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Abstract. In this paper, we consider a certain class of inequalities for the partition function
of the following form:

T∏
i=1

p(n + si) ≥
T∏

i=1

p(n + ri),

which we call multiplicative inequalities. Given a multiplicative inequality with the condition

that
∑T

i=1 s
m
i 6=

∑T
i=1 r

m
i for at least one m ≥ 1, we shall construct an unified framework so as to

decide whether such a inequality holds or not. As a consequence, we will see that study of such
inequalities has manifold applications. For example, one can retrieve log-concavity property,
strong log-concavity, and the inequalities for p(n) considered by Bessenrodt and Ono, to name
a few. Furthermore, we obtain the full asymptotic expansion for the finite difference of the
logarithm of p(n), denoted by (−1)r−1∆r log p(n), which extends a result by Chen, Wang, and
Xie.
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1. Introduction

A partition of a positive integer n is a weakly decreasing sequence (λ1, λ2, . . . , λr) of positive
integers such that λ1 + λ2 + · · ·+ λr = n. Let p(n) denote the number of partitions of n. Hardy
and Ramanujan [10] studied the asymptotic growth of p(n) as follows:

p(n) ∼ 1

4n
√

3
eπ
√

2n/3 as n→∞. (1.1)

Rademacher [16, 18, 17] improved the work of Hardy and Ramanujan and found a convergent
series for p(n) and Lehmer’s [12, 11] study was on estimation for the remainder term of the series
for p(n). The Hardy-Ramanujan-Rademacher formula reads

p(n) =

√
12

24n− 1

N∑
k=1

Ak(n)√
k

[(
1− k

µ(n)

)
eµ(n)/k +

(
1 +

k

µ(n)

)
e−µ(n)/k

]
+R2(n,N), (1.2)

1
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where

µ(n) =
π

6

√
24n− 1, Ak(n) =

∑
h mod k
(h,k)=1

e−2πinh/k+πis(h,k)

with

s(h, k) =
k−1∑
µ=1

(
µ

k
−
⌊µ
k

⌋
− 1

2

)(
hµ

k
−
⌊hµ
k

⌋
− 1

2

)
,

and

|R2(n,N)| < π2N−2/3√
3

[(
N

µ(n)

)3

sinh
µ(n)

N
+

1

6
−

(
N

µ(n)

)2]
. (1.3)

A sequence {an}n≥0 is said to satisfy the Turán inequlaities or to be log-concave, if

a2n − an−1an+1 ≥ 0 for all n ≥ 1. (1.4)

Independently Nicolas [14] and DeSalvo and Pak [6, Theorem 1.1] proved that the partition
function p(n) is log-concave for all n ≥ 26, conjectured by Chen [3]. DeSalvo and Pak [6,
Theorem 4.1] also proved that for all n ≥ 2,

p(n− 1)

p(n)

(
1 +

1

n

)
>

p(n)

p(n+ 1)
, (1.5)

conjectured by Chen [3]. Further, they improved the rate of decay in (1.5) and proved that for
all n ≥ 7,

p(n− 1)

p(n)

(
1 +

240

(24n)3/2

)
>

p(n)

p(n+ 1)
, (1.6)

see [6, p. 4.2]. DeSalvo and Pak [6] finally came up with the conjecture that the coefficient of
1/n3/2 in (1.6) can be improved to π/

√
24; i.e., for all n ≥ 45,

p(n− 1)

p(n)

(
1 +

π√
24n3/2

)
>

p(n)

p(n+ 1)
, (1.7)

which was proved by Chen, Wang and Xie [5, Sec. 2]. Recently, the author along with Paule,
Radu, and Zeng [1, Theorem 7.6] confirmed that the coefficient of 1/n3/2 is indeed π/

√
24, which

is the optimal; i.e., they proved that for all n ≥ 120,

p(n)2 >

(
1 +

π√
24n3/2

− 1

n2

)
p(n− 1)p(n+ 1). (1.8)

DeSalvo and Pak [6, Theorem 5.1] also established that p(n) satisfies the strong log-concavity
property; i.e., for all n > m > 1,

p(n)2 − p(n−m)p(n+m) > 0. (1.9)

Ono and Bessenrodt [2] extended (1.6) by considering the border case m = n. This leads to
unveil multiplicative properties of the partition function encoded in the following theorem.

Theorem 1.1. [2, Theorem 2.1] If a and b are integers with a, b > 1 and a+ b > 8, then

p(a)p(b) ≥ p(a+ b), (1.10)

with equality holding only for {a, b} = {2, 7}.
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Let ∆ be the forward difference operator define by ∆a(n) := a(n + 1) − a(n) for a se-
quence (a(n))n≥0. It is clear that the log-concavity property for p(n) is equivalent to say that
−∆2 log p(n − 1) > 0 for all n ≥ 26. Equations (1.7) and (1.8) show the asymptotic growth of
−∆2 log p(n − 1). Chen, Wang, and Xie proved the positivity of (−1)r−1∆r log p(n) along with
estimation of an upper bound.

Theorem 1.2. [5, Thm. 3.1 and 4.1] For each r ≥ 1, there exists a positive integer n(r) such
that for all n ≥ n(r),

0 < (−1)r−1∆r log p(n) < log

(
1 +

π√
6

(1

2

)
r−1

1

(n+ 1)r−
1
2

)
. (1.11)

The above inequalities can be rephrased in the following form:

T∏
i=1

p(n+ si) ≥
T∏
i=1

p(n+ ri), (1.12)

which we call multiplicative inequalities for the partition function. Instead of applying the
Hardy-Ramanujan-Rademacher formula (1.2) and Lehmer’s error bound (1.3) but with different
methodology for different inequalities for p(n) as done in [2, 6, 14, 5], we will see how one can
prove all such multiplicative inequalities under a unified framework so as to decide explicitly
N(T ), such that for all n ≥ N(T ), (1.12) holds. To prove (1.12), it is equivalent to show

T∑
i=1

log p(n+ si) ≥
T∑
i=1

log p(n+ ri), (1.13)

and therefore, an infinite family of inequalities for logarithm of the shifted version of the partition
function is a prerequisite, see Theorems 3.9 and 3.13. As an application of Theorem 3.9, we shall
complete Theorem 1.2 (see Theorems 4.6 and 4.7 below) in the following aspects:

(1) by improving the lower bound in (1.11) to show that the rate of decay given in the upper
bound is the optimal one,

(2) for each r ≥ 1, computation of n(r) by estimation of error bound based on the minimal
choice of the truncation point w in Theorem 3.9,

(3) and a full asymptotic expansion for (−1)r−1∆r log p(n). This seems to be inaccessible
from Theorem 1.2 because a key tool in the proof was on the relations between the
higher order differences and derivatives (cf. Prop. 3.5, [5]) due to Odlyzko [15] which

only contributes to the main term in the expansion; i.e.,
π√
6

(1

2

)
r−1

1

(n+ 1)r−
1
2

.

Even having Theorem 3.13 in hand, in order to decide whether (1.12) holds or not, there are
two key factors remain unexplained. First, an explanation of the following assumption

T∑
i=1

smi 6=
T∑
i=1

rmi for at least one m ≥ Z≥1. (1.14)

and an appropriate choice of w, i.e., the truncation point as in Theorem 3.13. Now we move on
to see how these two factors are intricately connected through a classical problem in Diophan-
tine equations known as the Prouhet-Tarry-Escott problem [7, Chapter XXIV]. The problem
originated in different guise from a letter of Goldbach [8] to Euler that dates back to 18 July,
1750. The Prouhet–Tarry–Escott problem asks for two distinct tuples of integers (s1, s2, . . . , sT )
and (r1, r2, . . . , rT ) such that

T∑
i=1

ski =
T∑
i=1

rki , for all 0 ≤ k ≤ m− 1 and
T∑
i=1

smi 6=
T∑
i=1

rmi .
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We write (s1, . . . , sT )
m
= (r1, . . . , rT ) to denote a solution of the Prouhet–Tarry–Escott problem.

