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Abstract. We report on using logic software in a novel course-format
for an undergraduate logic course for students in computer science or
artificial intelligence. Although being designed as the students’ basic in-
troduction to the field of logic, the course features a novel structure and
it adds some modern content, such as SAT and SMT solving, to the
traditional and established topics, such as propositional logic and first
order predicate logic. The novel course design is characterized by, among
others, the integration of existing logic software into the teaching of logic.
In this paper we focus on the module on first-order predicate logic and
the use of the Theorema system as a proof-tutor for the students. We
report on statistical evaluation of data collected over two consecutive
years of teaching this course. On the one hand, we asked for feedback of
students on how helpful they felt the software support was. On the other
hand, we evaluated their results in the exams during the course and their
development over the entire teaching period. The performance in exams
is then correlated with students’ own perception of the helpfulness of
software.
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1 Introduction

The new curriculum (2013) for a bachelor study in computer science at JKU Linz
assigned a prominent role to a new modern logic-course [2[7], whose novelties
concentrate on two different aspects:

— we wanted students to see logic in action through the use of logic software
in teaching and

— we wanted to present modern topics (such as e.g. automated or interactive
theorem proving and satisfiability modulo theories) to the students early in
their studies in addition to classical content such as propositional and first
order predicate logic.


https://risc.jku.at/m/wolfgang-windsteiger/

The course is designed consisting of four modules taught by different lectur-
ers, who also use different software in their respective modules. The course starts
with the first module on propositional logic (SAT) and finishes with quantifier-
free first-order logic with theories in the fourth module (SMT). First-order pred-
icate logic (FO) occupies the two modules (FOA and FOB) in the middle with
FOA covering the language itself and its pragmatics, i.e., how first-order logic
appears in everyday life of a computer scientist, e.g., when giving an algorithm
specification. In this report we concentrate on module FOB on proving in first-
order predicate logic and discuss how we use the Theorema system [6I8] to sup-
port the teaching of reasoning in first-order predicate logic. The FOB module
consists of three units made up from

— a lecture part, where theory is presented,

— an ezercise session based on weekly exercise sheets with examples,

— a mandatory quiz, which is a short exam of 15 minutes duration, and
— an optional bonus exercise based on using some logic software.

Moreover, there is one optional lab exercise, which is an extended bonus exercise,
for the entire module[l]

The lecture introduces the concept of proof trees for representing proofs in
mathematics and computer science, a concrete set of inference rules for first-
order predicate logic, and a proof search procedure that applies rules iteratively.
The exercise sheets consist of concrete proof problems, starting with abstract
inference rules in order to concentrate on the proof search, over formal proving
with quantifiers, until finally ending with the informal natural language presen-
tation of formal proofs. In the frame of the bonus exercises students are asked to
generate automated proofs for selected exercises from the current exercise sheet,
i.e., they should try to let Theorema do proofs that they should be able to do
manually at the same time. In order to be admitted to submit solutions to a
bonus exercise, students must answer a short questionnaire on their own percep-
tion of the usefulness of the software and its influence on their personal proving
capabilities. In the lab exercise, in contrast, they should submit a hand-written
proof of some simple statement plus an automatically generated proof of the
same statement by Theorema. Both variants of the proof have to be compared
in a short oral presentation.

We collect and evaluate statistical data regarding both the students’ per-
sonal experience as well as their performance. We are interested in how students
perceive the interaction with the Theorema system from their point of view and
whether their exposure to the system shows a measurable influence on their
own proving capabilities in the quizzes. In addition, we investigate how the per-
formance of different groups of students develops over time. We present and
compare data collected over two consecutive classes taught in winter 2020 and
in winter 2021.

! Note that, in the statistical evaluation presented later, we neglect the final lab ex-
ercise at the end of the module, because there is no item following the lab exercise,
in which we could measure some influence of doing the lab exercise or not.



