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Abstract. This note describes developments in computer algebra which have been in-
spired by the mathematics of Ramanujan.

1. Introduction

The homage [3], written by George Andrews at the occasion of the 123th anniversary
of Ramanujan’s birth, contains a section “Ramanujan and computation.” It begins with a
relevant quote by Hardy [30, p. xxxv]:

“His memory, and his powers of calculation, were very unusual, but they could not
reasonably be called “abnormal”. If he had to multiply two large numbers, he multiplied
them in the ordinary way; he would do it with unusual rapidity and accuracy, but not
more rapidly or more accurately than any mathematician who is naturally quick and has
the habit of computation. There is a table of partitions at the end of our paper [which
lists the partition numbers up to p(200) having 13 digits]. This was, for the most part,
calculated independently by Ramanujan and Major MacMahon; and Major MacMahon
was, in general, slightly the quicker and more accurate of the two.”

Now, one hundred years later, methods of computation have changed drastically. The
current world record in computing partition numbers is at p(1020) which has slightly more
than 11 billion digits [19]. To this end, Fredrik Johansson used his highly efficient imple-
mentation of the Hardy-Ramanujan-Rademacher formula [18]. Other aspects of the impact
of Ramanujan’s work on nowadays computing technology, e.g., can be found in [23].

One of the developments described in [23] is the Ramanujan Machine [29] that creates
mathematical conjectures using AI and computer automation. Davide Castelvecchi [12]
attempts to discuss this development in a broader context; e.g., he quotes from an interview
with George Andrews:

“The fact that they have improved the irrationality exponent for the Catalan constant
from 0.554 to 0.567 reveals that they are able to make contributions to really hard problems,
[. . . ] But the contributions made so far are not of the calibre that using Ramanujan’s name
would suggest. Calling this the Ramanujan Machine is over the top,” says Andrews.

Castelvecchi [12] also quotes from his interview with Doron Zeilberger:
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“Eventually, humans will be obsolete,” says Zeilberger, who adds: “And as the complex-
ity of AI-generated mathematics grows, mathematicians will lose track of what computers
are doing and will be able to understand the calculations only in broad outline.”

In this note we discuss neither high precision- nor AI-related aspects of computer tech-
nology. Rather we restrict to one particular aspect of computation, namely to computer
algebra based on algorithmic methods and related software developments.

2. Computer Algebra inspired by Ramanujan

In his monograph on q-series [2, p. 87], Andrews was led to speculate about Ramanujan
and the age of computer algebra:

“Sometimes when studying his work I have wondered how much Ramanujan could have
done if he had had MACSYMA or SCRATCHPAD or some other symbolic algebra package.
More often I get the feeling that he was such a brilliant, clever, and intuitive computer
himself that he really did not need them.”

In the section “What If Ramanujan Had Mathematica?” of [35], Steven Wolfram spec-
ulates too:

“It’s fun to imagine what Ramanujan would have done with these modern tools. I rather
think he would have been quite an adventurer—going out into the mathematical universe
and finding all sorts of strange and wonderful things, then using his intuition and aesthetic
sense to see what fits together and what to study further.

Ramanujan unquestionably had remarkable skills. But I think the first step to following
in his footsteps is just to be adventurous: not to stay in the comfort of well-established
mathematical theories, but instead to go out into the wider mathematical universe and
start finding—experimentally—what’s true.”

In the rest of this note we give a brief sketch in which ways Ramanujan’s work has
inspired developments in computer algebra. Needless to say, that we will restrict only to a
small sample of such developments, owing to page limit but also to incompleteness of our
knowledge.

A natural start is made by stressing George Andrews’s role as pioneer also with regard
to “Ramanujan and Computer Algebra”. In his book [2] a whole chapter is devoted to
computer algebra; it presents an account of how symbolic computation can be utilized in
research of q-series. Much of this material is related to Ramanujan. For example, Frank
Garvan, another pioneer in this topical area, developed the Maple package BAILEY for
computing Bailey pairs. The usage of BAILEY requires another Garvan package, QSERIES,
whose main features are: (i) conversion of q-series to infinite products of different types
including eta-products and theta products; (ii) factorization of a given rational function
into a finite q-product if one exists; (iii) generating probable algebraic relations (if they
exist) among given q-series, and much more.