Recently, Merca and Katriel [13] connects the non-trivial linear homogeneous partition inequali-
ties with the Prouhet–Tarry–Escott problem. In brevity, we shall explain why the optimal choice
of truncation point w = m+ 1, with (s1, . . . , sT )

m
= (r1, . . . , rT ) for a given (1.12) in Section 5.

The rest of the paper is organized as follows. In Section 2, we state preliminary lemmas and
theorems from the work of Paule, Radu, Zeng, and the author [1]. Section 3 presents a detailed
synthesis on derivation of inequalities for log p(n + s) for any non-negative integer s that leads
to the main result of this paper, see Theorem 3.13. As an application of Theorem 3.13, we
provide a full asymptotic expansion of (−1)r−1∆r log p(n) in Section 4. In Section 5, we work
out the steps to verify multiplicative inequalities for the partition function. Section 6 is devoted

to derive an infinite families of inequalities for
T∏
i=1

p(n + si), given in Theorem 6.9. Finally we

conclude this paper with a short discussion on the applications of Theorems 3.13 and 6.9.

2. Set up

Throughout this section, we follow the notations as in [1].

Definition 2.1 (Def. 5.1, [1]). For y ∈ R, 0 < y2 < 24, we define

G(y) := − log
(

1− y2

24

)
+
π
√

24

6y

(√
1− y2

24
− 1

)
+ log

(
1− y

π
6

√
24− y2

)
, (2.1)

and its sequence of Taylor coefficients by

G(y) =
∞∑
u=1

guy
u. (2.2)

Define α :=
π2

36 + π2
.

Lemma 2.2 (Lem. 5.4, [1]). Let G(y) =
∑∞

u=1 guy
u be the Taylor expansion of G(y) as in

Definition 2.1. Then for n ≥ 1,

g2n =
1

3n23nn
− 1

3n23n+1n

(
−1 +

1

αn

)
, (2.3)

and for n ≥ 0,

g2n+1 =
√

6

[
(−1)n+1

(
1/2

n+ 1

)
π

23n+33n+2
− 1

23n+13nαn(2n+ 1)π

n∑
j=0

αj
(
−1

2
+ j

j

)]
. (2.4)

Lemma 2.3 (Lem. 5.8, [1]). For n ≥ 0, we have

−
√

6

2π23n3nαn(2n+ 1)

(π2

72
+ 1 +

α

2(1− α)

)
≤ g2n+1 ≤ −

√
6

2π23n3nαn(2n+ 1)

(
1 +

α

2

)
. (2.5)

Lemma 2.4 (Lem. 5.9, [1]). For n ≥ 1, we have

− 1

3n23n+1αnn
≤ g2n ≤

1

3n23nαnn

(3α

2
− 1

2

)
. (2.6)

Definition 2.5 (Def. 4.3, [1]). For k ∈ Z≥2, define

g(k) :=
1

24

(
62

π2
· ν(k)2 + 1

)
,
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where ν(k) := 2 log 6 + (2 log 2)k + 2k log k + 2k log log k +
5k log log k

log k
.

Definition 2.6 (Def. 6.4, [1]). For n, U ∈ Z≥1, we define

Pn(U) := − log 4
√

3− log n+ π

√
2n

3
+

U∑
u=1

gu(1/
√
n)u.

Theorem 2.7 (Thm 6.6, [1]). Let G(y) =
∑∞

u=1 guy
u as in Definition 2.1. Let g(k) be as in

Definition 2.5 and Pn(U) as in Definition 2.6. If m ≥ 1 and n > g(2m), then

Pn(2m− 1)− 2

3m23mαmnmm
< log p(n) < Pn(2m− 1) +

1

3m23mαmnmm
; (2.7)

if m ≥ 2 and n > g(2m− 1), then

Pn(2m− 2)− 7

3m23mαmnm−1/2(2m− 1)
< log p(n) < Pn(2m− 2) +

2

3m23mαmnm−1/2(2m− 1)
.

(2.8)

In other words, for w ∈ Z>0 with dw/2e ≥ γ0 and n > g(w), we have

Pn(w − 1)− γ1
(24α)dw/2e

( 1√
n

)w
< log p(n) < Pn(w − 1) +

γ2
(24α)dw/2e

( 1√
n

)w
, (2.9)

where

(γ0, γ1, γ2) =

{
(1, 4, 2), if w is even

(2, 7, 2), if w is odd
. (2.10)

Lemma 2.8 (Lem 7.3, [1]). For n, s ∈ Z≥1,m ∈ N and n > 2s, let

bm,n(s) :=
4
√
s√

s+m− 1

(
s+m− 1

s− 1

)
1

nm
,

then

− bm,n(s) <
∞∑
k=m

(
−2s−1

2

k

)
1

nk
< bm,n(s) (2.11)

and

0 <
∞∑
k=m

(
−2s−1

2

k

)
(−1)k

nk
< bm,n(s). (2.12)

Lemma 2.9 (Lem 7.4, [1]). For n, s ∈ Z≥1,m ∈ N and n > 2s, let

βm,n(s) :=
2

nm

(
s+m− 1

s− 1

)
,

then

− βm,n(s) <
∞∑
k=m

(
−s
k

)
1

nk
< βm,n(s) (2.13)

and

0 <
∞∑
k=m

(
−s
k

)
(−1)k

nk
< βm,n(s). (2.14)
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Lemma 2.10 (Lem 7.5, [1]). For m,n, s ∈ Z≥1 and n > 2s, let

cm,n(s) :=
2

m

sm

nm
,

then

− cm,n(s) <
∞∑
k=m

(−1)k+1

k

sk

nk
< cm,n(s) and − cm,n(s) < −

∞∑
k=m

1

k

sk

nk
< 0 (2.15)

and

− cm,n(s)√
m

<
∞∑
k=m

(
1/2

k

)
sk

nk
<
cm,n(s)√

m
and − cm,n(s)√

m
<

∞∑
k=m

(
1/2

k

)
(−1)ksk

nk
< 0. (2.16)

3. Inequalities for log p(n;~s)

In this section, first we prove an infinite family of inequalities for log p(n + s) with s being
a non-negative integer, see Theorem 3.9. Starting from Theorem 2.7, we will estimate Pn+s(U)
and the error terms given in (2.7) and (2.8), stated in Lemma 3.3-3.6. Finally, generalizing

Theorem 3.9 by taking into consideration
∑T

i=1 log p(n+ si) for (s1, s2, . . . , sT ) ∈ ZT≥0, we obtain
Theorem 3.13.

Lemma 3.1. Let the coefficient sequence (gn)n≥1 be as in Lemma 2.2. Then for all n ≥ 1, we
have

|gn| ≤
1

n

1

(24α)bn/2c
. (3.1)

Proof. Observe that for all n ≥ 0,
√
6

2π

(
1 + α

2

)
1

(24α)n(2n+1)
> 0 and 0 <

√
6

2π

(
π2

72
+ 1 + α

2(1−α)

)
< 1.

Using (2.5), we obtain for all n ≥ 0,

− 1

(24α)n(2n+ 1)
< g2n+1 < 0. (3.2)

Since 3α
2
− 1

2
< 0, from (2.6), it follows that for all n ≥ 1,

− 1

(24α)n(2n)
≤ g2n < 0. (3.3)

From (3.2) and (2.4), we conclude that for all n ≥ 1,

|gn| ≤
1

(24α)bn/2cn
.

�

Definition 3.2. For s ∈ Z≥0, define

δs :=

{
1, if s ≥ 1

0, if s = 0
.

