The SLANG Semantics-Based Language Generator™

Tutorial and Reference Manual (Version 1.0.%)

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner @risc.jku.at

William Steingartner
Department of Computers and Informatics
Technical University of KoSice, Slovak Republic
William.Steingartner @tuke.sk

September 20, 2023

Abstract

This report documents the SLANG semantics-based language generator. SLANG is a
software for generating rapid prototype implementations of programming languages from
their formal specifications. Its input is a text file that describes the abstract syntax of a
language and its concrete text representation; from this, a parser is generated (utilizing the
ANTLRA4 tool) that transforms the text representation of a program into its abstract syntax tree
and a printer that generates from the abstract syntax tree its text representation. Furthermore,
one can equip the language with a formal type system (by logical inference rules) from
which a type checker is generated. Finally, one can give the language a formal semantics,
in the denotational style (by function equations) and/or in the big-step operational style (by
transition steps); from this, a language interpreter is generated. SLANG is implemented in
Java and produces Java source code; it should be easy to extend the software also to other
target languages.

This document will be continuously revised; its most recent version can be found at the following
URL: https://www.risc.jku.at/research/formal/software/SLANG

*Supported by the Slovak Academic Information Agency SAIA project 2023-03-15-001 “Semantics-Based Rapid
Prototyping of Domain-Specific Languages”.

mailto:Wolfgang.Schreiner@risc.jku.at
mailto:William.Steingartner@tuke.sk
https://www.risc.jku.at/research/formal/software/SLANG

Contents

1 Introduction 3
2 An Imperative Programming Language 4
2.1 SpecificationFiles 5
2.2 SyntacticDomains Lo 6
23 Printer 8
24 Parser . ..o ..o e e 9
2.5 TypeChecker e 11
2.6 Interpreter from Denotational Semantics 15
2.7 Interpreter from Big-Step Operational Semantics 20
2.8 Code Generation, Compilation, and Execution 24
3 Future Work 28
A The SLANG Software 30
A.l1 Installing the Software 30
A.2 Runningthe Software 32
B The SLANG Language 33
C Example Languages Generated with SLANG 36
C.1 AnEvaluator Language 36
C.2 An Imperative Language (Denotational Semantics) 45
C.3 An Imperative Language (Big-Step Operational Semantics) 52

1 Introduction

SLANG is a tool for the rapid prototyping of programming languages by automatically generating
implementations of these languages (as Java source code) from their formal specifications. There
already exist numerous tools for the implementation of programming languages, most notably the
class of tools variously called “compiler-compilers” or “compiler generators” or, more accurately,
“parser generators” and “lexical analyzer generators”; a prominent example is ANTLR (ANother
Tool for Language Recognition) [7, 1]. However, these tools mainly support the syntactic process
of language recognition by the generation of lexical analyzers from regular expressions and parsers
from context-free grammars. The actual implementation of a program’s behavior is essentially
left to the human software developer, which typically requires a lot of effort.

Traditionally these developers have been experts on the design and implementation of flexible
general-purpose programming languages; nowadays, however, more and more also professionals
in other fields have to develop specialized languages for specific tasks, i.e., Domain-Specific
Languages (DSLs) [6, 3, 15]. For this target group, it would be very helpful if the complete
process of language development could be guided and supported by systematic processes and
supporting tools, where the focus should be on the soundness of the design and the correctness of
the implementation of a language rather than on the performance of its execution.

Actually such a systematic implementation process is suggested by approaches to formally
define the semantics of programming languages as, e.g., described in [9, 10]. Here the starting
point of language design is the definition of a domain of abstract syntax trees that represent
syntactically well-formed programs; such trees are generated from a textual representation by
a parser in combination with a lexical analyzer. The core of the design then consists of the
definition of mathematical functions or logical relations by structural induction on the abstract
syntax trees. In particular, the type system of the language can be represented as a relation defined
by a logical inference system,; its semantics can be represented as a function that maps syntax
trees to functions that map program inputs to program outputs (“‘denotational semantics’) or
alternatively as relations that describe the reduction of the current state of a program to its final
result (“operational semantics”). The focus of SLANG is to support the formalization of syntactic
domains and the definition of functions and relations on these domains by structural induction.
Ultimately, these mathematical functions and logical relations are translated to Java methods, thus
yielding an executable implementation of the language.

There is already quite some history of tool support for the formal semantics of programming
languages: the Maude MSOS tool [2] is an executable framework for specifications in modular
structural operational semantics (MSOS, a version of small-step operational semantics) via
translation to the language of the Maude rewriting system. The Ott tool [13] implements a
meta-language for semantic definitions that are translated to specifications for the proof assistants
Coq, HOL, and Isabelle/HOL; the focus of Ott is not on executing the programming language
semantics but on mechanized proofs of soundness results. The K semantic framework [8] is a
rewrite-based execution framework for small-step operational semantics based on an internal
interpreter and theorem prover. Especially the K framework has been used to formalize the
semantics of (subsets of) various real-life programming languages such as C, Java, or Python.

The SLANG tool differs from these tools in some central aspects. First, above tools focus
mostly on small-step operational semantics where essentially an abstract syntax tree is gradually

rewritten to a final result; this requires special support by a rewrite engine or interpreter (the Ott
tool produces proof assistant code from which executable code can be extracted, but this seems
not to have been substantially exploited). In contrast, SLANG focuses on denotational semantics
and big-step operational semantics both of which can be straight-forwardly implemented in any
programming language by structural recursion. In particular, while in above tools the semantics is
only executable in separate systems (Maude or the K interpreter), SLANG generates executable
Java code that can be freely imported into existing application frameworks.

Furthermore, above tools completely describe the language semantics in specific meta-languages;
thus all the mathematical entities (types and operations) on which a semantics depends has to
be completely formalized in the meta-language. While this allows formal reasoning within the
respective frameworks or via external proof assistants, it also requires substantial efforts and
may also lead to prohibitively inefficient executions. SLANG on the other side only provides a
minimal meta-language to express structurally recursive definitions of functions or relations; all
the computations are expressed by embedded Java code. While this prevents formal reasoning
about the specifications, it allows to utilize external (standard or user-defined) libraries for the
mathematical entities required in the semantics; the effort to develop a semantics is thus greatly
reduced and its implementation is potentially much more efficient.

All in all, SLANG is thus a pragmatic tool whose goal is (rather than being theoretically
elegant and complete) to minimize the effort of developing a rapid prototype of a language and to
maximize the usefulness of this prototype by making it easy to integrate in existing software. The
software is freely available as open source at the following URL:

https://www.risc. jku.at/research/formal/software/SLANG

The core of this document is Section 2 that essentially represents a tutorial of SLANG by
showing how to use the tool for the implementation of a simple imperative programming language.
Section 3 outlines our further plans for the development of the software. Appendix A describes
the installation and use of the SLANG software. Appendix B gives the grammar of SLANG in
ANTLR syntax; consult this in case of syntax problems and also to learn about aspects of the
language not described by the examples. Appendix C lists examples of language definitions that
are distributed with the software.

2 An Imperative Programming Language

In this section, we are going to use SLANG to implement a simple imperative programming
language which we call Imp. A denotational semantics of this language was defined in Chapter 9
“Programming Languages” of [11]; similar languages have been formalized, e.g., in [16, 5].

The following is an example of a program in this language, which is expected to compute by
repeated addition for n = 5 the square a = n”> = 25.

var n; var a; var i;
n:=5; while ~(i = n) do { var j; j := 2%i+l; a:=a+j; i:=i+1 }

In the final Subsection 2.8, we will see that this goal is indeed achieved by the SLANG
implementation of Imp.

https://www.risc.jku.at/research/formal/software/SLANG

Since SLANG specifications embed Java source code, we assume in the following sections
familiarity with this programming language.
2.1 Specification Files

SLANG specifications are written in UTF-8 encoded text files and may make use of non-ASCII
Unicode symbols; alternatively one may also use multi-character ASCII tokens instead:

Unicode symbol | ASCII token

F |-
(<<
) >>
[L
I 1]
— ->
X

The full SLANG specification file Imp. txt for the implementation of this language is given in
Subsection C.2; its content has the following structure:

T
// Imp.txt

// SLANG version of the *denotational® semantics of a simple imperative language
// (c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

// Wolfgang.Schreiner <Wolfgang.Schreiner@risc.jku.at>

// William Steingartner <william.steingartner@tuke.sk>

/=
language Imp
{
target java
{
header
{#
package lang.imp;
import java.util.¥*;
import static lang.imp.Imp.*;
#3}
}

}

Language specifications may include line comments starting with // or block comments
/*...%/. The clause target java indicates that the generated source code will be in the
programming language Java (the only supported target language at the moment). The clause
header lists code that is added verbatim at the beginning of every generated Java source file. This

code is surrounded by parentheses of the form {# #} which may embed arbitrary source code in
the target language. Actually, such source code may be embedded in one of the following forms:

{#...#}
{##. .. ##}
#...#
#H#. . H#HH#

The two forms with double occurrences of the token ## can be used to embed source code that
itself contains individual occurrences of the character #. As a convention, we use the forms with
curly braces {. ..} to embed multiple source code commands and the forms without these braces
to embed single commands or just parts of commands (but technically there is no distinction
between these two kinds of forms). The syntactic and semantic correctness of the embedded code
is not checked by the SLANG software itself; errors will become apparent only when the source
code files generated by SLANG are compiled with a Java compiler.

From the part of file Imp. txt that was abbreviated as . .. in the specification snippet above,
the SLANG software generates the following entities:

* the syntactic domains of the language, i.e., the types of its abstract syntax trees, according
to a specified context-free grammar,

* a printer that transforms an abstract syntax tree according to a specified concrete syntax
into a linear text form,

* a parser that checks whether a given text is well-formed according the concrete syntax and
transforms it into an abstract syntax tree,

* atype checker that determines whether the abstract syntax tree is well-typed according to a
specified type system,

* an interpreter that evaluates the abstract syntax tree with respect to a specified formal
semantics.

In the following, we will elaborate the corresponding parts of the specification in turn and then
describe the generation, compilation, and execution of the Java code that implements the entities
listed above.

2.2 Syntactic Domains

The syntactic domains of the language are described by the following domains clause:

A

// syntactic domains

/] =

domains

{
Exp = Num[NUM] + Id[ID] + Plus[Exp,Exp] + Times[Exp,Exp];

Eq[Exp,Exp] + Not[BoolExp] + And[BoolExp,BoolExp];
Assign[ID,Exp] + Var[ID,Command] + Seq[Command,Command]
If2[BoolExp, Command, Command] + Ifl[BoolExp,Command]
While[BoolExp,Command] ;

Program = Prog[Command] ;

}

BoolExp
Command

+ +

The clause consists of a sequence of declarations each of which is terminated by a ; and
introduces a syntactic domain:

* the domain Exp of integer (numeric) expressions,

* the domain BoolExp of Boolean (truth) expressions,
* the domain Command of program commands,

* the domain Program of programs.

Each element of these domains (that must have all different names) is represented by an abstract
syntax tree whose possible forms are denoted by the options on the right-hand side of the equality
symbols; each option has form Tag[Dy, .. .D,] where Tag is a fresh identifier (different from all
other identifiers in all options in all domains) and Dy,. . . D,, is a sequence of n > 0 domain names
separated by commas; each domain name is either defined in the clause or represents a predefined
domain (see below) or is of the form #7'# where T is an embedded Java class (thus the syntax tree
may accommodate an object that can be modified by the type checker to annotate the abstract
syntax tree with information determined by static analysis).

For instance, in above example, the option Num[NUM] denotes the possible construction of a
tree from domain Exp whose root has label Num and a single child from the pre-defined domain
NUM. The option Eq[Exp, Exp] denotes the possible construction of a tree from domain BoolExp
whose root has label Eq and two children from domain Exp; the option If1[BoolExp, Command]
denotes the possible construction of a tree from domain Command that has label If1 and two
children from domain BoolExp and Command, respectively.

In addition to the user-defined syntactic domains, we have various pre-defined domains; the
elements from these domains are not trees but particular strings of characters:

* the domain ID of identifiers; an identifier is a non-empty sequence of characters each of
which may be an (upper-case or lower-case) letter, the underscore character _, or also a
decimal digit (but the first character of the identifier must not be a digit).

