Asymptotics of binomially weighted sums

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev

Research Institute for Symbolic Computation

December 6, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 764850 (SAGEX).

 Different problems in combinatorics, analysis of algorithms or even physics involve binomially weighted sums

Example 1 (combinatorics): In paper *Evaluation of Binomial Double Sums Involving Absolute Values* of C. Krattenthaler and C. Schneider, sums of the following form appear when we are studying double sums with binomial coefficients:

$$-2^{2m+1}n\binom{2n}{n}\left[\sum_{i=0}^{m}\frac{2^{-2i\binom{2i}{i}}}{i+n}\right] + 2\binom{2m}{m}\binom{2n}{n} + 2^{2m+2n}$$

We might be interested in an asymptotic expansion at $m \to +\infty$ for fixed m , which involves being able in particular to compute the expansion of the boxed sum

Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper The $\mathcal{O}(\alpha_s^3 T_F^2)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al., we encounter sums of the form:

$$\frac{1}{4^n} \binom{2n}{n} \left(\sum_{i=1}^n \frac{4^i}{i^2 \binom{2i}{i}} S_1(i-1) - 7\zeta_3 \right), \quad S_1(i-1) := \sum_{k=1}^{i-1} \frac{1}{k}$$

Sums can be nested, for example in *Iterated Binomial Sums and their Associated Iterated Integrals* by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider, we have also sums such as:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^j$$

Aim: Being able to deal with those kind of sums in all generality, in particular Mellin inversion and asymptotic expansion

Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper The $\mathcal{O}(\alpha_s^3 T_F^2)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al., we encounter sums of the form:

$$\frac{1}{4^n} \binom{2n}{n} \left(\sum_{i=1}^n \frac{4^i}{i^2 \binom{2i}{i}} S_1(i-1) - 7\zeta_3 \right), \quad S_1(i-1) := \sum_{k=1}^{i-1} \frac{1}{k}$$

Sums can be nested, for example in *Iterated Binomial Sums and their Associated Iterated Integrals* by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider, we have also sums such as:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^j$$

Aim: Being able to deal with those kind of sums in all generality, in particular Mellin inversion and asymptotic expansion

Example 2 (physics): Particle physics computations are often done in Mellin space, and for example in the paper The $\mathcal{O}(\alpha_s^3 T_F^2)$ contributions to the gluonic operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al., we encounter sums of the form:

$$\frac{1}{4^n} \binom{2n}{n} \left(\sum_{i=1}^n \frac{4^i}{i^2 \binom{2i}{i}} S_1(i-1) - 7\zeta_3 \right), \quad S_1(i-1) := \sum_{k=1}^{i-1} \frac{1}{k}$$

Sums can be nested, for example in *Iterated Binomial Sums and their Associated Iterated Integrals* by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider, we have also sums such as:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i), \quad \sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^j$$

Aim: Being able to deal with those kind of sums in all generality, in particular **Mellin inversion** and **asymptotic expansion**

We define the binomially weighted sums as follows:

$$BS_{\{a_1,\dots,a_k\}}(n) := \sum_{i_1=1}^n a_1(i_1) \sum_{i_2=1}^{i_1} a_2(i_2) \cdots \sum_{i_k=1}^{i_{k-1}} a_k(i_k)$$

With

$$a_j(p) = a_j(p; b, c, m) = {\binom{2p}{p}}^b \frac{c^p}{p^m}, \quad b \in \{-1, 0, 1\}, \ c \in \mathbb{R}^*, \ m \in \mathbb{N}$$

More generic summands can also be considered, such as:

$$\frac{c^n}{(2n+1)\binom{2n}{n}}$$

▶ We define respectively Mellin transform and Mellin convolution as:

$$M[f(x)](n) := \int_0^1 \mathrm{d}x \, x^n f(x) \quad f(x) * g(x) = \int_0^1 \mathrm{d}x_1 \, \int_0^1 \mathrm{d}x_2 \, \delta(x - x_1 x_2) f(x_1) g(x_2)$$

Question: How to represent them as Mellin integrals?

First method (used by HarmonicSums for general Mellin inversion): given M[f(x)](n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and efficient

Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method (defined in [2]): compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow to compute in an automatic way Mellin convolutions Question: How to represent them as Mellin integrals?

► First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and efficient

Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method (defined in [2]): compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow to compute in an automatic way Mellin convolutions Question: How to represent them as Mellin integrals?

► First method (used by HarmonicSums for general Mellin inversion): given M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and efficient

Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method doesn't work), a Mellin representation cannot be obtained

Second method (defined in [2]): compute it recursively from the BS using fundamental properties of Mellin transforms and "rule-theorems" that allow to compute in an automatic way Mellin convolutions Note: These Mellin representations will involve general polylogarithms

$$\mathbf{H}^*_{\emptyset}(x) := 1, \ \mathbf{H}^*_{\mathbf{b}(\mathbf{t}), \, \overrightarrow{c}\,(\mathbf{t})}(x) = \mathbf{H}^*_{\mathbf{b}, \, \overrightarrow{c}}(x) := \int_x^1 \mathrm{d}t \, b(t) \mathbf{H}^*_{\overrightarrow{c}}(t)$$

Defined over a 37 letter alphabet $\{f_0, f_{w_{32}}\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions Examples:

$$\sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^{j} = \int_{0}^{1} \mathrm{d}x \, \frac{(-2x)^{n} - 1}{x + \frac{1}{2}} \left(1 - \frac{1}{6\sqrt{2}\sqrt{x + \frac{1}{8}}} \right) \\ - \int_{0}^{1} \mathrm{d}x \, \frac{\left(\frac{x}{4}\right)^{n} - 1}{(x - 4)} \frac{1}{\sqrt{1 - x}}$$

$$\sum_{i=0}^{m} \frac{2^{-2i} {2i \choose i}}{i+n} = \frac{1}{n} + \frac{1}{\pi} \int_{0}^{1} \mathrm{d}x \, \frac{x^{m} - 1}{x-1} x^{n} B_{x} \left(\frac{1}{2} - n, \frac{1}{2}\right) \quad (n > 0)$$

$$B_x(a,b) := \int_0^x \mathrm{d}t \, t^{a-1} (1-t)^{b-1}$$

Note: These Mellin representations will involve general polylogarithms

$$\mathbf{H}^*_{\emptyset}(x) := 1, \ \mathbf{H}^*_{\mathbf{b}(\mathbf{t}), \overrightarrow{c}(\mathbf{t})}(x) = \mathbf{H}^*_{\mathbf{b}, \overrightarrow{c}}(x) := \int_x^1 \mathrm{d}t \, b(t) \mathbf{H}^*_{\overrightarrow{c}}(t)$$