On Garvan’s web page https://qseries.org/fgarvan/qmaple/qseries/index.html
one finds a variety of other Maple packages related to or inspired by the mathematics of
Ramanujan. For example, there is the ETA package for doing calculations with Dedekind
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eta functions and for proving eta-product identities using the valence formula for modular
forms [16]. For proving generalized eta-product identities there is the package THETAIDS

and the RAMAROBINSIDS package for finding and proving identities for generalizations of
Ramanujan’s functions G(q) and H(q) and Robins’s extensions; see [15].

Andrews contributed substantially to the development of computer algebra algorithms
and respective software. As described in [3], a generalization of Engel expansion [4], a cer-
tain kind of series representation, can be used to computationally “explain” how to go from
the product sides of the Rogers-Ramanujan identities to their sum sides. Subsequently, this
idea has been applied to other identities of Rogers-Ramanujan type, [5] and [6], and the
Mathematica package Engel, written by Burkhard Zimmermann, has been developed [7].
For example, from the input

∏
n≥0(1−q5n+1)−1(1−q5n+4)−1 the first terms of the sum side

are obtained with the procedure call

In[1]:= Engel[1/qPochhammer[q, q5]/qPochhammer[q4, q5], q, 20]

Out[1]= 1+
q

1− q
+

q4

(1− q) (1− q2)
+

q9

(1− q) (1− q2) (1− q3)
+ O[q]16

Another major algorithmic contribution is George Andrews’s revitalization of MacMa-
hon’s method of Partition Analysis. It was Andrews who, when he spent part of his
sabbatical at RISC in spring 1998, initiated the project of studying the algorithmic po-
tential of Partition Analysis—with the goal to produce corresponding software. Over the
years a series of articles has been produced, [9] being the most recent one. The Mathe-
matica package Omega, written by Axel Riese, has served as a fundumental tool in this
project. Besides its important role in experimental mathematics, it has been of great help
in deepening the understanding of MacMahon’s method and various features of his Omega
operator. We restrict to present only one result from [9, Thm. 5]:

The generating function for partitions with n copies of n with m parts in which the
weighted difference between parts ≥ r with r ≥ −2 is given by

x
(m−1)r+(2m−1)
1 x

(m−2)r+(2m−3)
2 . . . x0·r+1

m∏m
i=1(1− x1x2 . . . xi) · (1− x1)

∏m
i=2(1− x2

1x
2
2 . . . x

2
i−1xi)

,

where the exponent of xi accounts for the ith part of the partition in question.

Remarkably, the case r = −2, after setting the xi = q and summing over all m ≥ 0, in
a natural way rewrites in terms of Ramanujan’s fifth order mock theta function ϕ0(q) =

1 +
∑

m≥1 q
m2

(1 + q)(1 + q3) . . . (1 + q2m−1).

3. “First guess, then prove” strategies

The usage of computers in mathematical research often comes in two flavors. There
is the aspect of doing experiments (computing data for further inspection, correctness
checks, etc.) with the goal to arrive at solid hypotheses or at properly specified problems
to solve. The second aspect is to use symbolic computation systems for proving and for
solving. The computing technology applied in these two processes, in short: guessing and
proving, can be based on manifold methods (data bases, AI-methods, computational logic,
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numerical solvers, etc.). As already mentioned, in this note we restrict to computer algebra
algorithms.

Guessing and proving, in practice, usually interact in various ways. For example, in many
applications of MacMahon’s Partition Analysis, the Omega package is used for producing
expressions depending on a parameter n. Inspection of the first cases, for n = 1, 2, etc., then
provides the basis for setting up a general hypothesis to prove. Remarkably, MacMahon’s
method is taylored in such a way, that the computational steps made by Omega in the
concrete cases for n = 1, 2, etc., often suggest very concrete patterns for proving the
general hypothesis by mathematical induction.

The next example should illustrate another different kind of “first guess, then prove”
interplay: the task is to prove

(3.1) 2F1

(
1

3
,
2

3
; 1;x3(q)

)
= a(q), where a(q) =

∞∑
m=−∞

∞∑
n=−∞

qm
2+mn+n2

and

x3(q) =
c(q)3

a(q)3
, with c(q) =

∞∑
m=−∞

∞∑
n=−∞

q(m+ 1
3
)2+(m+ 1

3
)(n+ 1

3
)+(n+ 1

3
)2 .