Week 0 Week 1 Week 2 Week 3 Week 4 Week 5

FOBIL .
FOBl | FOBIE* FOBIE' gggiB L
FOB1B* Q
FOB2L .
FOB2 FOB2E* FOB2E' ggggB A
FOB2B* Q
FOB3L .
FOB3 FOB3E* FOBS3E' g 8323 B
FOB3B* Q

Fig. 1. Nested Module Schedule. * marks publication and T marks deadline.

In Section [2| we present the detailed components of the course and their in-
terplay (Section[2.1)), a short introduction to the Theorema system (Section [2.2),
and the way how logic software is applied in the various parts (Section . The
main part is Section [] where we discuss the statistics. The results presented in
this work extend preliminary results presented earlier, see [9I10], by the follow-up
statistics of the second year and the respective comparison of the development
over the years.

2 The Use of Software in the Teaching of Logic

2.1 Modules, Quizzes, Bonus, Lab

The logic-course is composed of mandatory and elective components that con-
tribute in different ways to the final grade for the whole course. Lecture and
exercise follow the flipped-classroom paradigm, where students need to study
the theoretical parts on their own and then come to the class and ask questions,
discuss problems, and do examples. What was previously the lecture is now done
by the students autonomously with the help of lecture notes, lecture slides, and
video recordings done by the lecturersﬂ The former exercise class is now the
classroom part where people are physically present.

The FOB module consists of three units (FOB1-FOB3) and the grading of
the module is based mainly on the mandatory quizzes (FOB1Q-FOB3Q) after
each unit. Students can enhance their scores through voluntary bonus ezxercises
(FOB1B-FOB3B) after each unit and a voluntary lab ezercise after the entire
module. Through publication dates and deadlines for the respective items we
enforce a nested sequence of lecture/exercise/quiz/bonus through the module
as depicted in Fig. |1l For example, unit FOB2 starts in week 1 with making
available the lecture material (FOB2L) for the students and the publication of

2 Lecture recordings are almost mainstream nowadays, but we switched to flipped-
classroom with videos already one year before the pandemic.



the exercise sheet (FOB2E) and the bonus exercise (FOB2B), respectively. In
week 2 we discuss the exercises, and the respective quiz (FOB2Q) is in week 3
giving students one week time to practice and to digest the presentation of the
exercises. Fig. [I] shows how the units overlap, e.g., in week 2 they finish unit 1
with submitting the bonus FOB1B and doing the quiz FOB1Q), then there is the
exercise for unit 2, and after this exercise class they can already start to devote
some time to unit 3 due to the publication of FOB3L, FOB3E, and FOB3B.

A bonus exercise spans an entire unit, its publication together with the re-
spective exercise sheet marks the beginning of the unit and its deadline together
with the quiz marks the end of the unit. We designed the units like this because
the bonus exercise can then serve two purposes: if the bonus is done before the
exercise class, the software can be a tutor, if it is done after the exercises the
software can serve as checker, see also Section [2.3]

2.2 Interactive Automated Theorem Proving in Theorema

The Theorema system aims to be a computer assistant for the working mathe-
matician. Support should be given not only for proving but also for defining and
executing algorithms, structuring knowledge, etc. The Theorema project started
in the 1990s with a first prototype implementation in Mathematica 3, a major
re-design and a re-implementation based on new features available since Mathe-
matica 7 is now called Theorema 2.0. Since the system has been presented to this
community several times, we refer to some overview articles [4J3/5J6] and only
mention some peculiarities that are relevant for the didactical frame, in which
the system is used in the logic course.

Working with Theorema 2.0 means to write mathematical content into a
Theorema notebook and then perform some action on the content using the The-
orema commander. By mathematical content we mean informal parts (basically
everything that can be written into a Mathematica notebook, such as text, ta-
bles, figures, graphics, etc.) intermixed with Theorema-specific formal elements
such as definitions or theorems. A Theorema notebook is just a Mathemat-
ica notebook using a special stylesheet in order to support special behavior of
Theorema-specific items. The Theorema commander is a click-based user inter-
face that supports certain manipulations on formal mathematical content, e.g.,
proving a formula based on some knowledge base. Every Mathematica user can
use the features just described by loading the Theorema 2.0 add-on package
into a Mathematica session. The Theorema package is open source and freely
available under GNU GPL 3 or higher.

