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Motivation
Asymptotic expansions

I Different problems in combinatorics, analysis of algorithms or even physics
involve binomially weighted sums

Example 1 (combinatorics): In paper Evaluation of Binomial Double Sums
Involving Absolute Values of C. Krattenthaler and C. Schneider, sums of the
following form appear when we are studying double sums with binomial coefficients:
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We might be interested in an asymptotic expansion at m→ +∞ for fixed m ,
which involves being able in particular to compute the expansion of the boxed sum
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Example 2 (physics): Particle physics computations are often done in Mellin
space, and for example in the paper The O(α3

sT
2
F ) contributions to the gluonic

operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al., we
encounter sums of the form:
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Sums can be nested, for example in Iterated Binomial Sums and their Associated
Iterated Integrals by J.Ablinger, J.Blümlein, C.G. Raab and C. Schneider, we have
also sums such as:
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Aim: Being able to deal with those kind of sums in all generality, in particular
Mellin inversion and asymptotic expansion
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Johannes Blümlein, Carsten Schneider, Nikolai Fadeev Asymptotics of binomially weighted sums 3 / 20



Motivation
Asymptotic expansions

Example 2 (physics): Particle physics computations are often done in Mellin
space, and for example in the paper The O(α3

sT
2
F ) contributions to the gluonic

operator matrix element by J.Abligner, J. Blümlein, C. Schneider et al., we
encounter sums of the form:

1
4n

(
2n
n

) n∑
i=1

4i

i2
(2i
i

)S1(i− 1) − 7ζ3

 , S1(i− 1) :=
i−1∑
k=1

1
k

Sums can be nested, for example in Iterated Binomial Sums and their Associated
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I We define the binomially weighted sums as follows:

BS{a1,...,ak}(n) :=
n∑

i1=1

a1(i1)
i1∑
i2=1

a2(i2) · · ·
ik−1∑
ik=1

ak(ik)

With

aj(p) = aj(p; b, c,m) =
(

2p
p

)b
cp

pm
, b ∈ {−1, 0, 1}, c ∈ R?, m ∈ N

I More generic summands can also be considered, such as:

cn
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)
I We define respectively Mellin transform and Mellin convolution as:

M [f(x)] (n) :=
∫ 1

0
dxxnf(x) f(x)∗g(x) =

∫ 1

0
dx1

∫ 1

0
dx2 δ(x−x1x2)f(x1)g(x2)
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Question: How to represent them as Mellin integrals?
I First method (used by HarmonicSums for general Mellin inversion): given
M [f(x)] (n) as holonomic sequences, we obtain the associated holonomic
differential equation, and by solving it we can obtain a closed form for f(x)

Pros: Very general and efficient
Cons: If the DE cannot be solved (not first-order factorizable or Kovacic method
doesn’t work), a Mellin representation cannot be obtained
I Second method (defined in [2]): compute it recursively from the BS using

fundamental properties of Mellin transforms and ”rule-theorems” that allow to
compute in an automatic way Mellin convolutions
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Note: These Mellin representations will involve general polylogarithms

H∗∅(x) := 1, H∗b(t),−→c (t)(x) = H∗b,−→c (x) :=
∫ 1

x

dt b(t)H∗−→c (t)

Defined over a 37 letter alphabet {f0, fw32} containing root singularities such that
all iterated integrals are linearly independent over the algebraic functions
Examples:
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Where
Bx(a, b) :=

∫ x

0
dt ta−1(1− t)b−1
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Integration by parts approach
Geometric series approach
Change of variables approach

We now want to obtain an asymptotic expansion for n→ +∞ up to order p of a
general expression of the form:

M̃a[f(x)](n) :=
∫ 1

0
dx (ax)n − 1

x− 1
a

f(x) =
∫ 1

0
dx [(ax)n − 1] f̃(x) (1)

Where
f̃(x) := f(x)

x− 1
a

I There exist several method to compute this expansion, depending mostly on
the regularity of f and if the integral can be splitted

I We will present three of them, all three of which have been implemented in a
small package, BinomialAsymptotics
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Integration by parts approach
Geometric series approach
Change of variables approach

I Hypothesis: f̃ is at least p times differentiable at x = 1, C0 on (0; 1] and
integrable on [0; 1]

We proceed in the following way:
1 Split the integral in two parts:∫ 1

0
dx[(ax)n−1]f̃(x) = an

∫ 1

0
dxxnf̃(x)−

∫ 1

0
dx f̃(x) = anM [f(x)](n)−M [f(x)](0)

2 Compute the constant value C = M [f(x)](0) (using HarmonicSums or
directly Mathematica)
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Integration by parts approach
Geometric series approach
Change of variables approach

3 Perform an integration by parts p times on the n-dependent part:

M [f(x)](n) = xn+1

n+ 1 f̃(x)
∣∣∣∣1
0
− 1
n+ 1

∫ 1

0
dxxn+1f̃ ′(x)

= f̃(1)
n+ 1 −

1
n+ 1

[
xn+2

n+ 2 f̃
′(x)
∣∣∣∣1
0
− 1
n+ 2

∫ 1

0
dxxn+2f̃ ′′(x)

]
...

