellin representation of $\frac{1}{i^{2}}$ by convolving $\frac{1}{i}=M\left[\frac{1}{x}\right](i)$ with itself. We get:

$$
\frac{1}{i^{2}}=M\left[\frac{1}{x}\right](i) \cdot M\left[\frac{1}{x}\right](i)=M\left[\frac{1}{x} * \frac{1}{x}\right](i)=M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)
$$

where

$$
\mathrm{H}_{0}^{*}(x):=\int_{x}^{1} \mathrm{~d} t f_{0}(t)=\int_{x}^{1} \mathrm{~d} t \frac{1}{t}=-\log x
$$

Using the summation formula (1), we can then obtain:

$$
\begin{aligned}
& S_{2}(i)=\sum_{k=1}^{i} M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)= \underbrace{\int_{0}^{1} \mathrm{~d} x x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}-\underbrace{\int_{0}^{1} \mathrm{~d} x \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}=\int_{0}^{1} \mathrm{~d} x x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}+\zeta_{2} \\
& M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i) \quad M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](0)
\end{aligned}
$$

where

$$
\zeta_{2}=\sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}
$$

- Using the summation formula (1), we can then obtain:

$$
S_{2}(i)=\sum_{k=1}^{i} M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)=\underbrace{\int_{0}^{1} \mathrm{~d} x x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)}-\underbrace{\int_{0}^{1} \mathrm{~d} x \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](0)}=\int_{0}^{1} \mathrm{~d} x x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}+\zeta_{2}
$$

where

$$
\zeta_{2}=\sum_{i=1}^{\infty} \frac{1}{i^{2}}=\frac{\pi^{2}}{6}
$$

- Now that the innermost sum has as integral representation, we shift to the next and last level. First, one can show (e.g. direct integration) that:

$$
\begin{equation*}
\binom{2 i}{i}=\frac{4^{i}}{\pi} M\left[\frac{1}{\sqrt{x(1-x)}}\right] \tag{i}
\end{equation*}
$$

So that

$$
\begin{equation*}
\sum_{i=1}^{k}\binom{2 i}{i} S_{2}(i)=\frac{1}{\pi} \sum_{i=1}^{n} 4^{i} M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i)+\frac{\zeta_{2}}{\pi} \sum_{i=1}^{k} 4^{i} M\left[\frac{1}{\sqrt{x(1-x)}}\right] \tag{i}
\end{equation*}
$$

- We apply again the summation formula to obtain first the second part:

$$
\frac{\zeta_{2}}{\pi} \sum_{i=1}^{k} 4^{i} M\left[\frac{1}{\sqrt{x(1-x)}}\right](i)=\frac{\zeta_{2}}{\pi} \int_{0}^{1} \mathrm{~d} x \frac{(4 x)^{n}-1}{x-\frac{1}{4}} \sqrt{\frac{x}{1-x}}
$$

- We apply again the summation formula to obtain first the second part:

$$
\frac{\zeta_{2}}{\pi} \sum_{i=1}^{k} 4^{i} M\left[\frac{1}{\sqrt{x(1-x)}}\right](i)=\frac{\zeta_{2}}{\pi} \int_{0}^{1} \mathrm{~d} x \frac{(4 x)^{n}-1}{x-\frac{1}{4}} \sqrt{\frac{x}{1-x}}
$$

- Then we switch to the first part of the binomial and convolve the functions:

$$
\begin{equation*}
M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i)=M\left[\int_{x}^{1} \mathrm{~d} y \frac{\mathrm{H}_{0}^{*}(y)}{(y-1) \sqrt{y-x}}\right] \tag{i}
\end{equation*}
$$

where

$$
\mathrm{H}_{0}^{*}(y):=\int_{y}^{1} \mathrm{~d} t f_{0}(t)=\int_{y}^{1} \mathrm{~d} t \frac{1}{t}=-\log y
$$