Lemma 3.3. For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, let

P 1
n,s(w) := − log n+

bw−1
2
c∑

k=1

(−1)ksk

k

( 1√
n

)2k
and E1

n,s(w) :=
2sd

w+1
2
e

dw/2e

( 1√
n

)w
δs,

then

P 1
n,s(w)− E1

n,s(w) ≤ − log(n+ s) ≤ P 1
n,s(w) + E1

n,s(w). (3.4)
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Proof. For all n, s ∈ Z≥1, w ∈ Z≥2, and n > 2s, we split log(n+ s) as follows

log(n+ s) = log n+
∞∑
k=1

(−1)k+1

k

sk

nk
= log n+

bw−1
2
c∑

k=1

(−1)k+1

k

sk

nk
+

∞∑
k=dw

2
e

(−1)k+1

k

sk

nk
. (3.5)

Applying (2.15) with m 7→ dw
2
e, it follows that for all n > 2s,

− 2

dw/2e

( s
n

)dw/2e
<

∞∑
k=dw

2
e

(−1)k+1

k

sk

nk
<

2

dw/2e

( s
n

)dw/2e
. (3.6)

Since for all s ∈ Z≥0, sdw/2e ≤ sd
w+1
2
e, from (3.5) and (3.6), it follows that

P 1
n,s(w)− E1

n,s(w) ≤ − log(n+ s) ≤ P 1
n,s(w) + E1

n,s(w). (3.7)

Observe that equality holds when s = 0. �

Lemma 3.4. For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, let

P 2
n,s(w) := π

√
2n

3
+ π

√
2

3

bw
2
c∑

k=1

(
1/2

k

)
sk
( 1√

n

)2k−1
and E2

n,s(w) :=
6sd

w+1
2
e

dw/2e

( 1√
n

)w
δs,

then

P 2
n,s(w)− E2

n,s(w) ≤ π

√
2n+ 2s

3
≤ P 2

n,s(w) + E2
n,s(w). (3.8)

Proof. For all n, s ∈ Z≥1, w ∈ Z≥2, and n > 2s, we split π

√
2n+ 2s

3
as follows

π

√
2n+ 2s

3
= π

√
2n

3
+ π

√
2

3

bw
2
c∑

k=1

(
1/2

k

)
sk
( 1√

n

)2k−1
+ π

√
2n

3

∞∑
k=bw+2

2
c

(
1/2

k

)
sk

nk
. (3.9)

Applying (2.16) with m 7→ bw+2
2
c, it follows that for all n > 2s,

− 2(
bw+2

2
c
)3/2( sn)bw+2

2
c
<

∞∑
k=bw+2

2
c

(
1/2

k

)
sk

nk
<

2(
bw+2

2
c
)3/2( sn)bw+2

2
c
. (3.10)

Therefore,

−2π

√
2

3

sb
w+2
2
c(

bw+2
2
c
)3/2( 1√

n

)2bw+2
2
c−1

< π

√
2n

3

∞∑
k=bw+2

2
c

(
1/2

k

)
sk

nk

< 2π

√
2

3

sb
w+2
2
c(

bw+2
2
c
)3/2( 1√

n

)2bw+2
2
c−1
.

(3.11)

Now for all s ∈ Z≥0,

π

√
2

3

sb
w+2
2
c(

bw+2
2
c
)3/2( 1√

n

)2bw+2
2
c−1

<
6sd

w+1
2
e

dw/2e

( 1√
n

)w
.

From (3.9) and (3.11), it follows that

P 2
n,s(w)− E2

n,s(w) ≤ π

√
2n+ 2s

3
≤ P 2

n,s(w) + E2
n,s(w), (3.12)

with equality holds for s = 0. �
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Lemma 3.5. For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, let

g`(s; t) := g`

(
−`/2

t− b`/2c

)
st−b

`
2
c for all ` ∈ Z≥1,

P 3
n,s(w) :=

w−1∑
u=1

gu

( 1√
n

)u
+

bw−2
2
c∑

t=1

t−1∑
u=0

g2u+1(s; t)
( 1√

n

)2t+1

+

bw−1
2
c∑

t=2

t−1∑
u=1

g2u(s; t)
( 1√

n

)2t
,

and

E3
n,s(w) :=

29

w

(
s+

1

24α

)dw−1
2
e+1( 1√

n

)w
δs,

then

P 3
n,s(w)− E3

n,s(w) ≤
w−1∑
u=1

gu

( 1√
n+ s

)u
≤ P 2

n,s(w) + E3
n,s(w). (3.13)

Proof. For all n, s ∈ Z≥1, w ∈ Z≥2, and n > 2s, we split
∑w−1

u=1 gu(1/
√
n+ s)u as

w−1∑
u=1

gu

( 1√
n+ s

)u
=

w−1∑
u=1

gu

( 1√
n

)u ∞∑
k=0

(
−u/2
k

)
sk

nk

=
w−1∑
u=1

gu

( 1√
n

)u
+

w−1∑
u=1

gu

( 1√
n

)u ∞∑
k=1

(
−u/2
k

)
sk

nk

=
w−1∑
u=1

gu

( 1√
n

)u
+

w−1∑
u=1

gu

∞∑
k=1

(
−u/2
k

)
sk
( 1√

n

)2k+u

=
w−1∑
u=1

gu

( 1√
n

)u
+

bw−2
2
c∑

u=0

g2u+1

∞∑
k=1

(
−2u+1

2

k

)
sk
( 1√

n

)2k+2u+1

+

bw−1
2
c∑

u=1

g2u

∞∑
k=1

(
−u
k

)
sk
( 1√

n

)2k+2u

. (3.14)

Now,

bw−2
2
c∑

u=0

g2u+1

∞∑
k=1

(
−2u+1

2

k

)
sk
( 1√

n

)2k+2u+1

=

bw−2
2
c∑

u=0

g2u+1

∞∑
t=u+1

(
−2u+1

2

t− u

)
st−u

( 1√
n

)2t+1

=

bw−2
2
c∑

u=0

g2u+1

bw−2
2
c∑

t=u+1

(
−2u+1

2

t− u

)
st−u

( 1√
n

)2t+1

+

bw−2
2
c∑

u=0

g2u+1

∞∑
t=dw−1

2
e

(
−2u+1

2

t− u

)
st−u

( 1√
n

)2t+1

=

bw−2
2
c∑

t=1

t−1∑
u=0

g2u+1(s; t)
( 1√

n

)2t+1

+

dw−1
2
e∑

u=1

∞∑
t=dw−1

2
e−u+1

g2u−1

(
−2u−1

2

t

)
st
( 1√

n

)2t+2u−1

︸ ︷︷ ︸
:=So(w,n,s)

. (3.15)

Next, we proceed to estimate the absolute value of the error sum So(w, n, s) for s ∈ Z≥1.
|So(w, n, s)|
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≤
dw−1

2
e∑

u=1

|g2u−1|
( 1√

n

)2u−1∣∣∣∣∣
∞∑

t=dw−1
2
e−u+1

(
−2u−1

2

t

)
st

nt

∣∣∣∣∣
< 4

dw−1
2
e∑

u=1

|g2u−1|
( 1√

n

)2u−1√ u

dw−1
2
e

(
dw−1

2
e

u− 1

)( s
n

)dw−1
2
e−u+1

(
by substitution (m, s, n) 7→

(⌈w − 1

2

⌉
− u+ 1, u,

n

s

)
in (2.11)

)

≤ 4

(dw−1
2
e∑

u=1

|g2u−1|
(
dw−1

2
e

u− 1

)
1

su

)( 1√
n

)2dw−1
2
e+1

sd
w−1
2
e+1

≤ 4

(dw−1
2
e∑

u=1

1

(2u− 1)(24α)u−1

(
dw−1

2
e

u− 1

)
1

su

)( 1√
n

)w
sd

w−1
2
e+1

(
by Lemma 3.1

)

= 4

(dw−1
2
e−1∑

u=0

1

2u+ 1

(
dw−1

2
e

u

)
1

(24αs)u

)( 1√
n

)w
sd

w−1
2
e

≤ 16

3

(dw−1
2
e−1∑

u=0

1

2u+ 2

(
dw−1

2
e

u

)
1

(24αs)u

)( 1√
n

)w
sd

w−1
2
e
(

as
4

2u+ 1
≤ 8

3(u+ 1)
for all u ≥ 1

)
=

16

3

1

2
(
dw−1

2
e+ 1

)(((1 +
1

24αs

)dw−1
2
e+1

− 1

)
24αs−

( 1

24αs

)dw−1
2
e
)( 1√

n

)w
sd

w−1
2
e

<
16

3w

((
1 +

1

24αs

)dw−1
2
e+1

− 1

)
24αs

( 1√
n

)w
sd

w−1
2
e <

28

w

(
s+

1

24α

)dw−1
2
e+1( 1√

n

)w
. (3.16)