...

=
p∑
i=0

(−1)i f̃ (i)(1)
(n+ 1)i+1

+ (−1)p

(n+ 1)p

∫ 1

0
dxxn+p+1f̃ (p+1)(x)︸ ︷︷ ︸
O
(

1
np+1

) (2)

Where (a)n := a(a+ 1) · · · (a+ n− 1), (a)0 := 1
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Integration by parts approach
Geometric series approach
Change of variables approach

4 Expand (2) for n at +∞ up to the order p and add the computed constant to
finally get:

M̃a[f(x)](n) =
n→+∞

−C + an

[
p∑
k=1

hk
nk

+O
( 1
np+1

)]
Where for k ∈ {1, . . . , p}, hk ∈ R.
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Integration by parts approach
Geometric series approach
Change of variables approach

When the function f̃ is not regular enough at x = 1, we have to use another
approach. The geometric series resummation is the first possible one.
I Hypothesis: |f | integrable on [0;1], the constant a is such that |a| < 1

We proceed in the following way:
1 We split the integral and compute the constant C = M [f(x)](0) as before
2 We start by expanding the geometric series:

1
x− 1

a

= (−a) 1
1− ax = (−a)

∞∑
k=0

(ax)k

3 We plug this result into the Mellin transform:

(−a)
∫ 1

0
dxxn

∞∑
k=0

(ax)kf(x) = (−a)
∞∑
k=0

ak
∫ 1

0
dxxn+kf(x)

= (−a)
∞∑
k=0

akM [f(x)](n+ k)
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Integration by parts approach
Geometric series approach
Change of variables approach

4 We compute the shifted Mellin transforms k → n+ k using GeneralMellin
from HarmonicSums

5 Once it’s done the idea is to asymptotically expand M [f(x)](n+ k) for n
around +∞ up to order p:

M [f(x)](n+ k) =
n→+∞

p∑
i=0

αi(k)
ni

+O
( 1
np

)
Where the αi(k) are coefficients that depend on k.

6 Finally, we compute the infinite sum:

(−a)
∞∑
k=0

p∑
i=0

ak
αi(k)
ni

=
p∑
i=0

Ai
ni
, Ai :=

∞∑
k=0

akαi(k)

And the full expasion is then:

M [f(x)](n) =
n→+∞

−C +
p∑
i=0

Ai
ni

+O
( 1
np+1

)
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Integration by parts approach
Geometric series approach
Change of variables approach

When a ≥ 1, the geometric series 1
x− 1

a

is divergent at 1
a
∈ (0; 1]. The singularity is

actually only apparent:

(ax)n − 1
x− 1

a

f(x) =
x→ 1

a

anf
(1
a

)
+O

(
x− 1

a

)
Problem: We cannot split the integral to compute the constant part as usually.
We have to use a new method that relies on a change of variable [2] and do an
integration by parts to extract the constant part
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Johannes Blümlein, Carsten Schneider, Nikolai Fadeev Asymptotics of binomially weighted sums 13 / 20



Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

1 We make the change of variable:

x = e−z

a
, dx = −1

a
e−zdz

This gives us:∫ 1

0
dx

(ax)n − 1
x− 1

a

f(x) = −
1
a

∫ − log a

+∞
dz e−za

e−zn − 1
e−z − 1

f

(
e−z

a

)
=
∫ +∞

− log a
dz (e−zn − 1)

e−z

e−z − 1
f

(
e−z

a

)
︸ ︷︷ ︸

=:g(z)

In particular, expanding the function g defined above around z = 0, we get:

g(z) =
z→0

α−1

z
+ α0 +O(z)

Where α−1, α0 ∈ C
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Integration by parts approach
Geometric series approach
Change of variables approach

2 We do an integration by parts to get rid of the 1
z

, since:∫ z

dw g(w) =
z→0

α−1 log z + α0z +O(z2)

