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Recurrence relations for the moments of
discrete semiclassical functionals of class
s < 2.

Diego Dominici *!

Abstract

We study recurrence relations satisfied by the moments A, (z) of
discrete linear functionals whose first moment satisfies a holonomic
differential equation. We consider all cases when the order of the
ODE is less or equal than 3.

1 Introduction

Let K be a field (we mostly think of K as R or C) and Ny be the set of
nonnegative integers

Ny =NU{0} ={0,1,2,...}.
Let F = K[[2]] denote the ring of formal power series in the variable z

F = {f:cnz": CREK},

n=0

and ¥ : F — F be the differential operator [49, 16.8.2]

¥ = 20,, (1)
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where 0, is the derivative operator 0, = %. We use the notation
(x4+c)=(x+c) - (z+cn), ceK” meN,
and for m = 0 we understand that K° = () and
(x40) ==
We denote by 0y, the Kronecker delta

5 — 1, k=n
P10, k#En
and say that {A,}, ., C K[z] is a monic basis of K[z] if A, is monic and

deg (A,) = n for all n € Ng. The Pochhammer symbol (c), is defined by [49,
5.2.4]

k,n € Ny,

n—1
()g=1, (0, =][(c+j), neN, cekK,
=0
and for ¢ € K™ we will use the notation [49, 16.1]

(c),=(c1), - (cm),, (0),=1, neN,.

In this article, we continue the work started in [21], where we studied the
moments A\, = L, ,[Ay] of linear functionals L, , : K[z] — F (acting on the
variable ) defined by

Lya] = Yulo) sy, v Kl )

=0

and we always take a € KP, b € K% It follows from (2) that the first
moment \g (z) = L [1] satisfies a differential equation (in the variable z) with
polynomial coefficients ©,,[y] = 0, where the differential operator ©,, is
defined by
O, =00 +b)—2(V+a),

and we always assume that x and z are independent variables.

The ODE ©,,[y] = 0 is the (generalized) hypergeometric differential
equation [49, 16.8.3] of order o = max {p, g + 1}, and the first moment A, (2)
can be represented as

a
AO(Z): pFQ<b+1 7"7’)7
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where the (generalized) hypergeometric function ,F, is defined by [49, 16.2.1],

[54],
a = (a), 2"
F, ( nz) = Z—“ —.
p-q ’
b ‘= (b), !
Functionals of the form (2) are called discrete semiclassical [24], [43], [47].
If we define the polynomials

o(z)=xz(x+b), 7(x)=(r+a), (3)
then the class s of the functional L, , is given by
s =max {deg (¢) — 1,deg (1) — 1} =0 — 1, (4)

and semiclassical functionals of class s = 0 are called classical. In [22], we
classified all discrete semiclassical linear functionals of class s < 1 (see also
[45], [52], [53]). We extended our results in [23] to the class s = 2.

In this paper, we will find recurrence relations for the moments of all
discrete semiclassical linear functionals of class s < 2.

2 Previous results

In this section, we give a brief description of the results from [21] that will
be needed in this paper. For more details and proofs, we refer the reader to

21].
Since the operator ¥ defined in (1) satisfies
V[ fl =20 +x)[f], [feF,
it follows using linearity that for all v € K|[z],

w(@) [z f] =@ +2)[f], feF. ()
Let L : K[z] — F be a discrete functional

[e.9]

Llu] =Y u(z)p(@)z", ueKl, (6)

=0

where p : Ng — K is a given function. If we set f = 1 in (5), we get

u(?)["] =u(x) 2", ueKlz



and therefore
Lul=u@) L[], weKlz]. (7)

We conclude from (7) that the moments A\, (z) of L on any monic basis
{A},5 are completely determined by the first moment

A= LA = A, () L[] = Ap (9) [No], n € N, (8)

2.1 Newtonian bases

A convenient choice for {A,}, - is the basis of Newton polynomials [61], [62]

An(x):ﬁ(x—ﬁk), neN, Ay(z)=1,

k=0

where {fk}kzo C K is a fixed sequence. These polynomials satisfy the
2—term recurrence relation

2l (1) = Anga (2) + Enlhn (). (9)
Setting x = ¢ in (9), multiplying by Ao (z) and using (8), we obtain.
O An] = (S + &) [An], (10)
where S denotes the shift operator in n
Sen] = cnia- (11)
Remark 1 From (10) and (11) we see that
U [Ans1] = A2 + Gatdnn = S + &AM =S (S + &) [A], (12)
which is different from
(S+&)S ] = (S +6) Ml = Mnve + Endna,

so caution must be exercised when &, depends on n.



The Newton polynomials A, (z) satisfy the change of bases formula
r =3 ") (13
= U ’

where the coefficients {7} satisfy the recurrence

VL el e (14)

with boundary conditions
{’z} =0, i¢[0,n].

Among all Newtonian bases, we will consider the monomial basis (&, = 0
A, (z) = 2™ and the basis of falling factorial polynomials (& = k) A, (x) =
¢n (). The main reason for choosing the polynomials ¢, (x) is that from
their definition

¢n(x)=][(z—Fk), neN, (15)
k=0
it follows that
Gns1 () = (x—n) ¢, () =2, (x —1), n>0, (16)

and therefore ¢, (z) is well suited for dealing with shifts in z. We will call
the moments of L, , on the monomial basis standard moments

Hon (Z) = Lp,q [xn] ,  n € Ny,

and the moments of L, , on the falling factorial polynomials basis modified
moments

Vp (Z) = Lp,q [gbn] ’ n e NO-

Since

20T 2] = 2"y, () 257" = ¢, () 27,

we have v, (2) = 2”07 [vp] and using the formula [49, 16.3.1]

n a \|__ (a), atn
()] - (3
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we obtain the hypergeometric representation

n(a#F< a+n

b+1), "\ b+n+1’7

Multiplying the ODE ©,,, [y] = 0 by 9" and using (5), we get

vn (2) =2

), nGNO.

[0 (0 +b) — 2 (9 + 1)" (9 + a)] [1o] = 0. (17)

Using (10) with &, = 0 in (17) we have ®,,[po] = 0, where the standard
moments recurrence operator ®, . is defined by

®,,=S""(S+b)—2(S+1)"(S+a). (18)

The polynomials (z + ¢) can be written in the monomial basis as
(x+c) = Zem,k (c)z¥, ceK™, (19)
k=0

where the elementary symmetric polynomials e, (c) are defined by the gen-
erating function [41]

ien (c)t" = ﬁ (1+te;), ceK™
n=0 =1

Using (19), we can rewrite @, , in extended form

q . n n p '
Opg =Y eqi (b) ST — 2" ( k) > epj(a) SFH,

k=0 k=0 7=0

and the equation ®, , [io] = 0 gives a recurrence for the standard moments

q n p
n
Y “eqt (b) ftnirer — 2 ( k;) Y ey (@) prsj =0
k=0 k=0 Jj=0

of order n + s + 1, where s is the class of the functional L, , defined in (4).
Similarly, multiplying the ODE ©,,,[y] = 0 by ¢, (¢ — 1) and using (5)
and (16), we get

(9 +b) o1 (9) — = (9 + ) b, (9)] [15] = 0.
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Using (8) and (12), we conclude that U, , [v,] = 0, where the modified mo-
ments recurrence operator VU, , is defined by

UV,,=S(S+n+b)—z(S+n+a). (20)

When &, = k, the coefficients S, ; = {"} defined by (14) are called Stirling
numbers of the second kind [49, 26.8]. Using (13) in (19), we obtain

(z+c)= Zem_k (c) Zsk,i¢i (2),

k=0 i=0
and from (12) we conclude that

m

k
(S+n+c)= eni(ctn) ZSkS (21)

k=0

Using (21), we can rewrite ¥, , in extended form

q k D k
Vg = emp(b+n+1)> S8 =2 ey p(atn)) SpiS,
k=0 1=0 k=0 =0

and the equation ¥, , [v,,] = 0 gives a recurrence for the modified moments

q k p k
Y emk(b+n+1)> Sivniin— 2 epk(@tn)d Spivni =0,
k=0 =0 k=0 1=0

of minimal order s+ 1, where s is the class of the functional L, , defined in

(4).

2.2 Transformations

There are 4 canonical transformations of the functional L, :
1) The Christoffel transformation at w, which we define by

(a), 2"

B wekK, wueK|zl]. (22)

LS, [u) = (x — w)u(x)

z=0

Using (9) and (22) we obtain
)‘g = qu An] = Lpg [(2 — w) An] = Agr + (60 — w) A,

7



and in particular
Ve = vy + (0 — W) vy (23)
Since from (15) it follows that
(—w+1),
(—w),
the first moment has the hypergeometric representation

a,—w+1
)‘OC(Z;W) = —w p+1Fq+1 ( b+1 —w §Z)-

r— W= —Ww

Thus, \§ is a solution of the ODE @5, o [y] = 0, where the differential operator
@g , 1s defined by

@Ig’:q:a(ﬁ)(ﬁ—w—l)—z7‘(19)(19—w+1), (25)

and the polynomials o, 7 where defined in (3).
From (18) and (25) we see that @S [1§'] = 0, where the recurrence
operator CIng is defined by

o0 =" (S+b)(S-—w-1)—z2(S+1)"(S+a)(S—w+1).
Similarly, (20) and (25) give U5, [vS] = 0, with
U =8(S+n+b)(S+n-w-1)—2(S+n+a)(S+n—-w+1).

2) The Geronimus transformation at w, which we define by

T

u(r) (a), =
w b—|— —!, w e K\No, u € K[.I] (26)

J::O

Using (24), we see that the first moment has the hypergeometric repre-

sentation
_ a, —w
X (zw) = —w ™ i Fyp ( b+1,-w+1" > ’

and therefore is a solution of the ODE O [y] = 0, where the differential
operator @gq is defined by

@gq =0()(V—w)—21 (V) (0 —w) =0,, (0 —w). (27)

8



From (9) and (26), we see that
)‘7(3—4-1 + (gn - w) /\7GL = qu [(*T - w) An] = Lp,q [An] = An,

and in particular
e+ (n—w) v =, (28)
q

From (18) and (27) we see that ®, [u§] = 0, where the recurrence
operator Q)gq is defined by

¢ =P, (S —w).

Similarly, (20) and (27) give ¥<, [v5] = 0, with
VS =0, (S+n—w).
3) The Uvarov transformation at w, which we define by
qu [u] = Ly, [u] +nu(w)z¥, nekK, wekKz].
The differential operator ©7 is defined by
@;{q =W—-w)(—w—-1)0,,, (29)

since

O =c(@)(W-w@-w-1)—2r(¥) (¥ —w+1) (¥ —w)
=l W—-—w-1)—21()) (¥ —w+1)] (¥ —w),

and therefore
e) [M] =0, O] [*]=0.
Comparing (29) with (25) and (27), we see that
00 = Oy = Oy

in the sense of applying a double transformation to the operator ©,,.
From (18) and (29) we see that @ (1] = 0, where the recurrence
operator @g ; 1s defined by

OV =(S—w)(S—w—1)Dy,.
Similarly, (20) and (29) give ¥ [vY] = 0, with

o= +n-—w) (S+n-—w-1)T,,



Remark 2 Because ¥ —w annihilates the function z*, we have @gq [2¢] =0
and could have defined

= u(x a), =z w
¢ [u]zzx (a), x—+77u(w)z, nek,

as some authors do. Thus, we will not consider the double transformation

‘Dg ’qG , since we have the reduction

G _ &G
(I)Z(Jj,q - (I)p,q‘
If o (¢) = 0, then the differential operator
61[)],((10 =W =C—1)6,,
is called a reduced-Uvarov transformation, since
O =0 (W) (0~ ¢ =)=z () (=) =[F () (I —(—1) =21 ()] (I~ ),

with o (¥) = (¢ =)o (9¥), and therefore oYL [¢] = 0. In this case, we
have
U = (S —(¢-1)D,,,

and
Y = (S+n—() 0,

The second possibility for a reduced-Uvarov transformation happens when
7(¢) = 0. We now have

@g,ff) = (79 - O @p,qa

‘Pg,ff) - (S - C) (I)p,qa

and
P = (S+n—C-1)T,,.

4) The truncation transformation at N, which we define by

LT[ = S u () (L% NeNy, ueK

10



The first moment admits the hypergeometric representation

a,—N
)\g‘(Z): p+1Fq+1 ( b+1 -N 7Z>7

and therefore is a solution of the ODE ©] [y] = 0, where the differential
operator O] is defined by

O, =c@)W—-N-1)—zr()($=N)=0—N—-1)0,,. (30)

From (18) and (30) we see that ®! [ud] = 0, where the recurrence
operator ®/  is defined by

® =(S-N-1)d,,
Similarly, (20) and (30) give ¥/ [vI] =0, with
v =(S+n-N)V,,.