Similar to (3.15), we get

bw−1
2
c∑

u=1

g2u

∞∑
k=1

(
−u
k

)
sk
( 1√

n

)2k+2u

=

bw−1
2
c∑

u=1

∞∑
t=u+1

g2u

(
−u
t− u

)
st−u

( 1√
n

)2t

=

bw−1
2
c∑

u=1

bw−1
2
c∑

t=u+1

g2u

(
−u
t− u

)
st−u

( 1√
n

)2t
+

bw−1
2
c∑

u=1

∞∑
t=dw

2
e

g2u

(
−u
t− u

)
st−u

( 1√
n

)2t

=

bw−1
2
c∑

t=2

t−1∑
u=1

g2u(s; t)
( 1√

n

)2t
+

bw−1
2
c∑

u=1

∞∑
t=dw

2
e−u

g2u

(
−u
t

)
st
( 1√

n

)2t+2u

︸ ︷︷ ︸
:=Se(w,n,s)

. (3.17)

Consequently for s ∈ Z≥1,

|Se(w, n, s)| ≤
bw−1

2
c∑

u=1

|g2u|
( 1√

n

)2u∣∣∣∣∣
∞∑

t=dw
2
e−u

(
−u
t

)
st

nt

∣∣∣∣∣
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< 2

bw−1
2
c∑

u=1

|g2u|
( 1√

n

)2u(dw
2
e − 1

u− 1

)( s
n

)dw
2
e−u

(
by substitution (m, s, n) 7→

(⌈w
2

⌉
− u, u, n

s

)
in (2.13)

)

= 2

(bw−1
2
c∑

u=1

|g2u|
(
dw
2
e − 1

u− 1

)
1

su

)
sd

w
2
e
( 1√

n

)w
≤ 2

(bw−1
2
c∑

u=1

1

2u

(
dw
2
e − 1

u− 1

)
1

(24αs)u

)
sd

w
2
e
( 1√

n

)w (
by Lemma 3.1

)

= 2

(dw
2
−1e∑

u=1

1

2u

(
dw
2
e − 1

u− 1

)
1

(24αs)u

)
sd

w
2
e
( 1√

n

)w
=

1

w

((
1 +

1

24αs

)dw
2
e

− 1−
( 1

24αs

)dw
2
e
)
sd

w
2
e
( 1√

n

)w
<

1

w

(
s+

1

24α

)dw−1
2
e+1( 1√

n

)w
. (3.18)

From (3.14), (3.15), and (3.17), we obtain

w−1∑
u=1

gu

( 1√
n+ s

)u
− P 3

n,s(w) = So(w, n, s) + Se(w, n, s), (3.19)

and taking absolute on both side of (3.19) and applying (3.16) and (3.18), it follows that∣∣∣w−1∑
u=1

gu

( 1√
n+ s

)u
− P 3

n,s(w)
∣∣∣ =

∣∣∣So(w, n, s) + Se(w, n, s)
∣∣∣

≤
∣∣∣So(w, n, s)∣∣∣+

∣∣∣Se(w, n, s)∣∣∣
<

29

w

(
s+

1

24α

)dw−1
2
e+1( 1√

n

)w
.

(3.20)

Note that in (3.13), the equality holds for s = 0 because first, P 3
n,0(w) = 0 and secondly, the error

term So(w, n, 0) (resp. Se(w, n, 0)) in (3.15) (resp. in (3.17)) is identically zero and therefore,
we conclude that E3

n,0(w) = 0. �

Lemma 3.6. Let γ1, γ2 as in Equation (2.10). For (n, s) ∈ Z≥1 × Z≥0, and w ∈ Z≥2, then

− γ1
(24α)dw/2ew

( 1√
n

)w
≤ − γ1

(24α)dw/2ew

( 1√
n+ s

)w
(3.21)

and

γ2
(24α)dw/2ew

( 1√
n+ s

)w
≤ γ2

(24α)dw/2ew

( 1√
n

)w
. (3.22)

Proof. The proof of both (3.21) and (3.22) is immediate from the fact that 1√
n+s
≤ 1√

n
for all

(n, s) ∈ Z≥1 × Z≥0. �
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Definition 3.7. Let the coefficient sequence (gn)n≥1 be as in Lemma 2.2 and (gn(s; t))n≥1 be as
in Lemma 3.5. Then for (n, s) ∈ Z≥1 × Z≥0 and U ∈ Z≥1, we define

Pn,s(U) := − log 4
√

3− log n+ π

√
2n

3
+

U∑
u=1

g̃u,s

( 1√
n

)u
, (3.23)

where

g̃2u,s :=
(−s)u

u
+ g2u +

u−1∑
k=1

g2k(s;u) for all 1 ≤ u ≤ bU/2c

and

g̃2u+1,s := π

√
2

3

(
1/2

u+ 1

)
su+1 + g2u+1 +

u−1∑
k=0

g2k+1(s;u) for all 0 ≤ u ≤ b(U − 1)/2c.

Definition 3.8. Let γ1, γ2 be as in (2.10). For (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > 2s, we
define

EUn,s(w) :=

(
45
(
s+

1

24α

)dw+1
2
e
δs +

γ2
(24α)dw/2e

)
1

w

( 1√
n

)w
and

ELn,s(w) :=

(
45
(
s+

1

24α

)dw+1
2
e
δs +

γ1
(24α)dw/2e

)
1

w

( 1√
n

)w
.

Theorem 3.9. Let Pn,s(U) be as in Definition 3.7 and ELn,s(w), EUn,s(w) be as in Definition 3.8.
If (n, s) ∈ Z≥1 × Z≥0, w ∈ Z≥2, and n > max{g(w)− s, 2s}, then

Pn,s(w − 1)− ELn,s(w) < log p(n+ s) < Pn,s(w − 1) + EUn,s(w). (3.24)

Proof. From (2.9), it follows that for dw
2
e ≥ γ0 and n > g(w)− s,

Pn+s(w− 1)− γ1
(24α)dw/2ew

( 1√
n+ s

)w
< log p(n+ s) < Pn+s(w− 1) +

γ2
(24α)dw/2ew

( 1√
n+ s

)w
,

(3.25)
where

Pn+s(w − 1) = − log 4
√

3− log(n+ s) + π

√
2(n+ s)

3
+

w−1∑
u=1

gu

( 1√
n+ s

)u
(by Definition 2.6).

Applying Lemma 3.6 into (3.25), we obtain

Pn+s(w− 1)− γ1
(24α)dw/2ew

( 1√
n

)w
< log p(n+ s) < Pn+s(w− 1) +

γ2
(24α)dw/2ew

( 1√
n

)w
. (3.26)

Invoking Lemma 3.3, 3.4, and 3.5 into (3.26), it follows that

− log 4
√

3 +
3∑
i=1

P i
n,s(w)−

3∑
i=1

Ei
n,s(w)− γ1

(24α)dw/2ew

( 1√
n

)w
< log p(n+ s)

< − log 4
√

3 +
3∑
i=1

P i
n,s(w) +

3∑
i=1

Ei
n,s(w) +

γ2
(24α)dw/2ew

( 1√
n

)w
.

