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1 Introduction

There are many astonishing and beautiful results attributed to Ramanujan. However, the congru-
ence identities he discovered for the partition function were the ones described by Hardy as his
‘most beautiful identity’. Ramanujan showed that p(5n + 4) ≡ 0(mod 5) and this was the first
congruence result regarding the partition function. Over the course of years many such congru-
ences were discovered. It has also been proven that such congruence results exists [3] for all
integers co-prime to 6. Like the classic partition function p(n) the function a(n) also known as
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the cubic partition gives the number of partitions of n where every even number comes with two
different labels and is given by a similar generating function viz.

∞∑
n=0

a(n)xn =
∞∏
i=1

1

(1− xi)(1− x2i)
.

In his paper [1], Chan showed that a(3n + 2) ≡ 0(mod 3) which was the first of such con-
gruence results for the function a(n). In section 3 we provide an alternative proof of this result.
That apart we exhibit a simple analogous inequality for a(n) as well as upper bound for it. Here
we prove the following theorems:

Theorem 1.1. Alternative proof of a(3n+ 2) ≡ 0(mod 3).

Theorem 1.2. Given any positive integer n ≥ 2,

a(n+ 2) + a(n− 2) > 2a(n).

Theorem 1.3. For any positive integer n,

a(n) < expk
√
n,

where k = π.

In the next section, we present some background material on partition function p(n) and some
useful theorems due to Euler which will help us to prove our theorems.

2 Preliminaries

A partition of a natural number n is a finite sequence of non-increasing positive integer parts
where the sum of the parts is equal to n. If p(n) denote the number of partitions of n, then

∞∑
n=0

p(n)qn =
1

(q; q)∞
,

where, as customary, for any complex number a and |q| < 1

(a; q)∞ =
∞∏
k=0

(1− aqk).

Next define integers a(n) by

∞∑
n=0

a(n)qn =
1

(q; q)∞(q2; q2)∞
.

Note that a(n) is the number of cubic partitions of n where one of the colors appears only in
parts that are multiples of 2.

We will be using the following two well-known results due to Euler to prove Theorem 1.1.
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2.1 Result 1 (Generating function for integer partition)

For |x| < 1 we have,
∞∏
i=1

1

1− xi
=
∞∑
i=0

p(n)xn,

where p(0) = 1.
Another very well referred result in integer partition is Euler’s pentagonal number theorem,

which states the following.

2.2 Result 2 (Euler’s pentagonal number theorem)

If |x| < 1 we have,

∞∏
m=1

(1− xm) = 1− x− x2 + x5 + x7 − x12 − x15 + . . .

= 1 +
∞∑
n=1

(−1)n(xω(n) + xω(−n))

=
∞∑

n=−∞

xω(n),

where ω(n) = 3n2+n
2

.

3 Proof of Theorems

3.1 Proof of Theorem 1.1

Chan showed the beautiful identity regarding cubic partition a(n), i.e., a(3n + 2) ≡ 0(mod 3)

using modular forms and Roger–Ramanujan continued fraction. In 1950, D. Kruyswijk [2] gave
an alternative proof of celebrated partition congruence result p(5n + 4) ≡ 0(mod 5). One can
apply the method of Kruyswijk to a certain extent to provide an alternative proof of a(3n+ 2) ≡
0(mod 3). Here we show explicitly the generating function of a(3n + 2), i.e., we establish the
following identity:

∞∑
m=0

a(3m+ 2)xm = 3
(φ(x3))3(φ(x6))3

φ(x)4φ(x2)4
,

where x is a complex number satisfying |x| < 1; from the above identity it is clear that a(3n+2) ≡
0(mod3), where

φ(x) =
∞∏
n=1

(1− xn).

In order to prove the Theorem 1.1 we will prove following lemmas.
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3.1.1 Lemma

k∏
h=1

(1− xεh)(1− x2εh) = (1− xk)(1− x2k),

where ε = exp
2πi
k , i =

√
−1.

Proof: To prove the lemma it suffices to prove the identity

k∏
h=1

(1− xεh) = (1− xk)

and one can deduce the lemma from the fact.
We know that

(xk − 1) =
k∏

h=1

(x− εh)

and so

(1− xk) = (−1)k+1

k∏
h=1

(εh − x) = (−1)k+1

k∏
h=1

(ε−h − x)

= (−1)k+1

k∏
h=1

ε−h
k∏

h=1

(1− xεh)

= (−1)k+1ε−
k(k+1)

2

k∏
h=1

(1− xεh)

=
k∏

h=1

(1− xεh).

