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Setting

Motivation
Notation

Different problems in combinatorics, analysis of algorithms or even physics involve
binomially weighted sums

» Example 1 (combinatorics): In the paper [Evaluation of Binomial Double Sums Involving
Absolute Values of C. Krattenthaler and C. Schneider], SUMS of the following form appear for
the study of double sums with binomial coefficients:

m o 5—2i(2i
271' 2 i ( i ) + 2 2m 2” + 22m+2n
n — 1+n m n

_22m+1n

If we want the asymptotic expansion at m — +oo for fixed m, this involves in
particular computing the asymptotics of the boxed sum
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> Example 2 (physics): Particle physics computations are often done in Mellin
space, and for example in the Paper [The O(af,T?T) contributions to the gluonic operator matrix
element by J.Abligner, J. Bliimlein, C. Schneider et al.], sums of the following form pop up:
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> Example 2 (physics): Particle physics computations are often done in Mellin
space, and for example in the Paper [The O(a3TI2T) contributions to the gluonic operator matrix

s

element by J.Abligner, J. Bliimlein, C. Schneider et al.], sums of the following form pop up:

n i—1 oo

1 (2 4 1 1
Y sasili-D =76 | Sii-D= 2 G= —

4n \ n ( )
i=1 i k=1 n=1

Sums can be nested, for example in [iterated Binomial Sums and their Associated Iterated
Integrals by J.Ablinger, J.Bliimlein, C.G. Raab and C. Schneider], We also have sums such as:

n
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space, and for example in the Paper [The O(a3TI2T) contributions to the gluonic operator matrix
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element by J.Abligner, J. Bliimlein, C. Schneider et al.], sums of the following form pop up:

n i—1 oo
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Sums can be nested, for example in [iterated Binomial Sums and their Associated Iterated
Integrals by J.Ablinger, J.Bliimlein, C.G. Raab and C. Schneider], We also have sums such as:

n

3 2; Sa(d), Zﬁz 2]] (—2)7

i=1 i=1 i) j=1

Aim: Being able to deal automatically with those kind of sums in all generality, in
particular Mellin inversion and asymptotic expansion
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» We define the binomially weighted sums as follows:

n i1 ig_1
BS(ay, apy(n) =Y _a1(i1) Y az(iz)-- > a(ix)
11=1 i9=1 =1
with
b
2p\ .
a‘j(p):aj(p;bycam): p pim’ be{_17071}7C€R7m€N

[Harmonic Sums, Mellin transforms and integrals by J.A.M. Vermaseren)
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Bliimlein and C. Schneider]
[Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Bliimlein, C.G. Raab and C. Schneider]

[Harmonic Sums and Mellin transforms up to the two loop order by J. Bliimlein and S. Kurth]
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» More generic summands can also be considered, such as:
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We remind here some definitions and useful properties of Mellin transforms:

» Definition: L
M@ 0) = [ dva”s(o)

» Summation formula (¢ € C):

n
x

ZciM[fu)](z‘)—c"M[ 1f(m)] <n>—M[ lf(x)] 0 @

/dml/ dxgéx—xlwg)f(xl)g(xQ):/ dy%g <Zj)

(@) x g(@)] (n) = M [f(x)] (n) - M [g(2)] (n)

» Convolution:
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Mellin inversion

Question: How to represent them as Mellin integrals?
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Mellin inversion

Question: How to represent them as Mellin integrals?

» First method (used by HarmonicSums for general Mellin inversion): given
M [f(z)] (n) as holonomic sequences, we obtain the associated holonomic
differential equation, and by solving it we can obtain a closed form for f(z)

Pros: Very general and flexible
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic
method doesn't work), a Mellin representation cannot be obtained

» Second method: compute it recursively from the BS using fundamental
properties of Mellin transforms and "rule-theorems” that allow us to
compute in an automatic way Mellin convolutions [iterated Binomial Sums and their
Associated Iterated Integrals by J. Ablinger, J. Bliimlein, C.G. Raab and C. Schneider]

Pros: Simple principles, faster, easy to extend, symbolic expressions for
constants
Cons: Different cases have to be identified and implemented individually

» The second method is the one we have implemented in our RICA
(Rule-Induced Convolutions for Asymptotics) package

Note: RICA relies on C. Schneider’'s Sigma and J. Ablinger's HarmonicSums
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Mellin inversion

Note: These Mellin representations will involve general polylogarithms
1
i) = 1, B 20(0) = i 2(0) = [ atbois)

Defined over a 37 letter alphabet {fo,..., fus,} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions, and
obeying shuffle algebra