(3.27)
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For s ≥ 1,

3∑
i=1

Ei
n,s(w) +

γ2
(24α)dw/2ew

( 1√
n

)w
=

(
8sd

w+1
2
e

dw/2e
+

29

w

(
s+

1

24α

)dw−1
2
e+1

+
γ2

(24α)dw/2ew

)( 1√
n

)w
=

(
8sd

w+1
2
e

dw/2e
+

29

w

(
s+

1

24α

)dw+1
2
e

+
γ2

(24α)dw/2ew

)( 1√
n

)w
≤

(
16sd

w+1
2
e

w
+

29

w

(
s+

1

24α

)dw+1
2
e

+
γ2

(24α)dw/2ew

)( 1√
n

)w
<

(
45
(
s+

1

24α

)dw+1
2
e

+
γ2

(24α)dw/2e

)
1

w

( 1√
n

)w
, (3.28)

and for s = 0,
3∑
i=1

Ei
n,s(w) +

γ2
(24α)dw/2ew

( 1√
n

)w
=

γ2
(24α)dw/2ew

( 1√
n

)w
. (3.29)

Similarly, for s ≥ 1,

3∑
i=1

Ei
n,s(w) +

γ1
(24α)dw/2ew

( 1√
n

)w
<

(
45
(
s+

1

24α

)dw+1
2
e

+
γ1

(24α)dw/2e

)
1

w

( 1√
n

)w
, (3.30)

and for s = 0,
3∑
i=1

Ei
n,s(w) +

γ1
(24α)dw/2ew

( 1√
n

)w
=

γ1
(24α)dw/2ew

( 1√
n

)w
. (3.31)

Putting (3.28)-(3.31) together into (3.27), we get

− log 4
√

3 +
3∑
i=1

P i
n,s(w)− ELn,s(w) < log p(n+ s) < − log 4

√
3 +

3∑
i=1

P i
n,s(w) + EUn,s(w). (3.32)

From Lemma 3.3-3.5, it follows that

− log 4
√

3 +
3∑
i=1

P i
n,s(w) = − log 4

√
3− log n+ π

√
2n

3
+

w−1∑
u=1

gu

( 1√
n

)u
+

(bw−1
2
c∑

k=1

(−1)ksk

k

( 1√
n

)2k
+

bw−1
2
c∑

t=2

t−1∑
u=1

g2u(s; t)
( 1√

n

)2t)

+

(
π

√
2

3

bw
2
c∑

k=1

(
1/2

k

)
sk
( 1√

n

)2k−1
+

bw−2
2
c∑

t=1

t−1∑
u=0

g2u+1(s; t)
( 1√

n

)2t+1
)

= − log 4
√

3− log n+ π

√
2n

3
+

bw−1
2
c∑

u=1

((−s)u

u
+ g2u +

u−1∑
k=1

g2k(s;u)
)( 1√

n

)2u

+

bw−2
2
c∑

u=0

(
π

√
2

3

(
1/2

k + 1

)
sk+1 + g2u+1 +

u−1∑
k=0

g2k+1(s;u)

)( 1√
n

)2u+1

= − log 4
√

3− log n+ π

√
2n

3
+

bw−1
2
c∑

u=1

g̃2u,s

( 1√
n

)2u
+

bw−2
2
c∑

u=0

g̃2u+1,s

( 1√
n

)2u+1

= Pn,s(w − 1). (3.33)
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From (3.32) and (3.33), we conclude the proof of (3.24). �

Next, we proceed to estimate
∑T

i=1 log p(n+ si).

Definition 3.10. For n, T ∈ Z≥1 and ~s := (s1, s2, . . . , sT ) ∈ ZT≥0, we define

log p(n;~s) :=
T∑
i=1

log p(n+ si).

Definition 3.11. Let the coefficient sequence (gn)n≥1 be as in Lemma 2.2, (gn(s; t))n≥1 be as in
Lemma 3.5, and ~s be as in Definition 3.10. For n, T ∈ Z≥1 and U ∈ Z≥1, we define

Pn,~s(U) := −T · log 4
√

3− T · log n+ T · π
√

2n

3
+

U∑
u=1

g̃u,~s

( 1√
n

)u
, (3.34)

where

g̃2u,~s :=
1

u

T∑
i=1

(−si)u + T · g2u +
T∑
i=1

u−1∑
k=1

g2k(si;u) for all 1 ≤ u ≤ bU/2c

and

g̃2u+1,~s := π

√
2

3

(
1/2

u+ 1

) T∑
i=1

su+1
i + T · g2u+1 +

T∑
i=1

u−1∑
k=0

g2k+1(si;u) for all 0 ≤ u ≤ b(U − 1)/2c.

Definition 3.12. Let γ1, γ2 be as in (2.10) and ~s be as in Definition 3.10. For each {si}1≤i≤T ,
δsi be as in Definition 3.2. For n, T ∈ Z≥1, w ∈ Z≥2, and n > 2si, we define

EUn,~s(w) :=

(
45

T∑
i=1

(
si +

1

24α

)dw+1
2
e
δsi +

T · γ2
(24α)dw/2e

)
1

w

( 1√
n

)w
and

ELn,~s(w) :=

(
45

T∑
i=1

(
si +

1

24α

)dw+1
2
e
δsi +

T · γ1
(24α)dw/2e

)
1

w

( 1√
n

)w
.

A generalized version of Theorem 3.9 is as follows:

Theorem 3.13. Let log p(n;~s) be as in Definition 3.10, Pn,~s(U) be as in Definition 3.11, and
let g(k) be as in Definition 2.5. Let ELn,~s(w) and EUn,~s(w) be as in Definition 3.12. If n, T ∈ Z≥1,
w ∈ Z≥2, and

n > max
1≤i≤T

{g(w)− min
1≤i≤T

{si}, 2si} := g(w;~s),

then

Pn,~s(w − 1)− ELn,~s(w) < log p(n;~s) < Pn,~s(w − 1) + EUn,~s(w). (3.35)

Proof. Applying (3.24) for each {si}1≤i≤T and summing up, we get (3.35). �

Remark 3.14. A few applications of Theorem 3.13 are listed below.

(1) Choosing w = 5 (resp. w = 7), we obtain (p(n))n≥26 is log-concave (resp. (1.7)).

(2) Define un := p(n)p(n+2)
p(n+1)2

and let N be any positive integer. Then choosing w = N , we have

a full asymptotic expansion of log un with a precise estimation of the error bound after
truncation of the asymptotic expansion at a point N .
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(3) Applying ~s = {m,m} and ~r = {0, 2m} to (3.35), and estimation of

Pn,~s(4) + ELn,~s(5)− Pn,~r(4)− EUn,~s(5),

leads to the strong log-concavity property of p(n).
(4) Without loss of generality, assume b = λa with λ ≥ 1 in Theorem 1.1. By making the

substitutions (n,~s) = (a, 0), (n,~s) = (λa, 0), and (n,~r) = (a(1 + λ), 0) to (3.35), we can
retrieve (1.10).

4. Asymptotics of (−1)r−1∆r log p(n)

Lemma 4.1. Let Pn,s(w − 1) be as in Theorem 3.9. Then for all r ≥ 2,

r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r) = Cr

( 1√
n

)2r−1
− (r − 1)!

( 1√
n

)2r
, (4.1)

where Cr =
π√
6

(1

2

)
r−1

and (a)k is the standard notation for the rising factorial.

Proof. From Definition 3.7, it follows that

r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r) =

r∑
i=0

(
r

i

)
(−1)i+1

(
− log 4

√
3− log n+

√
2n

3
+

2r∑
u=1

g̃u,i

( 1√
n

)u)

=
r∑
i=0

(
r

i

)
(−1)i+1

2r∑
u=1

g̃u,i

( 1√
n

)u
=

r∑
i=0

(
r

i

)
(−1)i+1

2r−2∑
u=1

g̃u,i

( 1√
n

)u
+

r∑
i=0

(
r

i

)
(−1)i+1g̃2r−1,i

( 1√
n

)2r−1
+

r∑
i=0

(
r

i

)
(−1)i+1g̃2r,i

( 1√
n

)2r
.(4.2)

Following the notation from [9], here
{
n
m

}
denotes the Stirling number of second kind. For all

integers 1 ≤ u ≤ 2r − 2 and u ≡ 0 (mod 2), we have

r∑
i=0

(
r

i

)
(−1)i+1

r−1∑
u=1

g̃2u,i

( 1√
n

)2u
=

r∑
i=0

(
r

i

)
(−1)i+1

r−1∑
u=1

[
(−i)u

u
+ g2u +

u−1∑
k=1

g2k(i;u)

]( 1√
n

)2u
=

r−1∑
u=1

(−1)u

u
(−1)r+1r!

{
u

r

}( 1√
n

)2u
+

r−1∑
u=1

u−1∑
k=1

g2k

(
−k
u− k

) r∑
i=0

(
r

i

)
(−1)i+1iu−k

( 1√
n

)2u
=

r−1∑
u=1

(−1)u

u
(−1)r+1r!