3 Examples

We now illustrate the application of the formulas that we have derived. We
will consider all discrete semiclassical functionals of class s < 2, and also look
at the subclasses obtained by applying one or more of the transformations
from the previous section.

3.1 Functionals of class 0 (discrete classical function-
als)

The discrete classical orthogonal polynomials (Charlier, Meixner, Krawtchouk)
first appeared in the literature in the years 1905-1934, and were considered at
the time as a generalization of the continuous classical polynomials (Hermite,
Laguerre, Jacobi).

The last member of this class (Hahn polynomials) were introduced by
Chebyshev (1875) and Hahn (1949), but we don’t consider them by them-
selves since they are a special case (z = 1) of the Generalized Hahn polyno-
mials (see Section 3.2.4).

We will use the notation (p, ¢; V) to indicate that one of the upper para-
meters in the hypergeometric representation of the first moment is a negative
integer —N, N € N.

For additional references, see [13], [18], [19], [32], [48], [50], [1], [60].

11



3.1.1 Functional of type (0,0) (Charlier)

The Charlier polynomials were introduced by Carl Vilhelm Ludwig Charlier
(1862-1934) in his paper [14].
Linear functional

Loolu] = u(2) %

First moment differential operator
O =1V — 2.
Standard moments recurrence operator
Qoo =8"" —2(S+1)".

Modified moments hypergeometric representation

vn (2) = 2" oFy ( B} ;z) = z"e. (31)
Modified moments recurrence operator
\11070 =5 —2z.

Remark 3 The Charlier polynomials have the hypergeometric representation
[49, 18.20.8]

PTEO’O) (z32) = 2k < et S—Zl) . (32)

3.1.2 Functional of type (1,0) (Meixner)

The Meixner polynomials were introduced by Josef Meixner (1908 — 1994) in
his paper [46], although Ladislav Truksa (1891-7) already considered them
in his 1931 papers [56], [57], [58], [12].

Linear functional

Ly u] = Zu (z) (a), i—j, z # 1.

First moment differential operator

@170:19—2(79—{—&).

12



Standard moments recurrence operator
(1)170 = Sn—H —Z (S + 1)71 (S + CL) .
Modified moments hypergeometric representation

m&@:zw@ng%[“+”

;z] =2"(a), (1—2)""". (33)
Modified moments recurrence operator

\111’028—2(8+n+0,).
3.1.2.1 Functional of type (1,0; N) (Krawtchouk)

The Krawtchouk polynomials were introduced by Mykhailo Pylypovych
Kravchuk (1892 —1942) in his paper [37]. These polynomials are a particular
case of the Meixner polynomials, with —a = N € N.

Linear functional

N

Lo [ = S ul@) (-N), 5, 241

z=0

First moment differential operator
O1on =0 —2z (0 —N).
Standard moments recurrence
Doy =8""-2(S+1)"(S—N).
Modified moments
vp (2) = 2" (=N), (1 —2)"".
Modified moments recurrence operator

\11170;]\[:8—2(8"‘”—]\7).

13



3.2 Functionals of class 1

In [22] and [23], we classified the discrete semiclassical functionals of class
s = 1. There are 4 main families and 9 subfamilies, obtained by applying
transformations to the Charlier and Meixner functionals.

For additional references, see [9], [31], [3], [2], [39], [11], [51], [40], [44],
27], [34], [6], [15].

3.2.1 Functional of type (0,1) (Generalized Charlier)

Linear functional

(e o] x

1 Z
Lmhd:§:u@)@+i%;?

=0

First moment differential operator
©p1 =9 (W +0b) — 2.
Standard moments recurrence operator
Do =S"(S+Db)—2(S+1)".

Modified moments hypergeometric representation

v (2) = G, of { bilin ;Z]
= 2T T (b+1) Lyw (2v72),

where [, (z) denotes the modified Bessel function of the first kind [49, 10.25.2].
Modified moments recurrence operator

Vo1 =8 S+n+b)—2=8*+n+1+b0)S —z (34)

Remark 4 If we write
Up = Anpny

then the recurrence (34) becomes

n+b z
Dn+1 + ( A )pn_ Epn_l = 0.

14



Choosing

1 z
Z = —21'7 —E = 1,
we get
Pnt1 — 2(n+b) zpy + pr_1 = 0. (35)

The orthogonal polynomials satisfying the 3-term recurrence relation (35)
with initial conditions
Pbo = 17 P1= 2bx

are the modified Lommel polynomials having the hypergeometric representa-
tion

_n _n-1l
Pn (x) = (D), (22)" oF; ( b —n2’1 B z . ;—x_2) )

See [17], 28], [38]. [42]
Another possibility is to define

Up = (_1)n Qn,s
where the monic polynomials q, (b) satisfy the 3-term recurrence relation
an = Qn+1 — NGp + 2qn—1, (-1 = 07 qo = L.

For additional references on the generalized Charlier polynomials, see [16],
[35], [55], [59].

3.2.2 Functional of type (1,1) (Generalized Meixner)

Linear functional
X

=0

First moment differential operator
Standard moments recurrence

By =SS+ —2(S+1)"(S+a).

15



Modified moments hypergeometric representation

v (2) = 27—V F[ @t }

b+1), "t b0 T

Modified moments recurrence operator
U1 =8 S+n+b)—2(S+n+a)=8*+n+1+b—2)S—z(n+a).

Remark 5 If we define
Vp = (_1)npm

then the monic polynomials p, (b) satisfy the 3-term recurrence relation
bpn = Pn+1 — (n - Z)pn + Z(TL+G - 1)pn—1-

For additional references on the generalized Meixner polynomials, see [10],
[16], [29].

3.2.2.1 Christoffel Charlier functional
Linear functional

L§ol] = (e w)uln)

First moment differential operator
@gozﬁ(ﬁ—w—l)—z(ﬁ—ijl),
which is a special case of (36) with
a=-w+1, b=-w-—1.
Standard moments recurrence operator
O =8""(S-w-1)-2(S+1)"(S—w+1).

Modified moments hypergeometric representation

VO (2) = (n—w) 2" 15(”‘““ z>

n—uw

16



Using Kummer’s transformation [49, 13.2.39]

h—
1F1(Z;Z):€Z 1F1< ba;—Z),

VY (zw) = (n —w) 2"e* 1 Fy ( -1 ;—z)

we get

n—uw

z
_ o nez (1
(n—w)z"e ( +n—w)7

in agreement with (23), since

Ve = v+ (n—w)v, = (2 — w4 n) 2" (37)

Modified moments recurrence operator

UG =8(S+n—w—-1)—z2(S+n—w+1)

=8+ (n—-w—-—2)S—z(n—w+1). (38)

Remark 6 Using (37), we see that the modified moments satisfy the first
order recurrence V¢, [v] = 0, with

wgoz(n—w+z)8—z(n—w+1+z).
This agrees with (38), since

(S+n+1-w)fo=(z+n+1-w)Tg,.

3.2.2.2 Geronimus Charlier functional
Linear functional

LG, = ) Z— w ¢ N,

z—w z!
x=0

First moment differential operator

@goz@go(ﬁ—w):ﬁ(ﬁ—w)—z(f}—w),

17



which is a special case of (36) with

Standard moments recurrence operator
(1380 =Dy (S—w) = [S"“ —2z(S+ 1)”] (S —w).

Modified moments hypergeometric representation

N =" n—uw
y”(z’w)n—wlFl(n—w+1’Z)'

Using the identity [49, 13.6.5]

a —a
(L4 ) me o),

where 7 (a, z) is the incomplete gamma function defined by [49, 8.2.1]

z

v(a,z) = /t“_le_tdt, Re (a) > 0,

0

we obtain
v (50) = (=1)" (=2)" v (n —w, —2).

Since the function 7 (a, z) satisfies the recurrence [49, 8.8.1]

z

v(a+1,2)=ay(a,z) — 2%7,

we see that

G G _ n_z __
Vo +(n—w)y, =2"e" =1,

in agreement with (28).
Modified moments recurrence operator

@50:W070(S+n—w):SQ+(n—I—1—w—z)S—z(n—w).

18



3.2.2.3 Reduced-Uvarov Charlier functional
Since for the Charlier functional

we will have a reduced Uvarov transformation U ({) for it if ¢ = 0.
Linear functional

U(O) Zu — + nu (0) .
First moment differential operator

O = (0 —1) g0 =V (9 — 1) — 20,

which is a special case of (36) with

Standard moments recurrence operator
By = (S —1) Doy =8"1(S—1)—2(S+1)"S.
Modified moments recurrence operator
\I!é{(()o) =(S+n)Voy=8"+(n—2)S —nz.

For additional references, see [7], [26].

3.2.2.4 Truncated Charlier functional
Linear functional

Lig[u] = u(z) =, N€N.

First moment
N
-y 7-
=0 !
where €y (z) denotes the truncated exponential series [49, 8.4.11].

19



First moment differential operator
Oto=W—N—-1)0gg=9 W —-N—-1)—z(—N),
which is a special case of (36) with
a=—-N, b=-N-—-1.
Standard moments recurrence operator
D= SE—N-1)Dpy=8"(S-N-1)—2(S+1)"(S—N).
Modified moments hypergeometric representation

" n—N 2"
1/21(2):2 1F1<TL—N;Z) :mU(n—N,n—N,z),

where U (a,b, z) is Tricomi’s function [49, 13.2.6]. Using the identity [49,
13.6.6]
Ula,a,z)=eT(1—a,z),

where T (a, z) is the incomplete gamma function defined by [49, 8.6.5]

o0

I'(a,z2) = /t“letdt,

z
we conclude that

T, 2e _
i ()= T (N =+ 1.2).
Comparing with (31), we see that

I'(N—-n+1,2)
(N—TL)' V’Vl(z)a

vl (2) = 0<n<N.

Modified moments recurrence operator
\I’g,o: (S+n—N)‘I’o,o232+(n—N—z)S—(n—N)z.

For additional references, see [33].
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3.2.3 Functional of type (2,0; N) (Generalized Krawtchouk)

Linear functional

Lo ] = Su (@) (-N), (a), 5, NN,

2=0
First moment differential operator
Oy =0—2(0—N)(W+a).
Standard moments recurrence operator
ooy =8 —2(S+1)"(S—N)(S+a).
Modified moments hypergeometric representation

(a)n JF n—N,a+n -

Up(2) = 2" (—=N)

n

Using the hypergeometric representation (32) of the Charlier polynomials
PO (x; z), we can write

vn(2) = 2" (=N), (a), P](\?’_OZ (—a—n;—27").
Modified moments recurrence operator

Voon=8S—2(S+n—N)(S+n+a)
=—28+1-202n+1-N+a)]S+2(N—-n)(n+a).

Remark 7 If we set 2= = x, we see that the modified moments are a fam-
ily of monic orthogonal polynomials p, (), satisfying the 3-term recurrence
relation

P =Ppp1+2n—1—-N+a)p,+(n+a—-1)(n—N —1)p,_1.
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3.2.4 Functional of type (2,1) (Generalized Hahn of type I)

Linear functional

sl = ute) G

First moment differential operator
O21 =00 +b)—2z(0+ar)(V+as). (39)
Standard moments recurrence operator
Dy =S (S+b)—2(S+1)" (S+a1) (S+ag).
Modified moments hypergeometric representation

Vn( ): n(a1)n (a2)n ar+n,az +n

(b+1)n 211 b+14+n ) # (40)

Modified moments recurrence operator

Uy =8 S+n+b)—z(S+n+a1)(S+n+a)
=(1-2)8+[b+n+1—202n+14+a14+a)]S—z2(n+ai)(n+as).
(41)

Remark 8 If we set b = —x, we see that the modified moments are a family
of orthogonal polynomials p, (x), satisfying the 3-term recurrence relation

2pn =1 = 2)pps1+[n—202n—14+a;+ az)]pn
+z(n—1+a1)(n—1+(12)]9n71-

3.2.4.1 Hahn functional
When z = 1, the generalized Hahn functional of type I becomes the Hahn

functional [36]. Note that in this case (40) can be reduced using the identity
(49, 15.4.20]

b—
ay, az ’1:| _ % Re(b—ag) >Re(al>-

2 { b ®) .,
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Choosing a; = —N, N € N, ay, = a, we get
(=N, (a), O+ 1—a)y

n 1) = n’
va (1) b+1), (b+1+n)y.,
. (b+1-a)y (=N), (@)
+1—-a — a
- 1) = _1Tl N n n’
va (1) = (=1) b+1)y (a—b—N),
which is a solution of (41) when z =1, a; = —N, and ay = a

[(b—a+N—-n)S—(n—N)(n+a)v,(1)] =0.