Defined over a 37 letter alphabet $\{f_0, f_{w_{32}}\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions **Examples**:

$$\sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^{j} = \int_{0}^{1} \mathrm{d}x \, \frac{(-2x)^{n} - 1}{x + \frac{1}{2}} \left(1 - \frac{1}{6\sqrt{2}\sqrt{x + \frac{1}{8}}} \right) \\ - \int_{0}^{1} \mathrm{d}x \, \frac{\left(\frac{x}{4}\right)^{n} - 1}{(x - 4)} \frac{1}{\sqrt{1 - x}}$$

$$\sum_{i=0}^{m} \frac{2^{-2i} \binom{2i}{i}}{i+n} = \frac{1}{n} + \frac{1}{\pi} \int_{0}^{1} \mathrm{d}x \, \frac{x^{m} - 1}{x-1} x^{n} B_{x} \left(\frac{1}{2} - n, \frac{1}{2}\right) \quad (n > 0)$$

$$B_x(a,b) := \int_0^x \mathrm{d}t \, t^{a-1} (1-t)^{b-1}$$

We now want to obtain an asymptotic expansion for $n \to +\infty$ up to order p of a general expression of the form:

$$\tilde{M}_{a}[f(x)](n) := \int_{0}^{1} \mathrm{d}x \, \frac{(ax)^{n} - 1}{x - \frac{1}{a}} f(x) = \int_{0}^{1} \mathrm{d}x \, [(ax)^{n} - 1] \, \tilde{f}(x) \tag{1}$$

$$\tilde{f}(x) := \frac{f(x)}{x - \frac{1}{a}}$$

- There exist several method to compute this expansion, depending mostly on the regularity of f and if the integral can be splitted
- We will present three of them, all three of which have been implemented in a small package, BinomialAsymptotics

► Hypothesis: f̃ is at least p times differentiable at x = 1, C⁰ on (0; 1] and integrable on [0; 1]

We proceed in the following way:

Split the integral in two parts:

$$\int_0^1 \mathrm{d}x [(ax)^n - 1]\tilde{f}(x) = a^n \int_0^1 \mathrm{d}x \, x^n \tilde{f}(x) - \int_0^1 \mathrm{d}x \, \tilde{f}(x) = a^n M[f(x)](n) - M[f(x)](0)$$

(a) Compute the constant value C = M[f(x)](0) (using HarmonicSums or directly Mathematica)

▶ Hypothesis: \tilde{f} is at least p times differentiable at x = 1, C^0 on (0; 1] and integrable on [0; 1]

We proceed in the following way:

Split the integral in two parts:

$$\int_0^1 \mathrm{d} x [(ax)^n - 1] \tilde{f}(x) = a^n \int_0^1 \mathrm{d} x \, x^n \tilde{f}(x) - \int_0^1 \mathrm{d} x \, \tilde{f}(x) = a^n M[f(x)](n) - M[f(x)](0)$$

② Compute the constant value C = M[f(x)](0) (using HarmonicSums or directly Mathematica)

Motivation Asymptotic expansions

Solution Perform an integration by parts p times on the n-dependent part:

$$M[f(x)](n) = \frac{x^{n+1}}{n+1}\tilde{f}(x)\Big|_{0}^{1} - \frac{1}{n+1}\int_{0}^{1} dx \, x^{n+1}\tilde{f}'(x)$$

$$= \frac{\tilde{f}(1)}{n+1} - \frac{1}{n+1}\left[\frac{x^{n+2}}{n+2}\tilde{f}'(x)\Big|_{0}^{1} - \frac{1}{n+2}\int_{0}^{1} dx \, x^{n+2}\tilde{f}''(x)\right]$$

$$\vdots \qquad \vdots$$

$$= \sum_{i=0}^{p} (-1)^{i} \frac{\tilde{f}^{(i)}(1)}{(n+1)_{i+1}} + \underbrace{\frac{(-1)^{p}}{(n+1)_{p}} \int_{0}^{1} dx \, x^{n+p+1}\tilde{f}^{(p+1)}(x)}_{\mathcal{O}\left(\frac{1}{n^{p+1}}\right)}$$
(2)

Where $(a)_n := a(a+1)\cdots(a+n-1), (a)_0 := 1$

• Expand (2) for n at $+\infty$ up to the order p and add the computed constant to finally get:

$$\tilde{M}_a[f(x)](n) \underset{n \to +\infty}{=} -C + a^n \left[\sum_{k=1}^p \frac{h_k}{n^k} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right) \right]$$

Where for $k \in \{1, \ldots, p\}$, $h_k \in \mathbb{R}$.

▶ Hypothesis: |f| integrable on [0;1], the constant a is such that |a| < 1

We proceed in the following way:

() We split the integral and compute the constant C = M[f(x)](0) as before

We start by expanding the geometric series:

$$\frac{1}{x - \frac{1}{a}} = (-a)\frac{1}{1 - ax} = (-a)\sum_{k=0}^{\infty} (ax)^k$$

$$(-a) \int_0^1 \mathrm{d}x \, x^n \sum_{k=0}^\infty (ax)^k f(x) = (-a) \sum_{k=0}^\infty a^k \int_0^1 \mathrm{d}x \, x^{n+k} f(x)$$
$$= (-a) \sum_{k=0}^\infty a^k M[f(x)](n+k)$$

▶ Hypothesis: |f| integrable on [0;1], the constant a is such that |a| < 1We proceed in the following way:

() We split the integral and compute the constant C = M[f(x)](0) as before

We start by expanding the geometric series:

$$\frac{1}{x - \frac{1}{a}} = (-a)\frac{1}{1 - ax} = (-a)\sum_{k=0}^{\infty} (ax)^k$$

$$(-a) \int_0^1 \mathrm{d}x \, x^n \sum_{k=0}^\infty (ax)^k f(x) = (-a) \sum_{k=0}^\infty a^k \int_0^1 \mathrm{d}x \, x^{n+k} f(x)$$
$$= (-a) \sum_{k=0}^\infty a^k M[f(x)](n+k)$$

▶ Hypothesis: |f| integrable on [0;1], the constant a is such that |a| < 1We proceed in the following way:

- **()** We split the integral and compute the constant C = M[f(x)](0) as before
- We start by expanding the geometric series:

$$\frac{1}{x - \frac{1}{a}} = (-a)\frac{1}{1 - ax} = (-a)\sum_{k=0}^{\infty} (ax)^k$$

$$(-a) \int_0^1 \mathrm{d}x \, x^n \sum_{k=0}^\infty (ax)^k f(x) = (-a) \sum_{k=0}^\infty a^k \int_0^1 \mathrm{d}x \, x^{n+k} f(x)$$
$$= (-a) \sum_{k=0}^\infty a^k M[f(x)](n+k)$$

▶ Hypothesis: |f| integrable on [0;1], the constant a is such that |a| < 1We proceed in the following way:

- **()** We split the integral and compute the constant C = M[f(x)](0) as before
- We start by expanding the geometric series:

$$\frac{1}{x - \frac{1}{a}} = (-a)\frac{1}{1 - ax} = (-a)\sum_{k=0}^{\infty} (ax)^k$$

$$(-a) \int_0^1 \mathrm{d}x \, x^n \sum_{k=0}^\infty (ax)^k f(x) = (-a) \sum_{k=0}^\infty a^k \int_0^1 \mathrm{d}x \, x^{n+k} f(x)$$
$$= (-a) \sum_{k=0}^\infty a^k M[f(x)](n+k)$$

Motivation Asymptotic expansions

O We compute the shifted Mellin transforms $k \to n+k$ using GeneralMellin from HarmonicSums

② Once it's done the idea is to asymptotically expand M[f(x)](n+k) for n around $+\infty$ up to order p:

$$M[f(x)](n+k) = \sum_{n \to +\infty}^{p} \frac{\alpha_i(k)}{n^i} + \mathcal{O}\left(\frac{1}{n^p}\right)$$

Where the $\alpha_i(k)$ are coefficients that depend on k.

Finally, we compute the infinite sum:

$$(-a)\sum_{k=0}^{\infty}\sum_{i=0}^{p}a^{k}\frac{\alpha_{i}(k)}{n^{i}} = \sum_{i=0}^{p}\frac{A_{i}}{n^{i}}, \quad A_{i} := \sum_{k=0}^{\infty}a^{k}\alpha_{i}(k)$$

And the full expasion is then:

$$M[f(x)](n) = -C + \sum_{i=0}^{p} \frac{A_i}{n^i} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right)$$

Motivation Asymptotic expansions Motivation Asymptotic expansions

- O We compute the shifted Mellin transforms $k \to n+k$ using GeneralMellin from HarmonicSums
- **9** Once it's done the idea is to asymptotically expand M[f(x)](n+k) for n around $+\infty$ up to order p:

$$M[f(x)](n+k) = \sum_{n \to +\infty}^{p} \frac{\alpha_i(k)}{n^i} + \mathcal{O}\left(\frac{1}{n^p}\right)$$

Where the $\alpha_i(k)$ are coefficients that depend on k.

In Finally, we compute the infinite sum:

$$(-a)\sum_{k=0}^{\infty}\sum_{i=0}^{p}a^{k}\frac{\alpha_{i}(k)}{n^{i}} = \sum_{i=0}^{p}\frac{A_{i}}{n^{i}}, \quad A_{i} := \sum_{k=0}^{\infty}a^{k}\alpha_{i}(k)$$

And the full expasion is then:

$$M[f(x)](n) = -C + \sum_{i=0}^{p} \frac{A_i}{n^i} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right)$$

Motivation Asymptotic expansions Motivation Asymptotic expansions

- O We compute the shifted Mellin transforms $k \to n+k$ using GeneralMellin from HarmonicSums
- **9** Once it's done the idea is to asymptotically expand M[f(x)](n+k) for n around $+\infty$ up to order p:

$$M[f(x)](n+k) = \sum_{n \to +\infty}^{p} \frac{\alpha_i(k)}{n^i} + \mathcal{O}\left(\frac{1}{n^p}\right)$$

Where the $\alpha_i(k)$ are coefficients that depend on k.

• Finally, we compute the infinite sum:

$$(-a)\sum_{k=0}^{\infty}\sum_{i=0}^{p}a^{k}\frac{\alpha_{i}(k)}{n^{i}} = \sum_{i=0}^{p}\frac{A_{i}}{n^{i}}, \quad A_{i} := \sum_{k=0}^{\infty}a^{k}\alpha_{i}(k)$$

And the full expasion is then:

$$M[f(x)](n) \underset{n \to +\infty}{=} -C + \sum_{i=0}^{p} \frac{A_i}{n^i} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right)$$

When $a \ge 1$, the geometric series $\frac{1}{x-\frac{1}{a}}$ is divergent at $\frac{1}{a} \in (0;1]$. The singularity is actually only apparent:

$$\frac{(ax)^n - 1}{x - \frac{1}{a}} f(x) \underset{x \to \frac{1}{a}}{=} a n f\left(\frac{1}{a}\right) + \mathcal{O}\left(x - \frac{1}{a}\right)$$

Problem: We cannot split the integral to compute the constant part as usually. We have to use a new method that relies on a **change of variable** [2] and do an **integration by parts** to extract the constant part

When $a \ge 1$, the geometric series $\frac{1}{x-\frac{1}{a}}$ is divergent at $\frac{1}{a} \in (0;1]$. The singularity is actually only apparent:

$$\frac{(ax)^n - 1}{x - \frac{1}{a}} f(x) \underset{x \to \frac{1}{a}}{=} a n f\left(\frac{1}{a}\right) + \mathcal{O}\left(x - \frac{1}{a}\right)$$

Problem: We cannot split the integral to compute the constant part as usually. We have to use a new method that relies on a **change of variable** [2] and do an **integration by parts** to extract the constant part

Motivation Asymptotic expansions Asymptotic expansions

We make the change of variable:

$$x = \frac{e^{-z}}{a}, \ \mathrm{d}x = -\frac{1}{a}e^{-z}\mathrm{d}z$$

This gives us:

$$\int_{0}^{1} dx \frac{(ax)^{n} - 1}{x - \frac{1}{a}} f(x) = -\frac{1}{a} \int_{+\infty}^{-\log a} dz \, e^{-z} a \frac{e^{-zn} - 1}{e^{-z} - 1} f\left(\frac{e^{-z}}{a}\right)$$
$$= \int_{-\log a}^{+\infty} dz \, (e^{-zn} - 1) \underbrace{\frac{e^{-z}}{e^{-z} - 1} f\left(\frac{e^{-z}}{a}\right)}_{=:g(z)}$$

In particular, expanding the function g defined above around z = 0, we get:

$$g(z) \underset{z \to 0}{=} \frac{\alpha_{-1}}{z} + \alpha_0 + \mathcal{O}(z)$$

Where $\alpha_{-1}, \alpha_0 \in \mathbb{C}$

2 We do an integration by parts to get rid of the $\frac{1}{z}$, since:

$$\int^{z} \mathrm{d}w \, g(w) \underset{z \to 0}{=} \alpha_{-1} \log z + \alpha_{0} z + \mathcal{O}(z^{2})$$

And $\log z$ is integrable at z = 0. We define:

$$\begin{array}{l} u'(z) = g(z) \\ v(z) = e^{-zn} - 1 \end{array} \xrightarrow{} \begin{array}{l} u(z) = \int^z \mathrm{d}w \, g(w) \\ v'(z) = -n e^{-zn} \end{array}$$

