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Abstract. Positivity questions related to the partition function arising from classical theta
identities have been studied in the combinatorial and q-series framework. Two such identities
that emerge from truncation of Euler’s pentagonal number theorem and an identity due to
Gauss are the predominant ones among others. In this paper, we prove the asymptotic growth
of coefficients of truncation of theta series directly from inequalities for the shifted partition
function rather than taking a detour to Wright’s circle method. Recently, Andrews and Merca
conjectured that for n odd or k even,

Mk(n) ≥ (−1)k−1
k−1∑
j=0

(−1)j
(
p(n− j(2j + 1))− p(n− (j + 1)(2j + 1))

)
,

where Mk(n) = (−1)k−1

k−1∑
j=0

(−1)j
(
p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)

)
. We confirm the

conjecture for all n ≥ N(k) with explicit information about N(k) by determining the asymptotic
growth of the difference between the alternating sums presented in the above inequality. This in
turn shows that the conjecture of Andrews and Merca is even true for the excluded case; i.e., n
even and k odd with n > N(k). Moreover we modify the error bound in the asymptotic expansion
of Mk(n), obtained by Chern. We also present an unified structure to obtain asymptotic growths
up to any order as we please for such alternating sums involving the partition function.

1. Introduction

A partition of a positive integer n is a finite non-increasing sequence of positive integers
π1, π2, . . . , πr such that

∑r
i=1 πi = n. The partition (π1, π2, . . . , πr) will be denoted by π, and we

shall write π ` n to denote that π is a partition of n. The partition function p(n) is the number
of partitions of n. Due to Euler, the generating function of p(n) is

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

Here and throughout the rest of this section, we follow the standard notation for the q-shifted
factorial

(a; q)n =
n−1∏
k=0

(1− aqk) and (a; q)∞ =
∞∏
k=0

(1− aqk).

One of the more well known result in the theory of partitions is Euler’s pentagonal number
theorem [1, Equation (1.3.1)] which states that

(q; q)∞ =
∞∑

k=−∞

(−1)kqk(3k+1)/2. (1.1)

Applying the principle of mathematical induction and q-binomial theorem, Andrews and Merca
[2] showed that the truncation of (1.1) has nonnegative coefficients.
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Theorem 1.1. [2, Theorem 1.1] For n > 0, k ≥ 1,

(−1)k−1
k−1∑
j=0

(−1)j
(
p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)

)
= Mk(n), (1.2)

where Mk(n) is the number of partitions of n in which k is the least integer that is not a part
and there are more parts > k than there are < k.

As a corollary of Theorem 1.1, they proved that Mk(n) ≥ 0 with strict inequality for n ≥
k(3k+1)/2, see [2, Corollary 1.3]. Yee [19] gave a combinatorial proof of Theorem 1.1. Burnette
and Kolitsch [12, 13] gave combinatorial interpretation for Mk(n) using partition pairs. In [18],
Wang explained Mk(n) as the difference between size of two sets of partitions based on its rank
enumeration. An asymptotic estimation for Mk(n) was given by Chern [8] using Wright’s circle
method.

Theorem 1.2. [8, Theorem 1.1] Let ε > 0 be arbitrarily small. Then as n → ∞, we have, for
k << n1/8−ε,

Mk(n) =
π

12
√

2
kn−3/2e2π

√
n/
√
6 +O

(
k3n−7/4e2π

√
n/
√
6
)
. (1.3)

Applying an extended version of Bailey’s transform, Bachraoui [10, Corollary 1 and 2] obtained
the following two inequalities for the partition function in the spirit of Andrews and Merca.

Apart from Euler’s pentagonal number theorem, the following is another classical theta iden-
tity [1, Equation (2.2.13)] due to Gauss (or sometimes Jacobi):

(q2; q2)∞
(−q; q2)∞

=
∞∑
j=0

(−q)j(j+1)/2. (1.4)

Starting from Rogers-Fine identity, Andrews and Merca [3] retrieved Theorem 1.1 and studying
the truncated version of (1.4), obtained the following result.