- We apply again the summation formula to obtain first the second part:

$$
\frac{\zeta_{2}}{\pi} \sum_{i=1}^{k} 4^{i} M\left[\frac{1}{\sqrt{x(1-x)}}\right](i)=\frac{\zeta_{2}}{\pi} \int_{0}^{1} \mathrm{~d} x \frac{(4 x)^{n}-1}{x-\frac{1}{4}} \sqrt{\frac{x}{1-x}}
$$

- Then we switch to the first part of the binomial and convolve the functions:

$$
\begin{equation*}
M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i)=M\left[\int_{x}^{1} \mathrm{~d} y \frac{\mathrm{H}_{0}^{*}(y)}{(y-1) \sqrt{y-x}}\right] \tag{i}
\end{equation*}
$$

where

$$
\mathrm{H}_{0}^{*}(y):=\int_{y}^{1} \mathrm{~d} t f_{0}(t)=\int_{y}^{1} \mathrm{~d} t \frac{1}{t}=-\log y
$$

- A set of several "rule-theorems" have been proven in [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] to simplify further such expressions. One of them allows us to get:

$$
\int_{x}^{1} \mathrm{~d} y \frac{\mathrm{H}_{0}^{*}(y)}{(y-1) \sqrt{y-x}}=\frac{\mathrm{H}_{\mathrm{b}, \mathrm{w}_{1}}^{*}(x)}{\sqrt{x-1}}, f_{b}(x)=\frac{1}{\sqrt{x(x-1)}}, f_{w_{1}}(x)=\frac{1}{\sqrt{x(1-x)}}
$$

- Using the shuffle algebra, we can reduce the expression down to:

$$
\begin{equation*}
M\left[\frac{\mathrm{H}_{\mathrm{b}^{\mathrm{w}} \mathrm{w}_{1}}^{*}(x)}{\sqrt{x(x-1)}}\right](i)=-M\left[\frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2 \sqrt{x(1-x)}}\right] \tag{i}
\end{equation*}
$$

- Using the shuffle algebra, we can reduce the expression down to:

$$
\begin{equation*}
M\left[\frac{\mathrm{H}_{\mathrm{b}, \mathrm{w}_{1}}^{*}(x)}{\sqrt{x(x-1)}}\right](i)=-M\left[\frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2 \sqrt{x(1-x)}}\right] \tag{i}
\end{equation*}
$$

- Finally, using once again the summation formula we get:

$$
\sum_{i=1}^{n} 4^{i} M\left[\frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2 \sqrt{x(1-x)}}\right](i)=\int_{0}^{1} \mathrm{~d} x \frac{(4 x)^{n}-1}{x-\frac{1}{4}} \sqrt{\frac{x}{1-x}} \frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2}
$$

and resumming everything, we get:

$$
\sum_{i=1}^{n}\binom{2 i}{i} S_{2}(i)=-\frac{1}{\pi} \int_{0}^{1} \mathrm{~d} x \frac{(4 x)^{n}-1}{x-\frac{1}{4}} \sqrt{\frac{x}{1-x}}\left(\frac{\mathrm{H}_{\mathrm{w}_{1}}^{*}(x)^{2}}{2}-\zeta_{2}\right)
$$

We now want to obtain an asymptotic expansion for $n \rightarrow+\infty$ up to order p of a general expression of the form:

$$
\begin{equation*}
\tilde{M}_{a}[f(x)](n):=\int_{0}^{1} \mathrm{~d} x \frac{(a x)^{n}-1}{x-\frac{1}{a}} f(x)=\int_{0}^{1} \mathrm{~d} x\left[(a x)^{n}-1\right] \tilde{f}(x) \tag{2}
\end{equation*}
$$

where

$$
\tilde{f}(x):=\frac{f(x)}{x-\frac{1}{a}}
$$

- There exist several method to compute this expansion, depending mostly on the regularity of f and whether the integral can be split [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider]
- We will present one of the methods, all of them are implemented in RICA