For additional references, see [20], [30].

3.2.4.2 Christoffel Meixner functional
Linear functional

T

Lol = Y (@ —w)u(x) (a), =

First moment differential operator
O =00W—-w-1)—z@W+a) (W —w+1),
which is a special case of (39) with
a=a, a=—-w+1, b=-w-1.
Standard moments recurrence operator
P =8""(S-w-1)—2(S+1D)"(S+a)(S—w+1).
Modified moments hypergeometric representation

n+an—w+1

S (2) = (n—w) (a), 2”2F1< e ,z>.

Using the identity



we get

0 () = =) @), (=2 o (70T )

n—uw

a+w)z
n—w |’

=(n—w)(a), 2"(1—2)"""" {1 + (

in agreement with (23), since

W =vp+(n—w v, =(wtaz+n—w) (1—2)"""""(a), 2" (42)

Modified moments recurrence operator

Uy =8(S+n—w—-1)—z2(S+n+a)(S+n—-—w+1)
=(1-2)8*+h-w—z22n+24+a—w)]S—z(n+1—-w)(n+a).
(43)

Remark 9 From (42), we see that the modified moments satisfy the first
order recurrence Vf, [v] = 0, where

%C,o: l—-2)n—wt+zw+az)S—z(n+a)(n+1—w+ 2w+ az).
This agrees with the second order recurrence (43), since

(S+n+1—w)wfoz(n+1—w+zw+az)\lffo.

3.2.4.3 Geronimus Meixner functional
Linear functional

xT

bl =3 @), g,

First moment differential operator
O =010 (0 —w) =0 (W —w)— 20 +a) (¥ —w),
which is a special case of (39) with

a=a, a;=-w, b=—w.
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Standard moments recurrence operator
V) =D10(S—w) =[S —2(S+1)"(S+a)] (S—w).

Modified moments hypergeometric representation

G, N A" a+n,n—w
l/n(z,w)fn_w(a)n 2F1{ n— w1 ,z}.
Using the identity [49, 8.17.7]
a,l—-b |
2F1|: 041 7z]—az B, (a,b),

we conclude that

Ve (z;w) = (a), 2“B,(n—w,1 —a—n),

where B, (a,b) is the incomplete beta function defined by [49, 8.17.1]
1
B, (a,b) = z“/t“_l (1—2t)" " dt. (44)
0

Since the function B, (a,b) satisfies the recurrence [49, 8.17(iv)]
aB. (a,b+1) —bB, (a+1,b) = 2° (1 — 2)°,
we see that
e+ (n—w)vf =2"(a), (1-2)""" =,

in agreement with (28).
Modified moments recurrence operator

\IJ?:O:\IJLU(S—FTL—UJ)
=(1-2)S8*+n-wt+l—z(I+a—w+2n)S—z2(n—-w)(n+a).

3.2.4.4 Reduced-Uvarov Meixner functional
Since for the Meixner functional we have

o) =19, 1) =19+aq,
we will have reduced cases for its Uvarov transformation U (¢) if

¢(=0,—a.
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i) ( =0 Linear functional

Pl =Y u) (), 5 +nu(0).

First moment differential operator
Ol =W —1)010=0(0 —1) — 2 (0 +a),
which is a special case of (39) with
ag=a, ay=0, b=-—1.
Standard moments recurrence operator
O =(§—1)01,=8""(S—1) —2(S+1)"(S+a)S.
Modified moments recurrence operator
\IJ%m =S+n) V1 o=1-2)S+[n—22n+1+a)]S—2n(n+a).

For additional references, see [4], [8], [25].

ii) ( = —a Linear functional

5Tl =Y u (@) (a), 5+ (-a) =

First moment differential operator
O/ ) =W+a)Og=0@W+a)—z(0+a) (I +a+1),
which is a special case of (39) with
ag=a, a=a+1l, b=a.
Standard moments recurrence operator
OV = (S+a)Pro=[S" —2(S+ )" (S+a+1)](S+a).
Modified moments’ recurrence operator

WY = (S+n+at1)¥
=(1-2)8*-(n+a+1)[22—-1)S+2z(n+a).
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3.2.4.5 Truncated Meixner functional
Linear functional

Lig[u] = Zu (z) (a), i—g:, N € Np.

=0
First moment differential operator
@foz (W—=N-1)00=0(W0—-—N—-1)—z(0+a)(—N),
which is a special case of (39) with
ai=a, ay=-N, b=-N-—1

Standard moments recurrence operator
Plg=(S—-N-1)01=8""(S-N-1)—2(S+1)"(S+a)(S—N).

Modified moments hypergeometric representation

n n—N,n+a
vl (2) = (a), =z 2F1( 0o N ;z).

Using the transformation [49, 15.8.7]

_Nab _(C_b)N _N7b .
2F1< c ,Z>—W2F1 b—c—N—i—l’l_Z’

we obtain

—N—a) +a,n—N

I ( N—-n n ,n

= (a 7 F 1 — .
v (Z) ( )n & (n—N) n 2 1( n+a+1 Z)

Since the incomplete beta function (44) has the hypergeometric representa-

tion [49, 8.17.7]
z¢ 1-b,a
Bz(a,b):;2F1( a4 1 ,Z);

we conclude that

- (a>N+1

v, (2) = (N_n)'z"(l —2)"By.(a+n,N—n+1),

27



and comparing with (33), we see that

(a-f—n)]v "+1Blz(a+nN—n+l) W (2) .

A T

Modified moments recurrence operator

Ul =(S+n—N)¥
=(1-2)S8*+n—-N—-22n+1-N+a)]S—2(n—N)(n+a).

3.3 Functionals of class 2

In [23], we classified the discrete semiclassical functionals of class s = 2. There
are 6 main families and 58 subfamilies, obtained by applying transformations
to the functionals of class s = 1, or double transformations to the functionals
of class s = 0.

3.3.1 Functional of type (0,2)

Linear functional

1 2®
L —.
02 Z“ (bi+ 1), (by + 1), 2l
First moment differential operator
@072 - 19 (19 + b1) (ﬁ + b2) -

Standard moments recurrence operator

Do =8"T(S+b)(S+b)—2(S+1)"=0.

Modified moments hypergeometric representation

Z" —

) = D, v 1), bk Ly 4 1

Modified moments recurrence operator

\D072:S(8+n+b1)(8+n+b2)—
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3.3.2 Functional of type (1,2)

Linear functional

- (a), z*
Lrafu] = ;“ @) o1, r 1), 2

First moment differential operator

O12=00+b)(0+b) —2(V+a).
Standard moments recurrence operator
D1y =8""(S+b)(S+b)—2(S+1)"(S+a).
Modified moments hypergeometric representation

Zn(a)n a+n
15 V2
b1+1>n(b2+1)n b1+1—|—n,bg+1—|—n

Modified moments recurrence operator

Vn(Z) = (

Uio=8S+n+1+b0)(S+n+1+b)—2(S+n+a).

3.3.2.1 Christoffel Generalized Charlier functional

Linear functional
oo

Loy [u] =) (v = w)u(z)

=0

L
(b+1), !
First moment differential operator
O, =0W+b)(—w—1)—2(V —w+1),
which is a special case of (45) with
a=—-w+1, by=b by=—-w-—1
Standard moments recurrence
P =8""(S+b)(S—w-1)—2(S+1)"(S—w+1).
Modified moments hypergeometric representation
n—uw —
v @)= g, 2P ( b1 ﬁutbl—w ;Z> '

Modified moments recurrence operator

UG, =8 S+n+b)(S+n—w-1)-2(S+n-—w+1).
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3.3.2.2 Geronimus Generalized Charlier functional
Linear functional

First moment differential operator
Of; =001 (0 —w) =0 (0 +b) (¥ —w) — 2 (¥ —w),
which is a special case of (45) with
a=-—w, b =0b b =—w.
Standard moments recurrence operator
<I>0G71 =Py (S —w) = [S"H (S+b) —2(S+ 1)"} (S —w).

Modified moments hypergeometric representation

1 " n—w
a
= F: iz
v (2) n—w(b+1), e ( b+14+nn—-—w+1 ’Z>
Modified moments recurrence operator

\Ilgl:\Ifo,l(S—i-n—w):[S(S+n+b)—z](8+n—w)_

3.3.2.3 Reduced-Uvarov Generalized Charlier functional
Since for the Generalized Charlier functional we have

o () =9 (W +0),
we will have reduced cases for its Uvarov transformation U (¢) if

¢ =0,-b.
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i) ( =0 Linear functional

o0

0 z
Zo b—l—l :13!+77u(0)'

First moment differential operator
g = (9 — 1)1 =V (9 +b) (¥ —1) — 20,

which is a special case of (45) with

Standard moments recurrence operator
By = (S —1) By =SS +b)(S—1) —2(S+1)"S.
Modified moments recurrence operator

\1101 = S+n)¥Y,1 =S S+n+b)(S+n—-1)—2(S+n).

ii) ( = —b Linear functional
- OOE : + nu (—b) .
b +1), 2!

=0

First moment differential operator
O ) =W +b—1)0g =0 (O +b) (I +b—1)— 2 (I +b),
which is a special case of (45) with
a=0b bi=b b=b-1
Standard moments recurrence operator
B = (S+b—1) Py = [STHS+b—1) = 2(S+1)"](S+1D).
Modified moments recurrence operator

U = (SH+n+b) V=[S S+n+b—1)—2(S+n+b).
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3.3.2.4 Truncated Generalized Charlier functional
Linear functional

LT[ =S u () (b+11) 2. NeN,

First moment differential operator
Opr=W—-N=-1)0g; =9 (W +b)(J—N—-1)—2(—N),
which is a special case of (45) with
a=—N, by=0b, by=-N-1.
Standard moments recurrence operator
D1 =(S-N—-1)0y; =S""(S+b)(S—-N—-1)—2(S+1)"(S—N).
Modified moments recurrence operator

o1 =(S+n=N)Tou=S(S+n+b)(S+n-N-1)—z(S+n-N).

3.3.3 Functional of type (2,2)

Linear functional

T

Loo[u] = Zu (z) ( (a1;x (asz), 2"

First moment differential operator

@272 :19(19+b1) (19+b2) —2(19—|—a1) (Q9+CL2) (46)

Standard moments recurrence operator
Do =8 (S+b)(S+by) —2(S+1)"(S+ay)(S+a).
Modified moments hypergeometric representation

vn (2) =

Modified moments recurrence operator

2" (a1),, (a2), atnatn
(h+1), (bat+1), 72| bi+1l+nb+1+n’

Upo =S(S+n+b)(S+n+b)—2(S+n+a)(S+n+az).
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3.3.3.1 Uvarov Charlier functional
Linear functional

Ly [u] Zu ——i—nu( )2, w#0.

First moment differential operator

@goz(ﬁ—w)(ﬁ—w—l)@op
=0 —-w(@W-—w—-1)—2z2W@—-w+1) (¥ —w),

which is a special case of (46) with
o =-w+1, a=-w, b =-w, by=-w-—1.
Standard moments recurrence operator

@8{0:(8—(,&))(5—&)—1)(1)0,0

(SIS —w—1) = 2 (S+ 1) (S —w+1)] (S —w). (47)
Modified moments recurrence operator
Uiy =(S+n—-w)(S+n—w+1) ¥ (48)

=SS+n—w-1)—2(S+n—w+1)](S+n—-w).

3.3.3.2 Double Christoffel Charlier functional
Linear functional

First moment differential operator
O5y =00 —w —1) (0 —ws —1) =2 (J — w1 +1) () —wy + 1),
which is a special case of (46) with
ag=—-w1+1, aa=—-wr+1, b =—-w —1, by=—wy—1.
Standard moments recurrence operator

PG =S8""(S—w—1)(S—w—1)—2(S+1)"(S—wi +1) (S —wp +1).
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Modified moments
Vr?2 = v+ (n—w) vy
=VUpio+ 2n+1—wi —w) V1 + (n—wy) (n—ws) vy
= [+ (2n+1-w —ws)z+ (n—ws) (n—wy)] 2"

Modified moments hypergeometric representation

" n—w+1,n—wy+1
UT??(Z):(n—wl)(n—wg) 2" o Fy nl—wl,n—wi ;2

Modified moments recurrence operator

‘I’((f:z: (S+n—w—1)(S+n—w—1)—=2(S+n—w +1)(S+n—wy+1).