Theorem 1.3. [3, Theorem 1.9] For n, k ≥ 1,

(−q; q2)∞
(q2; q2)∞

2k−1∑
j=0

(−q)j(j+1)/2 = 1− (−1)k
(−q; q2)k
(q2; q2)k

∞∑
j=0

qk(2j+2k+1)(−q2j+2k+3; q2)∞
(q2k+2j+2; q2)∞

. (1.5)

Consequently, they proved the following infinite family of inequalities for the partition func-
tion.

Corollary 1.4. [3, Corollary 11] If at least one of n and k is odd,

M̃k(n) := (−1)k−1
k−1∑
j=0

(−1)j
(
p(n− j(2j + 1))− p(n− (j + 1)(2j + 1))

)
≥ 0. (1.6)

Ballantine, Merca, Passary, and Yee [4, Theorem 3] gave a combinatorial interpretation for

M̃k(n) in term of overpartitions. Andrews and Merca proposed the following conjecture with

regards to Mk(n) and M̃k(n).

Conjecture 1.5. (Andrews-Merca)[3] For n odd or k even,

Mk(n) ≥ M̃k(n). (1.7)

In [15, Theorem 1.2], Merca and Katriel studied a family of non-trivial homogeneous partition
inequalities from the framework of Prouhet-Tarry-Escott problem [9, Chapter XXIV] that arises
in Diophantine equations. Using this set up, they proved that Conjecture 1.5 is true for k odd
and for sufficiently large n.
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The main motivation of this paper is to derive asymptotic growth of the aforementioned alter-
nating sums involving the partition function. We construct an unified framework by employing
the infinite family of inequalities obtained by the first author [5, Theorem 4.5] so as to get the
desired asymptotic growth. Of course, the inequalities presented before are much stronger in the
sense that it predicts the exact threshold,say N(k) for n from which the inequality holds. For
example, in context of Theorem 1.1, we already know that Mk(n) > 0 for all n ≥ k(3k + 1)/2
but here our goal is to get to the asymptotic growth. Nonetheless, we also derive an explicit
threshold for n which is higher than the optimal one. Studies on truncated theta series identities
already unfolded the combinatorial facets through the jargon of partitions, whereas in this paper,
we unearth the other facet of such problems by studying asymptotic analysis for the partition
function.

Asymptotic analysis for the partition function had begun with the work of Hardy and Ra-
manujan [11] in 1918 that reads:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (1.8)

Rademacher [16] improved the work of Hardy and Ramanujan by providing a convergent series
for p(n) and Lehmer [14] estimated the remainder term of the convergent series for p(n). The
Hardy-Ramanujan-Rademacher formula states that

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N), (1.9)

where
µ(n) =

π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,

and

|R2(n,N)| < π2N−2/3√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (1.10)

After Rademacher’s work on the partition function, numerous research papers have been written
on inequalities for the partition function. Recently Paule, Radu, Schneider and the first author
[6] obtained a full asymptotic expansion of p(n) along with estimations of error bounds. Based
on their work, an infinite family of inequalities for shifted partition function p(n − `) for ` ≥ 0
is given in [5, Theorem 4.5] which is the key machinery in proving all of the theorems stated
below.

Theorem 1.6. Define for all k ≥ 1,

M1
k(n) :=

πk√
6n

+
k3

144n

(
−36π2 +

23π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

1296π4 +
31104π2 − 2760π4

k2
+

31104− 19872π2 + 1681π4

k4

)
.

Then for all n > 121k4,

eπ
√

2n/3

4n
√

3

(
M1

k(n) +
E1L(k)

n2

)
< Mk(n) <

eπ
√

2n/3

4n
√

3

(
M1

k(n) +
E1U(k)

n2

)
. (1.11)
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Explicit expressions for E1L(k) and E1L(k) are given in (3.11) and (3.14) respectively for k odd
and even.