We suppose that f is regular on $[0 ; 1]$ and $a<-1$, so that $\frac{1}{x-\frac{1}{a}}$ is regular on $[0 ; 1]$ and we can simply split the integral in two, then use a change of variables

- Split the Mellin integral, factor out the a^{n} :

$$
\int_{0}^{1} \mathrm{~d} x \frac{a x^{n}-1}{x-\frac{1}{a}} f(x)=a^{n} M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n)-\underbrace{M\left[\frac{f(x)}{x-\frac{1}{a}}\right](0)}_{=: C}
$$

Note: When $|a|>1$, the constant C is exponentially suppressed

We suppose that f is regular on $[0 ; 1]$ and $a<-1$, so that $\frac{1}{x-\frac{1}{a}}$ is regular on $[0 ; 1]$ and we can simply split the integral in two, then use a change of variables

- Split the Mellin integral, factor out the a^{n} :

$$
\int_{0}^{1} \mathrm{~d} x \frac{a x^{n}-1}{x-\frac{1}{a}} f(x)=a^{n} M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n)-\underbrace{M\left[\frac{f(x)}{x-\frac{1}{a}}\right](0)}_{=: C}
$$

Note: When $|a|>1$, the constant C is exponentially suppressed

- In $M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n)$, we make the following change of variables:

$$
x=e^{-z}, \quad \mathrm{~d} x=-e^{-z} \mathrm{~d} z
$$

and end up with:

$$
M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n)=a^{n} \int_{0}^{+\infty} \mathrm{d} z e^{-z n} \underbrace{\frac{e^{-z}}{e^{-z}-1} f\left(e^{-z}\right)}_{=: g(z)}
$$

- We expand $g(z)$ around $z=0$ up to the order p :

$$
g(z) \underset{z \rightarrow 0}{=} \sum_{\alpha \leq p} g_{\alpha} z^{\alpha}+\mathcal{O}\left(z^{\alpha+1}\right), \quad \alpha \in \frac{1}{2} \mathbb{Z} \geq-1, g_{\alpha} \in \mathbb{R}
$$

- We expand $g(z)$ around $z=0$ up to the order p :

$$
g(z) \underset{z \rightarrow 0}{=} \sum_{\alpha \leq p} g_{\alpha} z^{\alpha}+\mathcal{O}\left(z^{\alpha+1}\right), \quad \alpha \in \frac{1}{2} \mathbb{Z}_{\geq-1}, \quad g_{\alpha} \in \mathbb{R}
$$

- Finally we integrate $M\left[\frac{f(x)}{x-\frac{1}{a}}\right](n)$ using the expansion above, and adding the a^{n} coefficient back:

$$
\begin{aligned}
\tilde{M}_{a}[f(x)](n) & =a_{n \rightarrow+\infty}^{n} \sum_{\alpha \leq p} \int_{0}^{+\infty} \mathrm{d} z e^{-z n} g_{\alpha} z^{\alpha} \\
& =a^{n} \sum_{\alpha \leq p} \frac{h_{\alpha}}{n^{\alpha}}, \quad h_{\alpha} \in \mathbb{R}
\end{aligned}
$$

First we preload Sigma and HarmonicSums:
$\ln [1]:=\ll$ Sigma.m;
Sigma - A summation package by Carsten Schneider - (c) RISC
$\ln [2]:=\ll$ HarmonicSums.m;
HarmonicSums by Jakob Ablinger - (c) RISC
And then our package:
$\ln [3]:=\ll$ RICA.m;
Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU

First we preload Sigma and HarmonicSums:
$\ln [6]:=\ll$ Sigma.m;
Sigma - A summation package by Carsten Schneider - (c) RISC
$\ln [7]:=\ll$ HarmonicSums.m;
HarmonicSums by Jakob Ablinger - (c) RISC
And then our package:
$\ln [8]:=\ll$ RICA.m;
Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU
We define the sum that we want to study using HarmonicSums' GS function:

$$
\operatorname{In}[9]:=\operatorname{sum} 1=\mathbf{G S}\left[\left\{\operatorname{Binomial}[\mathbf{2} \operatorname{VarGL}, \operatorname{VarGL}], \frac{\mathbf{1}}{\operatorname{VarGL}}{ }^{2}\right\}, \mathbf{n}\right] ;
$$