* the domain NUM of decimal numbers; a decimal number is a non-empty sequence of decimal
digits;
* the domain STR of character strings (not used in the definitions above); a string is an

arbitrary (possibly empty) sequence of characters.

A tree from a user-defined domain with option Tag[D, . . .D,] can be constructed by a term
of form Tag[t;,...,t,] where the ty,...,t, are terms that denote subtrees from domains

Dy, ...D,, respectively. The elements of the predefined domains are typically only constructed
by application of the parser explained later. However, they may be also constructed by embedded
Java string literals #" . . . "# with the text of the element.

As an example, the following term constructs an abstract syntax tree from domain Program,
i.e., an Imp program:

Prog[Var[#"x"#,Seq[
Assign[#"x"#,Plus[Num[#"2"#],Num[#"3"#]]1],
If[Eq[Id[#"x"#],Num[#"5"#]],

Assign[#"x"#,Times[Num[#"2"#]],Id[#"x"#11111]

In the concrete syntax described in Subsection 2.3, this program is represented as follows:

var x; X := 2+3; if x = 5 then x := 2%x;

2.3 Printer

The clause printer describes the concrete text representation of the abstract syntax trees of the
user-specified domains:

[=
// printer
[e
printer
{
domain Exp
{
case Num[n] — # _result = n; #;
case Id[i] — # _result = i; #;

case Plus[el,e2] — # _result = "(" + el + "+" + e2 + ")"; #;
case Times[el,e2] — # _result = "(" + el + "*" + e2 + ")"; #;
}
domain BoolExp
{
case Eqfel,e2] — # _result = el + " =" + e2; #;
case Not[b] — # _result = "(~" + b + ")"; #;
case And[bl,b2] — # _result = "(" + bl + " /A\\ " + b2 + ")"; #;
3
domain Command
{
case Assign[i,e] — # _result =i + " =" + e; #;
case Var[i,c] — # _result = "{var "+ 1 + "; " + c + "}"; #;
case Seq[cl,c2] — # _result = "{" + cl + "; " + c2 + "}"; #;
case If2[b,cl,c2] — # _result = "if " + b + " then " + cl + " else " + c2; #;

case Ifl[b,c] — # _result = "if " + b + " then " + c; #;

case While[b,c] — # _result = "while " + b + " do " + c; #;
}
domain Program
{
case Prog[c] — # _result = c.toString(); #;
3

}

The clause has one section for each user-specified domain and one rule for each option of the
domain of the following form (please note the terminating semicolon):

case Tag[xi,...,x,] — # ... # ;

Each rule is distinguished by the Tag of the corresponding root node parameterized by variables
X1,...,X, each of which represents one subtree of the node. The right side of the rule embeds
Java code that sets the String variable _result to the string representation of the tree using the
following interpretation of every variable x;:

 If x; represents an element of a predefined syntactic domain, in the embedded Java code
the variable denotes an object of type String which holds the text content of the element.

* If x; represents an abstract syntax tree from a user-defined syntactic domain, in the
embedded Java code it represents an object whose standard method toString() returns
the representation of the corresponding subtree as a value of type String; as usual, this
method is implicitly called if x; is an argument of the Java string concatenation operator +.

The embedded Java code may be a single command or a sequence of commands; in the later
case, it should be grouped in a block {. ..} to avoid any potentially unintended parsing of the
ultimately generated code.

2.4 Parser

The clause parser antlr4 describes the transformation of plain text into abstract syntax trees
utilizing the syntax of the ANTLR4 tool for language recognition [7, 1] (no other tool is supported
at the moment):

/]
// parser
/e
parser antlr4
{
domain Exp
{
case # n=dNUM # — Num[n];
case # i=dID # — Id[i];
case # el=dExp ’'*’ e2=dExp # — Times[el,e2]; // higher priority first

case # el=dExp '+’ e2=dExp # — Plus[el,e2];

case # '(’ e=dExp ')’ # — # $_result = $e._result; #; // parenthesing
3
domain BoolExp
{

case # el=dExp ’'=’ e2=dExp # — Eql[el,e2];

case # '~’ b=dBoolExp # — Not[b];

case # bl=dBoolExp ’'/\\’ b2=dBoolExp # — And[bl,b2];

case # '(’ b=dBoolExp ')’ # — # $_result = $b._result; #; // parenthesing
3
domain Command
{

case # i=dID ’:=" e=dExp # — Assign[i,e];

case # 'if’ b=dBoolExp ’then’ cl=dCommand ’else’ c2=dCommand # —

If2[b,cl,c2];
case # 'if’ b=dBoolExp ’then’ c=dCommand # — Ifl[b,c];
case # 'while’ b=dBoolExp ’do’ c=dCommand # — While[b,c];

case # cl=dCommand ’';’ c2=dCommand # — Seq[cl,c2];
// binds weaker than if/while
case # ’'var’ i=dID ’;’ c=dCommand # — Var[i,c];

// binds weaker than sequence
case # '{’ c=dCommand '}’ # — # $_result = $c._result; #; // parenthesing
}
domain Program

{
case # c=dCommand EOF # — Prog[c];

}

The clause has one section for each user-specified domain each of which contains rules of the
following form (please note the terminating semicolon):

case # ... # > ... ;

In a rule for domain Domain, the left-hand side of the rule describes an option of a ANTLR4
parser rule for a concrete syntax domain dDomain (please note the leading character d; ANTLR4
domains have to start with lower-case letters). Typically this option mimics an option of the
abstract syntax definition, by having for the abstract syntax domain D; of every subtree a phrase
x;=dD; that assigns to some variable x; the corresponding abstract syntax tree. Otherwise the
left side of the rule contains concrete syntax tokens of form ’...’ that define the linear text
representation of an abstract syntax tree from domain Domain. The right-hand side of the rule is
then typically a term Tag[xy, ..., X,] that describes the construction of this abstract syntax tree.

The generated parser attempts the rules in order, i.e., rules that appear earlier in the listing have
higher precedence. Therefore, for example, the rule for I£2 is given before the rule for If1; this
ensures that in an 1f command a succeeding else branch is immediately considered to be part of

10

the command. Similarly, the rule for the command composition operator ; appears after the rules
for the atomic commands; the rule for the variable declaration operator var appears even later.

The concrete grammar may have additional rules that ensure by the application of corresponding
parentheses that nested syntactic phrases are parsed as intended, see, e.g., the last rules of domains
Exp, BoolExp, and Command above. In order to avoid the necessity for corresponding nodes in
the abstract syntax trees (which already defined the unique structure by their shape), the right side
of a rule may be a Java embedded command that sets the variable _result of type Domain to
the value of the subtree surrounded by the parentheses; if this subtree has been on the left side of
the rule assigned to variable x, we may refer to it on the right side as $x._result.

2.5 Type Checker

Not every program that can be correctly parsed to an abstract syntax tree indeed makes sense; to
eliminate meaningless programs, we have to ensure that programs follow some typing discipline.
We follow the approach stated in [10] and also described in Chapter 1 “Syntax and Semantics”
of [11]: there a type system is a logical inference system where every abstract syntax domain is
equipped with a judgment that states whether a phrase is well-typed, potentially depending on
the context of the phrase (from which information is passed to the judgment), and potentially
also determining extra information that may be passed to other judgments. Furthermore, we may
annotate well-typed phrases with this extra information for later utilization by the interpreter that
executes the phrases.

To represent such extra information, our SLANG specification file contains a clause with
auxiliary definitions embedded in a code clause:

[=
// type system
[
code
{#
public enum Type { Int }
public static class Env<T> extends HashMap<String,T>
{
public Env() { super(Q); }
public Env(Env<T> e) { super(e); }
public T put(String key, T value)
{ return super.put(key.toString(), value); }
public T get(String key)
{ return super.get(key.toString()); }
}
public static class TypeError extends RuntimeException
{ public TypeError(String msg) { super(msg); } }
public static void check(boolean b, String msg)
{ if (!b) throw new TypeError(msg); }
#}

11

Such clauses may be added freely (also multiple times) to the specification file; all the embedded
code is collected in a Java file and made accessible to all entities of the implementation. In the
example above, this code consists of a type Type whose values will denote types of expressions;
since in our language we only have integer expressions, the only value of this type is the constant
Int. Furthermore, we have a generic type Env<7> that represents a partial map of variable
names (strings) to values of type T, for arbitrary 7. Finally, there is a runtime exception type
TypeError. An exception of this type is thrown whenever a type error is detected; the exception
carries a message that identifies this error. The auxiliary method check (b, msg) tests whether
the boolean value b is true; if this is the case, the method returns normally, otherwise it throws a
TypeError exception that carries the message msg.

With the help of these Java entities, we now define the type checking of integer expressions by
the following clause:

judgment #Env<Type># + Exp: exp

{
inference te + Id[i]: exp
{
check(te.get(i) != null, "undeclared variable " + i);
3
inference te + Num[n]: exp
{
3
inference te + Plus[el,e2]: exp
{
te el: exp;
te + e2: exp;
3
inference te + Times[el,e2]: exp
{
te + el: exp;
te + e2: exp;
}
}

The header of the clause introduces a judgment ze + e:exp which states that in type environment
te the integer expression e is well-typed. Here te is of type Env<Type>, i.e., a partial mapping
of variable names to types; for a given variable name i, fe has a value if and only if i has been
previously declared. Furthermore, e is an abstract syntax tree of syntactic domain Exp; thus for
each option of Exp there is a logical inference rule that describes when a syntax tree constructed
according to this option is well-typed:

* A variable with name i is well typed, if i is in the domain of ze.
* A number literal n is always well typed.

* A sum expression and a product expression with subexpressions e and e, are well typed if
both subexpressions are well typed integer expressions.

12

The last two rules contain as prerequisites applications of the currently defined judgments, but the
applications are to subphrases of the current phrase. The judgment can be thus interpreted as
a recursively defined procedure that is guaranteed to terminate; the various rules represent the
subprocedures that cover every possible case of the syntactic phrase passed to the procedure as an
argument.

In a similar style, we can define the type checker for Boolean expressions:

judgment #Env<Type># + BoolExp: bexp

{
inference te + Eq[el,e2]: bexp
{
te + el: exp;
te + e2: exp;
3
inference te + Not[b]: bexp
{
te + b: bexp;
3
inference te + And[bl,b2]: bexp
{
te + bl: bexp;
te + b2: bexp;
3
}

Here the first inference rule checks the well-typedness of the equality of two integer expressions
e1 and ey; this expression is a well-typed Boolean expressions if both e and e; are well-typed
integer expressions. However, the negation of b is a well-typed Boolean expression if also b is a
well-typed Boolean expression. Likewise, the conjunction of b; and b, is a well-typed Boolean
expression if both subexpressions are well-typed Boolean expressions.

The core of the type checker, however, is the judgment for commands:

judgment #Env<Type># + Command: command

{
inference te + Assign[i,e]: command
{
check(te.get(i) != null, "undeclared variable " + i);
te + e: exp;
}

inference te + Var[i,c]: command

{
te®: #Env<Type># = # new Env<Type>(te) #; # te®.put(i, Type.Int); #
te® + c: command;

}

inference te + Seq[cl,c2]: command

13

{
te + cl: command;
te + c2: command;
}
inference te + If2[b,cl,c2]: command
{
te + b: bexp;
te + cl: command;
te + c2: command;
3
inference te + Ifl[b,c]: command
{
te + b: bexp;
te + c: command;
}
inference te + While[b,c]: command
{
te + b: bexp;
te + c: command;

}

Here an assignment of the value of integer expression e to a variable with name i is only well-typed
if i has been previously declared and e is a well-typed integer expression.

To type-check a block command which declares a variable i and then executes the body
command ¢, we declare a new type environment feg that is identical to i except that it also contains
a mapping for i; then c is type-checked with respect to this environment. This inference rule
contains an example of a variable declaration te®: #Env<Type># = #...#; SLANG thus has
now one additional variable te® of type Env<Type> in addition to the variables listed in the
header of the inference rule. It will check that the use of te in the subsequent application of an
inference rule is well-typed. SLANG considers to types as equal if and only if their names match
exactly; thus care must be taken the the content of the code expression #. . . # is exactly the same
(without additional spaces etc).

The other cases of command sequences, two- and one-sided conditional statements, and while
loops only require to check the well-typedness of the Boolean expressions and subcommands in
the given type environment.