{
u

r

}( 1√
n

)2u
+

r−1∑
u=1

u−1∑
k=1

g2k

(
−k
u− k

)
(−1)r+1r!

{
u− k
r

}( 1√
n

)2u
= 0

(
as

{
n

m

}
= 0 for all n < m

)
. (4.3)
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Similarly for all integers 1 ≤ u ≤ 2r − 2 and u ≡ 1 (mod 2), we obtain

r∑
i=0

(
r

i

)
(−1)i+1

r−2∑
u=0

g̃2u+1,i

( 1√
n

)2u+1

=
r∑
i=0

(
r

i

)
(−1)i+1

r−2∑
u=0

[
π

√
2

3

(
1/2

u+ 1

)
iu+1 + g2u+1 +

u−1∑
k=0

g2k+1(i;u)

]( 1√
n

)2u+1

=
r−2∑
u=0

π

√
2

3

(
1/2

u+ 1

)
(−1)r+1r!

{
u+ 1

r

}( 1√
n

)2u+1

+
r−2∑
u=0

u−1∑
k=0

g2k+1

(
−k − 1/2

u− k

)
(−1)r+1r!

{
u− k
r

}( 1√
n

)2u+1

= 0

(
as

{
n

m

}
= 0 for all n < m

)
. (4.4)

From (4.3) and (4.4), it follows that for all 1 ≤ u ≤ 2r − 2,

r∑
i=0

(
r

i

)
(−1)i+1

2r−2∑
u=1

g̃u,i

( 1√
n

)u
= 0.

Now
r∑
i=0

(
r

i

)
(−1)i+1g̃2r−1,i

( 1√
n

)2r−1
=

r∑
i=0

(
r

i

)
(−1)i+1

[
π

√
2

3

(
1/2

r

)
ir + g2r−1 +

r−2∑
k=0

g2k+1(i; r − 1)

]( 1√
n

)2r−1
=

[
π

√
2

3

(
1/2

r

)
(−1)r+1r!

{
r

r

}
+

r−2∑
k=0

g2k+1

(
−k − 1/2

r − 1− k

)
(−1)r+1r!

{
r − 1− k

r

}]( 1√
n

)2r−1
=

π√
6

(1

2

)
r−1

( 1√
n

)2r−1 (
since

{
r − 1− k

r

}
= 0 for all 0 ≤ k ≤ r − 2

)
. (4.5)

We finish the proof by showing that

r∑
i=0

(
r

i

)
(−1)i+1g̃2r,i

( 1√
n

)2r
=

r∑
i=0

(
r

i

)
(−1)i+1

[
(−i)r

r
+ g2r +

r−1∑
k=1

g2k(i; r)

]( 1√
n

)2r
=

[
−(r − 1)! +

r−1∑
k=1

g2k

(
−k
r − k

)
(−1)r+1r!

{
r − k
r

}]( 1√
n

)2r
= −(r − 1)!

( 1√
n

)2r−1
. (4.6)

�

Definition 4.2. Let γ1 be as in (2.10) and Cr be as in Lemma 4.1. Then for all r ≥ 2, define

L1(r) :=

(
γ1

(12α)r+1
+ 45

r∑
i=1

(
r

i

)(
i+

1

24α

)r+1
)

1

2r + 1
,

L(r) := (r − 1)! + L1(r),
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and

NL(r) := max

{(L(r)

Cr

)2
, g(2r + 1)

}
.

Lemma 4.3. Let L(r), NL(r) be as in Definition 4.2 and Cr be as in Lemma 4.1. Then for all
n > NL(r),

(−1)r−1∆r log p(n) > log

(
1 + Cr

( 1√
n

)2r−1
− L(r)

( 1√
n

)2r)
. (4.7)

Proof. We split (−1)r−1∆r log p(n) as follows:

(−1)r−1∆r log p(n) =
r∑
i=0

(
r

i

)
(−1)i+1 log p(n+ i)

=

b r−1
2
c∑

i=0

(
r

2i+ 1

)
log p(n+ 2i+ 1)−

b r
2
c∑

i=0

(
r

2i

)
log p(n+ 2i). (4.8)

Applying Theorem 3.9 with w = 2r + 1 to (4.8), we have for all n > max
0≤i≤r

{g(2r + 1) − i, 2i} =

g(2r + 1),

(−1)r−1∆r log p(n)

>
r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r)−

b r−1
2
c∑

i=0

(
r

2i+ 1

)
ELn,2i+1(2r + 1)−

b r
2
c∑

i=0

(
r

2i

)
EUn,2i(2r + 1)

= Cr

( 1√
n

)2r−1
− (r − 1)!

( 1√
n

)2r
−
b r−1

2
c∑

i=0

(
r

2i+ 1

)
ELn,2i+1(2r + 1)

−
b r
2
c∑

i=0

(
r

2i

)
EUn,2i(2r + 1)

(
by Lemma 4.1

)
. (4.9)

From Definition 3.8, it is clear that EUn,s(w) < ELn,s(w) because γ2 < γ1. Therefore,

b r−1
2
c∑

i=0

(
r

2i+ 1

)
ELn,2i+1(2r + 1) +

b r
2
c∑

i=0

(
r

2i

)
EUn,2i(2r + 1) <

r∑
i=0

(
r

i

)
ELn,i(2r + 1), (4.10)

and
r∑
i=0

(
r

i

)
ELn,i(2r + 1) = L1(r)

( 1√
n

)2r+1

. (4.11)

From (4.9) and (4.11), it follows that

(−1)r−1∆r log p(n) > Cr

( 1√
n

)2r−1
− (r − 1)!

( 1√
n

)2r
− L1(r)

( 1√
n

)2r+1

> Cr

( 1√
n

)2r−1
− L(r)

( 1√
n

)2r
, (4.12)

and consequently for all n > NL(r), we get

(−1)r−1∆r log p(n) > log

(
1 + Cr

( 1√
n

)2r−1
− L(r)

( 1√
n

)2r)
.

�
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Definition 4.4. Let L1(r) be as in Definition 4.2 and Cr be as in Lemma 4.1. Then for all
r ≥ 2, define

NU(r) := max

{(L1(r) + 1

(r − 1)!

)2
,
(C2

r

2

)2/2r−3
, g(2r + 1)

}
.

Lemma 4.5. Let L1(r) be as in Definition 4.2, Cr be as in Lemma 4.1, and NU(r) be as in
Definition 4.4. Then for all n > NU(r),

(−1)r−1∆r log p(n) < log

(
1 + Cr

( 1√
n

)2r−1)
. (4.13)

Proof. Applying Theorem 3.9 with w = 2r + 1 to (4.8), we have for all n > g(2r + 1),

(−1)r−1∆r log p(n)

<

r∑
i=0

(
r

i

)
(−1)i+1Pn,i(2r) +

b r−1
2
c∑

i=0

(
r

2i+ 1

)
EUn,2i+1(2r + 1) +

b r
2
c∑

i=0

(
r

2i

)
ELn,2i(2r + 1)

< Cr

( 1√
n

)2r−1
− (r − 1)!

( 1√
n

)2r
+

r∑
i=0

(
r

i

)
ELn,i(2r + 1)

(
by Lemma 4.1

)
= Cr

( 1√
n

)2r−1
− (r − 1)!

( 1√
n

)2r
+ L1(r)

( 1√
n

)2r+1

. (4.14)

For all n > NU(r), it follows that

−(r − 1)!
( 1√

n

)2r
+ L1(r)

( 1√
n

)2r+1

< − C2
r

2 n2r−1 . (4.15)

From (4.14) and (4.15), it follows that for all n > NU(r),

(−1)r−1∆r log p(n) < log

(
1 + Cr

( 1√
n

)2r−1)
.