3.3.3.3 Geronimus Christoffel Charlier functional
Linear functional

2T —w z*
LoG,i)C [u] = Z ~u () R # wy, wa ¢ No.

w0 L T W2
First moment differential operator
05y =085y (0 —wy) =0 (9 —wy — 1) (F —ws) — 2 (9 —wi +1) (I — wy),
which is a special case of (46) with
a1 =—wi+1, ay=—-wy, b =-w —1, by=—ws.

Standard moments recurrence operator
Oy =050 (S —wa) =[S (S —wi —1) = 2(S+1)" (S —wi + D] (S — wa).

Modified moments hypergeometric representation

n— wp n—w;+1,n—wy
VoY (2) = 2" o Fy ’ ;

n — Wy n—w,n—wy+1"’

Modified moments recurrence operator

UG =05 (S+n—w)=[S(S+n—w —1)—2(S+n—w +1)](S+n—w).
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3.3.3.4 Reduced-Uvarov Christoffel Charlier functional
Since for the Christoffel Charlier functional we have

c() =90 —-w-1), 7(¥)=9—-w+1,
we will have reduced cases for its Uvarov transformation U (¢) if
(=0,w+1lw-—1.
i)(=0

Linear functional

T

Lot ) = D (o = w)u(x) 3 +mu(0).

First moment differential operator
Oy = (0 —1)05y =9 —w—1) (0 —1) = z(J —w+ 1),
which is a special case of (46) with

ap=—-w+1, a;=0 by=—-w-—-1, by=-—1.
Standard moments recurrence operator

Do = (S —1) 85, =8 (S —w—-1)(S—1)

—2( S+ 1)"(S—w+1)S.
Modified moments recurrence operator
Vo = (S+n) U =S S+n—w—-1)(S+n—1)
—z2(S8+n—w+1)(S+n).

i) (=w+1
Linear functional

U(w ,C = 2" w
Loy ™ ) =3 (2 — w)u () w1z +1
=0 ’

First moment differential operator
O = (0 —w-2)05 =0 (W —w—1) (¥ —w—2)
—z(W0—-—w+1) (W —-—w—-1),
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which is a special case of (46) with
a=—-w+1l, aa=—-w-1, b=-w-—1, by=—-w-—2.
Standard moments recurrence operator

(I)O(()w+1)c (S —w-2) (I)oco
= [S”“(S—w—Z)—z(S+1)”(S—w+1)} (S—w-1).

Modified moments recurrence operator

Toe = (S +n—w— 1)U,
=SSE+n-—w-2)—2S+n-—w+1)](S+n—-w-1).

i) (=w-—1
Linear functional
(-1 - 2" w1
Z:p—w () —|+nu(w—1)z
=0 ’

First moment differential operator
Oy =W —w )05, =00 —w—1) (0 —w+ )2 —w+1) (I —w+2),
which is a special case of (46) with

ag=—-w+1, a=-w+2, b=—w-1 by =—-w+1.
Standard moments recurrence operator

oy = (S —w+ 1),
=[S S-w-1)—2(S+1)"(S—w+2)] (S—w+1).

Modified moments recurrence operator

Too' = (S+n—w+2) 5,
=SS+n—-w-1)—2S+n—w+2)](S+n—w+1).
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3.3.3.5 Truncated Christoffel Charlier functional
Linear functional

T

L€ =Y (@ —wule) -

!
z=0

N € Ny.

First moment differential operator

Oy =(W—N—-1)0fy =01 —w—1)(¥—N—1)
—z(0—w+1)(W—-N),

which is a special case of (46) with
a1:—w+1, &QZ—N, blz—w—l, bQZ—N—l
Standard moments recurrence operator

BIC = (S =N —1)B5y =S (S —w—1)(S— N —1)
A SHD) (S —wt1)(S—N).

Modified moments recurrence operator

oy =(S+n—N)TI§,=8(S+n-w-1)(S+n—N-1)
—2(S+n—-—w+1)(S+n—-N).

3.3.3.6 Double Geronimus Charlier functional
Linear functional

G201 "
LO’O[U]_;(.’B—wl)(l’—a&)U(w) ok wi,wz & No.

First moment differential operator

05, = 65, (¥ — ws) = Bgp (9 — wi) (VI — ws)
=90 —wy) (0 —ws) — 2 (V¥ —wy) (¥ — ws),
which is a special case of (46) with

a = —wi, Gy = —Wws, b =—wi, by=—ws.
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Standard moments recurrence operator
By = DGy (S — wn) = By (S — wi) (S — wy)
= [Sn+1 —Z (S + 1)71] (S - wl) (S — LUQ) .

Modified moments hypergeometric representation

2" n—wy,n — Wy

GZ
v (2) m—w)(n—w) 72| n—wi+ln—w+1"

Z| .

Modified moments recurrence operator

\POG,ZZ‘I’OG,O(SﬂL”—M)2‘1’0,0(3+n—w1)(8+n—w2)
=(S—2)(S+n—w)(S+n—uws).

3.3.3.7 Reduced-Uvarov Geronimus Charlier functional
Since for the Geronimus Charlier functional we have

o) =90 —-w), 7)) =9-w, w¢Ny,

we will have a reduced case for its Uvarov transformation U (¢) if ¢ = 0.
Linear functional

vone (@) 2
Log ) = === — +mu(0), w¢No.
=0

First moment differential operator
O = (0 = 1) 6y = (9 = 1) O (V ~ w)
=90 —-1)(¥—w)— 20 (W —w),
which is a special case of (46) with
a1 =0, a=—-w, b =-1, by=-—w.
Standard moments recurrence operator
oy = (S = 1) By = (S — 1) By (S~ w)
=[N (E-1)—2(S+1)"S](S—w).
Modified moments recurrence operator
WP = (S +n) UGy = (S +n) Voo (S +n—w)
=SS+n—-1)—2(S+n)](S+n—-w).
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3.3.3.8 Truncated Geronimus Charlier functional
Linear functional

N
T,G - u ()
LO -
0 “T—w
T=

First moment differential operator

s N € NU, w g_ﬁ No.

A

O’ = (W —N-1)0y = — N —1)O (¥ — w)
— (W —N-1)(—w)—2(1—N) {0 —w),

which is a special case of (46) with
G1:—N, g = —W, blz—N—l, bgz—w.
Standard moments recurrence operator

Dy = (S—N-1)0fy=(S—N—1)Pgp (S —w)
=[S (S-N-1)—2(S+1)"(S—N)| (S—w).

Modified moments recurrence operator

Ui =(S+n—N)T=(S+n—N)Too(S+n—w)
=S SE+n—-N-1)—2z2(S+n—-N)|(S+n—-w).

3.3.3.9 Double Uvarov Charlier functional
Since for the Reduced Uvarov Charlier functional we have

aos) () =0 (9 — 1),

we will have a reduced case for its Uvarov transformation U (¢) if ¢ = 1.
Linear functional

LU0 [y Zu - + mu (0) + nyu (1) 2.

First moment differential operator

05 = (9 = 2) O = (9 = 2) (9 — 1) By
=9 —1)(9—2)— 20 () — 1),
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which is a special case of (47) with w = 1.
Standard moments recurrence operator

b, = (S —2) B = (S —2) (S — 1) By
=[S (SE-2)—2(S+1)"S](S-1).

Modified moments recurrence operator

U = (S 4= 1)UL = (S+n—1)(S+n) Uy
=SE+n—-2)—2(S+n)](S+n—-1).

3.3.3.10 Reduced-Uvarov Truncated Charlier functional
Since for the Truncated Charlier functional we have

c(@)=900W—-N-1), 7(¥)=9—-N, N €Ny,
we will have reduced cases for its Uvarov transformation U (() if
¢=0,N+1,N.
i)(=0
Linear functional

N X
4

Lo [u] = > “u(x) SR (0), N €N,.
=0 :

First moment differential operator

O =W —-1)0L, = (¥ —1) (0 — N — 1) Oq,
=9 —N—1)(0—1)—z () — N9,

which is a special case of (46) with
alz—N, &2:(), blz—N—l, b2:—1
Standard moments recurrence operator

T = (S 1)L, = (S—1) (S — N —1) gy

=S"™MS-1D)(S-N-1)—-2(S+1)"S(S—N).
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Modified moments recurrence operator
Vo = (S +n) ULy = (S+n)(S+n—N)Wg,
=S E+n-1)(S+n—-N-1)—2(S+n)(S+n—N).

i) (=N+1
Linear functional
N o
Log ™ ] =Y u(@) S +qu(N+1) 2N N e N,
’ prs x!
First moment differential operator
OUNIT — (9 — N —2)0f, =9 (@ — N —1) (9 — N —2)
—z(W-=N)(W—-N-1),

which is a special case of (47) with w = N + 1.
Standard moments recurrence operator

BT = (S =N —2)dl = (S— N —2)(S— N —1)®,
=[S (S-N-2)—2(S+1)"(S-N)](S—N-1).

Modified moments recurrence operator

VoV = (S+n—N-1) 0L =(S+n—N—-1)(S+n—N)¥y,
=[S(SE+n—-N-2)—2(S+n—N)|(S+n—-—N-1).

iii) (=N
Linear functional

xT

z
Log"" ) =Y u(@) — +nu(N), N eNo.

First moment differential operator

Oy = (0 = N)OLy= (9 — N) (¥ = N — 1) Oy
—9W—N-1)(—N)—z(0—N)(®—N+1),

which is a special case of (47) with w = N.
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Standard moments recurrence operator

Doy = (S = N) By = (S = N) (S = N —1) g
=[S (S-N-1)—2(S+1)"(S—N+1)](S—N).

Modified moments recurrence operator

U = (S+n—N+1) ULy =(S+n—N+1)(S+n—N)¥,
=[SSE+n—-N-1)—2z(S+n—N+1)](S+n—N).

3.3.3.11 Christoffel Generalized Meixner functional
Linear functional

xT

Ky =3 G- u) G oa

First moment differential operator
O, =0(W+b)(—w—-1)—zW+a) (¥ —w+1),
which is a special case of (46) with
ap=a, a=-w+1, b =b by=—-w-—1.
Standard moments recurrence
O =" S+ (S—w-1)—2(S+1)"(S+a)(S—w+1).

Modified moments hypergeometric representation

Crn (@), . at+nn—w+1
v (2) = (n uJ)(bJrl)nZ 2F2(b+1+n,n—w’z>'

Modified moments recurrence operator

U =8 +n+b)(S+n-w-1)—-2(S+n+a)(S+n—-w-1).
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3.3.3.12 Geronimus Generalized Meixner functional
Linear functional

L o] = Z;; Exc)u (b(i)gf)x o @

First moment differential operator
O =01, (0—w) =0 (W +b)(V—w)—z(W+a) (W —w),
which is a special case of (45) with
a1 =a, ay=-w, b =0 by=—w.
Standard moments recurrence operator
<I>§’:1 =011 (S—w)=[S"(S+b) —2(S+1)"(S+a)] (S—w)

Modified moments hypergeometric representation

1 (a) a+n,n—w
G _ n n ) .
“n <Z)_n—w(b+1)nz 2F2(b+1+n,n—w+1’z)'

Modified moments recurrence operator

U =01 (S+n—w)=[S(S+n+b) —2(S+n+a)(S+n—w).

3.3.3.13 Reduced-Uvarov Generalized Meixner functional
Since for the generalized Meixner functional we have

o) =90@W+0b), 7W)=19+a,
we will have reduced cases for its Uvarov transformation U (¢) if
¢(=0,-b,—a.

i)(=0

Linear functional

I = Youe) 5 (o),




First moment differential operator
O =W —-1)011 =9 @ +b) (I —1) — 2 (0 +a),
which is a special case of (46) with
a1 =a, ay=0, b =0b b =—1.
Standard moments recurrence operator
oV = (S - 1)@ =S (S+D)(S—1)—2(S+1)"(S+a)S.
Modified moments recurrence operator
VWO = (S+n) 0, =S S+n+b)(S+n—1)—2(S+n+a)(S+n).

i) ( =—a

Linear functional

x

ng_a) [u] = Zu (z) (b<i>i) % +nu(—a)z""

First moment differential operator
O = (W +a)01, =0 (@ +b)(V+a) —2(I+a) (I +a+1),
which is a special case of (46) with
a1 =a, a=a+1, b =0b b =a.
Standard moments recurrence operator
oV = (S+a) by = [S"H(S+b) —2(S+ 1) (S+a+1)](S+a).
Modified moments recurrence operator
VW= (SHntat DU, =[SS+n+b)—z(S+n+a+1)](S+n+a).
iii) ( = —b

Linear functional

LY ) =Y u(x) (b(i)f) % +nu (—b) 2.
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First moment differential operator

O™ =W +b-1)01, =0 (@ +b) (W +b—1)— 20 +a) (@ +b),

which is a special case of (46) with
a1 =a, ay=>b, by=0b by=0b-1.
Standard moments recurrence operator
O = (S+b-1) P, = [S"HSHb—1) —2(S+ )" (S+a)] (S+1D).
Modified moments recurrence operator

VW = (Stn+0) W, =[S S+n+b—1)—2(S+n+a)(S+n+b).