We are ready to type-check a complete program by the following judgment with a single rule:

judgment + Program: program

{
inference + Prog[c]: program
{
te: #Env<Type># = #new Env<Type>(Q# ;
te + c: command;
3

14

}

This inference rule checks that a program with body command c is well typed by constructing an
empty type environment fe and checking ¢ within that environment; thus every variable that is
used within the program must be appropriately declared.

Above examples demonstrate the main features of the type checker by inference rules that
may contain applications of the current judgment or other judgments, using the variables that
are declared as input parameters in the header or as locally declared variables in the body of the
inference rules, as well as utilizing embedded Java type annotations, expressions, and commands.
However, two features that have not yet been demonstrated are:

* Type judgments may also have output parameters whose values are set by the body of the
inference rule; as an example, see Subsection C.1 where the rules for a judgment fe
e:exp(?) first check whether in type environment fe the expression e is well-typed and
then set output parameter ¢ to the type of e.

* Type judgments may annotate abstract syntax trees with information derived from the
type checking; for this the corresponding option of the syntax domain has to be defined
as Tag[...,#C#] where C is some (potentially user-defined) Java class. The parser
constructing the corresponding syntax node has then to initialize the corresponding object
of this class; the rule for type-checking this node may then update the content of this object.

If a program is not well-typed, the type checker raises a runtime exception and (unless this
exception is caught and handled) aborts the processing of the program. If the program, however,
is well typed, we are ready to execute it on the basis of its formal semantics, as described in the
following subsections.

2.6 Interpreter from Denotational Semantics

In this subsection, we formalize the semantics of Imp in the style of a denotational semantics as it
was introduced by Scott and Strachey [12] and is described in numerous textbooks [9, 10, 16, 5],
i.e., by “semantic functions” that map syntactic domains to semantic domains. These semantic
domains are typically (not always) function domains, i.e., the semantics of a syntactic phrase
is typically a function on semantic domains. In SLANG, a semantic function F is thus usually
applied as v = F[p](vi,...,v,) where p is the syntactic phrase to which F is applied and
V1, ..., v, are the semantic values to which F[p] is applied; this application yields a semantic
value v that denotes the semantics of p. A semantic function may also have multiple result values;
in this case it is invoked as 71, ..., = F[p](vi,. .., vn).

The names of semantic functions may be overloaded with respect to the domain of their
syntactic arguments. It is therefore often convenient to define semantic functions with empty
names (“anonymous” functions) that may be applied as v = [p](vi,...,v,) (read: v is “the
semantics of p in the context of vy, ..., v,”). Since the function is anonymous, here the syntactic
domain of p alone determines which function definition is to be looked up.

A semantic function is in general defined by multiple equations, one equation for each
construction option of the syntactic domain on which it is defined. For instance, the following

15

clause defines the semantics of integer expressions by an anonymous function from integer
environments (“stores”) to integer values:

[/ m oo
// denotational semantics
[/ T oo
function [Exp]: #Env<Integer># — #Integer#
{
equation [Num[n]](ve) = v
{
v = #Integer.valueOf(n)#;
3
equation [Id[i]](ve) = v
{
v = #ve.get(i)#;
}
equation [Plus[el,e2]](ve) = v
{
vl = [el](ve);
v2 = [e2](ve);
v = #v1+v2#;
}
equation [Times[el,e2]](ve) = v
{
vl = [el](ve);
v2 = [e2](ve);
v = #v1*v2#;
}
}

Thus the semantics of an integer numeral n evaluated in input store ve is (ignoring ve) the
integer value v resulting from the decimal interpretation of n. The semantics of an identifier
i evaluated in store ve is the integer value v to which ve maps v (if the program is well-typed
according to the typing rules of the previous session, ve indeed maps i to some value). The
semantics of a sum or product of two integer expressions e and e, is the sum or product of the
integer values v| and v, denoted by e and e;, respectively.

As above example demonstrates, each equation defines the semantic value v of the semantics
of some kind of syntactic phrase applied to semantic arguments. The definition may consist of
multiple equational definitions each of which introduces on the left side some auxiliary variable
(v1 and v, in above example) or defines the value of the final result v. The right side may be
either the application of a semantic function or some embedded Java expression. The type of
each variable is determined either from the point of its introduction (the semantic input parameter
ve has type Env<Integer>, the semantic output parameter v has type Integer) or from the
application of the semantic function on the right side (v; and v, have both type Integer). If an

16

auxiliary variable x is introduced without a defining value or by a defining Java expression e, it
must be explicitly given an embedded Java type t:

X: #t#;
X: #t# = #e#;

The semantics of Boolean expressions can be defined analogously:

function [BoolExp]: #Env<Integer># — #Boolean#

{
equation [Eq[el,e2]](ve) = v
{
vl = [el](ve);
v2 = [e2](ve);
v = # vl.equals(v2) #;
}
equation [Not[b]](ve) = v
{
v0 = [b](ve);
v = # v #;
}
equation [And[bl,b2]](ve) = v
{
vl = [bl](ve);
v2 = [b2](ve);
v = # vl && V2 #;
}
3

Thus the semantics of the equality of two integer expressions e and e; is “true” if and only if
both expressions yield equal integer values v| and v, respectively. The negation of a Boolean
expression b yields the result of the semantic negation of the truth value vy denoted by b. The
conjunction of two Boolean expressions b; and b, yields the result of the semantic conjunction of
the truth values v and v, denoted by b and b,, respectively.

The semantics of commands is a function on integer environments (i.e., a mapping from “input
stores” to “output stores”):

function [Command]: #Env<Integer># — #Env<Integer>#

{
equation [Assign[i,e]](ve) = ve®
{
v = [e](ve);
ve® = #new Env<Integer>(ve)#; # ve®.put(i,v); #
}
after {# System.out.println("Assignment " + i + " = " + ve0.get(i)); #}

17

equation [Var[i,c]](ve) = ve®
{
vel: #Env<Integer># = # new Env<Integer>(ve) #;
v: #Integer# = # vel.put(i,0) #;
ve2 = [c](vel);
ve® = # new Env<Integer>(ve2) #; # ve®.put(i,v); #
}
equation [Seq[cl,c2]](ve) = ve®
{
vel
vel®
}
equation [If2[b,cl,c2]](ve) = ve®
{
v = [b](ve);
if (v)
ve® = [cl](ve);
else
ve® = [c2](ve);

[c1](ve);
[c2] (vel);

}
equation [Ifl[b,c]](ve) = ve®
{
v = [b](ve);
ved = ve ;
if (v) # ve® = [c](ve);
}
equation [While[b,c]](ve) = ve®
{
ve® = ve;
while (true) {
v = [b](ve®);
if (!'v) break;
ve® = [c](ve®);
1

}

Here the equation for each kind of command must define from the “input store” ve the “output
store” veg. If the command is an assignment of an expression e to a variable with name Z, then
e is evaluated in ve, which yields the integer value v, and veg is a copy of ve that is updated by
mapping i to v.

The equation for assignments is extended by an after clause with embedded Java code. This
code will be executed in the generated interpreter after every evaluation of the equation defining
the semantics of a assignment; it may be used to trace the execution of the program by external

18

side effects, in this case by exhibiting every variable update. Likewise, the code embedded in
a corresponding before clause will be executed before the evaluation of the defining equation.
Therefore the code in a before clause may only refer to the input variables of the equation while
the code in an after clause may also refer to the output variable and the auxiliary variables
introduced in its definition.

The semantics of a block statement with the declaration of a variable named i and body
command c first clones the input store ve to an intermediate store ve; and updates this store by
mapping i to initial value O remembering in variable v the original value of i (if any). Then c is
executed with respect to ve; resulting its output store ve,. The output store vey is then a clone of
ve, where, however, i is reset to its original value v (if any).

The semantics of a sequence of two commands c¢; and c; is determined by first executing c
in input store ve; this yields an intermediate store ve; in which ¢, is executed which yields the
overall output store veg.

The semantics of the two-sided or of the one-sided conditional command is defined by making
use of an embedded Java conditional: if the semantics v of the boolean expression b yields “true”,
the first branch is executed in input store ve, which yields the output store veg; otherwise, the
second branch is executed to determine the output store or (in the case of the one-sided conditional
the output store is identical to the input store).

Similarly the semantics of the while loop command is defined by making use of the corresponding
Java command'. We start by setting the output store veg to the input store ve and repeatedly
evaluate the boolean expression b with respect to veg. As long as this yields “true”, we execute
¢ in veg and update veg to the result of the execution. When the evaluation yields “false”, veg
represents the overall result store.

Finally we can define the semantics of a program as follows:

function [Program]: #Void#

{
equation [Prog[c]] = none
{
ve®: #Env<Integer># = # new Env<Integer>() #;
vel = [c](ve®);
none = # null # ;
3
}

The semantic function for programs creates an empty input store vey and executes in that store
the program command ¢, which yields the output store ve;. The semantics function could now
return this output store, our definition, however just returns a dummy value. The execution of the
program semantics, however, will from the after clause for the assignment command print all
variable updates to the standard output stream, which is the effect we desire for our programming
language.

It is also possible to define the loop semantics by recursive application of the semantic function being defined, which
would be more in line with the usual formalization of loop semantics; Subsection 2.7 will demonstrate how such
recursive applications become possible.

19

2.7 Interpreter from Big-Step Operational Semantics

In this subsection, we present an alternative formalization of the semantics of Imp as a big-step
operational semantics (also called natural semantics) which was introduced by Kahn [4] and is
also described in, e.g., [16, 5]. Here the semantics is described by a logical inference system
whose judgments describe the transition of a program configuration (consisting of a syntactic
phrase and the context in which the phrase is evaluated) to a result value. Big-step operational
semantics is in this sense similar to denotational semantics but conceptually more general, because
the judgments denote relations rather than functions; thus from a given configuration multiple
outcomes are possible, i.e., program execution may be non-deterministic (however, SLANG
implements a single deterministic execution mechanism that is applied to both kinds of semantic
specifications).

A transition relation named R has generally the form (p,vy,...,v,) =R v where p is a
syntactic phrase and vy, ..., v,, v are semantic values (the angle brackets {) are optional); it can
be read as “phrase p can in context vy, ..., v, be reduced to value v”. A transition relation may
also yield multiple result values; in this case it is invoked as (p, v{,...,vn) =R {(ri,...,"m)
(again the angle brackets () are optional). Analogously to the semantic functions, the name of a
transition relations can be overloaded on the domain of its syntactic phrase; we can also define
anonymous relations where R is the empty name and the appropriate definition of the relation is
looked up from the domain of p only.

The following operational definition of Imp is stored in a separate specification file Imp2.txt
that is given in Subsection C.3. This file is identical to Imp. txt except that the definitions of the
semantic functions have been replaced by the definitions of transition relations?.

Our big-step semantics depends on the following Java declarations:

T

// big-step operational semantics ("natural semantics")
/]
code
{#
public static class Failure extends RuntimeException { }
public static void check(boolean b) { if (!b) throw new Failure(Q); }
#3}

The method check (b) returns normally if the Boolean value b is true and raises a runtime
exception otherwise. This enables to define multiple variants of an inference rule for a transition;
if one fails by throwing a runtime exception, the next one will be selected (see below).

The big-step semantics of integer expressions can then be defined as follows:

transition (Exp,#Env<Integer>#) — #Integer#

{

2SLANG considers type checker judgments, semantic functions, and transition relations simply as different forms of
operations whose fundamental behavior is identical and that are stored in the same namespace; thus we cannot
have simultaneously in a single specification file an anonymous semantic function with application v/ = [[p](v)
and an anonymous transition relation with application {p,v) — v’.

20

step (Num[n],ve) — v

{
v = #Integer.valueOf(n)#;
}
step (Id[i],ve) — Vv
{
v = #ve.get(i)#;
}
step (Plus[el,e2],ve) — v
{

(el,ve) — vl;
(e2,ve) — v2;

Vv = #v1+v2#;
3
step (Times[el,e2],ve) — v
{

(el,ve) — vl;

(e2,ve) — v2;

Vv = #v1*Vv2#;
}

This definition of the transition relation consists of multiple inference rules that describe the
reduction of a configuration with an integer expression to an integer value. It matches line for line
the corresponding definition of a denotational semantics by equations given in Subsection 2.6;
the core difference is just the syntactic replacement of equational definitions by applications of
inference rules.