First we preload Sigma and HarmonicSums:
$\ln [11]:=\ll$ Sigma.m;
Sigma - A summation package by Carsten Schneider - (c) RISC
$\ln [12]:=\ll$ HarmonicSums.m;
HarmonicSums by Jakob Ablinger - (c) RISC
And then our package:
$\ln [13]:=\ll$ RICA.m;
Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU
We define the sum that we want to study using HarmonicSums' GS function: $\ln [14]:=\operatorname{sum} 1=\mathbf{G S}\left[\left\{\right.\right.$ Binomial $\left.[\mathbf{2} \operatorname{VarGL}, \operatorname{VarGL}], \frac{1}{\operatorname{VarGL}}\right\}$
We can now compute the Mellin representation:
$\ln [15]:=$ mel1 $=$ SumToMellin[sum1, C, x]
$\operatorname{Out}[15]=\left\{-\frac{2 \operatorname{Mellin}\left(4^{n} x^{n}-1, \frac{\sqrt{x}\left(\operatorname{Hwb}[\{f \mathrm{fw} 1\}, x]^{2}-2 z 2\right)}{\sqrt{1-\mathrm{x}}(4 \mathrm{x}-1)}\right)}{\pi},\{ \}\right\}$

We can now compute the asymptotics, either from the Mellin representation... $\ln [16]$]: $\mathbf{a s y m p} 1=$ AsymptoticsMellint[mel1[[1]], $\mathrm{x}, \mathrm{n}, 4]$

Out[16]=

$$
\begin{aligned}
&-\frac{2}{\pi}\left(-\frac{(\pi-12)(12+\pi) \sqrt{\pi} 2^{2 \mathrm{n}-3}}{27 \mathrm{n}^{3 / 2}}-\frac{\left(288+59 \pi^{2}\right) \sqrt{\pi} 2^{2 \mathrm{n}-7}}{27 \mathrm{n}^{5 / 2}}-\frac{97\left(25 \pi^{2}-432\right) \sqrt{\pi} 2^{2 \mathrm{n}-10}}{81 \mathrm{n}^{7 / 2}}\right. \\
&\left.-\frac{17\left(33929 \pi^{2}-440640\right) \sqrt{\pi} 2^{2 \mathrm{n}-15}}{243 \mathrm{n}^{9 / 2}}-\frac{\pi^{5 / 2} 2^{2 \mathrm{n}}}{9 \sqrt{\mathrm{n}}}\right)
\end{aligned}
$$

We can now compute the asymptotics, either from the Mellin representation... $\operatorname{In}[17]:=\mathbf{a s y m p} 1=$ AsymptoticsMellint[mel1[[1]], $\mathbf{x}, \mathbf{n}, 4]$

Out[17]=

$$
\begin{aligned}
&-\frac{2}{\pi}\left(-\frac{(\pi-12)(12+\pi) \sqrt{\pi} 2^{2 \mathrm{n}-3}}{27 \mathrm{n}^{3 / 2}}-\frac{\left(288+59 \pi^{2}\right) \sqrt{\pi} 2^{2 \mathrm{n}-7}}{27 \mathrm{n}^{5 / 2}}-\frac{97\left(25 \pi^{2}-432\right) \sqrt{\pi} 2^{2 \mathrm{n}-10}}{81 \mathrm{n}^{7 / 2}}\right. \\
&\left.-\frac{17\left(33929 \pi^{2}-440640\right) \sqrt{\pi} 2^{2 \mathrm{n}-15}}{243 \mathrm{n}^{9 / 2}}-\frac{\pi^{5 / 2} 2^{2 \mathrm{n}}}{9 \sqrt{\mathrm{n}}}\right)
\end{aligned}
$$