�

3.1.2 Lemma

For gcd(n, k) = d;

k∏
h=1

(1− xεnh)(1− x2εnh) = (1− x
k
d )d(1− x

2k
d )d

and can deduce that
k∏

h=1

(1− xnεnh)(1− x2nεnh) = (1− xnk)(1− x2nk), if gcd(n, k) = 1

= (1− xn)k(1− x2n)k, if k | n.

Proof: We just compute for
k∏

h=1

(1− xεnh)
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and can comment about the product.
Let d = gcd(n, k) ; m = n

d
and let δ = exp

2πid
k , i =

√
−1. Then,

k∏
h=1

(1− xεnh) =
k∏

h=1

(1− xδmh)d,

since (m, k
d
) = 1, mh runs through a complete system of residues mod k, hence by what we have

done before
k
d∏

h=1

(1− xδmn)d =
k
d∏

h=1

(1− xδh)d = (1− x
k
d )d,

so, if gcd(n, k) = 1, then
k∏

h=1

(1− xn exp
2πinh
k ) = (1− xnk).

Also if k | n then gcd(n, k) = k, so
k∏

h=1

(1− xn exp
2πinh
k ) = (1− xn)k.

And similarly one can do for
k∏

h=1

(1− x2nεnh) = (1− x2nk), if gcd(n, k) = 1

= (1− x2n)k, if k | n,

so, we are done. �

3.1.3 Lemma

for prime q and |x| < 1 we have
∞∏
n=1

q∏
h=1

(1− xn exp
2πinh
q )(1− x2n exp

2πinh
k ) =

φ(xq)q+1

φ(xq2)

φ(x2q)q+1

φ(x2q2)
,

where

φ(x) =
∞∏
n=1

(1− xn).

Proof:
∞∏
n=1

q∏
h=1

(1− xn exp
2πinh
q )

∞∏
n=1

q∏
h=1

(1− x2n exp
2πinh
k )

=
∞∏
n=1

(1− xqn)q
q−1∏
r=1

∞∏
m=1

(1− xq(mq−r))
∞∏
n=1

q∏
h=1

(1− x2n exp
2πinh
q )

= φ(xq)q
q−1∏
r=0

∞∏
m=1

(1− xq(mq−r))
∞∏
m=1

(1− xq2m)−1
∞∏
n=1

q∏
h=1

(1− x2n exp
2πinh
q )

=
φ(xq)q+1φ(x2q)q+1

φ(xq2)φ(x2q2)
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Next, we want to give an identity regarding the generating function of a(n) with the help of
Lemma 3.

3.1.4 Lemma
∞∑
m=0

a(m)xm =
φ(x9)φ(x18)

φ(x3)4φ(x6)4

∞∏
n=1

2∏
h=1

(1− xn exp
2πinh
q )(1− x2n exp

2πinh
3 ).

Proof: Just apply prime q = 3 in Lemma 3 we have,

∞∏
n=1

3∏
h=1

(1− xn exp
2πinh

3 )(1− x2n exp
2πinh

3 ) =
φ(x3)4φ(x6)4

φ(x9)φ(x18)

⇒
∞∏
n=1

2∏
h=1

(1− xn exp
2πinh

3 )(1− x2n exp
2πinh

3 )
∞∏
n=1

(1− xn)(1− x2n) = φ(x3)4φ(x6)4

φ(x9)φ(x18)

⇒ φ(x9)φ(x18)

φ(x3)4φ(x6)4

∞∏
n=1

2∏
h=1

(1− xn exp
2πinh

3 )(1− x2n exp
2πinh

3 ) =
∞∏
n=1

1

(1− xn)(1− x2n)

∞∑
m=0

a(m)xm =
φ(x9)φ(x18)

φ(x3)4φ(x6)4

∞∏
n=1

2∏
h=1

(1− xn exp
2πinh

3 )(1− x2n exp
2πinh

3 ). (1)

Definition: If q is a prime and if 0 ≤ r < q, a power series of the form

∞∑
n=0

b(n)xqn+r

is said to be of type r mod q. Observe that if Sk is a series of type k mod q, Sm is a series of type
m mod q then Sk × Sm is a series of type k +m mod q.

Next, we can estimate the product series

∞∏
n=1

(1− xn)(1− x2n)

as a sum of power series of type k mod 3 by Euler pentagonal number theorem.