So that:

$$\int_{-\log a}^{+\infty} \mathrm{d}z \, (e^{-zn} - 1)g(z) = \left(e^{-zn} - 1\right) \int^{z} \mathrm{d}w \, g(w) \bigg|_{-\log a}^{+\infty} + n \int_{-\log a}^{+\infty} \mathrm{d}z \, e^{-zn} \int^{z} \mathrm{d}w \, g(w)$$

We compute the constant terms:

$$C_2 := \lim_{z \to +\infty} (e^{-zn} - 1) \int^z \mathrm{d}w \, g(w) = -\lim_{z \to +\infty} \int^z \mathrm{d}w \, g(w)$$

$$C_1 := \lim_{z \to -\log a} (e^{-zn} - 1) \int^z \mathrm{d}w \, g(w) = (a^n - 1) \lim_{z \to -\log a} \int^z \mathrm{d}w \, g(w)$$

2 We do an integration by parts to get rid of the $\frac{1}{z}$, since:

$$\int^{z} \mathrm{d}w \, g(w) \underset{z \to 0}{=} \alpha_{-1} \log z + \alpha_{0} z + \mathcal{O}(z^{2})$$

And $\log z$ is integrable at z = 0. We define:

$$\begin{array}{l} u'(z) = g(z) \\ v(z) = e^{-zn} - 1 \end{array} \xrightarrow{} \begin{array}{l} u(z) = \int^z \mathrm{d}w \, g(w) \\ v'(z) = -n e^{-zn} \end{array}$$

So that:

$$\int_{-\log a}^{+\infty} \mathrm{d}z \, (e^{-zn} - 1)g(z) = \left(e^{-zn} - 1\right) \int^{z} \mathrm{d}w \, g(w) \bigg|_{-\log a}^{+\infty} + n \int_{-\log a}^{+\infty} \mathrm{d}z \, e^{-zn} \int^{z} \mathrm{d}w \, g(w)$$

We compute the constant terms:

$$C_2 := \lim_{z \to +\infty} (e^{-zn} - 1) \int^z \mathrm{d}w \, g(w) = -\lim_{z \to +\infty} \int^z \mathrm{d}w \, g(w)$$

$$C_1 := \lim_{z \to -\log a} (e^{-zn} - 1) \int^z \mathrm{d}w \, g(w) = (a^n - 1) \lim_{z \to -\log a} \int^z \mathrm{d}w \, g(w)$$

Motivation Asymptotic expansions Motivation Asymptotic expansions

• We expand $\int^z dw g(w)$ up to order p around $z = -\log a$:

$$\int^{z} \mathrm{d}w \, g(w) \underset{z \to -\log a}{\sim} \sum_{\alpha + \beta \leq p} g_{\alpha,\beta} z^{\alpha} (z + \log a)^{\beta}, \quad \alpha \in \mathbb{N}, \, \beta \in \frac{1}{2} \mathbb{Z}_{\geq -1}, \, g_{\alpha,\beta} \in \mathbb{R}$$

Finally, we integrate terms by terms, using the expansion above:

$$\int_{-\log a}^{+\infty} \mathrm{d}z \, e^{-zn} \sum_{\alpha+\beta \le p} g_{\alpha,\beta} z^{\alpha} (z+\log a)^{\beta} = \sum_{\alpha+\beta \le p} g_{\alpha,\beta} \int_{-\log a}^{+\infty} \mathrm{d}z \, e^{-zn} z^{\alpha} (z+\log a)^{\beta}$$
$$= \sum_{\alpha+\beta \le p} \frac{h_{\alpha,\beta}}{n^{\alpha+\beta}} \quad h_{\alpha,\beta} \in \mathbb{R}$$

The full expansion is then:

$$\tilde{M}_a[\tilde{f}(x)](n) \underset{n \to +\infty}{=} C_2 - C_1 + \sum_{\alpha+\beta \le p} \frac{h_{\alpha,\beta}}{n^{\alpha+\beta}} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right)$$

Motivation Asymptotic expansions Motivation Asymptotic expansions

• We expand $\int^z dw g(w)$ up to order p around $z = -\log a$:

$$\int^{z} \mathrm{d} w \, g(w) \underset{z \to -\log a}{\sim} \sum_{\alpha + \beta \leq p} g_{\alpha,\beta} z^{\alpha} (z + \log a)^{\beta}, \quad \alpha \in \mathbb{N}, \, \beta \in \frac{1}{2} \mathbb{Z}_{\geq -1}, \, g_{\alpha,\beta} \in \mathbb{R}$$

Sinally, we integrate terms by terms, using the expansion above:

$$\begin{split} \int_{-\log a}^{+\infty} \mathrm{d}z \, e^{-zn} \sum_{\alpha+\beta \leq p} g_{\alpha,\beta} z^{\alpha} (z+\log a)^{\beta} &= \sum_{\alpha+\beta \leq p} g_{\alpha,\beta} \int_{-\log a}^{+\infty} \mathrm{d}z \, e^{-zn} z^{\alpha} (z+\log a)^{\beta} \\ &= \sum_{\alpha+\beta \leq p} \frac{h_{\alpha,\beta}}{n^{\alpha+\beta}} \quad h_{\alpha,\beta} \in \mathbb{R} \end{split}$$

The full expansion is then:

$$\tilde{M}_a[\tilde{f}(x)](n) \underset{n \to +\infty}{=} C_2 - C_1 + \sum_{\alpha+\beta \le p} \frac{h_{\alpha,\beta}}{n^{\alpha+\beta}} + \mathcal{O}\left(\frac{1}{n^{p+1}}\right)$$

Examples

First we load the package BinomialAsymptotics

<< "BinomialAsymptotics.m";

BinomialAsymptotics package by Nikolai Fadeev - © RISC - V0.2 (November 2022)

$$\sum_{i=1}^{n} \frac{1}{i\binom{2i}{i}} \sum_{j=1}^{i} \binom{2j}{j} (-2)^{j} = \int_{0}^{1} \mathrm{d}x \, \frac{(-2x)^{n} - 1}{x + \frac{1}{2}} \left(1 - \frac{1}{6\sqrt{2}\sqrt{x + \frac{1}{8}}} \right) \\ - \int_{0}^{1} \mathrm{d}x \, \frac{\left(\frac{x}{4}\right)^{n} - 1}{(x - 4)} \frac{1}{\sqrt{1 - x}}$$