Corollary 1.7. For k ≥ 1 and n > 121k4, as n→∞,

Mk(n) ∼ πeπ
√

2n/3

12
√

2n3/2
k +

eπ
√

2n/3

576
√

3n2
k3
(23π2 − 216

k2
− 36π2

)
+O

(eπ√2n/3

n5/2
k5
)
. (1.12)

Remark 1.8. Rewriting the asymptotic expansion (1.12) of Mk(n) in the following way:

Mk(n) ∼ πeπ
√

2n/3

12
√

2n3/2
k +O

(eπ√2n/3

n2
k3
)

as n→∞,

we observe that the growth of error bound is in indeed the optimal one in comparison with
Theorem 1.2.

Remark 1.9. From the lower bound in (1.11), one can retrieve positivity of Mk(n) for n > f1(k)

with minimal f1(k) such that M1
k(n) +

E1L(k)

n2
> 0 holds for all n > f1(k).

Theorem 1.10. Define for all k ≥ 1,

M2
k(n) :=

πk√
6n

+
k3

144n

(
−48π2 +

35π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

2304π4 +
41472π2 − 5472π4

k2
+

31104− 30240π2 + 3385π4

k4

)
.

Then for all n > 169k4,

eπ
√

2n/3

4n
√

3

(
M2

k(n) +
E2L(k)

n2

)
< M̃k(n) <

eπ
√

2n/3

4n
√

3

(
M2

k(n) +
E2U(k)

n2

)
. (1.13)

Explicit expressions for E2L(k) and E2L(k) are given in (3.27) and (3.30) respectively for k odd
and even.

Corollary 1.11. For k ≥ 1 and n > 169k4, as n→∞,

M̃k(n) ∼ πeπ
√

2n/3

12
√

2n3/2
k +

eπ
√

2n/3

576
√

3n2
k3
(35π2 − 216

k2
− 48π2

)
+O

(eπ√2n/3

n5/2
k5
)
. (1.14)

Remark 1.12. Similar to Remark 1.16, from the lower bound in (1.13), one can prove positivity

of M̃k(n) for n > f2(k) such that M2
k(n) +

E2L(k)

n2
> 0 holds for all n > f2(k).

Theorem 1.13. Define for all k ≥ 1,

M3
k(n) :=M1

k(n)−M2
k(n)

=
k3 − k

12n
− k5

6912
√

6πn3/2

(
1008π4 +

10368π2 − 2712π4

k2
+
−10368π2 + 1704π4

k4

)
.

Then for all n > 169k4,

eπ
√

2n/3

4n
√

3

(
M3

k(n) +
E1L(k)− E2U(k)

n2

)
< Mk(n)− M̃k(n) <

eπ
√

2n/3

4n
√

3

(
M3

k(n) +
E1U(k)− E2L(k)

n2

)
.

(1.15)

Proof. Theorems 1.6 and 1.7 immediately imply (1.15). �
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Corollary 1.14. For k ≥ 1 and n > 169k4, as n→∞,

Mk(n)− M̃k(n) ∼ eπ
√

2n/3

48
√

3n2
(k3 − k) +O

(eπ√2n/3

n5/2
k5
)
. (1.16)

Remark 1.15. Proving Mk(n) > M̃k(n) for n ≥ N(k), it is enough to show that M3
k(n) +

E1L(k)− E2U(k)

n2
> 0 holds for all n ≥ N(k).

Remark 1.16. Note that for k = 1, Mk(n)−M̃k(n) = 0 because Mk(n) = M̃k(n) = p(n)−p(n−
1), whereas for all k ≥ 2, (1.15) suggests that Mk(n) − M̃k(n) is positive for n ≥ N(k). This
observation helps us to relax the condition given in Conjecture 1.5; i.e., instead of restricting to
either n odd or k even, we can assume for all n and k with n ≥ N(k) that subsumes the excluded
case k odd and n even. Still it is worthwhile to point out that whenever we consider n odd or k
even, (1.7) is true for all n ≥ 1 and k ≥ 1. But when we assume the case k odd and n even,
(1.5) doesn’t hold for all n, k ≥ 1, in other words, it remains to determine the optimal N(k).