3.3.3.14 Truncated Generalized Meixner functional
Linear functional

L) =Y u(e) e % N e N

First moment differential operator
O, =0W-N-1)01,, =900 +b)(I—-N-1)—z(+a)@—N),
which is a special case of (46) with
a1 =a, ay=-—N, by =b by=—-N—1.
Standard moments recurrence operator

O, =(S-N-1)0;; =" (S+b)(S-N-1)
—2(S+1)"(S+a)(S—N).

Modified moments recurrence operator

VI = (S4n—N)U, =SS +n+b)(S+n—N-1)
—z2(8+n+a)(S+n—N).
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3.3.4 Functional of type (3,0;N)

Linear functional

N x

Lo ] =3 u(x) (=N}, (@), (@), T3 N € Mo
First moment differential operator
Oson=0—2(0—N) W+ a1)(V+ag).
Standard moments recurrence operator
P3on =S —2(S+1)"(S—N)(S+ay)(S+as).
Modified moments hypergeometric representation

n n_N,a +n,a +n
Un (2) = (=N), (a1), (a2), 2" 3Fy ! 2 ;2

Modified moments recurrence operator

Uson =S —2(S+n—N)(S+n+a)(S+n+ap).

3.3.5 Functional of type (3,1;N)

Linear functional

L3,1;N [u] _ Zu (ZE) (_N>z (al)m (a2>z’;_g:7 N € N,.

=0 (b + 1)5”
First moment
—N,a,a
Ao (Z) = 3F1{ b—i—ll 2 ;Z]

First moment differential operator

83,1;N:19(194—17)—z(19—N)(19+a1)(19+a2). (50)

Standard moments recurrence operator

P31y =S (S+b) —2(S+1D)"(S—N)(S+ay)(S+ay).
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Modified moments hypergeometric representation

(_N)n (al)n (a’2>n n F n_N7 aq +7’L,(12+n .
311 32
(b+1) b+1+n

vn (2) =

n

Modified moments recurrence operator

Usin=8S(S+n+b)—2(S+n—N)(S+n+a)(S+n+as).

3.3.5.1 Christoffel Generalized Krawtchouk functional
Linear functional

Lol =Y (e —w)ule) (-N), (@), 5, NeN,

z=0

First moment differential operator
Oy =W —w—1)—2z(W = N)(I+a)(¥—w+1)
which is a special case of (50) with
a1 =—N, aya=a, a3=-w+1, b=—-w-—1.
Standard moments recurrence
oy =8S""(S-w-1)—2(S+D)"(E=N)(S+a)(S—w+1).
Modified moments hypergeometric representation

_ (=N), (a), o n—N,a—i—n,n—w—i—l.Z
08 (2) = (=) e s .t <),

Modified moments recurrence operator

\112070;]\,:S(S+n—w—1)—z(S+n—N)(S+n+a)(S+n—w—1).
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3.3.5.2 Geronimus Generalized Krawtchouk functional
Linear functional

N @
Lo b = S0 (N @, T NeNo witl

First moment differential operator

OFon =O20n (U —w) =9 () —w) — 2 (9 = N) (9 +a) ( —w)
which is a special case of (50) with
a1 =—-N, a=a, a=-w, b=-—-w.
Standard moments recurrence operator
W = Baoy (S —w) =[S =2 (S+1)" (S~ N) (S +0)] (S —w)

Modified moments hypergeometric representation

1 (=N _ _
( )n(a)nzngpl(n Zf:i? w;Z)_

VG(Z):n—w (b+1)

n

Modified moments recurrence operator

\IISO;N:\IJQ,O;N(S%—n—w):[S—z(S+n—N)(S+n+a)](S+n—w).

3.3.5.3 Reduced-Uvarov Generalized Krawtchouk functional
Since for the Generalized Krawtchouk functional we have

o) =9, T =@ —N)@+a), NeN,

we will have reduced cases for its Uvarov transformation U (() if

(=0,N,—a.
i) (=0
Linear functional
N X
U
Lyoin [l = D u (@) (=N), (@), 5 +9u(0), N €N
=0 :



First moment differential operator
Oy on = (0 = 1)z =0 (0 — 1) — 2 (9 — N) (I +a) ¥,
which is a special case of (50) with
ag=—-N, a=a, a3=0, b=-—1.
Standard moments recurrence operator
U(O) _ o n+1 n
DY = (S — 1) By = S (S~ 1)~ 2(S+ 1) (S~ N) (S +a) .

Modified moments recurrence operator

\IJQU[()OJ)V =(S+n)Von=8S(S+n—-1)—2(S+n—N)(S+n+a)(S+n).
i) (=N
Linear functional
N T
N
Ly [u] = Y Ju(e) (=N), (), 5 +nu (V) 2~
x=0 :

First moment differential operator

@g,(()];\zf\;:(ﬁ—N)@z,o;N219(19—N)—z(ﬁ—N)(19+a)(19—N+1),

which is a special case of (50) with
ap=-N, ay=a, a3=-N+1, b=-—N.
Standard moments recurrence operator
Dy = (S — N) Bagn
=[S —2(S+1)"(S+a)(S—N+1)](S—N).
Modified moments recurrence operator

\IIQUJ()]’\J[\;: (S"‘n—N‘I‘l)\I/Q’O’N

S—2(S+n+a)(S+n—N+1)](S+n—N).

iii) ¢ = —a
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Linear functional

First moment differential operator

O, 6% = (¥ +a) Oz0x
=9 +a)—zW@—-N)W+a)(P+a+1),

which is a special case of (50) with
ag=—-—N, ay=a, a3z=a+1, b=a.
Standard moments recurrence operator

By = (S +a) Pagy
=[S —2(S+1D)"(S=N)(S+a+1)](S+a).

Modified moments recurrence operator
\D%N =(S+n+a+1)V¥yon

=[S§—2(S+n—-N)(S+n+a+1)](S+n+a).

3.3.6 Functional of type (3,2)

Linear functional

RS RNCN AN

b1+ x(b2+1)

First moment

a1, a2, a3

Ao (2) = 3F2{b1+1 by+1°7

First moment differential operator

@372 =1 (’19 + b1> (79 + bg) —Z (19 + al) (19 + &2) (’19 + Clg) . (51)
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Standard moments recurrence operator

@372 - Sn+1 (S + bl) (S + bg)
—2(S+1)"(S+a1)(S+as) (S +as).

Modified moments hypergeometric representation

(_N>n(a1)n(a’2)n n.F n—N,a1+n,a2+n .
(by+1), (by+1), ~ 7| b+l+nb+14+n’

v (2) =

Modified moments recurrence operator

Uso=85(S+n+b)(S+n+by)
—z(S+n+a)(S+n+a)(S+n+as).

3.3.6.1 Uvarov Meixner functional
Linear functional

T

LYo [u] = Zu (z) (a), % +nu (W) 2%, w#0,—a.
=0

First moment differential operator

@[1{0:(19—60)(19—(&)—1)@170
=0V -—w)(W—w—-1)—z@W+a)(—w+1) (W —w),

which is a special case of (51) with
ai=a, a=-w+1, a3=-w, b =-w, b=-w-—1.
Standard moments recurrence operator

CDlUyoz(S—w)(S—w—l)q)m
=[S (S-w-1)—2(S+1)"(S+a)(S—w+1)] (S—w).

Modified moments recurrence operator

o= S+n—-w)(S+n—-—w+1)¥,
=S SE+n-—w-1)—2(S+n+a)(S+n-—w+1)](S+n—-w).
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3.3.6.2 Geronimus Christoffel Meixner functional
Linear functional

2T —w 2
Lfbc [u] = Z “u (z) (a), oW # wy, wa ¢ No.

pp L T W2
First moment differential operator
Oy =0, (9 —wp) =9 (0 —wi — 1) (F —wa)—z (I +a) (Y —wy + 1) (I — wy),
which is a special case of (46) with
ag=a, ay=-w+1, a3=—-wy, b =—-wi—1, by=—ws.
Standard moments recurrence operator

q)?oc = <I>16:0 (S —ws)
=[S (S —wi—1)—2(S+1)"(S+a)(S—wi +1)] (S —ws).

Modified moments hypergeometric representation

a+n,n—w +1,n—wy

I

n — wi
(a), 2" 33
n — ws n—wl,n—w2+1

v, " (2) =
Modified moments recurrence operator

Py =0 (S+n—w)
=[(S+n-—w—-1)S—2(S+n+a)(S+n—-—w +1)](S+n—w).

3.3.6.3 Double Christoffel Meixner functional
Linear functional

L% _ _ z
1ol ; z—w) (@ —w)u() (@), —

First moment differential operator
Ol =V (W —wi -1 —wnr—1) =z +a) (@ —w +1) (@ —wr+1),
which is a special case of (46) with

a1 =a, a=—-wi+1, a3=—-ws+1, by =—-w —1, by=—wy—1.
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Standard moments recurrence operator
By =S (S —wi —1)(S—wp —1)=2(S+1)" (S+a) (S—wi +1) (S —wp +1).

Modified moments
v =05+ (0 —w) v
=VUppo+ 2n+1—w; —wa) V1 + (N —wy) (n—wo) vy

— (v222 + vz + UO) 2" (a), (1 — z)_a_”_2

Y

where

vy = (a+ wy) (a + wo),
v =a— (a4 wy)wy — (a4 wy)wa + n(1 + 2a + wy + wo)

v = (n—wy) (N — wa).
Modified moments hypergeometric representation

c? o B n a+n,n—w +1,n—wy+1
v, (2) =(n—wi) (n —ws) (a), 2" 3k Wi — 1z .

Modified moments recurrence operator
U =S(S+n—w —1)(S+n—w—1)
—z(S4+n+a)(S+n—w+1)(S+n—wr+1).

3.3.6.4 Reduced-Uvarov Christoffel Meixner functional
Since for the Christoffel Meixner functional we have

c()=0W-w-1), 7(W0)=0W+a)(W@—-—w+1),
we will have reduced cases for its Uvarov transformation U (() if
(=0,w+1,—a,w—1.
i)(=0

Linear functional

LI ) = D (e = w)u (@) (a), S5 +mu (0).

=0

53



First moment differential operator
Ol =W -1 =9 —w-1) (0 1) 2@ +a) (¥ —w+1)9,
which is a special case of (51) with
ay=a, a=-w+1, a3=0, by=—-w-—1 by=—-1
Standard moments recurrence operator
VP = (-1, =" (S —w-1)(S-D)—2(S+1)"(S+a)(S—w+1)S.
Modified moments recurrence operator

WO = ( S+ =S S+n—w—1)(S+n—1)
—2(S+a)(S+n—w+1)(S+n).

i) (=w+1
Linear functional

U(w+1),C = z* "
Ly =Y (@ =~ wule) (a), — +nu(w+ 1) 27
=0

First moment differential operator

oYy = (0 —w —2)6f,
=W —w—-1)W-—w—-2)—zW0+a) (I —w+1) () —w—1),

which is a special case of (51) with
ag=a, a=-w+1, a3=—-w—-1 b=—-w—-1 by=—-w-—2.
Standard moments recurrence operator

YT = (S —w—2) 8,
=[N S-w-2)—2(S+1)"(S+a)(S—w+1)](S—w-1).

Modified moments recurrence operator

P = (S +n—w—1)0¢,
=S SE+n-—w-2)—2(S+n+a)(S+n—w+1)|(S+n—-—w-1).
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iii) ¢ = —

Linear functional

U a > z —a
) = 3 (=) ule) (@), 5 ()

=0

First moment differential operator

@u() V= = (0 +a) 6,

=0 —w—-1)W+a)—z@+a)(d—w+1)(W+a+1),
which is a special case of (51) with
a=a, a=-w+1l, az=a+1l, b=—-w-1 b =a.

Standard moments recurrence operator

‘I’l,é v = (S+a) ‘I)?o
=[S S-w-1)—2(S+1)"(S—w+1)(S+a+1)](S+a).
Modified moments recurrence operator

VT = (S+n+a+1)0,
=S SE+n—w—-1)—2S+n—w+1)(S+n+a+1)](S+n+a).

iv)(=w-—1
Linear functional
wl)C Zx—w (a)xz—'—knu(w—l)z‘*’_l
z!
=0

First moment differential operator

ey =W -w+1)67,
=W -—w—-1W—-w+l)—z@+a)(W—w+1)(¥—w+2),

which is a special case of (51) with

a=a, a=-w+1, a3=-w+2, b =—-w-1 by =—-w+1.
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Standard moments recurrence operator

oYV = (S —w+1) 0],
=[S S-w-1)—2(S+1)"(S+a)(S—w+2)] (S—w+1).