$$\begin{aligned} & \text{asymptoticExpansionInt} \Big[\int_{0}^{1} \frac{(-2 \times)^{n} - 1}{x + \frac{1}{2}} \left(1 - \frac{1}{6\sqrt{2} \sqrt{x + \frac{1}{5}}} \right) dx - \frac{2}{3} \int_{0}^{1} \frac{\left(\frac{x}{4}\right)^{n} - 1}{x - 4} \star \frac{1}{\sqrt{1 - x}} dx, x, n, 4 \Big] \\ & \frac{73 (-1)^{n} 2^{3 + n}}{6561 n^{4}} - \frac{5 (-1)^{n} 2^{3 + n}}{729 n^{3}} - \frac{7 (-1)^{n} 2^{3 + n}}{243 n^{2}} + \frac{(-1)^{n} 2^{4 + n}}{27 n} - \frac{9565 \times 2^{-9 - 2n} \sqrt{\pi}}{81 n^{7/2}} + \\ & \frac{227 \times 2^{-6 - 2n} \sqrt{\pi}}{72 n^{5/2}} - \frac{13 \times 2^{-2 - 2n} \sqrt{\pi}}{27 n^{3/2}} + \frac{2^{1 - 2n} \sqrt{\pi}}{9 \sqrt{n}} - \frac{2\pi}{9 \sqrt{3}} + \frac{1}{27} \left(\sqrt{3} \pi - 27 \log[3] \right) \end{aligned}$$

Examples

$$\sum_{i=0}^{m} \frac{2^{-2i} \binom{2i}{i}}{i+n} = \frac{1}{n} + \frac{1}{\pi} \int_{0}^{1} \mathrm{d}x \, \frac{x^{m} - 1}{x-1} x^{n} B_{x} \left(\frac{1}{2} - n, \frac{1}{2}\right) \quad (n > 0)$$

$$\frac{1}{n} + \operatorname{asymptoticExpansionInt} \left[-\frac{1}{\pi} \int_{0}^{1} \frac{x^{n} - 1}{x - 1} + x^{n} + \operatorname{Beta} \left[x, \frac{1}{2} - n, \frac{1}{2} \right] dx, x, m, 4, \operatorname{ComputeConstants} + \operatorname{False} \right]$$

$$\frac{1}{n} - \frac{1}{\pi} \left(\frac{2\sqrt{\pi}}{\sqrt{m}} - \frac{(7 + 8 n) \sqrt{\pi}}{12 m^{3/2}} + \frac{(61 + 176 n + 128 n^{2}) \sqrt{\pi}}{320 m^{5/2}} - \frac{(307 + 2936 n + 5760 n^{2} + 3072 n^{3}) \sqrt{\pi}}{10 752 m^{7/2}} - \frac{(1 + 2 n) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{m (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} + \frac{(1 + 6 n + 6 n^{2}) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{6 m^{2} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} + \frac{(-1 + 30 n^{2} + 60 n^{3} + 30 n^{4}) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{6 0 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} - \frac{1}{(-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} + \frac{(1 + 6 n + 6 n^{2}) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{6 m^{2} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} + \frac{(1 + 6 n + 6 n^{2}) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{6 0 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} - \frac{1}{6 m^{2} (-1 + 2 n) \operatorname{Gamma} \left[\frac{3}{2} - n \right]} + \frac{(1 + 6 n + 6 n^{2}) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{6 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} - \frac{1}{6 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[\frac{3}{2} - n \right]} + \frac{(1 + 6 n + 6 n^{2}) \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right]}{6 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} - \frac{1}{6 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[\frac{3}{2} - n \right]} + \frac{2 \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right] \operatorname{Log} \left[1 - n \right]}{6 m^{4} (-1 + 2 n) \operatorname{Gamma} \left[1 - n \right]} - \frac{1}{1 + e^{-2}} \operatorname{Gamma} \left[\frac{3}{2} - n \right] + 2 \sqrt{\pi} \operatorname{Gamma} \left[\frac{3}{2} - n \right] \operatorname{Log} \left[\frac{(e^{-2})^{1 + n} \operatorname{Beta} \left[e^{-2}, \frac{1}{2} - n, \frac{1}{2} \right]}{-1 + e^{-2}}} \operatorname{d} z + 2 n \operatorname{Gamma} \left[1 - n \right] \operatorname{Limit} \left[\left(-1 + e^{-mz} \right) \int \frac{(e^{-2})^{1 + n} \operatorname{Beta} \left[e^{-z}, \frac{1}{2} - n, \frac{1}{2} \right]}{-1 + e^{-2}} \operatorname{d} z, z \to 0, \operatorname{Assumptions} \to m \in \mathbb{Z} \& m > 0 \right] \right] \right]$$

Motivation Asymptotic expansions Motivation Asymptotic expansions

• This expression can be simplified as, given that $n \in \mathbb{N}^*$:

$$\begin{split} \sum_{i=0}^{m} \frac{2^{-2i} \binom{2i}{i}}{i+n} &= -\frac{C_1(n)}{\pi} - \frac{C_2(n)}{\pi} + \frac{3072n^3 + 5760n^2 + 2936n + 307}{10752\sqrt{\pi}m^{7/2}} \\ &+ \frac{-128n^2 - 176n - 61}{320\sqrt{\pi}m^{5/2}} + \frac{8n+7}{12\sqrt{\pi}m^{3/2}} - \frac{2}{\sqrt{\pi}\sqrt{m}} + \mathcal{O}\left(\frac{1}{m^{9/2}}\right) \end{split}$$

We have two constants coming from the integration by parts that need to be computed (in this case by hand)

$$C_1(n) = \lim_{z \to 0} \left(e^{-mz} - 1 \right) \int^z \mathrm{d}w \, \frac{e^{-w(n+1)} B_{e^{-w}} \left(\frac{1}{2} - n, \frac{1}{2} \right)}{e^{-w} - 1} = 0$$
$$C_2(n) = -\lim_{z \to \infty} \int^z \mathrm{d}w \, \frac{e^{-w(n+1)} B_{e^{-w}} \left(\frac{1}{2} - n, \frac{1}{2} \right)}{e^{-w} - 1}$$

For the second constant, the expression doesn't simplify for arbitrary n, one can compute its numerical value up to arbitrary precision by specialisin, e.g. for n = 3 and 100 digits:

 $C_2(n=3) = -2.303834612632515041539271814404968781744590892875069790$ 191439694228291643457080788534870797547557879

 $C_2(n=1) = -\pi$

Motivation Asymptotic expansions Motivation Asymptotic expansions

• This expression can be simplified as, given that $n \in \mathbb{N}^*$:

$$\begin{split} \sum_{i=0}^{m} \frac{2^{-2i} \binom{2i}{i}}{i+n} &= -\frac{C_1(n)}{\pi} - \frac{C_2(n)}{\pi} + \frac{3072n^3 + 5760n^2 + 2936n + 307}{10752\sqrt{\pi}m^{7/2}} \\ &+ \frac{-128n^2 - 176n - 61}{320\sqrt{\pi}m^{5/2}} + \frac{8n+7}{12\sqrt{\pi}m^{3/2}} - \frac{2}{\sqrt{\pi}\sqrt{m}} + \mathcal{O}\left(\frac{1}{m^{9/2}}\right) \end{split}$$