By numerical verification with Mathematica, we listed down the values of (N(k))1≤k≤20 such

that M2k+1(2n) > M̃2k+1(2n) for all n ≥ N(k).

k 1 2 3 4 5 6 7 8 9 10

N(k) 11 28 54 88 129 179 237 303 376 458

k 11 12 13 14 15 16 17 18 19 20

N(k) 548 646 752 866 988 1118 1256 1402 1558 1719

Based on the above data, a rough estimation predicts that as k become larger,

N(k) ≈
⌊
4k2 + 7k −

√
k log k

⌋
−
⌊k

3

⌋
:= Nc(k).

Table of Nc(k) is as follows:

k 1 2 3 4 5 6 7 8 9 10

Nc(k) 11 29 54 88 130 179 237 304 377 459

k 11 12 13 14 15 16 17 18 19 20

Nc(k) 550 647 753 868 989 1119 1258 1403 1558 1720

Extending the assumption of Conjecture 1.5, we propose the following question:

Problem 1.17. For all k ≥ 1 and n ≥ Nc(k), does the following inequality

M2k+1(2n) > M̃2k+1(2n) (1.17)

hold?

The rest of the paper is organized as follows. In Section 2, we give all the necessary definitions
and inequalities for p(n − `) for all ` ≥ 0 (see Theorem 2.5 below) so as to ease to follow the
later section. Section 3 presents the proofs of Theorems 1.6 and 1.7.

2. Preliminaries

First, we shall recall a few definitions from [5] which will be useful in the estimations worked
out in Section 3.
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Definition 2.1. Following [5, Theorem 3.2], for k ∈ Z≥2, we define

ĝ(k) :=
1

24

(
36

π2
· ν(k)2 + 1

)
, (2.1)

where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
.

Definition 2.2. [5, Definition 3.42] For all k ≥ 1 and ` ≥ 0, define

n0(k, `) = max
k≥1,`≥0

{
(24`+ 1)2

16
,
(k + 3)(24`+ 1)

24

}
.

Definition 2.3. [5, Equation (3.45)] For all ` ≥ 0 and t ≥ 0,

g(t, `) =
(1 + 24`)t

(−4
√

6)t

t+1
2∑

k=0

(
t+ 1

k

)
t+ 1− k

(t+ 1− 2k)!

(π
6

)t−2k 1

(1 + 24`)k
. (2.2)

Definition 2.4. [5, Definition 4.4] Let g(t, `) be as in (2.1). If w ∈ Z≥1 with dw/2e ≥ 1, define

Ln(w, `) :=
w−1∑
t=0

g(t, `)
( 1√

n

)t
+
L(w, `)√

n
w and Un(w, `) :=

w−1∑
t=0

g(t, `)
( 1√

n

)t
+
U(w, `)√

n
w .

The explicit expressions for L(w, `) and U(w, `) are given in [5, Definition 4.1].

Theorem 2.5. [5, Theorem 4.5] For w ∈ Z≥1 with dw/2e ≥ 1 and n > max{ĝ(w) + `, n0(w, `)},
then

eπ
√

2n/3

4n
√

3
Ln(w, `) < p(n− `) < eπ

√
2n/3

4n
√

3
Ln(w, `). (2.3)

3. Proof of Theorems 1.6-1.13

Proof of Theorem 1.6: Let k ≥ 1 be an odd integer. Following (1.2), we write

M2k+1(n) = M e
2k+1(n)−M o

2k+1(n), (3.1)

where

M e
2k+1(n) =

k∑
j=0

(
p(n− j(6j + 1))− p(n− j(6j + 5)− 1)

)
and

M o
2k+1(n) =

k−1∑
j=0

(
p(n− (2j + 1)(3j + 2))− p(n− (2j + 1)(3j + 4)− 1)

)
.