Modified moments recurrence operator
W = (St —w+2) 0],

=SS+n—w—-1)—-2(S+n+a)(S+n—-—w+2)](S+n—-—w+1).

3.3.6.5 Truncated Christoffel Meixner functional
Linear functional

L€ = (r—w)u(@) (o), % N € No.

=0

First moment differential operator

Ol = (=N -1)6f,
=90V —-—w—-1)W-N-=-1)—z@0+a)(d—w+1)(—N),

which is a special case of (51) with
ag=a, a=-w+1, a3=-N, b=—-w-—1, by=-N—1.
Standard moments recurrence operator

oy =(S-N-1)d{;=8""(S-w-1)(S—N-1)
—2( S8+ 1D)"(S+a)(S—w+1)(S—N).

Modified moments recurrence operator

Uiy =(S+n-NI =8 S+n-w-1)(S+n—-N-1)
—2(S+n+a)(S+n—-—w+1)(S+n—-N).
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3.3.6.6 Double Geronimus Meixner functional
Linear functional

Ll =Y ) (@, 5 e N

First moment differential operator

0%, = 6% (¥ —ws) = O19 (9 — wi) (V — wy)
=190 —w) (¥ —ws) —2z(W+a) (W —w) (¥—ws),

which is a special case of (51) with
a=a, a=-w, a=-wy b =-w, by=—ws.
Standard moments recurrence operator

) = 0T (S —wy) = D1 (S —wi) (S — wo)
= [S" =2 (S +1)"(S+a)] (S —wi) (S —w).

Modified moments hypergeometric representation

" a+n,n—w,n—wy

Gz(z): <a>n2
n—w1+1,n—wQ+1 !

(n—wi) (n — wy) 3t

Modified moments recurrence operator

‘I’ﬁzzq’fo(s+n—w2)2\11170(S+n—w1)(8+n—w2)
=[S—2(S+n+a)](S+n—w)(S+n—wy).

3.3.6.7 Reduced-Uvarov Geronimus Meixner functional
Since for the Geronimus Meixner functional we have

o) =P -w), @) =(@+a) (0 —w), wgN,
we will have a reduced case for its Uvarov transformation U (() if
(=0,—a.
i)(=0

o7
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Linear functional

= u(z zZ°
O =3 ), T ), wen,

=0
First moment differential operator

O = (10 —1)0f) =1 —-1)6,0 (0 —w)

=90 (W —w)(W—1)— 2z +a)(—w),
which is a special case of (51) with
ap=a, ay=-—w, az3=0, b =-w, by=—-1.
Standard moments recurrence operator
oY= (S —1) 05 = (S 1) 10(S —w)
= [S”“ (S-1) —z(S—l—l)”(S—l—a)S} (S —w).
Modified moments recurrence operator
U)o = (8 +n) Uy = (S +n) Ui (S +n—w)
=[S S+n—-1)—2(S+n+a)(S+n)](S+n—w).
ii) ( = —a

Linear functional

—a), u(w z* a
25 =3 ), T we

r—Ww
=0

First moment differential operator
07 = (9 +a) 0%, = (¥ +a)Or (U — w)
=00 —-w)(W+a)—z@W+a)(¥—w)(W@+a+1),
which is a special case of (51) with
ag=a, a=-w, az=a+1, b =—-w, by=a.
Standard moments recurrence operator
VS = (S +a) 8% = (S +a) 1o (S —w)
=[S —2(S+1D)"(S+a+1)](S+a)(S—w).
Modified moments recurrence operator
W= (Statn+ )V = (S+atn+ 1)U (S+n—w)
=S§—-z(S+a+n+1)](S+a+n)(S+n—-w).
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3.3.6.8 Truncated Geronimus Meixner functional
Linear functional

N I
Z —' N eNy, wé¢N.
m:O
First moment differential operator
Oy =(W-N-1)0j=0-N-1)0,4(¥ —w)
=9 —w)(W—N—-1)—z(W0+a)(¥—w) (@ —N),
which is a special case of (51) with
ag=a, a=-w, a3=-N b =-w, by=-N-—1.
Standard moments recurrence operator
O =(S—N-1) = (S—N—1)P (S —w)
= [S”“(S—N—1)—2(S+1)"(S+a)(S—N)] (S —w).

Modified moments recurrence operator

Uiy =(S+n—N)¥F =(S+n—N)To(S+n—w)
=S E4+n—-N-1)—z(S+n+a)(S+n—N)|(S+n—w).

3.3.6.9 Double Uvarov Meixner functional
Since for the Reduced-Uvarov Meixner functional we have

oy () =9 (@ =1), 7" ) =9 +a)
oy W) =00 +a), T W) =0+a)(@+a+l),
we will have a reduced case for their Uvarov transformations U (() if
(=1-a, or (=0,—a—1.

=1

Linear functional
Ly Zu (a), = + mu (0) + nau (1) 2.

59



First moment differential operator

Oy = (W -2)6f" = (¥ -2) (W -1)6,,
— YW —1)W—2)—z(W+a)d (W —1),

which is a special case of (51) with
a; = a, g = O, as = —1, bl = —1, b2 = —2.
Standard moments recurrence operator

o0 = (S -2 el = (S - 2) (S~ 1) by
= [S™(S -2~ 2(S+ )" (S+a)S] (S —1).

Modified moments recurrence operator

W =S +n—1)0 = (S+n—-1)(S+n) ¥y
=[SS+n—-2)—2(S+n+a)(S+n)](S+n—-1).

i) ( = —a

Linear functional
U(—a, - z" —a
Ly 0 [l = D u (@) (a), — +mu(0) +npu (~a) 2™
=0 ’

First moment differential operator

07l = (0 +a)0Y = (0 +a) (0 —1)O1
=900 -1)W+a)—z@+a)dW@+a+1),

which is a special case of (51) with
ag=a, ay=0, az=a+1, b =-1, by=a.
Standard moments recurrence operator

/5 = (S+a) el = (S+a)(S—1) Py
=[§"(SE-1)—-2(S+1)"S(S+a+1)](S+a).
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Modified moments recurrence operator

W = (Stn+at+ 1)U = (S+n+a+1)(S+n) ¥,
LSS tn—1)—2(S+n)(S+tntatD](S+tnta).

i) (=—-a—1
Linear functional

L1U7 —o—1—a) Zu (a), ——l—mu( a)z “ +nu(—a—1)z7"

First moment differential operator

O =W ra+1)07 =W +a+1)(0+a)Ou
=W +a)W+a+1l)—zW+a)W+a+1)(V+a+2),

which is a special case of (51) with
ag=a, a=a+1, az=a+2, b =a, by=a+1.
Standard moments recurrence operator

T = (S+a+1) 85 = (SHat+1)(S+a) by
=[S —2(S+1)"(S+a+2)] (S+a)(S+a+1).

Modified moments recurrence operator

P = (St nta+2) 05V = (S+nta+2) (S+ntatl)¥
=[S—-2(S+n+a+2)](S+n+a)(S+n+a+1).

3.3.6.10 Reduced-Uvarov Truncated Meixner functional
Since for the Truncated Meixner functional we have

c()=09W-N-1), 7(¥)=W+a)(W—-N), N €N,
we will have reduced cases for its Uvarov transformation U (¢) if
¢=0,N+1,—a,N.
i)(=0
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Linear functional
U(0),T z
Ly u] =D u(w) (a), — +7u(0), NeEN,.

First moment differential operator

O/ =W -1)0T;=®—-1)(¥ - N —1)6:,
=90 -N-1)W—-1)—2(+a)(W—N)9,

which is a special case of (51) with
ay = a, GQZ—N, CLgZO, blz—N—l, bQZ—]_
Standard moments recurrence operator

T =(S-1) 0T, =(S—1)(S—N—1) Py
=S (S-N-1D(E-1)—2(S+1)"(S+a)(S—N)S.

Modified moments recurrence operator

WO = (S +n) 9Ty = (S+n) (S+n—N) ¥,
=S SE+n—-N-1)(S+n—-1)—2(S+a)(S+n—N)(S+n).

i) (=N+1
Linear functional
N o
Lyg" ™ ) = Y Ju (@) (@), +nu(N +1) 2" N €N,
=0 :

First moment differential operator

QNI — (9 - N —2)0T = (0 = N —2) (¥ — N — 1)1,
—JW—-N-1)0—-N-2)—z20+a)(@—N)(0—N—1),

which is a special case of (51) with

ag=a, ay=-N, a3=—-N-—-1, bj=—-N—-1, by=—-N—2.
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Standard moments recurrence operator

U(N+1),T
D1

(S—=N=2)0{(=(S-N=-2)(S—N-1)dy
[S"™(S-N=-2)—2(S+1)"(S+a)(S—N)](S—N-1).

Modified moments recurrence operator

W/ = (S 4n - N -1 =(S+n—N-1)(S+n—N)¥,
=[S S+n—-N-2)—2(S+n+a)(S+n—N)|(S+n—-—N-1).
i) ¢ = —a
Linear functional
N x
L5 u] = u(x) (a), 5 +u(-a)z™", NeNo.
2=0

First moment differential operator
Oy =W+a)0ly=W+a)(W—N—1)0y
=00 -N—-1)(0+a)—z@W+a)(—-—N)W@+a+1),
which is a special case of (51) with
ai=a, ay=—-N, az=a+1, by=—-N-—-1, by=a.
Standard moments recurrence operator

V5T = (S+a)dly=(S+a)(S— N 1)y
=[S (S-N-1)—2(S+1)"(S=N)(S+a+1)](S+a).

Modified moments recurrence operator

VT = (Stn+a+r )W =(S+n+a+1)(S+n—N)¥,
=[SSE+n—-N-1)—z(S+n—N)S+n+a+1)](S+n+a).
iv) (=N
Linear functional
N T
Ly ] = Y u (@) (@), +qu(N) 2N, NN,
=0



First moment differential operator
oM = (W - N)OTy =W~ N)( -~ N —1)O.4
=9(W-N-1)0—-N)—zW@+a)(d—N)(I—-N+1),
which is a special case of (51) with
ay = a, (IQZ—N, CL3:—N+1, blz—N—l, bQZ—N
Standard moments recurrence operator
M = (S—N)BT = (S—N)(S— N —-1)®y
=[S (S-N-1)—2(S+1)"(S+a)(S—=N+1)](S—N).
Modified moments recurrence operator
VT = (S+n - N+ DU =(S+n—N+1)(S+n—N)¥,
=[S(SE+n—-N-1)—2z(S+n+a)(S+n—N+1)](S+n—-N).
3.3.6.11 Christoffel Generalized Hahn functional

Linear functional

1y =3 @ —wue) R
First moment differential operator
05, =0(W+b) (0 —w—1)—2(0+a) (I +as) (Y —w+1),
which is a special case of (51) with
az=-w+1, by=0, by=—-w-—1.

Standard moments recurrence
O =S (S+0)(S—w—-1)—2(S+1)"(S+a1)(S+a) (S—w+1).

Modified moments hypergeometric representation

C _ - (al)n(az)n n Cl1+n,a2+n,n—w+1'
v, (2) = (n )—(b+1)n 3f3 bt 1+mm—w P2

Modified moments recurrence operator
U5 =8 S+n+b)(S+n—w-1)
—2(S+n+a)(S+n+a)(S+n—w+1).
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3.3.6.12 Geronimus Generalized Hahn functional
Linear functional

T

LS, [u ulz) (@), (az), = Np.
21 | xzx w b—l—l) x!’ w ¢ No

First moment differential operator
@20,1 =01 (V—w) =00 +b) (¥ —w)—2z0+a1) I+ az) (V—w),
which is a special case of (51) with
a3 =—w, by =0b, b =—w.
Standard moments recurrence operator
O =Dy (S—w) = [S"T(S+D) —2(S+1)"(S+ar1) (S+a2)] (S —w)

Modified moments hypergeometric representation

1 (@), (ag) ai+n,az +n,n—w
G _ n n . n 1 s W2 ) .
V”(Z)_n—w (b+1), " 8k b+1l+nn—w+1'"

Modified moments recurrence operator
\IJQG1 \112 1 (S +n— )
=[S SE+n+b)—2(S+n+a)(S+n+a)(S+n—w).