We have two constants coming from the integration by parts that need to be computed (in this case by hand)

$$C_1(n) = \lim_{z \to 0} \left(e^{-mz} - 1 \right) \int^z \mathrm{d}w \, \frac{e^{-w(n+1)} B_{e^{-w}} \left(\frac{1}{2} - n, \frac{1}{2} \right)}{e^{-w} - 1} = 0$$
$$C_2(n) = -\lim_{z \to \infty} \int^z \mathrm{d}w \, \frac{e^{-w(n+1)} B_{e^{-w}} \left(\frac{1}{2} - n, \frac{1}{2} \right)}{e^{-w} - 1}$$

For the second constant, the expression doesn't simplify for arbitrary n, one can compute its numerical value up to arbitrary precision by specialisin, e.g. for n = 3 and 100 digits:

 $C_2(n=3) = -2.303834612632515041539271814404968781744590892875069790$ 191439694228291643457080788534870797547557879

$$C_2(n=1) = -\pi$$

- All three methods have been implemented in a package that can compute asymptotic expansions in many cases of depth d=1 and some cases of depth d=2
- Some flexibility options are given: constants can be attempted to computed or not, time limitation
- Computations of the new constants is highly non-trivial and makes the algorithm get stuck: structure of binomial sums needs to be explored further (building a basis of binomial sums, unicity of root alphabet/relation between letters,...)
- Mathematica errors, technical improvements for package... work in progress!

Thank you for listening!

- All three methods have been implemented in a package that can compute asymptotic expansions in many cases of depth d = 1 and some cases of depth d = 2
- Some flexibility options are given: constants can be attempted to computed or not, time limitation
- Computations of the new constants is highly non-trivial and makes the algorithm get stuck: structure of binomial sums needs to be explored further (building a basis of binomial sums, unicity of root alphabet/relation between letters,...)
- Mathematica errors, technical improvements for package... work in progress!

Thank you for listening!

Consider the general sum

$$BS_{\{a_1,\dots,a_k\}}(n) := \sum_{i_1=1}^n a_1(i_1) \sum_{i_2=1}^{i_1} a_2(i_2) \cdots \sum_{i_k=1}^{i_{k-1}} a_k(i_k)$$

We proceed outwards from the innermost sum:

▶ At step 1 ≤ j < k, suppose that we managed to represent</p>

$$BS_{\{a_{j+1},\dots,a_k\}}(i_j) = c_{0,j} + \sum_{p=1}^{k_j} c_{p,j+1}^{i_j} M[f_{p,j+1}(x)](i_j), \, c_{0,j+1}, c_{p,j+1} \in \mathbb{R}$$
(3)

Compute an integral representation of the building block a_j(i_j), possibly using Mellin convolutions

$$M[f(x) * g(x)](n) = M[f(x)](n) \cdot M[g(x)](n)$$

In order to obtain an expression

$$a_j(i_j) = c_{0,i_j} + \sum_{p=1}^{k_{i_j}} c_{p,i_j}^{i_j} M[f_{p,i_j}(x)](i_j)$$
(4)

Consider the general sum

$$BS_{\{a_1,\dots,a_k\}}(n) := \sum_{i_1=1}^n a_1(i_1) \sum_{i_2=1}^{i_1} a_2(i_2) \cdots \sum_{i_k=1}^{i_{k-1}} a_k(i_k)$$

We proceed outwards from the innermost sum:

• At step $1 \le j < k$, suppose that we managed to represent

$$BS_{\{a_{j+1},\dots,a_k\}}(i_j) = c_{0,j} + \sum_{p=1}^{k_j} c_{p,j+1}^{i_j} M[f_{p,j+1}(x)](i_j), \ c_{0,j+1}, c_{p,j+1} \in \mathbb{R}$$
(3)

 Compute an integral representation of the building block a_j(i_j), possibly using Mellin convolutions

$$M[f(x) * g(x)](n) = M[f(x)](n) \cdot M[g(x)](n)$$

In order to obtain an expression

$$a_j(i_j) = c_{0,i_j} + \sum_{p=1}^{k_{i_j}} c_{p,i_j}^{i_j} M[f_{p,i_j}(x)](i_j)$$
(4)

▶ Convolve $BS_{\{a_{j+1},...,a_k\}}(i_j)$ with $a_j(i_j)$ to obtain again a sum

► Use the summation formula below to resum and obtain an integral representation for BS_{{aj,aj+1},...,ak}</sub>(ij-1):

$$\sum_{i=1}^{n} c^{i} M[f(x)](i) = c^{n} M\left[\frac{x}{x - \frac{1}{c}}f(x)\right](n) - M\left[\frac{x}{x - \frac{1}{c}}f(x)\right](0)$$
(5)

Iterate until the outermost sum has been processed

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev

- ▶ Convolve $BS_{\{a_{j+1},...,a_k\}}(i_j)$ with $a_j(i_j)$ to obtain again a sum
- ► Use the summation formula below to resum and obtain an integral representation for BS_{{aj,aj+1},...,ak}</sub>(ij-1):

$$\sum_{i=1}^{n} c^{i} M[f(x)](i) = c^{n} M\left[\frac{x}{x - \frac{1}{c}}f(x)\right](n) - M\left[\frac{x}{x - \frac{1}{c}}f(x)\right](0)$$
(5)

Iterate until the outermost sum has been processed

- Convolve $BS_{\{a_{j+1},\ldots,a_k\}}(i_j)$ with $a_j(i_j)$ to obtain again a sum
- ► Use the summation formula below to resum and obtain an integral representation for BS_{{aj,aj+1},...,ak}</sub>(ij-1):

$$\sum_{i=1}^{n} c^{i} M[f(x)](i) = c^{n} M\left[\frac{x}{x - \frac{1}{c}}f(x)\right](n) - M\left[\frac{x}{x - \frac{1}{c}}f(x)\right](0)$$
(5)

Iterate until the outermost sum has been processed

Asymptotics of binomially weighted sums

Notes:

These Mellin representation will involve general polylogarithms

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev

$$\mathrm{H}^*_{\varnothing}(x):=1, \ \mathrm{H}^*_{\mathrm{b}(\mathrm{t}),\overrightarrow{c}\,(\mathrm{t})}(x)=\mathrm{H}^*_{\mathrm{b},\overrightarrow{c}}(x):=\int_x^1\mathrm{d}t\,b(t)\mathrm{H}^*_{\overrightarrow{c}}(t)$$

Defined over a 37 letter alphabet $\{f_0, f_{w_{32}}\}$ containing root singularities such that all iterated integrals are linearly independent over the algebraic functions