Applying Theorem 2.5 with w = 4, we obtain

M e
2k+1(n) <

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, j(6j + 1))− g(t, j(6j + 5) + 1)

) 1
√
n
t +

U e
1 (2k + 1)

n2

)
(3.2)

and

M e
2k+1(n) >

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, j(6j + 1))− g(t, j(6j + 5) + 1)

) 1
√
n
t +

Le1(2k + 1)

n2

)
, (3.3)

with

Le1(2k + 1) =
k∑
j=0

L
(
4, j(6j + 1)

)
− U

(
4, j(6j + 5) + 1

)
(3.4)
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and

U e
1 (2k + 1) =

k∑
j=0

U
(
4, j(6j + 1)

)
− L

(
4, j(6j + 5) + 1

)
(3.5)

Analogously, for M o
2k+1(n), we get

M o
2k+1(n) <

eπ
√

2n/3

4n
√

3

(
k−1∑
j=0

3∑
t=0

(
g(t, (2j+1)(3j+2))−g(t, (2j+1)(3j+4)+1)

) 1
√
n
t +

U o
1 (2k + 1)

n2

)
(3.6)

and

M o
2k+1(n) >

eπ
√

2n/3

4n
√

3

(
k−1∑
j=0

3∑
t=0

(
g(t, (2j+1)(3j+2))−g(t, (2j+1)(3j+4)+1)

) 1
√
n
t+

Lo1(2k + 1)

n2

)
,

(3.7)
with

Lo1(2k + 1) =
k−1∑
j=0

L
(
4, (2j + 1)(3j + 2)

)
− U

(
4, (2j + 1)(3j + 4) + 1

)
(3.8)

and

U o
1 (2k + 1) =

k−1∑
j=0

U
(
4, (2j + 1)(3j + 2)

)
− L

(
4, (2j + 1)(3j + 4) + 1

)
. (3.9)

Combining (3.2)-(3.9) and applying to (3.1), if follows that

E1L(2k + 1)

n2
<

M2k+1(n)(
eπ
√

2n/3/4n
√

3
) − 2k∑

j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t

<
E1U(2k + 1)

n2
,

(3.10)

with

E1L(2k + 1) = Le1(2k + 1)− U o
1 (2k + 1) and E1U(2k + 1) = U e

1 (2k + 1)− Lo1(2k + 1). (3.11)

Next assume k ≥ 1 is even. We split M2k(n) as follows:

M2k(n) = −M e
2k(n) +M o

2k(n), (3.12)

with

M e
2k(n) =

k−1∑
j=0

(
p(n− j(6j + 1))− p(n− j(6j + 5)− 1)

)
and

M o
2k(n) =

k−1∑
j=0

(
p(n− (2j + 1)(3j + 2))− p(n− (2j + 1)(3j + 4)− 1)

)
.

Applying (2.3) separately to M e
2k(n) and M o

2k(n), we get

E1L(2k)

n2
<

M2k(n)(
eπ
√

2n/3/4n
√

3
) +

2k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t <

E1U(2k)

n2
,

(3.13)
where

E1L(2k) = Lo1(2k)− U e
1 (2k) and E1U(2k) = U o

1 (2k)− Le1(2k), (3.14)
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with

Le1(2k) =
k−1∑
j=0

L(4, j(6j + 1))− U(4, j(6j + 5) + 1)

U e
1 (2k) =

k−1∑
j=0

U(4, j(6j + 1))− L(4, j(6j + 5) + 1)

Lo1(2k) =
k−1∑
j=0

L(4, (2j + 1)(3j + 2))− U(4, (2j + 1)(3j + 4) + 1)

U o
1 (2k) =

k−1∑
j=0

U(4, (2j + 1)(3j + 2))− L(4, (2j + 1)(3j + 4) + 1).

Define n1(k) := max
{
ĝ(4) + (k− 1)(3k+ 5)/2 + 1, n0

(
4, (k− 1)(3k+ 5)/2 + 1

)}
. Putting (3.10)

and (3.13) together, for all n > n1(k), it follows that

E1L(k)

n2
<

Mk(n)(
eπ
√

2n/3/4n
√

3
)−(−1)k−1

k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t <

E1U(k)

n2
.