...or directly from the sum representation:
$\ln [18]:=\boldsymbol{a s y m p} 1 \mathbf{P}=$ AsymptoticsSum[sum1, n, x, 3]
$\begin{aligned} \text { Out }[18]=- & \frac{2}{\pi}\left(-\frac{(\pi-12)(12+\pi) \sqrt{\pi} 2^{2 n-3}}{27 \mathrm{n}^{3 / 2}}-\frac{\left(288+59 \pi^{2}\right) \sqrt{\pi} 2^{2 \mathrm{n}-7}}{27 \mathrm{n}^{5 / 2}}-\frac{97\left(25 \pi^{2}-432\right) \sqrt{\pi} 2^{2 \mathrm{n}-10}}{81 \mathrm{n}^{7 / 2}}\right. \\ & \left.-\frac{17\left(33929 \pi^{2}-440640\right) \sqrt{\pi} 2^{2 \mathrm{n}-15}}{243 \mathrm{n}^{9 / 2}}-\frac{\pi^{5 / 2} 2^{2 \mathrm{n}}}{9 \sqrt{\mathrm{n}}}\right)\end{aligned}$

We can now compute the asymptotics, either from the Mellin representation... $\operatorname{In}[19]:=\mathbf{a s y m p} 1=$ AsymptoticsMellint[mel1[[1]], $\mathbf{x}, \mathbf{n}, 4]$

Out[19]=

$$
\begin{aligned}
&-\frac{2}{\pi}\left(-\frac{(\pi-12)(12+\pi) \sqrt{\pi} 2^{2 \mathrm{n}-3}}{27 \mathrm{n}^{3 / 2}}-\frac{\left(288+59 \pi^{2}\right) \sqrt{\pi} 2^{2 \mathrm{n}-7}}{27 \mathrm{n}^{5 / 2}}-\frac{97\left(25 \pi^{2}-432\right) \sqrt{\pi} 2^{2 \mathrm{n}-10}}{81 \mathrm{n}^{7 / 2}}\right. \\
&\left.-\frac{17\left(33929 \pi^{2}-440640\right) \sqrt{\pi} 2^{2 \mathrm{n}-15}}{243 \mathrm{n}^{9 / 2}}-\frac{\pi^{5 / 2} 2^{2 \mathrm{n}}}{9 \sqrt{\mathrm{n}}}\right)
\end{aligned}
$$

$\ln [20]:=$ DiscretePlot $\left[\frac{\mid \text { sum } 1-\text { asymp } 1 \mid}{\mid \text { sum } 1 \mid},\{\mathbf{n}, \mathbf{1}, \mathbf{5 0}\}\right]$
Out[20]=

Here's another example:
$\ln [21]:=\operatorname{sum} 2=\mathbf{G S}\left[\left\{(\mathbf{- 2})^{\text {VarGL }}\right.\right.$ Binomial $\left.\left.[\mathbf{2 V a r G L}, \operatorname{VarGL}], \frac{\left(\frac{1}{2}\right)^{\operatorname{VarGL}}}{\operatorname{VarGL}}, \frac{\mathbf{1}}{\operatorname{VarGL}}\right\}, \mathrm{n}\right]$;

Here's another example:
$\ln [22]:=\operatorname{sum} 2=\mathbf{G S}\left[\left\{(\mathbf{- 2})^{\operatorname{VarGL}}\right.\right.$ Binomial $\left.\left.[\mathbf{2 V a r G L}, \operatorname{VarGL}], \frac{\left(\frac{1}{2}\right)^{\operatorname{VarGL}}}{\operatorname{VarGL}}, \frac{\mathbf{1}}{\operatorname{VarGL}}\right\}, \mathrm{n}\right]$; $\ln [23]:=$ ToHarmonicSumsSum[sum2]
Out [23]= $\sum_{\tau_{1}=1}^{\mathrm{n}}(-2)^{\tau_{1} \text { Binomial }\left[2 \tau_{1}, \tau_{1}\right]}\left(\sum_{\tau_{2}=1}^{\tau_{1}} \frac{2^{-\tau_{2}}\left(\sum_{\tau_{3}=1}^{\tau_{2}} \frac{1}{\tau_{3}^{2}}\right)}{\tau_{2}}\right)$