Likewise, the big-step operational semantics of Boolean expressions is just a translation of the
corresponding denotational one:

transition (BoolExp,#Env<Integer>#) — #Boolean#

{
step (Eq[el,e2],ve) — v
{
(el,ve) — vi;
(e2,ve) — v2;
v = # vl.equals(v2) #;
}
step (Not[b],ve) — v
{
(b,ve) — vO;
v = # 1v0 #;
}

step (And[bl,b2],ve) — v

21

{
(bl,ve) — vi;
(b2,ve) — v2;
v = # vl && v2 #;
3
}

However, more fundamental differences arise in the definition of the big-step operational
semantics of some commands:

transition (Command,#Env<Integer>#) — #Env<Integer>#

{
step (Assign[i,e],ve) -> ve0®
{
(e,ve) — v;
ve® = #new Env<Integer>(ve)#; # ve®.put(i,v); #
3
after {# System.out.println("Assignment " + i + " = " + ve0.get(i)); #}
step (Var[i,c],ve) — ve®
{
vel: #Env<Integer># = # new Env<Integer>(ve) #;
v: #Integer# = # vel.put(i,0) #;
(c,vel) — ve2;
ve® = # new Env<Integer>(ve2) #; # ve®.put(i,v); #
3
step (Seq[cl,c2],ve) — vel®
{
(cl,ve) — vel;
(c2,vel) — ve0;
3
step (If2[b,c1,c2],ve) — veld
{
(b,ve) — v; # check(v); #
(cl,ve) — ve0;
3
or
{
(b,ve) — v; # check(!v); #
(c2,ve) — vel;
3
step (Ifl[b,c],ve) — ve®
{
(b,ve) — v; # check(v); #
(c,ve) — vel;
3

22

or

{
(b,ve) — v; # check(!v); #
ve® = ve;

}

step (w=While[b,c],ve) — ve0

{
(b,ve) — v; # check(!v); #
ve® = ve;

}

or

{

(b,ve) — v; # check(v); #
(c,ve) — vel;
(w,vel) — ve0;
}
3

While the definitions of the transition relations for assignment, variable declaration block,
and command sequence still mimic the definitions of the corresponding semantic functions, the
definitions for the two-sided and one-sided conditional and for the while loop differ in that we
handle the two cases of the boolean expression b evaluated to truth value “true” and to truth value
“false” by two separate inference rules separated by the keyword or. For the conditionals, the
first rule checks whether the value is “true”; if this check fails, a runtime exception is thrown
which signals to attempt the next rule (which for symmetry checks the dual case, even if this is
guaranteed to succeed). The computation of the corresponding output stores thus becomes more
transparent, since the various cases are syntactically separated.

As for the while loop command, the first rule checks whether the Boolean expression b evaluates
to “false”; if this is the case, the output store vey is identical to the input store ve; in the other case,
we execute the body command ¢ in ve which yields an intermediate store ve; what now remains
to be done is to evaluate the while loop again in that state. For this purpose, the header of the
rule includes the declaration w=While[b,c] which assigns name w to the loop; this name may
be used to describe the remaining evaluation of the loop in intermediate store ve; to the overall
output store vey.

This is an example of a case where the semantics of the currently considered phrase is itself
utilized in its definition, i.e., the definition becomes (generally) recursive. In all other examples so
far, semantic functions were only applied to structurally simpler phrases, i.e., recursive definitions
were restricted to the pattern of structural induction, which guarantees the termination of the
direct evaluation of these definitions. SLANG does not allow to construct new syntactic phrases
in semantic definitions, however, by above naming it allows to not only base the semantics not
only on the meanings of subphrases but also on the meaning of the whole phrase. We thus might
also define the denotational semantics of while commands given in Subsection 2.6 in a recursive
style (by translating above definition of a transition relation into a corresponding definition of an
semantic function; we may also have in such function definitions multiple cases separated by or

23

or use embedded Java conditionals to express the case distinction).
Finally, the big-step operational semantics of a program again mimics the previously given
denotational semantics:

transition (Program) — #Void#
{
step (Prog[c]) — none
{
ve®: #Env<Integer># = # new Env<Integer>() #;
(c,ve®) — vel;
none = # null # ;

}

Again, from the after clause of the assignment command, the execution of this program semantics
traces all variable updates that occur in the program.

2.8 Code Generation, Compilation, and Execution

In this section, we are going to explain the steps that are needed to generate from the SLANG
specification file Imp.txt an executable implementation of the language Imp. We assume that
the SLANG software has been appropriately installed as described in Subsection A.1.

The individual steps can be best explained by investigating the shell script ImpMake included in
the software distribution; by running this script we generate an executable Java program ImpMain:

#!/bin/sh

JAVA
JAVA_HOME=/software/java2l
JAVA_OPTIONS=
JAVA=$JAVA_HOME/bin/java
JAVAC=$JAVA_HOME/bin/javac

ANTLR4: complete tool for compilation, not just the runtime binaries
ANTLR4_JAR=/software/SLANG/lib/antlr4. jar
ANTLR4="$JAVA -cp $ANTLR4_JAR org.antlr.v4.Tool"

SLANG
SLANG=/software/SLANG/bin/SLANG

execute SLANG, ANTLR4, JAVAC

$SLANG -d lang/imp Imp.txt

$ANTLR4 lang/imp/Imp.g4

$JAVAC $JAVA_OPTIONS -cp "$ANTLR4_JAR:." ImpMain.java

24

After the configuration of the various paths and command, the main steps executed by the last
three commands are:

* Run SLANG to produce ANTLR4 source code for the parser and Java source code for the
syntactic domains, type checker, and interpreter.

* Run ANTLRA4 to translate ANTLR4 source code into Java source code for the parser.

* Compile a user-defined Java program ImpMain. java (given below) that calls the parser,
prints the abstract syntax tree, type-checks the tree, and interprets it.

Running the script shows the terminal output produced by SLANG (the execution of ANTLR4
and the Java compiler is silent):

> ./ImpMake

SLANG Semantics-Based Language Generator 1.0 (September 20, 2023)

(c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

This is free software distributed under the terms of the GNU GPL.

Execute "SLANG -h" to see the available command line options.

Reading file /usr2/software/SLANG-1.0/languages/Imp.txt.

Generating files in directory /usr2/software/SLANG-1.0/languages/lang/imp.
Generating code class file Imp.java.

Generating ANTLR4 grammar Imp.g4.

Generating parser class file Imp_parser.java.

Generating for domain Exp interface file Exp.java.

Generating for domain BoolExp interface file BoolExp.java.

Generating for domain Command interface file Command.java.

Generating for domain Program interface file Program.java.

Generating for operation exp[Exp] class file Exp_exp.java.

Generating for operation bexp[BoolExp] class file BoolExp_bexp.java.
Generating for operation command[Command] class file Command_command.java.
Generating for operation program[Program] class file Program_program.java.
Generating for operation .[Exp] class file Exp_.java.

Generating for operation ..[BoolExp] class file BoolExp_.java.

Generating for operation .[Command] class file Command_.java.

Generating for operation .[Program] class file Program_.java.

SUCCESS: execution successfully completed.

We see that a Java file Imp. java is generated that contains definitions used in the other Java
files. Also an ANTLR4 file Imp.g4 is generated that contains the ANTLR4 source code of the
parser from which the execution of ANTLR4 generates the basic Java source code of the parser.
SLANG generates in Imp_parser. java a high-level interface to the parser that can be later
utilized in the main program ImpMain. Then SLANG generates one Java interface file for every
syntactic domain and one Java class file for every operation specified in the SLANG file, i.e.,

25

for every type system judgment, every semantic function, and every transition relation (if such
operations exist).

The content of the sample file ImpMain. java included in the distribution now utilizes the
generated definitions as follows in order to construct an executable implementation of Imp:

import lang.imp.*;

public class ImpMain
{
public static void main(String[] args)
{

try

{
// parsing
Program program = Imp_parser.parseProgram();
// pretty-printing
System.out.println(program) ;
// type-checking: inferring judgment + program:program()
Program_program.operation(program) .apply(Q);
// executing: evaluating anonymous function [program]()
Program_.operation(program) .apply(Q);

3

catch(Exception e)

{
// type-checking errors are caught here
System.out.println(e.getMessage());

3

}

This Java file imports the content of package lang.imp declared in the header section of the
SLANG specification file Imp. txt. As explained above, we get from this package (among others)
the following entities:

* A type (interface) Program that represents the domain of abstract syntax trees of Imp
programs (such interfaces exist for every syntactic domain); each such interface contains a
method toString() that allows to print the text representation (concrete syntax) of the
abstract syntax tree.

* A method Imp_parser.parseProgram() that parses the standard input for such a program
(such methods exist for every syntactic domain and for multiple input mediums: the standard
input, a Java String, a Java File, and a Java Reader). If the parsing fails, a runtime
exception is thrown.

* For the type system judgment program on syntactic domain Program a Java function
Program_program.operation() that can be applied to the abstract syntax tree of the

26

program and returns an anonymous Java function that can be (via method apply) invoked
on the semantic input values of the judgment and returns its semantic output value (in our
case just a dummy value which is ignored).

* For the anonymous semantic function on syntactic domain Program a Java function
Program_.operation() that can be applied to the abstract syntax tree of the program
and returns an anonymous Java function that can be (via method apply) invoked on the
semantic input values of the function and returns its semantic output value (in our case just
a dummy value which is ignored).

If an operation op on a syntactic domain D returns multiple values, the class D_op contains a
class Result that encapsulates these values.

The compiled program Imp can be executed as shown in the shell script Imp included in the
distribution:

#!/bin/sh

JAVA_HOME=/software/java2l

JAVA_OPTIONS=

JAVA=$JAVA_HOME/bin/java

$JAVA $JAVA_OPTIONS -cp ".:/software/SLANG/lib/*" ImpMain $*

A sample execution on the Imp program given at the beginning of this section is shown below:

> ./Imp
var n; var a; var i;

n:=5; while ~(i = n) do { var j; j := 2*%i+l; a:=a+j; i:=i+1 }
{var n; {var a; {var i; {n := 5; while (~i = n) do

{var j; {{j (2*¥D+1D); a = (a+j)}; 1 = (i+1)}}}1}}

Assignment n =
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment

N W O u N Wk == v

He @ G e o G e G e G e G
N O D -
(0] (o)}

|
O]

27

As we see, the program is parsed correctly (the output shows by additional parentheses the
unique parsing structure), can be type-checked without error, and indeed computes in an iterative
way for input # = 5 the output a = n* = 25.

3 Future Work

The SLANG language is quite minimalist and would profit from some extensions. In particular,
SLANG specifications are monolithic and must be provided in single source files; in the future we
may investigate the modularization of the language. Also, the only targets supported at the moment
are Java and ANTLR4; it should be, however, quite easy to also support other programming
languages and parser generators.

Our focus in the immediate future, however, will be the formalization of concrete languages
with SLANG, in particular some domain-specific languages such as the robot control language
described in [14]. The further evolution of SLANG will depend on the experience gained with its
practical use.

References

[1] ANTLR, May 2023. https://www.antlr.org.

[2] Fabricio Chalub and Christiano Braga. Maude MSOS Tool. Electronic Notes in Theoretical
Computer Science, 176(4):133-146, 2007. doi:10.1016/j.entcs.2007.06.012.

[3] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Professional Computing
Series. Addison-Wesley, 2010. https://martinfowler.com/books/dsl.html.

[4] Gilles Kahn. Natural Semantics. In Franz J. Brandenburg, Guy Vidal-Naquet, and Martin
Wirsing, editors, STACS 87: 4th Annual Symposium on Theoretical Aspects of Computer
Science, Passau, Germany, February 19—21, 1987, volume 1987 of Lecture Notes in
Computer Science, pages 22-39. Springer, Berlin, Germany, 1987. doi:10.1007/BFb0039592.

[5] Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appetizer.
Undergraduate Topics in Computer Science. Springer, London, UK, 2007. doi:10.1007/978-
1-84628-692-6.

[6] Terence Parr. Language Implementation Patterns — Create Your Own Domain-Specific and
General Programming Languages. Pragmatic Bookshelf, 2009. https://pragprog.com/
titles/tpdsl/language-implementation-patterns.

[7] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Book-
shelf, 2nd edition, January 2013. https://pragprog.com/titles/tpantlr2/
the-definitive-antlr-4-reference.