3.3.6.13 Reduced-Uvarov Generalized Hahn functional
Since for the generalized Hahn functional we have

o) =v@0+b), 7)) =0+a)+as),
we will have reduced cases for its Uvarov transformation U (¢) if
¢=0,-b,—ay, —as.
i)(=0

Linear functional
xr

(az), 2
Zu b—i—l x!—knu(O).
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First moment differential operator
05 = (W 1)1 =0 (I +b) (I — 1) — 2 +ar) (I +a) ¥,
which is a special case of (51) with
az =0, by=0b by=-—1.
Standard moments recurrence operator

oy = (S —1) By =S (S+D) (S 1)
—Z(S+ 1)n(8+&1> (S+Cl2)«5

Modified moments recurrence operator

WO = (S+n)Way =S(S+n+b)(S+n—1)
—z2(S4+n+a)(S+n+ay)(S+n).

For the special case z = 1, see [5].
i) ¢ = —b
Linear functional

[e.9]

U( b) Z —>w 4 nu (—b) z7°.

=0

First moment differential operator

Oy ) = (W +b—1)Os; =0 (0 +b) (I +b—1)
—Z(ﬁ+a1)(19+a2)(19+b)7

which is a special case of (51) with
agzb, blzb, bgzb—l
Standard moments recurrence operator

oy Y = (S+b—1) Dy,
=[S (S+b—1) = 2(S+ 1" (S+a1) (S +a2)] (S+D).
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Modified moments recurrence operator
U0 = (S +n+b) Uy,
=[S(SE+n+b—-1)—2z(S+n+a)(S+n+a)|(S+n+b).

i) ( = —ay
Linear functional

U(-a1 - (a1), (az), 2" —a
L27§ ) [u] = ;u () Wg + nu (—ay) 27

First moment differential operator
05 = (9 +a1) Oz =V (0 +b) (V + ay)
—z(0+a1)(P+a) (P +ar+1),
which is a special case of (51) with
az=a1+1, by =0b, by=a.
Standard moments recurrence operator

®2U’§_a1) == (S + CLl) @2’1
=[S (S+b) —2(S+1)"(S+a) (S+ a1+ 1)] (S+a1).

Modified moments recurrence operator

W = (St nta+1)¥,,
=[S S+n+b)—z2(S+n+a)(S+n+a+1](S+n+a).

3.3.6.14 Truncated Generalized Hahn functional
Linear functional

N

L[] =S u () —(Czlb)+<?;>% N €N,

r=

First moment differential operator

O3, =W —-N=-1)0; =9 +b) (- N —1)
—z(0+a1) (¥ +az) (0 —N),
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which is a special case of (51) with

agz—N, blzb, bQZ—N—l

Standard moments recurrence operator

P =(SE—N-1)0y; =8 (S+b)(S—N-1)
—2(8+1)"(S+a1)(S+az)(S—N).

Modified moments recurrence operator

Ul =(S+n—N)Us; =S(S+n+b)(S+n—N-1)
—2(S+n+a)(S+n+a)(S+n—-N).

4 Summary

In this section, we list all the functionals and their transformations. Note
that we have

s=0 s=1 5§ =2

Charlier (0,0) | 4 cases (1,1) 15 cases (2,2)

Meixner (1,0) | 5 cases (2,1) 20 cases (3,2)
Generalized Charlier (0, 1) 5 cases (1,2)
Generalized Meixner (1,1) 6 cases (2,2)
Generalized Krawtchouk (2,0; N) | 5 cases (3,1; N)
Generalized Hahn (2, 1) 7 cases (3,2)

Charlier

Differential operator:
@00 =19 — z.

(i) Christoffel transformation (of type 1,1):

O =W —-w-1) -2z -w+1).

Double transformations (of type 2, 2):

Ofg =00 —wi —1) (0 —wy — 1) — 2 (9 —wy + 1) (J —wy + 1),
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Ofy =0 (0 —wi —1) (¥ —wy) — 2 (V= wy + 1) (¥ — ws),

O =0 (W —w—1) (I 1)~ 2 () —w+1)7,
Oy =W w1 (W —w—-2) 20 —wH 1) (I —w—1),
9

Oy =W w1 (W —wt ) 2@ —w 1) —w+2),

Oy =90 —w—1)(0 =N —1)—2(d —w+1) (¥ — N).
(ii) Geronimus transformation (of type 1, 1):
@0% =00 —-w)—2z(0—w).
Double transformations (of type 2, 2):
905 =65

@5"0_19(19 wy) (U —ws) — 2 (¥ —wy) (¥ — wa),

O =0 (0 —w) (D —1) — 2 (9 —w) Y,
5™ =
Oy =0 (W —w) (=N —1)—z (¥ —w) (- N).
(iii) Reduced-Uvarov transformation U (0) (of type 1, 1):
Oy =9 (0 —1) — 20.
Double transformations (of type 2,2):

@CU( ) e U(0),C

G,U(0 U(0),G
0,0 @0,0():@0()

70 )

05, =9 (W —1) (9 —2) — 20 (9 — 1),
00y P =9 (W —1) (¥ —N—1)— 209 — N).
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(iv) Truncation transformation (of type 1,1):
Opo =90 —N-1)—z(J—N).
Double transformations (of type 3,2):

foXis T.C G,T .G U0),T _ AT,U(0)
90 0 @0,0 ) @0 0 6070 ’ @0,0 - @0,0 ’

O T =9 - N 1) (0~ N —2) —z(0 = N) (0 — N — 1),

Oy =W~ N—-1) (0 = N) =2 —N) (@ — N +1).
(v) Uvarov transformation (of type 2,2):

O =0 —w-1)—w) =2 —w) (@ —w+1), w#0.

Meixner

Differential operator:
©10=0—-2(+a).
(i) Christoffel transformation (of type 2,1):
Ol =0(W—-w-1)—z@W+a)(—w+1).
Double transformations (of type 3,2):

O =0 (0 —wi = 1) () —wp = 1)=2 (9 +a) (I w1 + 1) (§ —wp + 1),

Ofy =0 (W —wi —1) (¥ —wy) — 2(V+a) (¥ —wi +1) (I —ws),

OV =W —w—-1)W—1) =2 +a) (¥ —w+1)7,
@U(w+1)c:§(§_w_1)<79 w=2)—z@W+a)(W-—w+1)()—w-—-1),
@U( VYW —w—-1)0+a)—zW0+a) (0 —w+1) (I +a+1),
@U(w DO —w—1 0 —w+1)—z@+a)(—w+1) (0 —w+2),

01y =0(W—-w—-1)(—N-1)—z(@+a) (¥ —w+1) (- N).
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(ii) Geronimus transformation (of type 2, 1):
O =90 —w)—zW+a)¥—w).

Double transformations (of type 3,2):

C,G _ G,C
@l,O - @1,0 )

0%, =9 (¥ —wi) (¥ — wz) — 2 (9 +a) (I — wy) (¥ —wy),

O =9 (W —w) (0 —1) = 2(0 +a) () —w) 9,
O =9 (W —w) (W +a)— 20 +a) (W —w) (@ +a+1),
@[lf’(()w),G — @fo’
Ofy =0 (W —-w)(W-N-1)—z(®+a)®¥—w)®-N).
(iii) Reduced-Uvarov transformation U (0) (of type 2, 1):
Ol =9 (W —1)—2(W+a)v.
Double transformations (of type 3,2):

C,U(0 U(0),C G,U(0
@1,0 ® = @1,8) ) @1,0 ©

I
=
°e

Q

OV =9 (W —1) (0 —2) =z (D+a)d (¥ —1),
0l =9 (W~ 1) (0 +a)— 2 (W +a) (¥ +a+1),
01" =9 -1)W—-N—-1)— 2@ +a)d (¥ - N).
(iv) Reduced-Uvarov transformation U (—a) (of type 2,1):
O =0 +a)—z(@0+a)(@+a+1).
Double transformations (of type 3,2):

G,U(—a
) @l,O )

@C,U(*a) — @[]-J’(()f(l),c

U(—a),G U?(0,—a
% @l( ) @l,O( )

U?(—a,0)
,0 ) @1,0

Y

@ﬁ;(—a—l,—a):19(19—1—&)(19+a—|—1)—2(19+a)(19+a+1)(19+a+2)’
Ol ™ =W +a) (I -N—-1)—z(@+a)(@+a+1) (- N).
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(v) Truncation transformation (of type 2,1):
Olg=9(W0—-N-1)—z(@+a)(—N).
Double transformations (of type 3,2):

CT _ ATC GT _ ATG U0),T _ ATU(0)
O1p =61p, O15 =01y, Oy =01 7,

OV T =9 (W - N-1)(W—N—2) 2@ +a) (@ —N)@—N—1),

O/ =9 (W - N—-1)(W0-N)—z(@+a) (- N) (@ —N+1).

(vi) Uvarov transformation (of type 3,2):

Ofy=0(W-w-1)W-w-z0+a)(-w) (P-—w+1), w#0,—a

Generalized Charlier

Differential operator:
@071 :19(19+b)—z
Transformations (of type 1,2):
(i) Christoffel

O, =00 +b) (W —w-1)—2z0 —w+1),

(ii) Geronimus

Of =00 +b) (¥ —w)— 2V —w),
(iii) Reduced-Uvarov
05 =9 (0 4 b) (9 — 1) — 20,
O ) =0 (@0 +b) (W +b—1)— 2D +b),

(iv) Truncation

Qg =90 +b) (¥ —N—-1)—z(—N).
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(Generalized Meixner

Differential operator:
11 =0W0+b) —2(W+a).
Transformations (of type 2, 2):
(i) Christoffel
O, =0W+b)(W-w—-1)—2zW+a) (¥ —w+1),
(ii) Geronimus
@ﬁl =90 (W+b) (0 —w)—z(W+a) (W —w),
(iii) Reduced-Uvarov
O =9 (@ +b) (1) — 2 (I +a)?,
OV =9 +b) (D +b—1)—2(9+a) (0 +),
OV =W +b) (W +a) -z +a) (P +a+1),
(iv) Truncation
O, =9W0+b)(—N—-1)—2z(+a) (¥ —N).

Generalized Krawtchouk

Differential operator:
Oron =0 —2 (0 —N) (¥ +a)
Transformations (of type 3,1; N):
(i) Christoffel
Oy =90 -w—-1)—2(W0—N)(W+a) (¥ —w+1),
(ii) Geronimus

Oy =0 (9 —w) — (0~ N) (9 +0) (9 ~ ),
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(iii) Reduced-Uvarov

Oy =0 (0 —1) —2() — N) (¥ +a),
Oy =00 —N) =2 —N)(®+a)(@—N+1),
Oy =00 +a)— 20— N)(W+a) ¥ +a+1).

Generalized Hahn functional of type I

Differential operator:

@271 :19(19+b) —2(19+CL1) (194-@2)
Transformations (of type 3,2):

(i) Christoffel

O, =0(W0+b) (W —w—1) =20 +a) (I +az) (d—w+1),

(ii) Geronimus

O, =0 (W0 +b) () —w) — 2 (0 +ar) (Y + az) (V —w),

(iii) Reduced-Uvarov

21 —19(19+b)(19—1)—z(19—|—a1)(19—|—a2)19,
(W +b) (I +b—1)— 2 (9 +ar) (9 +az) (9 +D),
@ D= (0 +b) (0 +a1) —2 (0 +a) (9 +az) (9 +ay + 1),
@ 2= 9 (94 b) (0 +az) — 2 (9 +a1) (9 + as) (9 + ap + 1),

(iv) Truncation

O3, =0W+b)(—N—-1)— 2 +a) (¥ +a) (J—N).

74



5 Conclusion

We have studied the discrete functionals (6) characterized by the hypergeo-
metric differential equation satisfied by their first moment A\ (2) = L[1],

[ (0 +b)—2z(0+a)][r] =0, acKP, bekK.

We obtained recurrence relations for the moments on the monomial and
falling factorial polynomial bases, and gave examples for all functionals of
class s < 2, where s = max{p —1,¢}.

We are currently working on further applications of our results to study
some properties of the orthogonal polynomials themselves (representations,
recurrence-relation coefficients, generating functions, etc.)

Acknowledgement 10 The first part of this work was supported by the
strategic program "Innovatives OO- 2010 plus" from the Upper Austrian
Government. We wish to thank Professor Veronika Pillwein for her gen-
erous sponsorship.

References

[1] M. ALFARO AND R. ALvAREZ NODARSE. A characterization of the
classical orthogonal discrete and g-polynomials. J. Comput. Appl. Math.
201(1), 48-54 (2007).