�

Theorem 4.6. Let L(r), NL(r) be as in Definition 4.2 and NU(r) be as in Definition 4.4. Let

Cr be as in Lemma 4.1. Then for all n > N(r) := max
{
NL(r), NU(r)

}
,

log

(
1+Cr

( 1√
n

)2r−1
−L(r)

( 1√
n

)2r)
< (−1)r−1∆r log p(n) < log

(
1+Cr

( 1√
n

)2r−1)
. (4.16)

Proof. Lemmas 4.1 and 4.3 together imply (4.16). �

Theorem 4.7. For all r ≥ 2,

(−1)r−1∆r log p(n) ∼
n→∞

∞∑
u=2r−1

Gu

( 1√
n

)u
, (4.17)

with

G2u =

[
(−1)u

u

{
u

r

}
+

u−r∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r! for all u ≥ r,

G2u+1 =

[
π

√
2

3

(
1/2

u+ 1

){
u+ 1

r

}
+

u−r∑
k=0

g2k+1

(
−k − 1/2

u− k

){
u− k
r

}]
(−1)r+1r! for all u ≥ r − 1.

(4.18)
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Proof. Following (4.2) and letting w →∞, we obtain

(−1)r−1∆r log p(n) ∼
n→∞

∞∑
u=2r−1

r∑
i=0

(
r

i

)
(−1)i+1g̃u,i

( 1√
n

)u
. (4.19)

For all u ≥ 2r − 1 and u ≡ 0 (mod 2), we get

r∑
i=0

(
r

i

)
(−1)i+1g̃2u,i =

[
(−1)u

u

{
u

r

}
+

u−1∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r!

=

[
(−1)u

u

{
u

r

}
+

u−r∑
k=1

g2k

(
−k
u− k

){
u− k
r

}]
(−1)r+1r!.

Similarly, for all u ≥ 2r − 1 and u ≡ 1 (mod 2), it follows that

r∑
i=0

(
r

i

)
(−1)i+1g̃2u+1,i =

[
π

√
2

3

(
1/2

u+ 1

){
u+ 1

r

}
+

u−r∑
k=0

g2k+1

(
−k − 1/2

u− k

){
u− k
r

}]
(−1)r+1r!.

�

5. A framework to verify multiplicative inequalities for p(n)

Here we list down the steps in order make a decision whether a given multiplicative inequality
holds or not.

• (Step 0): Given
T∏
i=1

p(n + si) and
T∏
i=1

p(n + ri) with T ≥ 1. Without loss of generality,

assume that si, ri are non-negative integers for all 1 ≤ i ≤ T . Transform the products into

additive ones by applying the natural logarithm; i.e.,
T∑
i=1

log p(n+si) and
T∑
i=1

log p(n+ri).

• (Step 1): Choose w = m+ 1, where (s1, . . . , sT )
m
= (r1, . . . , rT ). From (3.35), we observe

that for each 1 ≤ i ≤ T , log p(n + si) and log p(n + ri) has the main term Pn,~s(w − 1)
and Pn,~r(w − 1) respectively. Consequently, each of these main terms are dominated by

T · c
T∑
i=1

√
n+ si and T · c

T∑
i=1

√
n+ ri with c = π

√
2/3 respectively. Therefore, in order

to choose w, it is enough to compute the Taylor expansion of
T∑
i=1

(√
n+ si −

√
n+ si

)
which is given by:

T∑
i=1

(√
n+ si −

√
n+ si

)
=

∞∑
m=1

(
1/2
m

)
√
n
2m−1

T∑
i=1

(smi − rmi ). (5.1)

So our optimal choice is such minimal m ≥ 1 so that
T∑
i=1

(smi − rmi ) 6= 0.

• (Step 2): Applying w = m + 1 as in the previous step to Theorem 3.35, it remains to
verify whether

Pn,~s(m)− ELn,~s(m+ 1) > Pn,~r(m) + EUn,~r(m+ 1) (5.2)

or

Pn,~r(m)− ELn,~r(m+ 1) > Pn,~s(m) + EUn,~s(m+ 1), (5.3)
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in order to decide whether
T∑
i=1

log p(n + si) ≥
T∑
i=1

log p(n + ri) or
T∑
i=1

log p(n + ri) ≥

T∑
i=1

log p(n+ si) respectively.

6. Inequalities for p(n;~s)

Definition 6.1. Let g̃u,~s be as in Definition 3.11, and ~s be as in Definition 3.10. For n, T, U ∈
Z≥1, define

M(n;T ) :=

(
eπ
√

2n/3

4n
√

3

)T

,

and

P̃n,~s(U) := exp

(
U∑
u=1

g̃u,~s

( 1√
n

)u)
.

Definition 6.2. Let γ1, γ2 be as in (2.10) and ~s be as in Definition 3.10. For each {si}1≤i≤T ,
δsi be as in Definition 3.2. For n, T ∈ Z≥1, w ∈ Z≥2, and n > 2si, we define

CU(w;~s) :=

(
45

T∑
i=1

(
si +

1

24α

)dw+1
2
e
δsi +

T · γ2
(24α)dw/2e

)
1

w

and

CL(w;~s) :=

(
45

T∑
i=1

(
si +

1

24α

)dw+1
2
e
δsi +

T · γ1
(24α)dw/2e

)
1

w
.

Lemma 6.3. Let log p(n;~s) be as in Definition 3.10, and let g(k) be as in Definition 2.5.

Let M(n;T ) and P̃n,~s(U) be as in Definition 6.1. Let g(w;~s) be as in Theorem 3.13, and
CL(w;~s), CU(w;~s) be as in Definition 6.2. If n, T ∈ Z≥1, w ∈ Z≥2, and

n > max

{
g(w;~s),

(
CL(w;~s)

)2/w
,
(
CU(w;~s)

)2/w}
:= N1(w;~s),

then

M(n;T )P̃n,~s(w−1)

(
1−CL(w;~s)

( 1√
n

)w)
< p(n;~s) <M(n;T )P̃n,~s(w−1)

(
1+2 CU(w;~s)

( 1√
n

)w)
.

(6.1)

Proof. Applying the exponential function on both side of the inequality (3.35), we get for all
n > g(w;~s),

M(n;T )P̃n,~s(w − 1)e−E
L
n,~s

(w) < p(n;~s) <M(n;T )P̃n,~s(w − 1)eE
U
n,~s

(w). (6.2)

Now for all n > max

{(
CL(w;~s)

)2/w
, CU(w;~s)

)2/w}
, it follows that

0 < EUn,~s(w) < 1 and 0 < EUn,~s(w) < 1. (6.3)

For all 0 < x < 1, we know that ex < 1+2x and e−x > 1−x. Therefore from (6.3) and following
Definition 3.12, we finally have

eE
U
n,~s

(w) < 1 + 2 CU(w;~s)
( 1√

n

)w
and e−E

L
n,~s

(w) > 1− CL(w;~s)
( 1√

n

)w
. (6.4)

Equations (6.2) and (6.4) together imply (6.1). �
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Definition 6.4. For k ∈ Z≥0, w ≥ 2, and ~̀ := (`1, . . . , `w−1), define

X(k) :=
{
~̀ ∈ Zw−1≥0 :

w−1∑
u=1

`u = k
}
,

XM(k) :=
{
~̀ ∈ X(k) : 0 ≤

w−1∑
u=1

u`u ≤ w − 1
}
,

and

XE(k) :=
{
~̀ ∈ X(k) :

w−1∑
u=1

u`u ≥ w
}
.

Definition 6.5. Let X(k) and XM(k) be as in Definition 6.4 and g̃u,~s be as in Definition 3.11.
Then for all w ≥ 2, define

P̂n,~s(w − 1) :=
w−1∑
k=0

1

k!

∑
~̀∈XM(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
,

and

Ên,~s(w − 1) :=
w−1∑
k=0

1

k!

∑
~̀∈XE(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
.

where

F (k;w;~s) :=

(
k

`1, . . . , `w−1

) w−1∏
u=1

(
g̃u,~s

)`u
,

with
(

k
`1,...,`w−1

)
= k!

`1!···`w−1!
is a multinomial coefficient.

Definition 6.6. Let XE(k) be as in Definition 6.4 and F (k;w;~s) be as in Definition 6.5 and
g̃u,~s be as in Definition 3.11. For w ≥ 2, define

E(w;~s) :=
w−1∑
k=0

1

k!