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Bliimlein and C. Schneider]

[Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Bliimlein, C.G. Raab and C. Schneider]
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1
i) = 1, B 20(0) = i 2(0) = [ atbois)

Defined over a 37 letter alphabet {fo,..., fus,} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions, and

obeying shuffle algebra

Example:
1

1 1
HE, | o g :/ dty fwu(tl)/ dts f2(t2)/ dts fus(ts)
T t t

1 2
1

! 1 ! 1 1
_ dtl—/ dts dts
/z tvl—tv2—ti ), "2t ), tg\/ts— 1
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Mellin inversion

Note: These Mellin representations will involve general polylogarithms

1
Hj(0) = 1, Hip =0 (@) = Hi = (2) = / dt bt (1)

Defined over a 37 letter alphabet {fo,..., fus,} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions, and
obeying shuffle algebra

Example: (linearization by shuffle relations)
Hf, (2)Hf ¢, (2) = Hf, g5, (2) + Hi ¢ op, () + HE g, ()

where

folw) =2, filw) =

1—x

[Harmonic polylogarithms by E. Remiddi and J.A.M. Vermaseren]
[Harmonic Sums and Polylogarithms Generated by Cyclotomic Polynomials by J. Ablinger, J. Bliimlein and C. Schneider]
[Iterated Binomial Sums and their Associated Iterated Integrals by J. Ablinger, J. Bliimlein, C.G. Raab and C. Schneider]
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Mellin inversion

Example:

BS(n) = (22_")52(1')_ <2Z7’> ZlQ
k=1 k=1

= = j=1

> First we compute the Mellin representation of % by convolving + = M [1] (4)
with itself. We get:

Z_lZ oy H (@) M H (i) = M [1 . 1} (i) = M [HS(x)] (i)

xT xT

Hj () ::/ dtfo(t):/ dt%:—logw

where
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Mellin inversion

» Using the summation formula (1), we can then obtain:

SQ(UZZM[HO I) / o /d“HO_(ml) :/d”i%ﬂz
0 0

k=1

where
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, we can then obtain:

» Using the summation formula (
1 1
H ; HY
_ da O(I) _ du ¢ B0 (@) o
o -1 0 z—1

52(¢)=ZM [HO :”) /

k=1
{ H(x)} i) M[;IHQY)]M

where

» Now that the innermost sum has as integral representation, we shift to the
next and last level. First, one can show (e.g. direct integration) that:

2i 4t 1
=M | ——— |
(1) ™ z(1—x) 9

So that
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Mellin inversion

» We apply again the summation formula to obtain first the second part:

k 1
G o 1 LG (o) -1 [ w
?§4M 7) (z)—ﬂ_/odarix_ T2

z(l—=x i
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Mellin inversion

» We apply again the summation formula to obtain first the second part:

€3 iy NG 1x(4x)”71 T
24 [m]() TI'/Od :c—% 1—=x

» Then we switch to the first part of the binomial and convolve the functions:

L eym [ B@® ) g - L Hiw) ]
Ml m_x)]” M[w—l}() MU dy(y—mm}“

1 -
Ho (y) 5:/ dtfo(t):/ dtnglogy
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Mellin inversion

» We apply again the summation formula to obtain first the second part:

€3 iy NG 1x(4x)”71 T
24 [m]() TI'/Od :c—% 1—=x

» Then we switch to the first part of the binomial and convolve the functions:

L eym [ B@® ) g - L Hiw) ]
Ml m_x)]” M[w—l}() MU dy(y—mm}“

where ) L
* ].
Ho(y) = / dt fo(t) = / th = —logy
y y

P> A set of several "rule-theorems” have been proven in [iterated Binomial Sums and their
Associated Iterated Integrals by J. Ablinger, J. Bliimlein, C.G. Raab and C. Schneider] tO S|mp||fy further
such expressions. One of them allows us to get:

! HE (y) HbW1()
_/zdy(y—l) =% Vo1 y folz) =

7fw1 =

1
va(x—1 Va(l —x)
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Mellin inversion

» Using the shuffle algebra, we can reduce the expression down to:

M, @) ] oy [ B

M _wa)
z(x —1) 2y/x(1 —x)

(4)
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Mellin inversion

» Using the shuffle algebra, we can reduce the expression down to:

Hpw (@) | HY, () |
—— | () =—M | ——| (¢

» Finally, using once again the summation formula we get:

L H},, (x)? o ! ! [z H ()
;4M[2 x(l—m)]()/o d z—1 1—2z 2

i

M

and resumming everything, we get:

(2o [l T (B )

4
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Change of variables approach

Asymptotic expansions

We now want to obtain an asymptotic expansion for n — +o00 up to order p of a

general expression of the form:

i@l = [ ar i = [asleor e @

x
a

where
oy @)

» There exist several method to compute this expansion, depending mostly on
the regularity of f and whether the integral can be split [iterated Binomial Sums and
their Associated Iterated Integrals by J. Ablinger, J. Blimlein, C.G. Raab and C. Schneider]

» We will present one of the methods, all of them are implemented in RICA

12/19
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Asymptotic expansions Change of variables approach

1
P

We suppose that f is regular on [0;1] and a < —1, so that is regular on [0; 1]
and we can simply split the integral in two, then use a change ‘of variables

» Split the Mellin integral, factor out the a™:

/ dmain_lf(m):a"M[f(x)l](n)—M[f(m)](O)

—1 1 1
a a a
—_————
=:C

Note: When |a| > 1, the constant C' is exponentially suppressed
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Asymptotic expansions Change of variables approach

We suppose that f is regular on [0;1] and a < —1, so that zjl is regular on [0; 1]

and we can simply split the integral in two, then use a change of variables

» Split the Mellin integral, factor out the a™:

/ do L) =arm [ fe) ] (n) =M Lf(_m)l] (0)

T — =

a
—_———

_ 1
Note: When |a| > 1, the constant C' is exponentially suppressed
> In M {%} (n), we make the following change of variables:
z=c¢ % dx=-e “dz

and end up with:
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Change of variables approach

Asymptotic expansions

» We expand ¢(z) around z = 0 up to the order p:

1
_ a a+1 -
g(2) =, E gaz® +0(z°"), ac 222_1, ga €ER

a<p
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Asymptotic expansions Change of variables approach

» We expand ¢(z) around z = 0 up to the order p:

1
_ a a+1 -
g(2) =, E gaz® +0(z°"), ac 222_1, ga €ER

a<p

f(=z)

o1
a

> Finally we integrate M| ](n) using the expansion above, and adding the

a”™ coefficient back:

i +oo
W@ = a3 [ e

as<p

:a"ZfL—z7 ha €R

a<p
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Mathematica session

First we preload Sigma and HarmonicSums:

n[1:= << Sigma.m;

| Sigma - A summation package by Carsten Schneider — © RISC |

2= << HarmonicSums.m;

I HarmonicSums by Jakob Ablinger — © RISC I

And then our package:
3= << RICA.m;
| Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU |
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Mathematica session

First we preload Sigma and HarmonicSums:

Inf6:= << Sigma.m;

| Sigma - A summation package by Carsten Schneider — © RISC |

n[7:= << HarmonicSums.m;

I HarmonicSums by Jakob Ablinger — © RISC I

And then our package:
n[gl:= << RICA.m;
| Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU |

We define the sum that we want to study using HarmonicSums' GS function:

1
In[9]:= suml = GS {{Binomial[Z VarGL, VarGL], W} s n] 3
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Mathematica session

First we preload Sigma and HarmonicSums:

In[11]:= << Sigma.m;

| Sigma - A summation package by Carsten Schneider — © RISC |

n[12}:= << HarmonicSums.m;

I HarmonicSums by Jakob Ablinger — © RISC I

And then our package:
n[13):= << RICA.m;
| Rule Induced Convolutions for Asymptotics (RICA) package by Nikolai Fadeev © RISC-JKU |

We define the sum that we want to study using HarmonicSums' GS function:
1
In[14]:= suml = GS Binomial[2 VarGL, VarGL], —— » ,n| ;
VarGL2

We can now compute the Mellin representation:
in15]:= mell = SumToMellin[sum1l, C, x]
3(Hwb[{fw1},x]2 —222) )

2Mellin (4“}(n -1,
V1—x(4x—1)
outf1s]= { — A}
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Mathematica session

We can now compute the asymptotics, either from the Mellin representation...
In16]:= asympl = AsymptoticsMellint[mel1[[1]], x, n, 4]
Out[16]=
5 (r — 12)(12 + m)ymem—? (288 +597%) 2™~ o7 (2677 — 432) /w2

27n3/2 27n5/2 81n7/2

BN

17 (339297r2 - 440640) VE2BTE 5 20,

243n9/2 9y/n
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Mathematica session

We can now compute the asymptotics, either from the Mellin representation...
In17]:= asympl = AsymptoticsMellint[mel1[[1]], x, n, 4]
Out[17]=
5 (r — 12)(12 + m)ymem—? (288 +597%) 2™~ o7 (2677 — 432) /w2