And log z is integrable at z = 0. We define:

u′(z) = g(z)
v(z) = e−zn − 1→

u(z) =
∫ z dw g(w)

v′(z) = −ne−zn

So that:∫ +∞

− log a

dz (e−zn−1)g(z) = (e−zn − 1)

∫ z

dw g(w)

∣∣∣∣+∞
− log a

+n

∫ +∞

− log a

dz e−zn

∫ z

dw g(w)

3 We compute the constant terms:

C2 := lim
z→+∞

(e−zn − 1)
∫ z

dw g(w) = − lim
z→+∞

∫ z

dw g(w)

C1 := lim
z→− log a

(e−zn − 1)
∫ z

dw g(w) = (an − 1) lim
z→− log a

∫ z

dw g(w)

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev Asymptotics of binomially weighted sums 15 / 20



Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

2 We do an integration by parts to get rid of the 1
z

, since:∫ z

dw g(w) =
z→0

α−1 log z + α0z +O(z2)

And log z is integrable at z = 0. We define:

u′(z) = g(z)
v(z) = e−zn − 1→

u(z) =
∫ z dw g(w)

v′(z) = −ne−zn

So that:∫ +∞

− log a

dz (e−zn−1)g(z) = (e−zn − 1)

∫ z

dw g(w)

∣∣∣∣+∞
− log a

+n

∫ +∞

− log a

dz e−zn

∫ z

dw g(w)

3 We compute the constant terms:

C2 := lim
z→+∞

(e−zn − 1)
∫ z

dw g(w) = − lim
z→+∞

∫ z

dw g(w)

C1 := lim
z→− log a

(e−zn − 1)
∫ z

dw g(w) = (an − 1) lim
z→− log a

∫ z

dw g(w)
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Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

4 We expand
∫ z dw g(w) up to order p around z = − log a:∫ z

dw g(w) ∼
z→− log a

∑
α+β≤p

gα,βz
α(z+log a)β , α ∈ N, β ∈ 1

2Z≥−1, gα,β ∈ R

5 Finally, we integrate terms by terms, using the expansion above:∫ +∞

− log a
dz e−zn

∑
α+β≤p

gα,βz
α(z + log a)β =

∑
α+β≤p

gα,β

∫ +∞

− log a
dz e−znzα(z + log a)β

=
∑

α+β≤p

hα,β

nα+β hα,β ∈ R

The full expansion is then:

M̃a[f̃(x)](n) =
n→+∞

C2 − C1 +
∑

α+β≤p

hα,β
nα+β +O

( 1
np+1

)
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Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

Examples

I First we load the package BinomialAsymptotics

n∑
i=1

1
i
(2i
i

) i∑
j=1

(
2j
j

)
(−2)j =

∫ 1

0
dx (−2x)n − 1

x+ 1
2

(
1− 1

6
√

2
√
x+ 1

8

)

−
∫ 1

0
dx
(
x
4

)n − 1
(x− 4)

1√
1− x
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Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

Examples

m∑
i=0

2−2i(2i
i

)
i+ n

= 1
n

+ 1
π

∫ 1

0
dx x

m − 1
x− 1 xnBx

(1
2 − n,

1
2

)
(n > 0)
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Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

I This expression can be simplified as, given that n ∈ N?:
m∑

i=0

2−2i
(

2i
i

)
i + n

=−
C1(n)
π
−
C2(n)
π

+
3072n3 + 5760n2 + 2936n + 307

10752
√
πm7/2

+
−128n2 − 176n− 61

320
√
πm5/2 +

8n + 7
12
√
πm3/2 −

2
√
π
√
m

+O
(

1
m9/2

)
I We have two constants coming from the integration by parts that need to be

computed (in this case by hand)

C1(n) = lim
z→0

(
e−mz − 1

) ∫ z

dw
e−w(n+1)Be−w

(
1
2 − n,

1
2

)
e−w − 1 = 0

C2(n) = − lim
z→∞

∫ z

dw
e−w(n+1)Be−w

(
1
2 − n,

1
2

)
e−w − 1

I For the second constant, the expression doesn’t simplify for arbitrary n, one
can compute its numerical value up to arbitrary precision by specialisin, e.g.
for n = 3 and 100 digits:

C2(n = 3) = −2.303834612632515041539271814404968781744590892875069790
191439694228291643457080788534870797547557879

C2(n = 1) = −π
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Motivation
Asymptotic expansions

Integration by parts approach
Geometric series approach
Change of variables approach

Conclusion

I All three methods have been implemented in a package that can compute
asymptotic expansions in many cases of depth d = 1 and some cases of depth
d = 2

I Some flexibility options are given: constants can be attempted to computed or
not, time limitation

I Computations of the new constants is highly non-trivial and makes the
algorithm get stuck: structure of binomial sums needs to be explored further
(building a basis of binomial sums, unicity of root alphabet/relation between
letters,...)