Here we use Shaun Cooper’s notation; a classical proof of (3.1) can be found in his
beautiful book [13, Thm. 4.4]. There one also finds how these functions relate to original
work by Ramanujan and by the Borwein brothers; see also Cooper’s contribution [14] to
this volume.

Using Mallinger’s Mathematica package GeneratingFunctions, which is freely available
at https://combinatorics.risc.jku.at/software, one can discover (3.1) as follows.
Open a Mathematica session, load the package,

In[2]:= << RISC‘GeneratingFunctions‘

Version 0.8 written by Christian Mallinger © RISC-JKU

and input the q-series expansions of a(q) and x3(q), for instance, as follows:

In[3]:= a[N ] := Series[Sum[qm2+mn+n2

, {m,−N,N}, {n,−N,N}], {q, 0,N}]

In[4]:= c[N ] := Series[Sum[q(m+1/3)2+(m+1/3)(n+1/3)+(n+1/3)2 , {m,−N,N}, {n,−N,N}], {q, 0,N}]

In[5]:= x3[N ] := c[N]3/a[N]3

In[6]:= a[7]

Out[6]= 1+ 6q+ 6q
3 + 6q

4 + 12q
7 + O[q]8

In[7]:= x3[7]

Out[7]= 27q− 405q
2 + 4617q

3 − 45333q
4 + 406458q

5 − 3428487q
6 + 27673704q

7 + O[q]8

Next, determine an initial string R = (r(0), . . . , r(8)) of coefficients r(n) in the expansion

a(q) =
∞∑
n=0

r(n)x3(q)
n,

which is done by using the compositorial inverse X3(q) such that x3(X3(q)) = q:

In[8]:= ComposeSeries[a[22], InverseSeries[x3[22]]]; R = CoefficientList[Normal[%], q]
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Out[8]=

{
1,

2

9
,
10

81
,
560

6561
,
3850

59049
,
28028

531441
,
1905904

43046721
,
14780480

387420489
,
116858170

3486784401

}
Next, calling the GeneratingFunctions procedure GuessRE, automatically guesses a

recurrence Rec satisfied by the coefficients r(n):

In[9]:= Rec = GuessRE[R, r[n]][[1]]

Out[9]=
{
9(n+ 1)2r(n+ 1)− (3n+ 1)(3n+ 2)r(n) = 0, r(0) = 1

}
In other words, we guessed that

r(n+ 1)

r(n)
=

(n+ 1
3
)(n+ 2

3
)

(n+ 1)2
, n ≥ 1, and r(0) = 1,

which is equivalent to guessing the 2F1-series expansion in (3.1). From a general point
of view, the recurrence Rec in Out[9] is a linear recurrence with polynomial coefficients.
It is a well-known fact that sequences r(n), which satisfy such kind of recurrences, have
generating functions y(x) :=

∑
n=0 r(n)x

n satisfying linear differential equations with poly-
nomial coefficients. Algorithmic versions of such facts (conversions, etc.), for instance, are
described in [21].

For example, the conversion of the recurrence Rec in Out[9] into the corresponding
differential equation for y(x) :=

∑
n=0 r(n)x

n is done by the procedure RE2DE of Mallinger’s
package:

In[10]:= DE = RE2DE[Rec, r[n], y[x]]

Out[10]= {9x(1− x)y′′[x] + 9(1− 2x)y′[x]− 2y[x] = 0, y[0] = 1, y′[0] = 2/9}

Consequently, to complete our task, i.e., to prove the correctness of the 2F1-series ex-
pansion of a(q) in (3.1), which so far was only guessed, we need to prove the validity of the
equivalent differential equation DE. Algorithmically, this will be done using the equivalent
form

(3.2) 9x3(q)(1− x3(q))y
′′(x3(q)) + 9(1− 2x3(q))y

′(x3(q))− 2y(x3(q)) = 0,

with q = e2πiτ and where τ is from the upper half of the complex plane such that its
imaginary part is sufficiently large.