2] R. ALvAREZ NODARSE, J. ARVESU, AND F. MARCELLAN. Modifica-

tions of quasi-definite linear functionals via addition of delta and deriv-
atives of delta Dirac functions. Indag. Math. (N.S.) 15(1), 1-20 (2004).

[3] R. ALvAREZ NODARSE, A. G. GARCIA, AND F. MARCELLAN. On the
properties for modifications of classical orthogonal polynomials of dis-
crete variables. In “Proceedings of the International Conference on Or-
thogonality, Moment Problems and Continued Fractions (Delft, 1994)”,
vol. 65, pp. 3-18 (1995).

[4] R. ALvAREZ NODARSE AND F. MARCELLAN. Difference equation for

modifications of Meixner polynomials. J. Math. Anal. Appl. 194(1),
250-258 (1995).

75



[5]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

R. ALVAREZ NODARSE AND F. MARCELLAN. The modification of clas-

sical Hahn polynomials of a discrete variable. Integral Transform. Spec.
Funct. 3(4), 243-262 (1995).

R. ALvAREZ NODARSE AND J. PETRONILHO. On the Krall-type dis-
crete polynomials. J. Math. Anal. Appl. 295(1), 55-69 (2004).

H. BaviNck AND R. KOEKOEK. On a difference equation for gener-
alizations of Charlier polynomials. J. Approz. Theory 81(2), 195-206
(1995).

H. BAVINCK AND H. VAN HAERINGEN. Difference equations for gen-
eralized Meixner polynomials. J. Math. Anal. Appl. 184(3), 453-463
(1994).

S. BELMEHDI. On semi-classical linear functionals of class s = 1. Classi-
fication and integral representations. Indag. Math. (N.S.) 3(3), 253-275
(1992).

L. BoeELEN, G. FILiPUK, AND W. VAN ASSCHE. Recurrence coeffi-
cients of generalized Meixner polynomials and Painlevé equations. J.

Phys. A 44(3), 035202, 19 (2011).

M. I. BUENO AND F. MARCELLAN. Darboux transformation and per-
turbation of linear functionals. Linear Algebra Appl. 384, 215-242
(2004).

P. L. BurzER AND T. H. KOORNWINDER. Josef Meixner: his life and
his orthogonal polynomials. Indag. Math. (N.S.) 30(1), 250-264 (2019).

K. Castitro, F. R. RAFAELI, AND A. SUZUKI. Stieltjes’ theorem
for classical discrete orthogonal polynomials. J. Math. Phys. 61(10),
103505, 16 (2020).

C. V. L. CHARLIER. "Uber die Darstellung willkiirlicher Funktionen.
Ark. Mat., Astr. Fys. 2(20), 35 (1905-1906).

T. S. CuinARA. Orthogonal polynomials and measures with end point
masses. Rocky Mountain J. Math. 15(3), 705-719 (1985).

76



[16]

[17]

18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. A. CLARKSON. Recurrence coefficients for discrete orthonormal poly-
nomials and the Painlevé equations. J. Phys. A 46(18), 185205, 18
(2013).

D. DIcKINSON. On Lommel and Bessel polynomials. Proc. Amer. Math.
Soc. 5, 946-956 (1954).

D. DowmiNici. Asymptotic analysis of the Askey-scheme. I. From
Krawtchouk to Charlier. Cent. Eur. J. Math. 5(2), 280-304 (2007).

D. DomMminICI. Asymptotic analysis of the Krawtchouk polynomials by
the WKB method. Ramanujan J. 15(3), 303-338 (2008).

D. Dowminict. Laguerre-Freud equations for generalized Hahn polyno-
mials of type 1. J. Difference Equ. Appl. 24(6), 916-940 (2018).

D. DoMINICI. Recurrence relations for the moments of discrete semi-
classical orthogonal polynomials. J. Class. Anal. 20(2), 143-180 (2022).

D. Dowminict AND F. MARCELLAN. Discrete semiclassical orthogonal
polynomials of class one. Pacific J. Math. 268(2), 389-411 (2014).

D. Dowminict AND F. MARCELLAN. Discrete semiclassical orthogonal
polynomials of class 2. In “Orthogonal polynomials: current trends and
applications”, vol. 22 of “SEMA SIMAI Springer Ser.”, pp. 103-169.
Springer, Cham ([2021] (©2021).

A. J. DURAN. Orthogonal polynomials satisfying higher-order difference
equations. Constr. Approz. 36(3), 459-486 (2012).

A. J. DURAN. From Krall discrete orthogonal polynomials to Krall
polynomials. J. Math. Anal. Appl. 450(2), 838-900 (2017).

A. J. DURAN. The algebras of difference operators associated to Krall-
Charlier orthogonal polynomials. J. Approx. Theory 234, 64-81 (2018).

A. J. DURAN. Christoffel transform of classical discrete measures and
invariance of determinants of classical and classical discrete polynomials.
J. Math. Anal. Appl. 503(2), Paper No. 125306, 29 (2021).

7



28]

[29]

[30]

[31]

P. FEINSILVER, J. MCSORLEY, AND R. SCHOTT. Combinatorial in-

terpretation and operator calculus of Lommel polynomials. J. Combin.
Theory Ser. A 75(1), 163-171 (1996).

G. FiLipuk AND W. VAN ASSCHE. Recurrence coefficients of a new
generalization of the Meixner polynomials. SIGMA Symmetry Integra-
bility Geom. Methods Appl. 7, Paper 068, 11 (2011).

G. FiLipuk AND W. VAN ASSCHE. Discrete orthogonal polynomials
with hypergeometric weights and Painlevé VI. SIGMA Symmetry Inte-
grability Geom. Methods Appl. 14, Paper No. 088, 19 (2018).

M. FouprPOUAGNIGNI, M. N. HOUNKONNOU, AND A. RONVEAUX.
Laguerre-Freud equations for the recurrence coefficients of D, semi-
classical orthogonal polynomials of class one. In “Proceedings of the
VIIIth Symposium on Orthogonal Polynomials and Their Applications
(Seville, 1997)”, vol. 99, pp. 143-154 (1998).

A. G. GArciA, F. MARCELLAN, AND L. SALTO. A distributional
study of discrete classical orthogonal polynomials. In “Proceedings of
the Fourth International Symposium on Orthogonal Polynomials and
their Applications (Evian-Les-Bains, 1992)” vol. 57, pp. 147-162 (1995).

W. GAuTscHI. On generating orthogonal polynomials. SIAM J. Sci.
Statist. Comput. 3(3), 289-317 (1982).

E. Gopoy, F. MARCELLAN, L. SALTO, AND A. ZARZO. Perturbations

of discrete semiclassical functionals by Dirac masses. Integral Transform.
Spec. Funct. 5(1-2), 19-46 (1997).

M. N. HounkonNNOU, C. HOUNGA, AND A. RONVEAUX. Discrete

semi-classical orthogonal polynomials: generalized Charlier. J. Comput.
Appl. Math. 114(2), 361-366 (2000).

S. KARLIN AND J. L. MCGREGOR. The Hahn polynomials, formulas
and an application. Scripta Math. 26, 33-46 (1961).

M. P. KRAVCHUK. Sur une généralisation des polynomes d’Hermite.
C. R. Acad. Sci. Paris 189, 6204A3-622 (1929).

78



38]

[39]

[40]

[41]

[43]

[44]

[45]

[46]

K. F. LEE AND R. WONG. Asymptotic expansion of the modified

Lommel polynomials h,,,(z) and their zeros. Proc. Amer. Math. Soc.
142(11), 3953-3964 (2014).

M. MANAS. Pearson equations for discrete orthogonal polynomials:
IIT—Christoffel and Geronimus transformations. Rev. R. Acad. Cienc.
Ezactas Fis. Nat. Ser. A Mat. RACSAM 116(4), Paper No. 168, 23
(2022).

M. MAanNAs, I. FERNANDEZ-IRISARRI, AND O. F. GONZALEZ-
HERNANDEZ. Pearson equations for discrete orthogonal polynomials: I.

Generalized hypergeometric functions and Toda equations. Stud. Appl.
Math. 148(3), 1141-1179 (2022).

I. G. MACDONALD. “Symmetric functions and Hall polynomials”. Ox-
ford Classic Texts in the Physical Sciences. The Clarendon Press, Oxford
University Press, New York, second ed. (2015). With contribution by A.
V. Zelevinsky and a foreword by Richard Stanley, Reprint of the 2008
paperback edition [ MR1354144].

D. MAKI. On constructing distribution functions: With applications
to Lommel polynomials and Bessel functions. Trans. Amer. Math. Soc.
130, 281-297 (1968).

F. MARCELLAN AND L. SALTO. Discrete semi-classical orthogonal poly-
nomials. J. Differ. Equations Appl. 4(5), 463-496 (1998).

P. MARONI. Sur la suite de polyndémes orthogonaux associée a la forme
u =0, + Nz — ¢)"' L. Period. Math. Hungar. 21(3), 223-248 (1990).

P. MARONI AND M. MEJRI. The symmetric D,-semi-classical orthog-
onal polynomials of class one. Numer. Algorithms 49(1-4), 251-282
(2008).

J. MEIXNER. Orthogonale Polynomsysteme Mit Einer Besonderen
Gestalt Der Erzeugenden Funktion. J. London Math. Soc. 9(1), 6-13
(1934).

A. F. Nikirorov, S. K. SusrLov, AND V. B. UvArov. “Classical
orthogonal polynomials of a discrete variable”. Springer Series in Com-
putational Physics. Springer-Verlag, Berlin (1991). Translated from the
Russian.

79



[48] P. NJIONOU SADJANG, W. KOEPF, AND M. FOUPOUAGNIGNI. On mo-

ments of classical orthogonal polynomials. J. Math. Anal. Appl. 424(1),
122-151 (2015).

[49] F. W. J. OwveEr, D. W. Lozier, R. F. BoisvErr, AND C. W.
CLARK, editors. “NIST handbook of mathematical functions”. U.S.
Department of Commerce, National Institute of Standards and Technol-
ogy, Washington, DC; Cambridge University Press, Cambridge (2010).
With 1 CD-ROM (Windows, Macintosh and UNIX).

[50] A. RONVEAUX, S. BELMEHDI, E. GODOY, AND A. ZARZO. Recurrence
relation approach for connection coefficients. Applications to classical
discrete orthogonal polynomials. In “Symmetries and integrability of
difference equations (Estérel, PQ, 1994)”, vol. 9 of “CRM Proc. Lecture
Notes”, pp. 319-335. Amer. Math. Soc., Providence, RI (1996).

[51] A. RONVEAUX AND L. SArro. Discrete orthogonal polynomials—

polynomial modification of a classical functional. J. Differ. Equations
Appl. 7(3), 323-344 (2001).

[52] M. SGHAIER AND M. ZAATRA. A large family of D,-semiclassical

polynomials of class one. Integral Transforms Spec. Funct. 28(5), 386—
402 (2017).

[53] M. SGHAIER AND M. ZAATRA. A family of discrete semi-classical or-

thogonal polynomials of class one. Period. Math. Hungar. 76(1), 68-87
(2018).

[54] L. J. SLATER. “Confluent hypergeometric functions”. Cambridge Uni-
versity Press, New York (1960).

[55] C. SMET AND W. VAN AsscHE. Orthogonal polynomials on a bi-lattice.
Constr. Approz. 36(2), 215-242 (2012).

[56] L. TRUKSA. Hypergeometric orthogonal systems of polynomials. i. Ak-
tudrské Vedy 2(2), 65-84 (1931).

[57] L. TRUKSA. Hypergeometric orthogonal systems of polynomials. ii. Ak-
tudrské Vedy 2(3), 113-144 (1931).

80



[58]

[59]

[60]

[61]

[62]

L. TRUKSA. Hypergeometric orthogonal systems of polynomials. iii.
Aktudrské Vedy 2(4), 177-203 (1931).

W. VAN ASSCHE AND M. FOUPOUAGNIGNI. Analysis of non-linear

recurrence relations for the recurrence coefficients of generalized Charlier
polynomials. J. Nonlinear Math. Phys. 10(suppl. 2), 231-237 (2003).

L. VERDE-STAR. Recurrence coefficients and difference equations of
classical discrete orthogonal and g-orthogonal polynomial sequences.
Linear Algebra Appl. 440, 293-306 (2014).

L. VERDE-STAR. A unified construction of all the hypergeometric and

basic hypergeometric families of orthogonal polynomial sequences. Lin-
ear Algebra Appl. 627, 242-274 (2021).

L. VINET AND A. ZHEDANOV. Hypergeometric orthogonal polynomials
with respect to Newtonian bases. SIGMA Symmetry Integrability Geom.
Methods Appl. 12, Paper No. 048, 14 (2016).

81