Here's another example:
$\ln [24]:=\operatorname{sum} 2=\mathbf{G S}\left[\left\{(\mathbf{- 2})^{\text {VarGL }}\right.\right.$ Binomial $\left.\left.[2 \operatorname{VarGL}, \operatorname{VarGL}], \frac{\left(\frac{1}{2}\right)^{\operatorname{VarGL}}}{\operatorname{VarGL}}, \frac{\mathbf{1}}{\operatorname{VarGL}}\right\}, \mathbf{n}\right]$;
$\ln [25]:=$ mel2 $=$ SumToMellin[sum2, C, \mathbf{x}, ToGLbBasis \rightarrow False]
$\operatorname{Out}[25]=\left\{\begin{array}{l}2 \sqrt{2} \operatorname{Mellin}\left((-4)^{n} x^{n}-1, \frac{\sqrt{x}(H w b[\{f w 6, f w 1, f w 1\}, x]-z 2 \operatorname{Hwb}[\{f w 6\}, x])}{\sqrt{1-\frac{x}{2}}(4 x+1)}\right) \\ \pi\end{array}\right.$

$$
\left.+\frac{5 \text { z3 Mellin }\left((-8)^{n} x^{n}-1, \frac{\sqrt{x}}{\sqrt{1-x}\left(x+\frac{1}{8}\right)}\right)}{8 \pi},\{ \}\right\}
$$

where

$$
f_{w_{1}}(x)=\frac{1}{\sqrt{x(1-x)}}, \quad f_{w_{6}}(x)=\frac{1}{\sqrt{1-x} \sqrt{2-x}}
$$

$\ln [26]:=$ asymp2 $=$ AsymptoticsSum[sum2, n, x, 5]

Out[26]=

$$
\frac{5\left(-\frac{13 \sqrt{\pi}(-8)^{\mathrm{n}}}{81 \mathrm{n}^{3 / 2}}-\frac{13 \sqrt{\pi}(-1)^{\mathrm{n}} 2^{3 \mathrm{n}-4}}{243 \mathrm{n}^{5 / 2}}+\frac{2195 \sqrt{\pi}(-1)^{\mathrm{n}} 2^{3 \mathrm{n}-7}}{2187 \mathrm{n}^{7 / 2}}+\frac{806953 \sqrt{\pi}(-1)^{\mathrm{n}} 8^{\mathrm{n}-4}}{19683 \mathrm{n}^{9 / 2}}+\frac{\sqrt{\pi}(-1)^{\mathrm{n}} 8^{\mathrm{n}+1}}{9 \sqrt{\mathrm{n}}}\right) \mathrm{z} 3}{8 \pi}
$$

$\ln [28]:=$ asymp2 $=$ AsymptoticsSum[sum2, n, $\mathbf{x}, \mathbf{5}]$
Out[28]=

$$
\frac{5\left(-\frac{13 \sqrt{\pi}(-8)^{\mathrm{n}}}{81 \mathrm{n}^{3 / 2}}-\frac{13 \sqrt{\pi}(-1)^{\mathrm{n}} 2^{3 \mathrm{n}-4}}{243 \mathrm{n}^{5 / 2}}+\frac{2195 \sqrt{\pi}(-1)^{\mathrm{n}} 2^{3 \mathrm{n}-7}}{2187 \mathrm{n}^{7 / 2}}+\frac{806953 \sqrt{\pi}(-1)^{\mathrm{n}} 8^{\mathrm{n}-4}}{19683 \mathrm{n}^{9 / 2}}+\frac{\sqrt{\pi}(-1)^{\mathrm{n}} 8^{\mathrm{n}+1}}{9 \sqrt{\mathrm{n}}}\right) \mathrm{z} 3}{8 \pi}
$$