27n3/2 27n5/2 81n7/2

BN

17 (339297r2 - 440640) VE2BTE 5 20,

243n°/2 9/n

...or directly from the sum representation:

Inf18}:= asymplP = AsymptoticsSum[suml, n, x, 3]

(r — 12)(12 + m)ymem—? (288 +597%) w27 o7 (2677 — 432) w2
27n3/2 - 27n5/2 - 81n7/2

2
Out[18]= — — —
™

17 (33920m — 440640) /72™ T s/25m

243n9%/2 9/
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Mathematica session

We can now compute the asymptotics, either from the Mellin representation...
In19]:= asympl = AsymptoticsMellint[mel1[[1]], x, n, 4]
Out[19]=
5 (r — 12)(12 + m)ymem—? (288 +597%) 2™~ o7 (2677 — 432) /w2

27n3/2 27n5/2 81n7/2

BN

17 (339297r2 - 440640) VE2BTE 5 20,

243n°/2 9/n
suml — asympl
In[20]:= DiscretePlot [ﬁ, {n, 1, 50}}
Out[20]=

0.0008
0.0006
0.0004

0.0002
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Mathematica session

Here's another example:

1) VarGL
2 1

In21]:= sum2 = GS (—2)Y*"®"Binomial[2VarGL, VarGL], “Varcl’ Varcl®
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Mathematica session

Here's another example:

1) VarGL
2 1

In[22]:= sum2 = GS (—2)Y*"®"Binomial[2VarGL, VarGL], “Varcl’ Varcl®

In[23]:= ToHarmonicSumsSum[sum?2]

-

)
ry
n IOk
T3=1
Out[23]= E (—2)"'Binomial[27y, Ty ] E B —
T2

=1 =1

@
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Mathematica session

Here's another example:

1) VarGL
2 1

In[24]:= sum2 = GS (—2)Y*"®"Binomial[2VarGL, VarGL], “Varcl’ Varcl®

In(25]:= mel2 = SumToMellin[sum2, C, x, ToGLbBasis — False]

22 Mellin | (—4)*<® — 1, V/x(Hwb[{fw6,fwl fwl} x] —22 Hwb[{fw6},x])
17%(42{4»1)
Out[25]=

523 Mellin | (—8)"x® — 1, —Y*
17x(x+%)

+ A

8

where
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In[26]:= asymp2 = AsymptoticsSum[sum2, n, x, 5]

Out[26]=

81n3/2 24305/2 2187n7/2 19683n%/2 9vn

8m

5 [ _BVEC®" 13/ (—1)n2%n—4 n 2195/7(—1)"230—7 4 806953+/7 (—1)"g" 4 i ﬁ(—1)“8“+1> 23
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In[28]:= asymp2 = AsymptoticsSum[sum2, n, x, 5]

Out[28]=

81n3/2 24305/2 2187n7/2 19683n%/2 9vn

8m

5 [ _BVEC®" 13/ (—1)n2%n—4 n 2195/7(—1)"230—7 4 806953+/7 (—1)"g" 4 i ﬁ(—1)“8“+1> 23

|sum2 — asymp2|

In[20]:= DiscretePlot [ ,{n, 1,50}

[sum2|

Out[29]=
0.0008
0.0006
0.0004
0.0002

L N N s iR S

0 10
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Conclusion

» Both Mellin inversion and asymptotics computation presented [iterated Binomial
Sums and their Associated Iterated Integrals by J. Ablinger, J. Blimlein, C.G. Raab and C. Schneider]
implemented in the package

» We have extended the inversion method to make it work with some new
classes of binomial nested sums (e.g. involving some classes of rational
functions)

» Fully symbolic representation of constants
» Asymptotic expansion of sums with several possible schemes
Work in progress

» Explicit computation/simplification of constants is highly non-trivial, structure
of binomial sums needs to be explored further (building a basis of binomial
sums, unicity of root alphabet/relation between letters,...)

» Some classes of convolution involve difficult integrals that need to be tackled
properly
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» Both Mellin inversion and asymptotics computation presented [iterated Binomial
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implemented in the package

» We have extended the inversion method to make it work with some new
classes of binomial nested sums (e.g. involving some classes of rational
functions)

» Fully symbolic representation of constants
» Asymptotic expansion of sums with several possible schemes
Work in progress

» Explicit computation/simplification of constants is highly non-trivial, structure
of binomial sums needs to be explored further (building a basis of binomial
sums, unicity of root alphabet/relation between letters,...)