[8] Grigore Rosu and Traian Florin Serbdnutid. An overview of the K semantic
framework. Journal of Logic and Algebraic Programming, 79(6):397-434, 2010.
doi:10.1016/j.j1ap.2010.03.012.

28

https://www.antlr.org
https://doi.org/10.1016/j.entcs.2007.06.012
https://martinfowler.com/books/dsl.html
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6
https://pragprog.com/titles/tpdsl/language-implementation-patterns
https://pragprog.com/titles/tpdsl/language-implementation-patterns
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference
https://pragprog.com/titles/tpantlr2/the-definitive-antlr-4-reference
https://doi.org/10.1016/j.jlap.2010.03.012

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

David A. Schmidt. Denotational Semantics — A Methodology for Language Development.
Allyn and Bacon, Boston, MA, USA, 1986. http://people.cis.ksu.edu/~schmidt/
text/densem.html.

David A. Schmidt. The Structure of Typed Programming Languages. MIT
Press, Cambridge, MA, USA, 1994. https://mitpress.mit.edu/books/
structure-typed-programming-1languages.

Wolfgang Schreiner. Thinking Programs — Logical Modeling and Reasoning about
Languages, Data, Computations, and Executions. Texts & Monographs in Symbolic
Computation. Springer, Cham, Switzerland, 2021. doi:10.1007/978-3-030-80507-4.

Dana Scott and Christopher Strachey. Towards a Mathematical Semantics for Computer
Languages. In J. Fox, editor, Proceedings of the Symposium on Computers and Automata,
volume 21 of Microwave Research Institute Symposia Series, pages 19—46, Polytechnic
Institute of Brooklyn Press, New York, NY, USA, 1971. Also: Technical Monograph
PRG-6, Oxford University Computing Laboratory, Programming Research Group, Ox-
ford, UK, https://www.researchgate.net/publication/237107559_Towards_a_
Mathematical_Semantics_for_Computer_Languages.

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok Strnisa. Ott: Effective tool support for the working semanticist. Journal of
Functional Programming, 20(1):71-122, 2010. doi:10.1017/S0956796809990293.

William Steingartner, Davorka Radakovié, and Richard Zsiga. Some Aspects about Visual-
ization of Natural Semantics for a Selected Domain-Specific Language. IPSI Transactions
on Internet Research, 19(1):46-54, 2023. doi:10.58245/ipsi.tir.2301.08.

Markus Voelter. DSL Engineering — Designing, Implementing and Using Domain-
Specific Languages. dslbook.org, 2013. https://voelter.de/data/books/
markusvoelter-dslengineering-1.0.pdf.

Glynn Winskel. The Formal Semantics of Programming Languages — An Introduc-
tion. MIT Press, Cambridge, MA, USA, 1994. https://mitpress.mit.edu/books/
formal-semantics-programming-languages.

29

http://people.cis.ksu.edu/~schmidt/text/densem.html
http://people.cis.ksu.edu/~schmidt/text/densem.html
https://mitpress.mit.edu/books/structure-typed-programming-languages
https://mitpress.mit.edu/books/structure-typed-programming-languages
https://doi.org/10.1007/978-3-030-80507-4
https://www.researchgate.net/publication/237107559_Towards_a_Mathematical_Semantics_for_Computer_Languages
https://www.researchgate.net/publication/237107559_Towards_a_Mathematical_Semantics_for_Computer_Languages
https://doi.org/10.1017/S0956796809990293
https://doi.org/10.58245/ipsi.tir.2301.08
https://voelter.de/data/books/markusvoelter-dslengineering-1.0.pdf
https://voelter.de/data/books/markusvoelter-dslengineering-1.0.pdf
https://mitpress.mit.edu/books/formal-semantics-programming-languages
https://mitpress.mit.edu/books/formal-semantics-programming-languages

A The SLANG Software

In the following sections, we describe the software that implements the SLANG language.

A.1 Installing the Software

The README file of the installation is included below.

README
Information on SLANG.

(c) 2023 https://www.risc.jku.at/research/formal/software/SLANG
Wolfgang.Schreiner <Wolfgang.Schreiner@risc.jku.at>
William Steingartner <william.steingartner@tuke.sk>

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.

The SLANG Semantics-Based Language Generator

https://www.risc. jku.at/research/formal/software/SLANG

SLANG is a software for generating rapid prototype implementations of
programming languages from their formal specifications. Its input is a text file
that describes the abstract syntax of a language and its concrete text
representation; from this, a parser is generated (utilizing the ANTLR4 tool)
that transforms the text representation of a program into its abstract syntax
tree and a printer that generates from the abstract syntax tree its text
representation. Furthermore, one can equip the language with a formal type
system (by logical inference rules) from which a type checker is generated.
Finally, one can give the language a formal semantics, in the denotational style
(by function equations) and/or in the big-step operational style (by transition
steps); from this, a language interpreter is generated. SLANG is implemented in
Java and produces Java source code; it should be easy to extend the software
also to other target languages.

The Distribution

The distribution has the following contents:

README ... this file

30

COPYING ... the GNU General Public Licence Version 3

CHANGES ... the version history of the software

bin/
SLANG ... the execution script

lib/
antl4.jar ... the ANTLR4 library (complete version)
SLANG. jar ... the SLANG library

doc/
main.pdf ... the manual

languages/
<L>.txt ... a sample language definition of language <L>
<L>Main.java ... the main program for executing the language
<L>Make ... a script to generate the executable program
<L> ... a script to run the executable program
lang/*/* ... the *.java and *.g4 files generated by SLANG

src/
slang/*.java ... the source code of SLANG

Installation

First make sure that you have installed the Java Development Kit Version 21
or newer (see below).

Then copy file bin/SLANG to a directory in your PATH and adapt in this file the
variable JAVA to point to the Java executable "java". Adapt SLANG to point to
the directory "lib" of the SLANG distribution.

You should then be able to execute

SLANG -h

See the examples in directory "languages" (start with the scripts "<L>Make")
on how to generate an executable version from a SLANG language definition.

Third Party Software That You Have to Install

SLANG assumes that the following third party software is installed on your
computer (if it is not already provided by your GNU/Linux distribution, you have
to downlad and install it manually).

Java Development Kit 21 or newer (Oracle JDK 21 recommended)
https://www.oracle.com/java/technologies/downloads/

Go to the "Downloads" section to download the JDK.
An installation of JDK 21 or newer is required, Oracle JDK 21 is recommended.
Older versions of Java will not work (SLANG utilizes the "record patterns"

and "pattern matching for switch" introduced in JDK 21).

On a Debian 13 "trixie" GNU/Linux distribution, just install the package
"openjdk-21-jdk" by executing (as superuser) the command

apt-get install openjdk-21-jdk

31

On a Debian 12 "bookworm" GNU/Linux distribution, this package may be available
as a backport via https://backports.debian.org.

Third Party Software That Comes with SLANG

SLANG also uses the the following open source software developed by third
parties. This software is already included in the distribution, but if you want
or need, you can download the source code from the denoted locations and compile
it on your own. Many thanks to the respective developers for making this great
software freely available!

ANTLR 4.13.0
https://www.antlr.org

This is a framework for constructing parsers and lexical analyzers used for
processing the SLANG language and the ANTLR4 files generated by SLANG.

On a Debian 12 "bookworm" GNU/Linux distribution, just install the package
"antlr4" by executing (as superuser) the command

apt-get install antlr4

A.2 Running the Software
The SLANG software is executed by the shell script

SLANG
which prints out the copyright message

SLANG Semantics-Based Language Generator 1.0 (September 20, 2023)
(c) 2023 https://www.risc.jku.at/research/formal/software/SLANG
This is free software distributed under the terms of the GNU GPL.
Execute "SLANG -h" to see the available command line options.

Reading standard input.

If we then press <CTRL>-D to close the standard input stream, this terminates the program.
However, if we execute (as indicated in above message)

SLANG -h
we get the following output:

SLANG [<options>] [<path>]
<path>: path of language file (if none, read from stdin)
<options>: the following command line options

32

-h: print this message and exit
-ast: print abstract syntax tree of language specification
-d <path>: path of directory in which to generate code

A typical execution is therefore
SLANG -d <dir> <language>

where <language> denotes the language specification file and <dir> denotes the directory in
which the software shall generate the source code of the implementation of the language.

B The SLANG Language

The SLANG grammar (for both lexical analysis and syntax analysis) is formally defined below as
an ANTLR4 grammar file. Please note that the order of options in a grammar rules determine
precedences; options that come earlier have higher precedence than others.

J] e
// SLANG.g4

// Semantics Language Generator ANTLR4 Grammar

// $Id: SLANG.g4,v 1.1 2023/08/02 09:01:07 schreine Exp §

//

// (c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

// Wolfgang.Schreiner <Wolfgang.Schreiner@risc.jku.at>

// William Steingartner <william.steingartner@tuke.sk>

//

// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or

// (at your option) any later version.

//

// This program is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// GNU General Public License for more details.

//

// You should have received a copy of the GNU General Public License

// along with this program. If not, see <http://www.gnu.org/licenses/>.

e e L e R
grammar SLANG;

options
{
language=Java;

}

@header
{

package slang.parser;

}

33

/e e
// problems and declarations

/] = e

// languages
language: ’language’ id {’(C ’;’)* (clause (’;’)*)* '}’ EOF ;

// clauses

clause:
"target’ ’java’ '{’ ’header’ literal '}’ #Target
| ’code’ literal #Code
| ’domains’ ’{’ (domaindef)* '}’ #Domains
| ’printer’ '{’ (printerdomain)* ’}’ #Printer
| ’parser’ ’antlr4’ ’{’ (parserdomain)* ’}’ #Parser
| C ’judgment’ | ’judgement’) (in=types)? (C '+’ | '|-")
domain=id ’:’ fun=id (’(C’ out=types ')’)? ’{’ (inference)* '}’
(’before’ (bin=ids)? (’+’ | ’|-") bid=id ’:’
before=id ((' bout=ids ')’)? bliteral=literal)?
(’after’ (ain=ids)? ('+’ | ’|-’) aid=id ’:’
after=id (’(C’ aout=ids ’)’)? aliteral=literal)? #Judgment
| ’transition’ ('(’ | '<<’)? domain=id (’,’ in=types)? (')’ | '>>’)7
(’->"] ">) (fun=id)?
¢ | ’<<”)? out=types (')’ | ’>>’)? ’{’ (step)* '}’
(’before’ (bin=ids)? (¢+’ | ’|-") bid=id ’:’
before=id (’(’ bout=ids ’)’)? bliteral=literal)?
(’after’ (ain=ids)? ('+’ | ’|-") aid=id ’:’
after=id (’(C’ aout=ids ’)’)? aliteral=literal)? #Transition
| ’function’ (fun=id)? ('[’ | "[[’) domain=id C ']’ | ’11’)
;7 (in=types ('—>’ | '->7))? out=types '{’ (equation)* '}’

(’before’ (before=id)? (’[’ | ’[[’) bid=id ¢ ']’ | ’11’)

(’C bin=ids ’)’)? bliteral=literal)7

(’after’ (after=id)? (’[’ | ’[[’) aid=id C '] | ’11’)

(’C ain=ids ’)’)? ’=’ aout=ids aliteral=literal)? #Function

// domains and their constructors

domaindef: id ’'=’ domaincon (’+’ domaincon)* ’;’ ;
domaincon: id ([’ (domainname (’,’ domainname)*) ']’)? ;
domainname:

id #DomainId

| literal #DomainLiteral

// printers
printerdomain: ’domain’ id '{’ (printercase)* '}’ ;
printercase: ’case’ domainpattern (-’ | ’->’) literal ’;’ ;

// parsers
parserdomain: ’domain’ id (’prefix’ literal)? ’{’ (parsercase)* '}’ ;
parsercase: ’case’ literal (=’ | '->’

) domainexp ’';’ ;

// inferences, steps, and equations
inference :

34

"inference’ (in=ids)? ('+’ | ’|-") domainpattern ’:’ id (’'(C’ out=ids ')’)?
bodies (’before’ before=literal)? (’after’ after=literal)?
step :
"step’ ((' | '<<’)? domainpattern (’,’ in=ids)? (')’ | ’>>’)?
(=7 | 7->7) (id)? (¢ | ’<<’ J)? out=ids (')’ | ’>>7)7
bodies (’before’ before=literal)? (’after’ after=literal)?

equation :
’equation’ (id)? (’[’ | '[[’) domainpattern (']’ | 11’)
('C in=ids ’)’)? ’=’ out=ids

bodies (’before’ before=literal)? (’after’ after=literal)?