How the correctness of such differential equations as (3.2) can be proven algorithmically
is explained in [27] and [28]. The key idea is to reduce the problem to a problem of zero
recognition of modular functions; the problem transformation is done by using a conversion
involving basis elements consisting of functions introduced by Yifan Yang [36].

The general framework for this “first guess, then prove” strategy is based on the classical
fact [37] that modular forms g of weight k can be locally expanded, g = y(h), in terms of
modular functions h (i.e., the weight of h is 0) and where the y satisfy linear differential
equations

pd(h)y
(d)(h) + pd−1(h)y

(d−1)(h) + · · ·+ p0(h)y(h) = 0

with pj(h) being polynomials in h. In general, the order d will be greater than k + 1. In
case the underlying modular curve has genus 0 and h is a Hauptmodul one has d = k + 1;
see [37] and [27].
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Concretely, to prove (3.1) one has g := a(q) which as a function in τ is a modular form
of weight 1 for the congruence subgroup Γ0(3); see [11, Sec. 3]. Moreover, h := x3(q) is a
modular function and a Hauptmodul for Γ0(3); this, e.g., follows from [13, (4.36), p. 258].

All the steps of this “first guess, then prove” method are explained in full detail [27, Ex.
4.2 and Sec. 6.3] in a classical case, namely, to derive and prove

θ3(τ)
2 = 2F1

(
1

2
,
1

1
; 1;λ(τ)

)
,

where θ3(τ) = 1+2
∑

n≥1 q
n2/2, q = e2πiτ , is the Jacobi theta function and λ = θ2(τ)

4/θ3(τ)
4

is the modular lambda function .

4. Conclusion

The “first guess, then prove” method described in the previous section can be applied to
a variety of identities in Ramanujan’s work. As pointed out in [27], a particular application
domain concerns Ramanujan’s approximating series for 1/π; see [10] for history and a fine
survey.

Cristian-Silviu Radu [31] has developed an algorithm which “in one run” discovers and
proves identities such as,

∞∑
n=0

p(5n+ 4)qn = 5
∞∏
j=1

(1− q5j)5

(1− qj)6
,

which was selected by Hardy [30, p. XXXV] as Ramanujan’s most beautiful formula next
to the Rogers-Ramanujan identities. A short description of Radu’s algorithm can be found
in this volume [32]; a Mathematica implementation was done by Nicolas Smoot [34], an
implementation in FriCAS (a freely available descendent of Axiom) by Ralf Hemmecke [17].

Concerning (q-)hypergeometric sums and series arising in Ramanujan’s work, the major
computer algebra systems contain procedures which implement versions of Doron Zeil-
berger’s univariate creative telescoping algorithm [38]. For q-hypergeometric summation,
for example, “finite sum” versions of the Rogers-Ramanujan identitities as discussed in [26],
the package qZeil can still be useful; it also includes tools for Bailey chain computa-
tions [33, Ch. 3] and other features.

When dealing with multivariate identities, i.e., multiple (q-)hypergeometric sums and
multiple integrals (also mixed), fitting into Zeilberger’s holonomic systems approach [39],
there is Christoph Koutschan’s powerful Mathematica package HolonomicSystems [22].

We conclude with other recent computer algebra developments.

The computer searches (in PARI/GP, Maple, and Mathematica) by James McLaughlin,
Drew Sills, and Peter Zimmer [24] led to the discovery of a number of identities of Rogers-
Ramanujan type and identities of false theta functions.

The Maple package IdentityFinder was designed by Shashank Kanade and Matthew
Russell [20] to generate conjectures of identities of Rogers-Ramanujan type. Some of the
identities found this way were known, some have remained unproven until today.
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A particular experimental feature of the Mathematica package qFunctions developed
by Jakob Ablinger and Ali Uncu [1] is that it provides various kinds of guesses, for in-
stance, for q-difference equations. To uncouple a coupled system of recurrences they invoke
Koutschan’s HolonomicSystems package [1, Sec. 4].

This concludes our survey of computer algebra related to Ramanujan. No doubt, his
work will continue to spark creativity, and the near future will see many more exciting
computer algebra developments— inspired by the mathematics of Ramanujan.
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