One can actually derive identities that allow to rewrite many convolution integrals in a direct way [2] References

Example:

$$BS(n) = \sum_{k=1}^{n} {\binom{2i}{i}} S_2(i) = \sum_{k=1}^{n} {\binom{2i}{i}} \sum_{j=1}^{i} \frac{1}{i^2}$$

First we compute the Mellin representation of $\frac{1}{i^2}$ by convolving $\frac{1}{i} = M\left[\frac{1}{x}\right](i)$ with itself. We get:

$$\frac{1}{i^2} = M\left[\frac{1}{x}\right](i) \cdot M\left[\frac{1}{x}\right](i) = M\left[\frac{1}{x} * \frac{1}{x}\right](i) = M\left[\frac{\mathrm{H}_0^*(x)}{x}\right](i)$$

$$H_0^*(x) := \int_x^1 dt \, f_0(t) = \int_x^1 dt \, \frac{1}{t} = -\log x$$

References

Using the summation formula (5), we can then obtain:

$$S_{2}(i) = \sum_{k=1}^{i} M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i) = \underbrace{\int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} - \underbrace{\int_{0}^{1} \mathrm{d}x \, \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} = \int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1} + \zeta_{2}$$

Now that the innermost sum has as integral representation, we shift to the next and last level. First, one can show (e.g. direct integration) that:

$$\binom{2i}{i} = \frac{4^i}{\pi} M \left[\frac{1}{\sqrt{x(1-x)}} \right] (i)$$

So that

$$\sum_{i=1}^{k} \binom{2i}{i} S_2(i) = \frac{1}{\pi} \sum_{i=1}^{n} 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_0^*(x)}{x-1}\right](i) + \frac{\zeta_2}{\pi} \sum_{i=1}^{k} 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) + \frac{\zeta_2}{\pi}$$

References

Using the summation formula (5), we can then obtain:

$$S_{2}(i) = \sum_{k=1}^{i} M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i) = \underbrace{\int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} - \underbrace{\int_{0}^{1} \mathrm{d}x \frac{\mathrm{H}_{0}^{*}(x)}{x-1}}_{M\left[\frac{x}{x-1} \frac{\mathrm{H}_{0}^{*}(x)}{x}\right](i)} = \int_{0}^{1} \mathrm{d}x \, x^{i} \frac{\mathrm{H}_{0}^{*}(x)}{x-1} + \zeta_{2}$$

Now that the innermost sum has as integral representation, we shift to the next and last level. First, one can show (e.g. direct integration) that:

$$\binom{2i}{i} = \frac{4^i}{\pi} M \left[\frac{1}{\sqrt{x(1-x)}} \right] (i)$$

So that

$$\sum_{i=1}^{k} \binom{2i}{i} S_2(i) = \frac{1}{\pi} \sum_{i=1}^{n} 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_0^*(x)}{x-1}\right](i) + \frac{\zeta_2}{\pi} \sum_{i=1}^{k} 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) + \frac{\zeta_2}{\pi}$$

We apply again the summation formula to obtain first the second part:

$$\frac{\zeta_2}{\pi} \sum_{i=1}^k 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) = \frac{\zeta_2}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}}$$

Then we switch to the first part of the binomial and convolve the functions:

$$M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i) = M\left[\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}}\right](i)$$

A set of several "rule-theorems" have been proven in [2] to simplify further such expressions. One of them allows us to get:

$$\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}} = \frac{\mathrm{H}_{\mathrm{b,w_{1}}}^{*}(x)}{\sqrt{x-1}}, \, f_{b}(x) = \frac{1}{\sqrt{x(x-1)}}, \, f_{w_{1}}(x) = \frac{1}{\sqrt{x(1-x)}}$$

We apply again the summation formula to obtain first the second part:

$$\frac{\zeta_2}{\pi} \sum_{i=1}^k 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) = \frac{\zeta_2}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}}$$

Then we switch to the first part of the binomial and convolve the functions:

$$M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i) = M\left[\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}}\right](i)$$

A set of several "rule-theorems" have been proven in [2] to simplify further such expressions. One of them allows us to get:

$$\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}} = \frac{\mathrm{H}_{\mathrm{b,w_{1}}}^{*}(x)}{\sqrt{x-1}}, \, f_{b}(x) = \frac{1}{\sqrt{x(x-1)}}, \, f_{w_{1}}(x) = \frac{1}{\sqrt{x(1-x)}}$$

We apply again the summation formula to obtain first the second part:

$$\frac{\zeta_2}{\pi} \sum_{i=1}^k 4^i M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) = \frac{\zeta_2}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}}$$

Then we switch to the first part of the binomial and convolve the functions:

$$M\left[\frac{1}{\sqrt{x(1-x)}}\right](i) \cdot M\left[\frac{\mathrm{H}_{0}^{*}(x)}{x-1}\right](i) = M\left[\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}}\right](i)$$

A set of several "rule-theorems" have been proven in [2] to simplify further such expressions. One of them allows us to get:

$$\int_{x}^{1} \mathrm{d}y \, \frac{\mathrm{H}_{0}^{*}(y)}{(y-1)\sqrt{y-x}} = \frac{\mathrm{H}_{\mathrm{b,w_{1}}}^{*}(x)}{\sqrt{x-1}}, \, f_{b}(x) = \frac{1}{\sqrt{x(x-1)}}, \, f_{w_{1}}(x) = \frac{1}{\sqrt{x(1-x)}}$$

Using the shuffle algebra, we can reduce the expression down to:

$$M\left[\frac{\mathbf{H}_{\mathbf{b},\mathbf{w}_{1}}^{*}(x)}{\sqrt{x(x-1)}}\right](i) = -M\left[\frac{\mathbf{H}_{\mathbf{w}_{1}}^{*}(x)^{2}}{2\sqrt{x(1-x)}}\right](i)$$

Finally, using once again the summation formula we get:

$$\sum_{i=1}^{n} 4^{i} M \left[\frac{\mathbf{H}_{w_{1}}^{*}(x)^{2}}{2\sqrt{x(1-x)}} \right] (i) = \int_{0}^{1} \mathrm{d}x \, \frac{(4x)^{n} - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}} \frac{\mathbf{H}_{w_{1}}^{*}(x)^{2}}{2}$$

And resumming everything, we get:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i) = -\frac{1}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1 - x}} \left(\frac{\mathrm{H}_{w_1}^*(x)^2}{2} - \zeta_2\right)$$

Using the shuffle algebra, we can reduce the expression down to:

$$M\left[\frac{\mathrm{H}_{\mathrm{b,w_1}}^*(x)}{\sqrt{x(x-1)}}\right](i) = -M\left[\frac{\mathrm{H}_{\mathrm{w_1}}^*(x)^2}{2\sqrt{x(1-x)}}\right](i)$$