// bodies and commands
body: ’{’ (command)* '}’ ;

command :
literal #CommandLiteral
| ids C 7+ | 7|-") id ’:” id (’C ids ')’)? ’;’ #CommandInference
| C’¢ | ’<<”)2dd (7,7 ids)? ()Y | >’)2 (' | ’->7) (id)7
C7¢ | '’)?2dds ()’] >)7 7y #CommandStep
| variables (’=’ value)? ’;’ #Assignment
// auxiliaries
variable: id (’:’ type)7?;
value:
id #Valueld
| literal #ValueLiteral
| (fun=id)? C ’[* | "[[’) domain=id C]’ | *11’)
C ’C values ')’)? #Application
domainpattern: (res=id =’)? con=id (’[’ ids ']’)? ;
domainexp:
literal #DomainExpLiteral

| id C [’ ids ']’)? #DomainExpApplication

type: literal ;

// sequences

types: type ((’x’ | ’*” | ’,’) type)* ;
bodies: body (’or’ body)* ;

values : value (’,’ value)* ;

variables: variable (’,’ variable)* ;
ids: id (’,’ id)* ;

// wrappers for lexer domains

id: ID ;
literal: LITA | LITB | LITC | LITD ;

/== e

// lexical rules

/]

35

ID : [a-zA-Z_][a-zA-Z_0-9]*% ;

LITA : ’{## .*? '##}° ;
LITB : '##’ .*? '##° ;
LITC : '{# .*? '#}’
LITD : ’'#° .*? ’#

WHITESPACE : [\t\r\n\f]+ -> skip ;
LINECOMMENT : ’//’ .*? ’\r’? ("\n’ | EOF) -> skip ;
COMMENT /R /0 > sKkip

// matches any other character
ERROR : . ;

[/ s
// end of file

/]

C Example Languages Generated with SLANG

In the following, we present some example languages that have been implemented in SLANG and
are distributed with the software in subdirectory languages (the shell scripts for generating and
executing the implementations are omitted). In all cases, the implementations consist of a parser,
printer, type checker, and interpreter.

C.1 An Evaluator Language

Generating the Implementation

> ./EvaluatorMake

SLANG Semantics-Based Language Generator 1.0 (September 20, 2023)

(c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

This is free software distributed under the terms of the GNU GPL.

Execute "SLANG -h" to see the available command line options.

Reading file /usr2/software/SLANG-1.0/languages/Evaluator.txt.

Generating files in directory /usr2/software/SLANG-1.0/languages/lang/eval.
Generating code class file Evaluator.java.

Generating ANTLR4 grammar Evaluator.g4.

Generating parser class file Evaluator_parser.java.

Generating for domain Exp interface file Exp.java.

Generating for domain Stat interface file Stat.java.

Generating for domain StatSeq interface file StatSeq.java.

Generating for domain Session interface file Session.java.

Generating for operation exp[Exp] class file Exp_exp.java.

Generating for operation stat[Stat] class file Stat_stat.java.

Generating for operation statseq[StatSeq] class file StatSeq_statseq.java.
Generating for operation session[Session] class file Session_session.java.
Generating for operation .[Exp] class file Exp_.java.

Generating for operation . [Stat] class file Stat_.java.

Generating for operation .. [StatSeq] class file StatSeq_.java.

36

Generating for operation s[StatSeq] class file StatSeq_s.java.
Generating for operation ..[Session] class file Session_.java.

SUCCESS: execution successfully completed.

Executing the Implementation

> ./Evaluator

i (1+2)*3; b= !(1 == 6); c =b ? i*i+l : O;
i = ((1+2)*3);

b =!i == 6;

c= (b ? (([{*1)+1D) : 0);

Before execution of statement i = ((1+2)*3);
Assignment i = ((1+2)*3)

Variable value 9

After execution of statement i = ((1+2)*3);
Before execution of statement b = !i == 6;
Assignment b = !i == 6

Variable value true

After execution of statement b = !i == 6;
Before execution of statement c = (b ? ((i*i)+1)
Assignment ¢ = (b ? ((i*i)+1) : ®)

Variable value 82

After execution of statement c = (b ? ((i*i)+1)
i=09

b = true

c = 82

Main Program

import lang.eval.*;

public class EvaluatorMain

{

public static void main(String[] args)
{

try

{

// parsing

1 0);

0

Session session = Evaluator_parser.parseSession();

// pretty-printing
System.out.print(session);

// type-checking: inferring judgment + session:session()

Session_session.operation(session).apply();
// executing: evaluating anonymous function

[session] O

Evaluator.Env<Object> env = Session_.operation(session).apply(Q;
// printing the resulting variable environment

for (var entry : env.entrySet())
System.out.println(entry.getKey() + " = "

}

catch(Exception e)

{
// type-checking errors are caught here
System.out.println(e.getMessage());

37

+ entry.getValue());

Language Specification

/e
// SLANG: a semantics-based language generator

// (c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

// Wolfgang.Schreiner <Wolfgang.Schreiner@risc.jku.at>

// William Steingartner <william.steingartner@tuke.sk>

/]
// automatic generation of parser, printer, typechecker, semantic evaluator

// supports the following kinds of operations

// (which are overloaded on the syntactic domain of "phrase"):
// * judgments: inferences of form "in + phrase:name(out)"

// * transitions: steps of form "<phrase,in> —name out"

// * functions: equations of form "out = name[phrase](in)"

// (for transitions and functions "name" is optional)

// internally all three kinds are treated alike
// (actually each operation can be invoked in each syntax)

// the language specification grammar is agnostic of target language
// code in the target language may be embedded as #...# or {#...#}
// or ##...## or {##...##} (which allows to embed the # character itself)

// Unicode symbols and their ASCII alternatives:
/) "Et=sT -t n<u=>u>>n myn_gng g u[[u=>ll[[u uﬂu=>n]]u LN N VG AU

/] e

// a language for the evaluation of a sequence of assignments

/] ==

language Evaluator

{
target java
{
header
{#
package lang.eval;
import java.util.*;
import static lang.eval.Evaluator.*;
#1}
}
/]
// syntactic domains
[
domains
{

// builtin domains ID, NUM, STR (represented as strings)

38

Exp = Id[ID] + Num[NUM] + Plus[Exp,Exp] + Times[Exp,Exp]
+ True + Not[Exp] + Equal[Exp,Exp] + If[Exp,Exp,Exp];

Stat = Assign[ID,Exp];

StatSeq = Empty + Seq[StatSeq,Stat];

Session = Eval[StatSeq];

}
/e
// printer
/) mmm e
printer
{
domain Exp
{
case Id[i] — # _result = i; #;
case Num[n] — # _result = n; #;
case Plus[el,e2] — # _result = "(" + el + "+" + e2 + ")"; #;
case Times[el,e2] — # _result = "(" + el + "*" + e2 + ")"; #;
case True — # _result = "true"; #;
case Not[e] — # _result = "!" + e; #;
case Equal[el,e2] — # _result = el + " == " + e2; #;
case If[e,el,e2] — # _result ="("+e+"?2 " +el +" 1" +e2+")"; #;
}
domain Stat
{
case Assign[i,e] — # _result =i + " =" + e + ";\n"; #;
}
domain StatSeq
{
case Empty — # _result = ""; #;
case Seq[seq,stat] — # _result = "" + seq + stat; #;
}
domain Session
{
case Eval[seq] — # _result = seq.toString(); #;
}
}
/e
// parser
[/ ST oo
code
{#
public static StatSeq statSeq(List<Stat> stats)
{
StatSeq session = new StatSeq.Empty();
for (Stat stat : stats) session = new StatSeq.Seq(session, stat);
return session;
}
#1}

parser antlr4

{

domain Exp

39

case # i=dID # — Id[i];
case # n=dNUM # — Num[n];
case # el=dExp ’'*’ e2=dExp # — Times[el,e2]; // higher priority first
case # el=dExp '+’ e2=dExp # — Plus[el,e2];
case # 'true’ # — True;
case # !’ e=dExp # — Not[e];
case # el=dExp ’==’ e2=dExp # — Equal[el,e2];
case # e=dExp ’'?’ el=dExp ’:’ e2=dExp # — If[e,el,e2];
case # '(’ e=dExp ’)’ # — # $_result = $e._result; #; // parenthesing
}
domain Stat
{
case # i=dID ’'=’ e=dExp ’;’ # — Assign[i,e];
}
domain StatSeq
prefix
{#
locals [List<Stat> stats = new ArraylList<Stat>()]
#1}
{

case # (s=dStat { $stats.add($s._result); })* # —
$_result = statSeq($stats); #;

}
domain Session
{
case # s=dStatSeq # — Eval[s];
}
3
/]
// type system
[/ e
code
{#
public enum Type { Int, Bool }
public static class Env<T> extends HashMap<String,T>
{
public Env() { super(Q); }
public Env(Env<T> e) { super(e); }
public T put(String key, T value)
{ return super.put(key.toString(), value); }
public T get(String key)
{ return super.get(key.toString()); }
}
public static class TypeError extends RuntimeException
{ public TypeError(String msg) { super(msg); } }
public static void check(boolean b, String msg)
{ if (!b) throw new TypeError(msg); }
public static void checkType(Exp e, Type typel, Type type2)
{ if (typel != type2) throw new TypeError("expression " + e +
" has type " + typel + " but must have type " + type2); }
#1}

40

// overloading of judgment names based on domain parameters is allowed
judgment #Env<Type># + Exp: exp(#Type#)

{

inference te + Id[i]: exp(t)

{
t = #te.get(i)#; # check (t != null, "undeclared variable " + i); #

}

inference te + Num[n]: exp(t)

{
t = #Type.Int#;

}

inference te + Plus[el,e2]: exp(t)

{
te + el: exp(tl); # checkType(el, tl, Type.Int); #
te + e2: exp(t2); # checkType(e2, t2, Type.Int); #
t = #Type.Int#;

}

inference te + Times[el,e2]: exp(t)

{
te + el: exp(tl); # checkType(el, tl, Type.Int); #
te + e2: exp(t2); # checkType(e2, t2, Type.Int); #
t = #Type.Int#;

}

inference te + True: exp(t)

{
t = #Type.Bool#;

}

inference te + Not[e]: exp(t)

{
te + e: exp(t®); # checkType(e, t0®, Type.Bool); #
t = #Type.Bool#;

}

inference te + Equal[el,e2]: exp(t)

{
te + el: exp(tl); # checkType(el, tl, Type.Int); #
te + e2: exp(t2); # checkType(e2, t2, Type.Int); #
t = #Type.Bool#;

}

inference te + If[e,el,e2]: exp(t)

{
te + e: exp(t®); # checkType(e, t0®, Type.Bool); #
te + el: exp(tl); # checkType(el, tl, Type.Int); #
te + e2: exp(t2); # checkType(e2, t2, Type.Int); #
t = #Type.Bool#;

}

}

judgment #Env<Type># + Stat: stat(#Env<Type>#)
{

inference te + Assign[i,e]: stat(te0)

{

te + e: exp(t);

te® = #new Env<Type>(te)#; #te®.put(i,t);#
}

41

judgment #Env<Type># + StatSeq: statseq(#Env<Type>#)

{
inference te + Empty: statseq(te0®)
{
te® = te;
}
inference te + Seq[seq,stat]: statseq(te®)
{
te + seq: statseq(tel);
tel + stat: stat(te®);
}
3
judgment + Session: session(#Env<Type>#)
{
inference + Eval[seq]: session(te)
{
te®: #Env<Type># = #new Env<Type>()#;
te® + seq: statseq(te);
}
3
/e
// denotational semantics
O LR
code
{#

public static class Failure extends RuntimeException { }
public static void check(boolean b) { if (!b) throw new Failure(); }
#1}

// functions may be named [] or id[]
// overloading based on domain parameters is allowed
function [Exp]: #Env<Object># — #Object#