(3.15)
Following (2.2), we get

(−1)k−1
k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(3j + 1)/2)− g(t, j(3j + 5)/2 + 1)
√
n
t

=
πk√
6n

+
k3

144n

(
−36π2 +

23π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

1296π4 +
31104π2 − 2760π4

k2
+

31104− 19872π2 + 1681π4

k4

)
=M1

k(n).

(3.16)

Finally, it is easy to verify that for all k ≥ 1,

n1(k) ≤ 121k4.

This finishes the proof of Theorem 1.6. �
Proof of Theorem 1.7: Assume k ≥ 1 is odd. Following (1.6), rewrite

M̃2k+1(n) = M̃ e
2k+1(n)− M̃ o

2k+1(n), (3.17)

where

M̃ e
2k+1(n) =

k∑
j=0

(
p(n− 2j(4j + 1))− p(n− (2j + 1)(4j + 1))

)
and

M̃ o
2k+1(n) =

k−1∑
j=0

(
p(n− (2j + 1)(4j + 3))− p(n− (2j + 2)(4j + 3))

)
.

Applying Theorem 2.5 with w = 4, it follows that

M̃ e
2k+1(n) <

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, 2j(4j+1))−g(t, (2j+1)(4j+1))

) 1
√
n
t +

U e
2 (2k + 1)

n2

)
(3.18)
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and

M̃ e
2k+1(n) >

eπ
√

2n/3

4n
√

3

(
k∑
j=0

3∑
t=0

(
g(t, 2j(4j+1))−g(t, (2j+1)(4j+1))

) 1
√
n
t+

Le2(2k + 1)

n2

)
, (3.19)

with

Le2(2k + 1) =
k∑
j=0

L
(
4, 2j(4j + 1)

)
− U

(
4, (2j + 1)(4j + 1)

)
(3.20)

and

U e
2 (2k + 1) =

k∑
j=0

U
(
4, 2j(4j + 1)

)
− L

(
4, (2j + 1)(4j + 1)

)
(3.21)

Similarly for M̃ o
2k+1(n), we obtain

M̃ o
2k+1(n) <

eπ
√

2n/3

4n
√

3

(
k−1∑
j=0

3∑
t=0

(
g(t, (2j+ 1)(4j+ 3))− g(t, (2j+ 2)(4j+ 3))

) 1
√
n
t +

U o
2 (2k + 1)

n2

)
(3.22)

and

M̃ o
2k+1(n) >

eπ
√

2n/3

4n
√

3

(
k−1∑
j=0

3∑
t=0

(
g(t, (2j+ 1)(4j+ 3))− g(t, (2j+ 2)(4j+ 3))

) 1
√
n
t +

Lo2(2k + 1)

n2

)
,

(3.23)
with

Lo2(2k + 1) =
k−1∑
j=0

L
(
4, (2j + 1)(4j + 3)

)
− U

(
4, (2j + 2)(4j + 3)

)
(3.24)

and

U o
2 (2k + 1) =

k−1∑
j=0

U
(
4, (2j + 1)(4j + 3)

)
− L

(
4, (2j + 2)(4j + 3)

)
. (3.25)

Applying (3.18)-(3.25) to (3.17), if follows that

E2L(2k + 1)

n2
<

M̃2k+1(n)(
eπ
√

2n/3/4n
√

3
) − 2k∑

j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t

<
E2U(2k + 1)

n2
,

(3.26)

with

E2L(2k + 1) = Le2(2k + 1)− U o
2 (2k + 1) and E2U(2k + 1) = U e

2 (2k + 1)− Lo2(2k + 1). (3.27)

Now assume k ≥ 1 is even. Split M̃2k(n) as follows:

M̃2k(n) = −M̃ e
2k(n) + M̃ o

2k(n), (3.28)

with

M̃ e
2k(n) =

k−1∑
j=0

(
p(n− 2j(4j + 1))− p(n− (2j + 1)(4j + 1))