I Mathematica errors, technical improvements for package... work in progress!

Thank you for listening!
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Consider the general sum

BS{a1,...,ak}(n) :=
n∑

i1=1

a1(i1)
i1∑
i2=1

a2(i2) · · ·
ik−1∑
ik=1

ak(ik)

We proceed outwards from the innermost sum:
I At step 1 ≤ j < k, suppose that we managed to represent

BS{aj+1,...,ak}(ij) = c0,j +
kj∑
p=1

c
ij
p,j+1M [fp,j+1(x)](ij), c0,j+1, cp,j+1 ∈ R

(3)

I Compute an integral representation of the building block aj(ij), possibly using
Mellin convolutions

M [f(x) ∗ g(x)](n) = M [f(x)](n) ·M [g(x)](n)
In order to obtain an expression

aj(ij) = c0,ij +

kij∑
p=1

c
ij
p,ij

M [fp,ij (x)](ij) (4)

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev Asymptotics of binomially weighted sums 21 / 20



References

Consider the general sum

BS{a1,...,ak}(n) :=
n∑

i1=1

a1(i1)
i1∑
i2=1

a2(i2) · · ·
ik−1∑
ik=1

ak(ik)

We proceed outwards from the innermost sum:
I At step 1 ≤ j < k, suppose that we managed to represent

BS{aj+1,...,ak}(ij) = c0,j +
kj∑
p=1

c
ij
p,j+1M [fp,j+1(x)](ij), c0,j+1, cp,j+1 ∈ R

(3)

I Compute an integral representation of the building block aj(ij), possibly using
Mellin convolutions

M [f(x) ∗ g(x)](n) = M [f(x)](n) ·M [g(x)](n)
In order to obtain an expression

aj(ij) = c0,ij +

kij∑
p=1

c
ij
p,ij

M [fp,ij (x)](ij) (4)
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I Convolve BS{aj+1,...,ak}(ij) with aj(ij) to obtain again a sum
I Use the summation formula below to resum and obtain an integral

representation for BS{aj ,aj+1,...,ak}(ij−1):

n∑
i=1

ciM [f(x)](i) = cnM

[
x

x− 1
c

f(x)
]

(n)−M
[

x

x− 1
c

f(x)
]

(0) (5)

I Iterate until the outermost sum has been processed
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Notes:
I These Mellin representation will involve general polylogarithms

H∗∅(x) := 1, H∗b(t),−→c (t)(x) = H∗b,−→c (x) :=
∫ 1

x

dt b(t)H∗−→c (t)

Defined over a 37 letter alphabet {f0, fw32} containing root singularities such
that all iterated integrals are linearly independent over the algebraic functions

I One can actually derive identities that allow to rewrite many convolution
integrals in a direct way [2]
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Example:

BS(n) =
n∑
k=1

(
2i
i

)
S2(i) =

n∑
k=1

(
2i
i

) i∑
j=1

1
i2

I First we compute the Mellin representation of 1
i2 by convolving 1

i
= M

[
1
x

]
(i)

with itself. We get:

1
i2

= M

[ 1
x

]
(i) ·M

[ 1
x

]
(i) = M

[ 1
x
∗

1
x

]
(i) = M

[
H∗0(x)
x

]
(i)

Where

H∗0(x) :=
∫ 1

x

dt f0(t) =
∫ 1

x

dt
1
t

= − log x

Johannes Blümlein, Carsten Schneider, Nikolai Fadeev Asymptotics of binomially weighted sums 24 / 20



References

I Using the summation formula (5), we can then obtain:

S2(i) =
i∑

k=1

M

[
H∗0(x)
x

]
(i) =

∫ 1

0

dx xi H∗0(x)
x− 1︸ ︷︷ ︸

M

[
x

x−1
H∗0 (x)

x

]
(i)

−

∫ 1

0

dx
H∗0(x)
x− 1︸ ︷︷ ︸

M

[
x

x−1
H∗0 (x)

x

]
(0)

=

∫ 1

0

dx xi H∗0(x)
x− 1

+ζ2

I Now that the innermost sum has as integral representation, we shift to the
next and last level. First, one can show (e.g. direct integration) that:(

2i
i

)
= 4i

π
M

[
1√

x(1− x)