{ equation [Id[i]](ve) = v
! v = #ve.get(i)#;
iquation [Num[n]l](ve) = v
! v = #Integer.valueOf(n)#;
iquation [Plus[el,e2]](ve) = v
{

vl = [el](ve); # Integer il = (Integer)vl; #
v2 = [e2](ve); # Integer i2 = (Integer)v2; #

v = #il+i2#;
}
equation [Times[el,e2]](ve) = v
{

vl = [el](ve); # Integer il = (Integer)vl; #

42

v2 = [e2](ve); # Integer i2 = (Integer)v2; #

v = #i1%12#;
}
equation [True](ve) = v
{
v = #true#;
}
equation [Not[e]](ve) = v
{
v0 = [e](ve); # Boolean b = (Boolean)vO®; #
v = #!b#;
}
equation [Equal[el,e2]](ve) = v
{

vl = [el](ve);

v2 = [e2](ve);

Vv = #vl == v2#;
}

// definition via handling of conditional in target code
/*
equation [If[e,el,e2]](ve) = v
{
v® = [e](ve); # Boolean b = (Boolean)v®; #
Object vr;

if (b) {
vl = [el](ve); # vr = v1; #
} else {
v2 = [e2](ve); # vr = v2; #
1
v = #vr#;
}
*/

// definition with multiple cases:
equation [If[e,el,e2]](ve) = v

{
v0 = [e](ve);
check((Boolean)v0®); # // case fails if condition is false
v = [el](ve);
}
or
{
vl = [e](ve);
check(!(Boolean)v0); # // case fails if condition is true
v = [e2](ve);
}
3
function [Stat]: #Env<Object># — #Env<Object>#
{
equation [Assign[i,e]](ve) = ve®
{

v = [e](ve);

43

ve® = #new Env<Object>(ve)#; # ve®.put(i,v); #
}
// annotations for producing side effects for one equation/inference
before {# System.out.println("Assignment " + i + " =" + e); #}
after {# System.out.println("Variable value " + ve®.get(i)); #}
}
// annotations for producing side effects for whole function/judgment
before [stat](ve)
{# System.out.print("Before execution of statement " + stat); #}
after [stat](ve) = ve®
{# System.out.print("After execution of statement " + stat); #}

function [StatSeq]: #Env<Object># — #Env<Object>#

{
equation [Empty](ve) = ve®
{
ve® = ve;
}
equation [Seq[seq,stat]](ve) = ve®
{
vel = [seq](ve);
ve® = [stat](vel);
}
}

// alternative big-step operational semantics
transition (StatSeq,#Env<Object>#) —s #Env<Object>#
{
step (Empty,ve) —s vel
{
ve® = ve;
}
// seq® denotes whole phrase, useful in semantics of loops
step (seq®=Seq[seq,stat],ve) —s veld
{
(seq,ve) —s vel;
(stat,vel) — ve®; // uses ve® = [stat](ve)
}
3

function [Session]: #Env<Object>#
{
equation [Eval[seq]] = ve

{
ve® : #Env<Object># = #new Env<Object>()#;

ve = [seq](ve®);

/=
// end of file

/]

44

C.2 An Imperative Language (Denotational Semantics)

Generating the Implementation

> ./ImpMake

SLANG Semantics-Based Language Generator 1.0 (September 20, 2023)

(c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

This is free software distributed under the terms of the GNU GPL.

Execute "SLANG -h" to see the available command line options.

Reading file /usr2/software/SLANG-1.0/languages/Imp.txt.

Generating files in directory /usr2/software/SLANG-1.0/languages/lang/imp.
Generating code class file Imp.java.

Generating ANTLR4 grammar Imp.g4.

Generating parser class file Imp_parser.java.

Generating for domain Exp interface file Exp.java.

Generating for domain BoolExp interface file BoolExp.java.

Generating for domain Command interface file Command.java.

Generating for domain Program interface file Program.java.

Generating for operation exp[Exp] class file Exp_exp.java.

Generating for operation bexp[BoolExp] class file BoolExp_bexp.java.
Generating for operation command[Command] class file Command_command.java.
Generating for operation program[Program] class file Program_program.java.
Generating for operation .[Exp] class file Exp_.java.

Generating for operation ..[BoolExp] class file BoolExp_.java.

Generating for operation .. [Command] class file Command_.java.

Generating for operation . [Program] class file Program_.java.

SUCCESS: execution successfully completed.

Executing the Implementation

> ./Imp
var n; var a; var i; n:=5; while ~(i = n) do { var j; j := 2*%i+l; a:=a+j; i:=i+1 }

{var n; {var a; {var i; {n := 5; while (~i = n) do {var j; {{j := (@*i)+1); a := (a+jd}; i := (A+1)}3}}1}}}

1}
N WO u N WRR RV

Assignment n =
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment
Assignment

Heo L He o L e . He G He G
1l

Main Program

import lang.imp.*;

45

public class ImpMain
{
public static void main(String[] args)
{
try
{
// parsing
Program program = Imp_parser.parseProgram();
// pretty-printing
System.out.println(program);
// type-checking: inferring judgment + program:program()
Program_program.operation(program) .applyQ;
// executing: evaluating anonymous function [program]()
Program_.operation(program) .apply(Q;
}
catch(Exception e)
{
// type-checking errors are caught here
System.out.println(e.getMessage());
}
3

Language Specification

J

// Imp.txt

// SLANG version of the *denotational® semantics of a simple imperative language
// (c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

// Wolfgang.Schreiner <Wolfgang.Schreiner@risc.jku.at>

// William Steingartner <william.steingartner@tuke.sk>

T

language Imp
{
target java
{
header
{#
package lang.imp;
import java.util.¥*;
import static lang.imp.Imp.*;
#1}
3

/] == oo

// syntactic domains

e

domains

{
Exp = Num[NUM] + Id[ID] + Plus[Exp,Exp] + Times[Exp,Exp];
BoolExp = Eq[Exp,Exp] + Not[BoolExp] + And[BoolExp,BoolExp];

46

Command = Assign[ID,Exp] + Var[ID,Command] + Seq[Command,Command]

+ If2[BoolExp,Command,Command] + If1[BoolExp,Command]
+ While[BoolExp,Command];
Program = Prog[Command];
}
/]
// printer
/] e
printer
{
domain Exp
{
case Num[n] — # _result = n; #;
case Id[i] — # _result = i; #;
case Plus[el,e2] — # _result = "(" + el + "+" + e2 + ")"; #;
case Times[el,e2] — # _result = "(" + el + "*" + 2 + ")"; #;
}
domain BoolExp
{
case Eq[el,e2] — # _result = el + " =" + e2; #;
case Not[b] — # _result = "(~" + b + ")"; #;
case And[bl,b2] — # _result = "(" + bl + " A\ " + b2 + ")"; #;
}
domain Command
{
case Assign[i,e] — # _result =1 + " =" + e; #;
case Var[i,c] — # _result = "{var " + 1+ "; " + c + "}"; #;
case Seq[cl,c2] — # _result = "{" + cl +"; " + c2 + "}"; #;
case If2[b,cl,c2] — # _result = "if " + b + " then " + cl1 + " else " + c2; #;
case Ifl[b,c] — # _result = "if " + b + " then " + c; #;
case While[b,c] — # _result = "while " + b + " do " + c; #;
}
domain Program
{
case Prog[c] — # _result = c.toString(); #;
}
}
/e
// parser
/) mm e
parser antlr4
{
domain Exp
{
case # n=dNUM # — Num[n];
case # i=dID # — Id[i];
case # el=dExp ’'*’ e2=dExp # — Times[el,e2]; // higher priority first
case # el=dExp '+’ e2=dExp # — Plus[el,e2];
case # '(’ e=dExp ’)’ # — # $_result = $e._result; #; // parenthesing
}
domain BoolExp
{

47

case
case
case
case
}
domain
{
case
case
case
case
case
case
case
}

domain

/] -mmm-

el=dExp ’'=’ e2=dExp # — Eq[el,e2];

’~’ b=dBoolExp # — Not[b];

bl=dBoolExp ’/\\’ b2=dBoolExp # — And[bl,b2];

7 b=dBoolExp ')’ # — # $_result = $b._result; #; // parenthesing

Command

i=dID ’:=’ e=dExp # — Assign[i,e];

’if’ b=dBoolExp ’'then’ cl=dCommand ’else’ c2=dCommand # — If2[b,cl,c2];

’if’ b=dBoolExp ’then’ c=dCommand # — Ifl[b,c];

'while’ b=dBoolExp ’do’ c=dCommand # — While[b,c];

cl=dCommand ’;’ c2=dCommand # — Seq[cl,c2]; // binds weaker than if/while
’var’ i=dID ’;’ c=dCommand # — Var[i,c]; // binds weaker than sequence
’{’ c=dCommand '}’ # — # $_result = $c._result; #; // parenthesing

Program

c=dCommand EOF # — Prog[c];

// type system

/] -

code

{#
public
public
{

enum Type { Int }
static class Env<T> extends HashMap<String,T>

public Env() { super(Q; }

public Env(Env<T> e) { super(e); }

public T put(String key, T value)

{ return super.put(key.toString(), value); }
public T get(String key)

{ return super.get(key.toString()); }

}
public

static class TypeError extends RuntimeException

{ public TypeError(String msg) { super(msg); } }

public

static void check(boolean b, String msg)

{ if (!b) throw new TypeError(msg); }

#}

judgment #Env<Type># + Exp: exp

{

inference te + Id[i]: exp

{

check(te.get(i) != null, "undeclared variable " + i);

}

inference te + Num[n]: exp

{
3

inference te + Plus[el,e2]: exp

{

te + el: exp;
te + e2: exp;

48

}
inference te + Times[el,e2]: exp
{
te F el: exp;
te + e2: exp;
}
}
judgment #Env<Type># + BoolExp: bexp
{
inference te + Eq[el,e2]: bexp
{
te + el: exp;
te + e2: exp;
}
inference te + Not[b]: bexp
{
te + b: bexp;
}
inference te + And[bl,b2]: bexp
{
te + bl: bexp;
te + b2: bexp;
}
}
judgment #Env<Type># + Command: command
{
inference te + Assign[i,e]: command
{
check(te.get(i) != null, "undeclared variable " + i);
te + e: exp;
}
inference te + Var[i,c]: command
{
te®: #Env<Type># = # new Env<Type>(te) #; # te®.put(i, Type.Int); #
te® + c: command;
}
inference te + Seq[cl,c2]: command
{
te + cl: command;
te + c2: command;
}
inference te + If2[b,cl,c2]: command
{
te + b: bexp;
te + cl: command;
te + c2: command;
}
inference te + Ifl[b,c]: command
{
te + b: bexp;
te + c: command;
}
inference te + While[b,c]: command

{

49

te + b: bexp;
te + c: command;

}
3
judgment + Program: program
{
inference + Prog[c]: program
{
te: #Env<Type># = #new Env<Type>(Q# ;
te + c: command;
}
}
J
// denotational semantics
[
code
{#

public static class Failure extends RuntimeException { }

public static void check(boolean b) { if (!b) throw new Failure(); }
#1}
function [Exp]: #Env<Integer># — #Integer#

{
equation [Num[n]](ve) = v
{
v = #Integer.valueOf(n)#;
}
equation [Id[i]](ve) = v
{
v = #ve.get(i)#;
}
equation [Plus[el,e2]](ve) = v
{
vl = [el](ve);
v2 = [e2](ve);
vV = #v1+v2#;
}
equation [Times[el,e2]](ve) = v
{
vl = [el](ve);
v2 = [e2](ve);
Vv = #V1*V2#;
}
3
function [BoolExp]: #Env<Integer># — #Boolean#
{
equation [Eq[el,e2]](ve) = v
{
vl = [el](ve);
v2 = [e2](ve);
v = # vl.equals(v2) #;
}
equation [Not[b]](ve) = v
{

50

v0 = [b](ve);

v = # 1v0 #;
3
equation [And[bl,b2]](ve) = v
{

vl = [bl](ve);
v2 = [b2](ve);
v = # vl && v2 #;
}
}
function [Command]: #Env<Integer># — #Env<Integer>#
{
equation [Assign[i,e]](ve) = ve®
{
v = [e](ve);
ve® = #new Env<Integer>(ve)#; # ve®.put(i,v); #
}
after {# System.out.println("Assignment " + i + " = " + ve0.get(i)); #}
equation [Var[i,c]](ve) = ve®
{
vel: #Env<Integer># = # new Env<Integer>(ve) #;
v: #Integer# = # vel.put(i,0) #;
ve2 = [c](vel);
ve® = # new Env<Integer>(ve2) #; # ve®.put(i,v); #
}
equation [[Seq[cl,c2]](ve) = ve®
{
vel = [cl](ve);
ve® = [c2](vel);
}
equation [If2[b,cl,c2]](ve) = ve®
{
v = [b](ve);
#if (v) #
ve® = [cl](ve);
else
ve® = [c2](ve);

}
equation [If1[b,c]](ve) = ve®
{
v = [b](ve);
ve® = ve ;
1f (v) # ve® = [c](ve);
}
equation [While[b,c]](ve) = ve®
{
ve® = ve;
while (true) {
v = [b](ve®);
if (!'v) break;
ve® = [c](ve®);
3}

51

function [Program]: #Void#

{
equation [Prog[c]] = none
{
ve®: #Env<Integer># = # new Env<Integer>() #;
vel = [c](ve®);
none = # null # ;
}
}
}
/) e
// end of file
i

C.3 An Imperative Language (Big-Step Operational Semantics)

Generating the Implementation

> ./Imp2Make

SLANG Semantics-Based Language Generator 1.0 (September 20, 2023)

(c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

This is free software distributed under the terms of the GNU GPL.