∑
~̀∈XE(k)

∣∣∣F (k;w;~s)
∣∣∣+ 3

(∣∣g̃1,~s∣∣+ 1
)w
.

Lemma 6.7. Let P̃n,~s(U) be as in Definition 6.1 and XE(k) be as in Definition 6.4. Let P̂n,~s(w−
1), P̂n,~s(w− 1), and F (k;w;~s) be as in Definition 6.5. Let E(w;~s) be as in Definition 6.6. Then
for all w ≥ 2 and

n > max
1≤u≤w−1

{(
(w − 1)

∣∣g̃u,~s∣∣)2/u} := N2(w;~s),

we have ∣∣∣P̃n,~s(w − 1)− P̂n,~s(w − 1)
∣∣∣ < E(w;~s)

( 1√
n

)w
. (6.5)

Proof. Expanding P̃n,~s(w − 1) and splitting it as follows:

P̃n,~s(w − 1) = P̂n,~s(w − 1) + Ên,~s(w − 1) +
∞∑
k=w

1

k!

∑
~̀∈X(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
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= P̂n,~s(w − 1) + Ên,~s(w − 1) +
∞∑
k=w

1

k!

(
w−1∑
u=1

g̃u,~s√
n
u

)k

. (6.6)

Therefore∣∣∣P̃n,~s(w − 1)− P̂n,~s(w − 1)
∣∣∣

≤
∣∣∣Ên,~s(w − 1)

∣∣∣+

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)w ∞∑
k=0

1

(k + w)!

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)k

=
∣∣∣Ên,~s(w − 1)

∣∣∣+
( 1√

n

)w(∣∣g̃1,~s∣∣+
w−2∑
u=1

∣∣g̃u+1,~s

∣∣
√
n
u

)w ∞∑
k=0

1

(k + w)!

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)k

<
∣∣∣Ên,~s(w − 1)

∣∣∣+
( 1√

n

)w(∣∣g̃1,~s∣∣+ 1
)w ∞∑

k=0

1

(k + w)!

(
since n > N2(w;~s)

)

≤
∣∣∣Ên,~s(w − 1)

∣∣∣+

(∣∣g̃1,~s∣∣+ 1
)w

w!

( 1√
n

)w ∞∑
k=0

1

k!
<
∣∣∣Ên,~s(w − 1)

∣∣∣+ 3

(∣∣g̃1,~s∣∣+ 1
)w

w!

( 1√
n

)w
.

(6.7)

Now

∣∣∣Ên,~s(w − 1)
∣∣∣ ≤ w−1∑

k=0

1

k!

∑
~̀∈XE(k)

∣∣∣F (k;w;~s)
∣∣∣( 1√

n

)w−1∑
u=1

u`u

≤
w−1∑
k=0

1

k!

∑
~̀∈XE(k)

∣∣∣F (k;w;~s)
∣∣∣( 1√

n

)w (
since ~̀ ∈ XE(k)

)
. (6.8)

Combining (6.7) and (6.8), we get (6.5). �

Definition 6.8. Let CU(w;~s) and CL(w;~s) be as in Definition 6.2. Let E(w;~s) be as in Defini-
tion 6.6. Then for all w ≥ 2, define

EL(w;~s) := 3 CL(w;~s) + E(w;~s),

and

EU(w;~s) := 6 CU(w;~s) + E(w;~s)
(

2 CU(w;~s) + 1
)
.

Theorem 6.9. Let M(n;T ) be as in Definition 6.1 and P̂n,~s(w− 1) be as in Definition 6.5. Let
EL
n,~s(w) and EU

n,~s(w) be as in Definition 6.8. Let N1(w;~s) and N2(w;~s) be as in Lemmas 6.3
and 6.7. Then for all w ≥ 2 and

N > max
{
N1(w;~s), N2(w;~s)

}
:= N(w;~s),

we have

M(n;T )

(
P̂n,~s(w−1)−EL(w;~s)

( 1√
n

)w)
< p(n;~s) <M(n;T )

(
P̂n,~s(w−1)+EU(w;~s)

( 1√
n

)w)
.

(6.9)
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Proof. From Lemmas 6.3 and 6.7, for n > N(w;~s), it follows that

p(n;~s) <M(n;T )

(
P̂n,~s(w − 1) + E(w;~s)

( 1√
n

)w)(
1 + 2 CU(w;~s)

( 1√
n

)w)
, (6.10)

and

p(n;~s) >M(n;T )

(
P̂n,~s(w − 1)− E(w;~s)

( 1√
n

)w)(
1− CL(w;~s)

( 1√
n

)w)
. (6.11)

Now

∣∣∣P̂n,~s(w − 1)
∣∣∣ =

∣∣∣∣∣
w−1∑
k=0

1

k!

∑
~̀∈XM(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
∣∣∣∣∣

≤

∣∣∣∣∣
w−1∑
k=0

1

k!

∑
~̀∈X(k)

F (k;w;~s)
( 1√

n

)w−1∑
u=1

u`u
∣∣∣∣∣ (as XM(k) ⊆ X(k)

)

=

∣∣∣∣∣
w−1∑
k=0

1

k!

(
w−1∑
u=1

g̃u,~s√
n
u

)k∣∣∣∣∣ ≤
w−1∑
k=0

1

k!

(
w−1∑
u=1

∣∣g̃u,~s∣∣√
n
u

)k

<
w−1∑
k=0

1

k!

(
as n > N2(w;~s)

)
< 3. (6.12)

Applying (6.12) to (6.10), we arrive at the upper bound of (6.9). We get the lower bound of
(6.9) by applying (6.12) to (6.11) and from the fact that CL(w;~s) ·E(w;~s) > 0 for all w ≥ 2. �

7. Conclusion

We conclude this paper by pointing out the following aspects in which Theorem 6.9 remains
incomplete.

(1) Suppose we are given the following two functions defined by shifts of p(n):

SP (n;S) :=
M∑
j=1

T∏
i=1

p(n+ si,j) and SP (n;R) :=
M∑
j=1

T∏
i=1

p(n+ ri,j),

where S = (si,j)1≤i≤T,1≤j≤M and R = (ri,j)1≤i≤T,1≤j≤M . Now in order to decide whether

SP (n;S) ≥ SP (n;R) for all n ≥ N(S,R), we need to estimate
T∏
i=1

p(n+si,j) and
T∏
i=1

p(n+

ri,j) individually for each 1 ≤ j ≤M . In view of Theorem 6.9, estimation of two factors

come into the prominence: computation of the term
M∑
j=1

(
P̂n,~sj(w − 1) − P̂n,~rj(w − 1)

)
with ~sj := (s1,j, . . . , sT,j),~rj := (r1,j, . . . , rT,j), and approximation of the error term.

(2) Depending on the truncation point w, one can compute the main term
M∑
j=1

(
P̂n,~sj(w −

1) − P̂n,~rj(w − 1)
)

. But computational complexity will arise in the estimation of the

error term because in order to approximate Ê(w;~sj) for each j, one needs to have a good
control over XE(k) for 0 ≤ k ≤ w − 1. This seems to be difficult as w tends to infinity,
growth of |XE(k)| is exponential.



REFERENCES 23

(3) For example, in order to prove the higher order Turán inequality for p(n), the minimal
choice for w is 10 and consequently, by Theorem 6.9 with appropriate choices for ~s, it
follows that

4
(
1− un−1

)(
1− un

)
−
(
1− unun−1

)2
=

π3

12
√

6

1

n9/2
+O

( 1

n5

)
.

This concludes that p(n) satisfies the higher order Turán inequality for sufficiently large
n although due to Chen, Jia, and Wang [4], we know that the inequality holds for all
n ≥ 95. So, from the aspect of error bound computation in order to confirm such
inequalities from a certain explicit point onward, our method is inaccessible.

(4) Last, but not the least, the above discussions naively suggest that for making a decision
whether a given inequalities for the partition function (of the above types) holds or not,
we need to have a full asymptotic expansion for shifted value of the partition function
and an explicit computation of the error bound after truncation the expansion at any
positive integer w.
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