$\operatorname{In}[29]:=$ DiscretePlot $\left[\frac{\mid \text { sum } 2-\text { asymp2| }}{\mid \text { sum } 2 \mid},\{\mathbf{n}, \mathbf{1}, \mathbf{5 0}\}\right]$
Out[29]=

Conclusion

- Both Mellin inversion and asymptotics computation presented [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] implemented in the package
- We have extended the inversion method to make it work with some new classes of binomial nested sums (e.g. involving some classes of rational functions)
- Fully symbolic representation of constants
- Asymptotic expansion of sums with several possible schemes

Work in progress

- Explicit computation/simplification of constants is highly non-trivial, structure of binomial sums needs to be explored further (building a basis of binomial sums, unicity of root alphabet/relation between letters,...)
- Some classes of convolution involve difficult integrals that need to be tackled properly

Conclusion

- Both Mellin inversion and asymptotics computation presented [Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Blümlein, C.G. Raab and C. Schneider] implemented in the package
- We have extended the inversion method to make it work with some new classes of binomial nested sums (e.g. involving some classes of rational functions)
- Fully symbolic representation of constants
- Asymptotic expansion of sums with several possible schemes

Work in progress

- Explicit computation/simplification of constants is highly non-trivial, structure of binomial sums needs to be explored further (building a basis of binomial sums, unicity of root alphabet/relation between letters,...)
- Some classes of convolution involve difficult integrals that need to be tackled properly

Thank you for listening!
J. Ablinger, J. Blümlein, and C.Schneider. "Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms". In: Journal of Mathematical Physics 54.8 (Aug. 2013), p. 082301. DOI: 10.1063/1.4811117. URL: https://doi.org/10.1063\%2F1.4811117.
T. Ablinger et al. "Iterated binomial sums and their associated iterated integrals". In: Journal of Mathematical Physics 55.11 (Nov. 2014), p. 112301. DOI: $10.1063 / 1.4900836$. URL: https://doi.org/10.1063\%2F1.4900836.
國 J. Ablinger et al. "The O(as3 TF2) contributions to the gluonic operator matrix element". In: Nuclear Physics B 885 (Aug. 2014), pp. 280-317. Doi: 10.1016/j.nuclphysb.2014.05.028. URL: https://doi.org/10.1016\%2Fj.nuclphysb.2014.05.028.
T. Jakob Ablinger, Johannes Blumlein, and Carsten Schneider. "Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials". In: J. Math. Phys. 52 (2011), p. 102301. DOI: $10.1063 / 1.3629472$. arXiv: 1105.6063 [math-ph].

Jakob Ablinger et al. "Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms". In: Nuclear Physics B 885 (Aug. 2014), pp. 409-447. DOI: 10.1016/j.nuclphysb.2014.04.007. URL: https://doi.org/10.1016\%2Fj.nuclphysb.2014.04.007.

Johannes Blumlein and Stefan Kurth. "Harmonic sums and Mellin transforms up to two loop order". In: Phys. Rev. D 60 (1999), p. 014018. DOI: 10.1103/PhysRevD.60.014018. arXiv: hep-ph/9810241.

Christian Krattenthaler and Carsten Schneider. Evaluation of binomial double sums involving absolute values. 2020. arXiv: 1607.05314 [math.CO].
目 N. Nielsen. Handbuch der Theorie der Gammafunktion. B.G.Teubner, Leipzig, 1906.
E. Remiddi and J. A. M. Vermaseren. "Harmonic polylogarithms". In: Int. J. Mod. Phys. A 15 (2000), pp. 725-754. DOI: 10.1142/S0217751X00000367. arXiv: hep-ph/9905237.
E. J. A. M. Vermaseren. "Harmonic sums, Mellin transforms and integrals". In: Int. J. Mod. Phys. A 14 (1999), pp. 2037-2076. Doi: 10.1142/S0217751X99001032. arXiv: hep-ph/9806280.

Open position at RISC: Professorship of Computation Science