)
and

M̃ o
2k(n) =

k−1∑
j=0

(
p(n− (2j + 1)(4j + 3))− p(n− (2j + 2)(4j + 3))

)
.
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Applying (2.3) to M̃ e
2k(n) and M̃ o

2k(n), it follows that

E2L(2k)

n2
<

M̃2k(n)(
eπ
√

2n/3/4n
√

3
) +

2k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t <

E2U(2k)

n2
,

(3.29)
where

E2L(2k) = Lo2(2k)− U e
2 (2k) and E2U(2k) = U o

2 (2k)− Le2(2k), (3.30)

with

Le2(2k) =
k−1∑
j=0

L(4, 2j(4j + 1))− U(4, (2j + 1)(4j + 1))

U e
2 (2k) =

k−1∑
j=0

U(4, 2j(4j + 1))− L(4, (2j + 1)(4j + 1))

Lo2(2k) =
k−1∑
j=0

L(4, (2j + 1)(4j + 3))− U(4, (2j + 2)(4j + 3))

U o
2 (2k) =

k−1∑
j=0

U(4, (2j + 1)(4j + 3))− L(4, (2j + 2)(4j + 3)).

Define n2(k) := max
{
ĝ(4) + k(2k − 1), n0

(
4, k(2k − 1)

)}
. Combining (3.26) and (3.29), for all

n > n2(k), it follows that

E2L(k)

n2
<

M̃k(n)(
eπ
√

2n/3/4n
√

3
)−(−1)k−1

k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t <

E2U(k)

n2
.

(3.31)
Following (2.2), we have

(−1)k−1
k−1∑
j=0

(−1)j
3∑
t=0

g(t, j(2j + 1))− g(t, (j + 1)(2j + 1))
√
n
t

=
πk√
6n

+
k3

144n

(
−48π2 +

35π2 − 216

k2

)
+

k5

6912
√

6πn3/2
×(

2304π4 +
41472π2 − 5472π4

k2
+

31104− 30240π2 + 3385π4

k4

)
=M2

k(n).

(3.32)

We conclude the proof of Theorem 1.7 by verifying that for all k ≥ 1, n2(k) ≤ 169k4. �

4. Conclusion

We conclude this paper by noting down a few possible follow ups.

(1) Extending the inequality (3.15) (resp. (3.31)) by letting w → ∞, we obtain the full

asymptotic expansion of Mk(n) (resp. of M̃k(n)).
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(2) We observe that all of the aforementioned inequalities with regard to the alternating
sums for the partition function can be considered under the following framework:

T∑
i=1

p(n+ si) ≥
T∑
i=1

p(n+ ri),

where si, ri are non-positive integers for all 1 ≤ i ≤ T . In order to prove such inequalities,
it is enough to choose the appropriate w in Theorem 2.5 and carry out similar work as
done in Section 3. For the choice of w, it suffices to take the minimal w0 ≥ 1 such that
T∑
i=1

g(w0, si)− g(w0, ri) 6= 0, where g(t, `) as in (2.2).

(3) Wang and Yee [17, Theorem 1.2] considered the sum representation of (q; q)2∞ due to
Hecke and showed positivity of the following alternating sum in the 2-colored partition
function (denoted by pp(n)):

(−1)m
m∑
n=0

n∑
j=−n

(−1)j
(
pp(Nj − n(2n+ 1))− pp(Nj − (n+ 1)(2n+ 1))

)
, (4.1)

where Nj = N + j(3j + 1)/2. Recently Bringmann et. al. [7] studied the asymptotic
expansion of k-colored partition function. Setting k = 2, one has the asymptotic expan-
sion for pp(n) and working out to derive the infinite family of inequalities for pp(n− `) as
in Theorem 2.5 which in turn finally show the asymptotic growth of (4.1). Whereas for
k = 3, similar synthesis for the 3-colored partitions can be done to derive the asymptotic
growth of

Jk(n) = (−1)k
k∑
j=0

(−1)j(2j + 1)t
(
n− j(j + 1)/2

)
,

given in [3].
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