]
(i)

So that
k∑

i=1

(2i
i

)
S2(i) =

1
π

n∑
i=1

4i
M

[
1√

x(1− x)

]
(i)·M

[
H∗0(x)
x− 1

]
(i)+

ζ2

π

k∑
i=1

4i
M

[
1√

x(1− x)

]
(i)
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I We apply again the summation formula to obtain first the second part:

ζ2

π

k∑
i=1

4iM

[
1√

x(1− x)

]
(i) = ζ2

π

∫ 1

0
dx (4x)n − 1

x− 1
4

√
x

1− x

I Then we switch to the first part of the binomial and convolve the functions:

M

[
1√

x(1− x)

]
(i) ·M

[
H∗0(x)
x− 1

]
(i) = M

[∫ 1

x

dy H∗0(y)
(y − 1)

√
y − x

]
(i)

I A set of several ”rule-theorems” have been proven in [2] to simplify further
such expressions. One of them allows us to get:∫ 1

x

dy H∗0(y)
(y − 1)

√
y − x

=
H∗b,w1 (x)
√
x− 1

, fb(x) = 1√
x(x− 1)

, fw1 (x) = 1√
x(1− x)
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I Using the shuffle algebra, we can reduce the expression down to:

M

[
H∗b,w1 (x)√
x(x− 1)

]
(i) = −M

[
H∗w1 (x)2

2
√
x(1− x)

]
(i)

I Finally, using once again the summation formula we get:

n∑
i=1

4iM

[
H∗w1 (x)2

2
√
x(1− x)

]
(i) =

∫ 1

0
dx (4x)n − 1

x− 1
4

√
x

1− x
H∗w1 (x)2

2

And resumming everything, we get:
n∑
i=1

(
2i
i

)
S2(i) = − 1

π

∫ 1

0
dx (4x)n − 1

x− 1
4

√
x

1− x

(
H∗w1 (x)2

2 − ζ2

)
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I Remaining case: a < −1 and f not regular enough at x = 1: → 1
x− 1

a

is not
divergent on (0; 1), but the radius of convergence is still less than one, so
geometric series approach doesn’t apply.

I We simply use the change of variable approach with splitting of the integral
this time

Note: This method works also when a = 1 and f(x) ∼
x→1

(x− 1)α, α ≥ 1
2

We now consider a Mellin integral of the form:∫ 1

0
dx (−ax)n − 1

x+ 1
a

f(x), a > 1

Hypothesis: f̃(x) = f(x)
x+ 1

a

integrable on [0; 1]
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1 Split the Mellin integral, factor out the (−a)n, and compute the constant part:∫ 1

0
dx (−ax)n − 1

x+ 1
a

f(x) = (−a)nM
[
f(x)
x+ 1

2

]
(n)−M

[
f(x)
x+ 1

a

]
(0)︸ ︷︷ ︸

=:C

2 In M
[
f(x)
x+ 1

a

]
(n), we make the original change of variable appearing in [2]:

x = e−z dx = −e−zdz

And end up with:

M

[
f(x)
x+ 1

2

]
(n) = (−a)n

∫ +∞

0
dz e−zn e−z

e−z + 1f(e−z)︸ ︷︷ ︸
=:g(z)
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3 We expand g(z) around z = 0 up to the order p:

g(z) =
z→0

∑
α≤p

gαz
α +O(zα+1), α ∈ 1

2Z≥−1, gα ∈ R

4 Finally we integrate M [ f(x)
x+ 1

2
](n) using the expansion above, and adding the

constant and the (−a)n coefficient back,

M̃−a[f(x)](n) =
n→+∞

(−a)n
∑
α≤p

∫ +∞

0
dz e−zngαzα − C

= (−a)n
∑
α≤p

hα
nα
− C, hα ∈ R
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Johannes Blümlein, Carsten Schneider, Nikolai Fadeev Asymptotics of binomially weighted sums 31 / 20

https://doi.org/10.1063/1.4811117
https://doi.org/10.1063%2F1.4811117
https://doi.org/10.1063/1.4900836
https://doi.org/10.1063%2F1.4900836
https://doi.org/10.1016/j.nuclphysb.2014.05.028
https://doi.org/10.1016%2Fj.nuclphysb.2014.05.028
https://doi.org/10.1016/j.nuclphysb.2014.04.007
https://doi.org/10.1016%2Fj.nuclphysb.2014.04.007

	Motivation
	Asymptotic expansions
	Integration by parts approach
	Geometric series approach
	Change of variables approach

	Appendix
	References