3.1.5 Lemma

We show that

φ(x)φ(x2) =
∞∏
n=1

(1− xn)(1− x2n)

= I0 + I1 + I2,

where Ik denotes a power series of type k mod 3.
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Proof:

φ(x)φ(x2)

=

∞∏
n=1

(1− xn)
∞∏
n=1

(1− x2n)

= (1− x− x2 + x5 + x7 − x12 − x15 + . . . )(1− x2 − x4 + x10 + x14 − x24 − x30 + . . . ) by 2.2

= 1− x− 2x2 + x3 + 2x5 + x6 − 2x9 + x10 − 2x11 − . . .

= (1 + x3 + x6 − 2x9 − . . . ) + (−x+ x10 + . . . ) + (−2x2 + 2x5 − 2x11 + . . . )

= I0 + I1 + I2.

�

In very next lemma we want to estimate the product

∞∏
n=1

2∏
h=1

(1− xn exp
2πinh

3 )(1− x2n exp
2πinh

3 ).

3.1.6 Lemma

We show
2∏

h=1

∞∏
n=1

(1− xnαnh)(1− x2nαnh) =
2∏

h=1

(I0 + I1α
h + I2α

2h), α = exp
2πi
3 .

Proof: Here,

φ(xαh) =
∞∏
n=1

(1− xnαnh)

and

φ(x2α2h) =
∞∏
n=1

(1− x2nα2nh) =
∞∏
n=1

(1− x2nαnh) = φ(x2αh).

So, now with a bit of calculation using Euler pentagonal number theorem we have,

φ(xαh)φ(x2αh) =
∞∏
n=1

(1− xnαnh)(1− x2nαnh)

= (1− xαh − x2α2h + x5α2h + x7αh − x12 − x15 + . . . )

(1− x2α2h − x4αh + x10αh + . . . )

= (1 + x3 + x6 − 2x9 − . . . ) + (−x+ x10 + . . . )αh

+(−2x2 + 2x5 − 2x11 + . . . )α2h

= I0 + I1α
h + I2α

2h.

Therefore,

2∏
h=1

∞∏
n=1

(1− xnαnh)(1− x2nαnh) =
2∏

h=1

(I0 + I1α
h + I2α

2h).
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Then (1) gives:
∞∑
m=0

a(m)xm =
φ(x9)φ(x18)

φ(x3)4φ(x6)4

2∏
h=1

(I0 + I1α
h + I2α

2h) (2)

So by equating terms of type 2 mod 3 in L.H.S and R.H.S of 2 we have,
∞∑
m=0

a(3m+ 2)x3m+2 = B2
φ(x9)φ(x18)

φ(x3)4φ(x6)4
, (3)

where B2 is the power series of type 2 mod 3 in
2∏

h=1

(I0 + I1α
h + I2α

2h).

(As if Sk is a series of type k mod 3, Sm is a series of type m mod 3, then Sk × Sm is a series of
type k +m mod 3 . hence φ(x9)φ(x18)

φ(x3)4φ(x6)4
is of type 0 mod 3 ).

Next we compute the product
2∏

h=1

(I0 + I1α
h + I2α

2h)

to find an explicit series for B2. It is clear that
2∏

h=1

(I0 + I1α
h + I2α

2h) = (I20 − I1I2) + (I22 − I0I1) + (I21 − I2I0)

In above expression I21 − I2I0 is the only series of type 2 mod 3. So,

B2 = (I21 − I2I0). (4)

3.1.7 Lemma

We show I2I0 = −2I21 and I1 = −xφ(x9)φ(x18).
Proof:

I0I2 = (1 + x3 + x6 − 2x9 − . . . )(−2x2 + 2x5 − 2x4 + . . . )

= (−2)(1 + x3 + x6 − 2x9 − . . . )(x2 − x5 + x4 − . . . )
= (−2)(x2 − 2x11 − 3x20 + 4x29 − . . . )
= −2I21

(Since I21 = (−x+x10+2x19+ . . . )(−x+x10+2x19+ . . . ) = (x2−2x11−3x20+4x29− . . . ))
Now we prove the next part of the lemma

−x
∞∏
n=1

(1− x9n)(1− x18n) = −x(1− x9 − 2x18 + x27 + . . . )

= (−x+ x10 + 2x19 − . . . )
= I1.

Hence, proved. �
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Then 4 gives, B2 = (I21 − I2I0) = 3I21 and I1 = −xφ(x9)φ(x18). Therefore from 3 we have

∞∑
m=0

a(3m+ 2)x3m+2 = 3x2
(φ(x9))3(φ(x18))3

φ(x3)4φ(x6)4
.

Next we dividing both side by x2 and replacing x3 by x, We have

∞∑
m=0

a(3m+ 2)xm = 3
(φ(x3))3(φ(x6))3

φ(x)4φ(x2)4
.

Hence
a(3n+ 2) ≡ 0(mod 3).