Finally, using once again the summation formula we get:

$$\sum_{i=1}^{n} 4^{i} M\left[\frac{\mathbf{H}_{w_{1}}^{*}(x)^{2}}{2\sqrt{x(1-x)}}\right](i) = \int_{0}^{1} \mathrm{d}x \, \frac{(4x)^{n} - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1-x}} \frac{\mathbf{H}_{w_{1}}^{*}(x)^{2}}{2}$$

And resumming everything, we get:

$$\sum_{i=1}^{n} \binom{2i}{i} S_2(i) = -\frac{1}{\pi} \int_0^1 \mathrm{d}x \, \frac{(4x)^n - 1}{x - \frac{1}{4}} \sqrt{\frac{x}{1 - x}} \left(\frac{\mathrm{H}_{w_1}^*(x)^2}{2} - \zeta_2\right)$$

- ▶ Remaining case: a < -1 and f not regular enough at x = 1: → 1/(x-1/a) is not divergent on (0; 1), but the radius of convergence is still less than one, so geometric series approach doesn't apply.</p>
- We simply use the change of variable approach with splitting of the integral this time

Note: This method works also when a = 1 and $f(x) \underset{x \to 1}{\sim} (x - 1)^{\alpha}$, $\alpha \geq \frac{1}{2}$ We now consider a Mellin integral of the form:

$$\int_0^1 \mathrm{d}x \, \frac{(-ax)^n - 1}{x + \frac{1}{a}} f(x), \, a > 1$$

Hypothesis: $\tilde{f}(x) = \frac{f(x)}{x + \frac{1}{a}}$ integrable on [0, 1]

9 Split the Mellin integral, factor out the $(-a)^n$, and compute the constant part:

$$\int_{0}^{1} \mathrm{d}x \, \frac{(-ax)^{n} - 1}{x + \frac{1}{a}} f(x) = (-a)^{n} M\left[\frac{f(x)}{x + \frac{1}{2}}\right](n) - \underbrace{M\left[\frac{f(x)}{x + \frac{1}{a}}\right](0)}_{=:C}$$

In $M\left[\frac{f(x)}{x+\frac{1}{a}}\right](n)$, we make the original change of variable appearing in [2]:

$$x = e^{-z} \, \mathrm{d}x = -e^{-z} \, \mathrm{d}z$$

And end up with:

$$M\left[\frac{f(x)}{x+\frac{1}{2}}\right](n) = (-a)^n \int_0^{+\infty} dz \, e^{-zn} \underbrace{\frac{e^{-z}}{e^{-z}+1} f(e^{-z})}_{=:g(z)}$$

9 Split the Mellin integral, factor out the $(-a)^n$, and compute the constant part:

$$\int_{0}^{1} \mathrm{d}x \, \frac{(-ax)^{n} - 1}{x + \frac{1}{a}} f(x) = (-a)^{n} M\left[\frac{f(x)}{x + \frac{1}{2}}\right](n) - \underbrace{M\left[\frac{f(x)}{x + \frac{1}{a}}\right](0)}_{=:C}$$

② In $M\left[\frac{f(x)}{x+\frac{1}{a}}\right](n)$, we make the original change of variable appearing in [2]:

$$x = e^{-z} \,\mathrm{d}x = -e^{-z} \,\mathrm{d}z$$

And end up with:

$$M\left[\frac{f(x)}{x+\frac{1}{2}}\right](n) = (-a)^n \int_0^{+\infty} \mathrm{d}z \, e^{-zn} \underbrace{\frac{e^{-z}}{e^{-z}+1} f(e^{-z})}_{=:g(z)}$$

30 / 20

(a) We expand g(z) around z = 0 up to the order p:

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev

$$g(z) = \sum_{z \to 0} \sum_{\alpha \le p} g_{\alpha} z^{\alpha} + \mathcal{O}(z^{\alpha+1}), \quad \alpha \in \frac{1}{2} \mathbb{Z}_{\ge -1}, \ g_{\alpha} \in \mathbb{R}$$

() Finally we integrate $M[\frac{f(x)}{x+\frac{1}{2}}](n)$ using the expansion above, and adding the

$$\tilde{M}_{-a}[f(x)](n) \stackrel{=}{\underset{n \to +\infty}{=}} (-a)^n \sum_{\alpha \le p} \int_0^{+\infty} \mathrm{d}z \, e^{-zn} g_\alpha z^\alpha - C$$
$$= (-a)^n \sum_{\alpha \le p} \frac{h_\alpha}{n^\alpha} - C, \quad h_\alpha \in \mathbb{R}$$

(3) We expand g(z) around z = 0 up to the order p:

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev

$$g(z) = \sum_{z \to 0} \sum_{\alpha \le p} g_{\alpha} z^{\alpha} + \mathcal{O}(z^{\alpha+1}), \quad \alpha \in \frac{1}{2} \mathbb{Z}_{\ge -1}, \ g_{\alpha} \in \mathbb{R}$$

Finally we integrate M[f(x)/(x+1/2)](n) using the expansion above, and adding the constant and the (-a)ⁿ coefficient back,

$$\tilde{M}_{-a}[f(x)](n) =_{n \to +\infty} (-a)^n \sum_{\alpha \le p} \int_0^{+\infty} \mathrm{d}z \, e^{-zn} g_\alpha z^\alpha - C$$
$$= (-a)^n \sum_{\alpha \le p} \frac{h_\alpha}{n^\alpha} - C, \quad h_\alpha \in \mathbb{R}$$

- J. Ablinger, J. Blümlein, and C.Schneider. "Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms". In: *Journal of Mathematical Physics* 54.8 (Aug. 2013), p. 082301. DOI: 10.1063/1.4811117. URL: https://doi.org/10.1063%2F1.4811117.
- J. Ablinger et al. "Iterated binomial sums and their associated iterated integrals". In: Journal of Mathematical Physics 55.11 (Nov. 2014), p. 112301. DOI: 10.1063/1.4900836. URL: https://doi.org/10.1063%2F1.4900836.
- J. Ablinger et al. "The O(as3 TF2) contributions to the gluonic operator matrix element". In: Nuclear Physics B 885 (Aug. 2014), pp. 280–317. DOI: 10.1016/j.nuclphysb.2014.05.028. URL: https://doi.org/10.1016%2Fj.nuclphysb.2014.05.028.
- Jakob Ablinger et al. "Calculating massive 3-loop graphs for operator matrix elements by the method of hyperlogarithms". In: *Nuclear Physics B* 885 (Aug. 2014), pp. 409–447. DOI: 10.1016/j.nuclphysb.2014.04.007. URL: https://doi.org/10.1016%2Fj.nuclphysb.2014.04.007.
 - N. Nielsen. Handbuch der Theorie der Gammafunktion. B.G.Teubner, Leipzig, 1906.