Execute "SLANG -h" to see the available command line options.

Reading file /usr2/software/SLANG-1.0/languages/Imp2.txt.

Generating files in directory /usr2/software/SLANG-1.0/languages/lang/imp2.
Generating code class file Imp.java.

Generating ANTLR4 grammar Imp.g4.

Generating parser class file Imp_parser.java.

Generating for domain Exp interface file Exp.java.

Generating for domain BoolExp interface file BoolExp.java.

Generating for domain Command interface file Command.java.

Generating for domain Program interface file Program.java.

Generating for operation exp[Exp] class file Exp_exp.java.

Generating for operation bexp[BoolExp] class file BoolExp_bexp.java.
Generating for operation command[Command] class file Command_command.java.
Generating for operation program[Program] class file Program_program.java.
Generating for operation ..[Exp] class file Exp_.java.

Generating for operation .. [BoolExp] class file BoolExp_.java.

Generating for operation . [Command] class file Command_.java.

Generating for operation .. [Program] class file Program_.java.

SUCCESS: execution successfully completed.

Executing the Implementation

> ./Imp2
var n; var a; var i; n:=5; while ~(i = n) do { var j; j := 2*i+l; a:=a+j; i:=i+1 }

{var n; {var a; {var i; {n := 5; while (~i = n) do {var j; {{j := (2*i)+1); a := (a+j)}; i = (GA+1)}3}}}}}

Assignment n =
Assignment j
Assignment a =
i
]

Assignment i
Assignment

W= = =u;

52

Assignment a = 4
Assignment i = 2
Assignment j = 5
Assignment a = 9
Assignment i = 3
Assignment j = 7
Assignment a = 16
Assignment i = 4
Assignment j = 9
Assignment a = 25
Assignment i = 5

Main Program

import lang.imp2.*;

public class Imp2Main
{
public static void main(String[] args)
{
try
{
// parsing
Program program = Imp_parser.parseProgram();
// pretty-printing
System.out.println(program) ;
// type-checking: inferring judgment + program:program()
Program_program.operation(program) .apply(Q;
// executing: evaluating anonymous function [program]()
Program_.operation(program) .apply(;
}
catch(Exception e)
{
// type-checking errors are caught here
System.out.println(e.getMessage());
}
3

Language Specification

/=
// Imp.txt

// SLANG version of the *operational® semantics of a simple imperative language
// (c) 2023 https://www.risc.jku.at/research/formal/software/SLANG

// Wolfgang.Schreiner <Wolfgang.Schreiner@risc.jku.at>

// William Steingartner <william.steingartner@tuke.sk>

f]

language Imp

{
target java

{

53

header
{#

package lang.imp2;

import java.util.¥*;

import static lang.imp2.Imp.*;
#3}

s
// syntactic domains

J e
domains

{

Exp = Num[NUM] + Id[ID] + Plus[Exp,Exp] + Times[Exp,Exp];

BoolExp = Eq[Exp,Exp] + Not[BoolExp] + And[BoolExp,BoolExp];

Command = Assign[ID,Exp] + Var[ID,Command] + Seq[Command,Command]
If2[BoolExp,Command,Command] + If1[BoolExp,Command]
While[BoolExp,Command] ;

Program = Prog[Command];

/e
// printer
[/ s
printer
{
domain Exp
{
case Num[n] — # _result = n; #;
case Id[i] — # _result = i; #;
case Plus[el,e2] — # _result = "(" + el + "+" + e2 + ")"; #;
case Times[el,e2] — # _result = "(" + el + "*" + 2 + ")"; #;
}
domain BoolExp
{
case Eq[el,e2] — # _result = el + " =" + e2; #;
case Not[b] — # _result = "(~" + b + ")"; #;
case And[bl,b2] — # _result = "(" + bl + " A\ " + b2 + ")"; #;

domain Command
case Assign[i,e] — # _result =1 + " =" + e; #;
case Var[i,c] — # _result = "{var " + i + "; +c+ "} #;
case Seq[cl,c2] — # _result = "{" + cl +"; " + c2 + "}"; #;
case If2[b,cl,c2] — # _result = "if " + b + " then " + cl1 + " else " + c2; #;
case Ifl[b,c] — # _result = "if " + b + " then " + c; #;
case While[b,c] — # _result = "while " + b + " do " + c; #;

domain Program

case Prog[c] — # _result = c.toString(); #;

54

/] == o

// parser
A
parser antlr4
{
domain Exp
{
case # n=dNUM # — Num[n];
case # i=dID # — Id[i];
case # el=dExp ’'*’ e2=dExp # — Times[el,e2]; // higher priority first
case # el=dExp '+’ e2=dExp # — Plus[el,e2];
case # '(’ e=dExp ’)’ # — # $_result = $e._result; #; // parenthesing
}
domain BoolExp
{
case # el=dExp ’'=’ e2=dExp # — Eq[el,e2];

case # '~ b=dBoolExp # — Not[b];
case # bl=dBoolExp ’/\\’ b2=dBoolExp # — And[bl,b2];
case # (' b=dBoolExp ')’ # — # $_result = $b._result; #; // parenthesing

}
domain Command
{
case # i=dID ’':=’ e=dExp # — Assign[i,e];
case # 'if’ b=dBoolExp ’'then’ cl=dCommand ’else’ c2=dCommand # — If2[b,cl,c2];
case # 'if’ b=dBoolExp ’'then’ c=dCommand # — Ifl[b,c];
case # 'while’ b=dBoolExp ’do’ c=dCommand # — While[b,c];
case # cl=dCommand ’;’ c2=dCommand # — Seq[cl,c2]; // binds weaker than if/while
case # ’var’ i=dID ’;’ c=dCommand # — Var[i,c]; // binds weaker than sequence
case # '{’ c=dCommand '}’ # — # $_result = $c._result; #; // parenthesing
}
domain Program
{
case # c=dCommand EOF # — Prog[c];
}
}
/) m e
// type system
/)
code
{#

public enum Type { Int }
public static class Env<T> extends HashMap<String,T>
{
public Env() { super(Q); }
public Env(Env<T> e) { super(e); }
public T put(String key, T value)
{ return super.put(key.toString(), value); }
public T get(String key)
{ return super.get(key.toString()); }
}
public static class TypeError extends RuntimeException
{ public TypeError(String msg) { super(msg); } }
public static void check(boolean b, String msg)

55

{ if (!'b) throw new TypeError(msg); }

#1}
judgment #Env<Type># + Exp: exp
{
inference te + Id[i]: exp
{
check(te.get(i) != null, "undeclared variable " + i);
}
inference te + Num[n]: exp
{
}
inference te + Plus[el,e2]: exp
{

te + el: exp;
te + e2: exp;
}
inference te + Times[el,e2]: exp
{
te F el: exp;
te + e2: exp;
}
}
judgment #Env<Type># + BoolExp: bexp
{
inference te + Eq[el,e2]: bexp
{
te + el: exp;
te + e2: exp;
}
inference te + Not[b]: bexp
{
te + b: bexp;
}
inference te + And[bl,b2]: bexp
{
te + bl: bexp;
te + b2: bexp;
}
}
judgment #Env<Type># + Command: command
{
inference te + Assign[i,e]: command
{
check(te.get(i) != null, "undeclared variable " + i);
te + e: exp;
}
inference te + Var[i,c]: command
{
te®: #Env<Type># = # new Env<Type>(te) #; # te®.put(i, Type.Int); #
te® + c: command;
}
inference te + Seq[cl,c2]: command

{

te + cl: command;

56

te + c2: command;

}
inference te + If2[b,cl,c2]: command
{

te + b: bexp;

te + cl: command;

te + c2: command;
}
inference te + Ifl[b,c]: command
{

te + b: bexp;

te + c: command;
}
inference te + While[b,c]: command
{

te + b: bexp;

te + c: command;

}
3
judgment + Program: program
{
inference + Prog[c]: program
{
te: #Env<Type># = #new Env<Type>(Q# ;
te + c: command;
}
3
J o
// big-step operational semantics ("natural semantics")
/e
code
{#

public static class Failure extends RuntimeException { }

public static void check(boolean b) { if (!b) throw new Failure(); }
#}
transition (Exp,#Env<Integer>#) — #Integer#

{
step (Num[n],ve) — v
{
v = #Integer.valueOf(n)#;
}
step (Id[i],ve) — v
{
v = #ve.get(i)#;
}
step (Plus[el,e2],ve) — v
{
(el,ve) — vl;
(e2,ve) — v2;
v = #v1+v2#;
}
step (Times[el,e2],ve) — v
{

57

(el,ve) — vi;
(e2,ve) — v2;

Vv = #V1*V2#;
}
}
transition (BoolExp,#Env<Integer>#) — #Boolean#
{
step (Eq[el,e2],ve) — Vv
{
(el,ve) — vl;
(e2,ve) — v2;
v = # vl.equals(v2) #;
}
step (Not[b],ve) — v
{
(b,ve) — vO;
v = # 1v0 #;
}
step (And[bl,b2],ve) — v
{
(bl,ve) — vi;
(b2,ve) — v2;
v = # vl && v2 #;
}
}
transition (Command,#Env<Integer>#) — #Env<Integer>#
{
step (Assign[i,e],ve) -> ve0®
{
(e,ve) — v;
ve® = #new Env<Integer>(ve)#; # ve®.put(i,v); #
}
after {# System.out.println("Assignment " + i + " = " + ve0.get(i)); #}
step (Var[i,c],ve) — ve0®
{
vel: #Env<Integer># = # new Env<Integer>(ve) #;
v: #Integer# = # vel.put(i,0) #;
(c,vel) — ve2;
ve® = # new Env<Integer>(ve2) #; # ve®.put(i,v); #
}
step (Seq[cl,c2],ve) — vel®
{
(cl,ve) — vel;
(c2,vel) — veO;
}
step (If2[b,cl,c2],ve) — ved
{
(b,ve) — v; # check(v); #
(cl,ve) — ve0;
}
or
{

(b,ve) — v; # check(!v); #
(c2,ve) — veld;

58

}
step (Ifl[b,c],ve) — ve0®

{
(b,ve) — v; # check(v); #
(c,ve) — vel;

}

or

{
(b,ve) — v; # check(!v); #
ve® = ve;

}

step (w=While[b,c],ve) — ve®

{
(b,ve) — v; # check(!v); #
ve® = ve;

3

or

{

(b,ve) — v; # check(v); #
(c,ve) — vel;
(w,vel) — ve0;
}
}
transition (Program) — #Void#
{
step (Prog[c]) — none
{
ve®: #Env<Integer># = # new Env<Integer>() #;
(c,ve®) — vel;
none = # null # ;

}

T
// end of file

e

59

	Introduction
	An Imperative Programming Language
	Specification Files
	Syntactic Domains
	Printer
	Parser
	Type Checker
	Interpreter from Denotational Semantics
	Interpreter from Big-Step Operational Semantics
	Code Generation, Compilation, and Execution

	Future Work
	The SLANG Software
	Installing the Software
	Running the Software

	The SLANG Language
	Example Languages Generated with SLANG
	An Evaluator Language
	An Imperative Language (Denotational Semantics)
	An Imperative Language (Big-Step Operational Semantics)