3.2 Proof of Theorem 1.2

Here we want to establish a recursive type of inequality of cubic partition of n, i.e., a(n) .
Let a(n) denote the cubic partitions of n, i.e., in which even parts of n come up with two

colours. Here we denote the two colours as labeling 1 and 2, viz 2 comes up with 21 and 22.
We have to proof the given condition 1.2 a(n+ 2) + a(n− 2) > 2a(n). This condition may

be arranged to give a(n+ 2)− a(n) > a(n)− a(n− 2).
Consequently, let us have a look at the cubic partitions of integers n andn + 2. Now, if 21 is

added as an exrtra part at the end of a cubic partition of n, a cubic partition of n + 2 is obtained.
In particular a cubic partition that contains 21.

Conversely, if 21 is deleted from a cubic partition of n + 2, which contains a 21, a cubic
partition of n results. Thus, there is one to one correspondence between the entire set of cubic
partition of n, and the subset of cubic partitions of n+ 2 that contain 21. Hence, a(n+ 2)− a(n)
is the number of cubic partitions of n+2 in the subset X of cubic partitions which do not contain
21. Similarly, a(n) − a(n − 2) is the number of cubic partition of n in the subset Y of cubic
partitions which do not contain 21.

If we can show that cardinality of X greater than cardinality of Y, then the desired conclusion
follows. This simply requires we show that, to each overpartition in Y, there corresponds a distinct
overpartition in X .

Now we define a one-one function from Y to X , which is not onto.
Let f : Y −→ X be defined by y1 + y2 + · · · + yk −→ y1 + y2 + · · · + (2 + yi) + · · · + yk,

yi = max(y1, y2, . . . , yk), where an even number (not equal to 2) with two different label we
prefer the even number with label 1,(viz 41 > 42).

Clearly this is a well defined one-one function but not onto (since 1+1+ · · ·+1 is a member
of X whose pre-image is not in Y ).

Thus, cardinality of X greater than cardinality of Y and we are done. �
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3.3 Proof of Theorem 1.3

In this section we give an upper bound for a(n) almost like the classical upper bound for p(n) by
estimating the logarithm of generating function F (x) for a(n), where

F (x) =
∞∏
i=1

1

(1− xi)(1− x2i)
.

Now,

F (x) =
∞∏
i=1

1

(1− xi)(1− x2i)
= 1 +

∞∑
m=1

a(n)xn

and restrict to the interval 0 < x < 1.
Then clearly a(n)xn < F (x), from which we obtain, log a(n) < logF (x) + n log 1

x
.

We estimate the terms logF (x) and n log 1
x

separately. First, we note that

logF (x) = −
∞∑
i=1

log(1− xi)−
∞∑
i=1

log(1− x2i)

=
∞∑
m=1

1

m

xm

1− xm
+
∞∑
m=1

1

m

x2m

1− x2m
.

Since we have the following identity

1− xm

1− x
= 1 + x+ x2 + · · ·+ xm−1

for 0 < x < 1 one can deduce that

mxm−1 <
1− xm

1− x
< m,

so,
1

m2

xm

1− x
≤ 1

m

xm

1− xm
≤ 1

m2

x

1− x
and sum over m we have,

∞∑
m=1

1

m2

xm

1− x
≤

∞∑
m=1

1

m2

x

1− x
=
π2

6t
, where t =

1− x
x

. (5)

Similarly, for 0 < x < 1 one can deduce that

∞∑
m=1

1

2m2

x2m

1− x
≤

∞∑
m=1

1

m

x2m

1− x2m
≤

∞∑
m=1

1

2m2

x

1− x
. (6)

From 5 and 6 we get,

logF (x) ≤ x

1− x

∞∑
m=1

1

m2
+

x

1− x

∞∑
m=1

1

2m2
.
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We defined t = 1−x
x

. Also note that t varies from∞ to 0 through positive values as x varies
from 0 to 1.

Finally, estimate the term n log 1
x

and give an upper bound for a(n).
Now, for t > 0 we have log(1 + t) < t.
Since t = 1−x

x
, therefore, log 1

x
< t. Thus,

log a(n) < logF (x) + n log
1

x
<
π2

4t
+ nt.

In order to get that bound we need to check for which value of t minimum of π2

4t
+ nt occurs.

One can easily check that for t = π
2
√
n

minimum occurs and for this value of t, we have
log a(n) < π

√
n. Hence, we are done. �

4 Remark

Chen and Lin proved another congruence result on cubic partition a(25n+22) ≡ 0(mod 5) using
modular forms in their paper [4]. One may provide our method to prove the above result.
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