» Some classes of convolution involve difficult integrals that need to be tackled
properly

Thank you for listening!

Johannes Bliimlein, Nikolai Fadeev, Carsten Schneider 19/19



References

[

J. Ablinger, J. Blimlein, and C.Schneider. “Analytic and algorithmic aspects
of generalized harmonic sums and polylogarithms”. In: Journal of
Mathematical Physics 54.8 (Aug. 2013), p. 082301. poTr:
10.1063/1.4811117. URL: https://doi.org/10.1063%2F1.4811117

J. Ablinger et al. “lterated binomial sums and their associated iterated
integrals”. In: Journal of Mathematical Physics 55.11 (Nov. 2014),

p. 112301. po1: 10.1063/1.4900836. URL:
https://doi.org/10.1063%2F1.4900836

J. Ablinger et al. “The O(as3 TF2) contributions to the gluonic operator
matrix element”. In: Nuclear Physics B 885 (Aug. 2014), pp. 280-317. DO
10.1016/j .nuclphysb.2014.05.028. URL:
https://doi.org/10.1016%2Fj.nuclphysb.2014.05.028.

Jakob Ablinger, Johannes Blumlein, and Carsten Schneider. “Harmonic Sums
and Polylogarithms Generated by Cyclotomic Polynomials”. In: J. Math.
Phys. 52 (2011), p. 102301. DOI: 10.1063/1.3629472. arXiv: 1105.6063
[math-ph].

Johannes Bliimlein, Nikolai Fadeev, Carsten Schneider 20/19


https://doi.org/10.1063/1.4811117
https://doi.org/10.1063%2F1.4811117
https://doi.org/10.1063/1.4900836
https://doi.org/10.1063%2F1.4900836
https://doi.org/10.1016/j.nuclphysb.2014.05.028
https://doi.org/10.1016%2Fj.nuclphysb.2014.05.028
https://doi.org/10.1063/1.3629472
https://arxiv.org/abs/1105.6063
https://arxiv.org/abs/1105.6063

References

B

Jakob Ablinger et al. “Calculating massive 3-loop graphs for operator matrix
elements by the method of hyperlogarithms”. In: Nuclear Physics B 885
(Aug. 2014), pp. 409-447. pOIL: 10.1016/j.nuclphysb.2014.04.007. URL:
https://doi.org/10.1016%2Fj.nuclphysb.2014.04.007.

Johannes Blumlein and Stefan Kurth. “Harmonic sums and Mellin
transforms up to two loop order”. In: Phys. Rev. D 60 (1999), p. 014018.
DOI: 10.1103/PhysRevD.60.014018. arXiv: hep-ph/9810241.

Christian Krattenthaler and Carsten Schneider. Evaluation of binomial
double sums involving absolute values. 2020. arXiv: 1607 .05314 [math.CO].

N. Nielsen. Handbuch der Theorie der Gammafunktion. B.G. Teubner,
Leipzig, 1906.

E. Remiddi and J. A. M. Vermaseren. “Harmonic polylogarithms”. In: Int. J.
Mod. Phys. A 15 (2000), pp. 725-754. DOI: 10.1142/80217751X00000367.
arXiv: hep-ph/9905237.

J. A. M. Vermaseren. “Harmonic sums, Mellin transforms and integrals”. In:
Int. J. Mod. Phys. A 14 (1999), pp. 2037-2076. DOTI:
10.1142/50217751X99001032. arXiv: hep-ph/9806280.

Johannes Bliimlein, Nikolai Fadeev, Carsten Schneider 21/19


https://doi.org/10.1016/j.nuclphysb.2014.04.007
https://doi.org/10.1016%2Fj.nuclphysb.2014.04.007
https://doi.org/10.1103/PhysRevD.60.014018
https://arxiv.org/abs/hep-ph/9810241
https://arxiv.org/abs/1607.05314
https://doi.org/10.1142/S0217751X00000367
https://arxiv.org/abs/hep-ph/9905237
https://doi.org/10.1142/S0217751X99001032
https://arxiv.org/abs/hep-ph/9806280

Open position at RISC:
Professorship of Computation Science

Possible topics:

o Algorithmic Number Theory

o Applied Algebraic Geometry

e Applications of Algebraic or Discrete Methods in Biology,
Chemistry, or Physics and other research areas

e Discrete and Combinatorial Optimization

o Mathematical Aspects of Al




	Setting
	Motivation
	Notation

	Mellin inversion
	Asymptotic expansions
	Change of variables approach

	Mathematica session
	Appendix
	References