Suppose the task is to prove statement A using knowledge represented by
formulas K. The user would first type the statement A into a formula-cell
in the notebook, usually inside a named Theorem-, Lemma-, or Proposition-
environment. The same would be done for all formulas in K, where knowledge
could go into Definition-environments or other theorems, lemmas, or proposi-
tions. We want to emphasize that formulas can be used as knowledge even if
they have not yet been proven. All environments may carry names as well as
each formula inside an environment can carry a separate label as name. Then



one would switch to the Theorema commander and choose the PROVE-activity,
which guides one through the process of setting up the automated prover. The
proof goal is defined by simply selecting the notebook cell containing the goal
formula A. Next is the setup of the knowledge base, which is achieved through
the knowledge browser that shows an outline of each open notebook displaying
only formal mathematical content while preserving the sectional structure of the
notebooks. Sectional groupings can be collapsed in order to gain an overview over
the whole document. For the formal entities, the commander does not display
the formulas in detail, it rather shows the formulas’ labels only and presents the
entire formula as a tool-tip when hovering the mouse over the label. Each formula
is accompanied with a checkbox that, when checked, includes the corresponding
formula into the knowledge base K.

The next step in the PROVE-activity is the setup of the prover. A prover in
Theorema 2.0 consists of a collection of individual inference rules that are applied
by a proof search engine in a certain order guided by rule-priorities. The system
knows some predefined collections of rules including reasonable priorities that
lead to “nice” proofs in many cases. However, the Theorema commander allows
one to activate or deactivate every single inference rule, and the pre-assigned pri-
orities can be changed as well. Once all settings are given the prove-task can be
submitted. Usually, it is a good strategy to first run the prover with default set-
tings and a limited search depth and search time (both configurable in the prover
setup). In case the proof would not succeed, the failing proof can be inspected
and checked whether certain settings might be changed in order to prevent the
prover from running into an undesired path. Otherwise, search depth and search
time can be increased in order to allow the prover to terminate successfully.
When the prover stops it writes a link to the automatically generated proof into
the notebook just below the environment containing formula A. When clicking
the link, a nicely formatted version of the proof explained in natural language
is displayed in a separate window, which also offers several options to simplify
the proof.

During proof generation and when a proof window is open, the Theorema
commander shows a tree visualization of the proof search. In a successful proof
all nodes belonging to a successful branch are colored green, nodes in failing
branches are red, and pending nodes are blue. Pending nodes are proof situa-
tions that can still be handled by one of the available rules. Simplification of a
successful proof essentially removes all failing branches and pending nodes re-
sulting in an all-green proof tree that in fact corresponds to a formal proof tree
as taught in our logic-course. Click-navigation connects the Theorema comman-
der and the proof window, i.e., clicking a cell in the proof window highlights
the corresponding node in the tree view, whereas clicking a node in the tree
scrolls the proof window to the textual description of the respective proof step.
Moreover, when hovering the mouse over a node in the tree, the name of the
rule applied in that node is displayed as a tool-tip.

Proving with Theorema is an experience of interactive automated theorem
proving. Although finally a proof is generated in a fully automated fashion,



there is a lot of user interaction along the way from stating a theorem until
accepting its proof. Sometimes this interaction amounts to adjustments in the
prover setup, such as activating or deactivating rules, rearranging rules through
refining priorities, or adjusting search depth or search time. It is also common
that a proof fails because of missing knowledge. In this case, auxiliary lemmata
have to be formulated and passed to the prover and, ideally, also these lemmata
are proved then. In any case, all these actions are interactions because they are
a reaction to the inspection of the failing proof and an insight regarding the
reason for failure. The experienced user can learn a lot from failing proofs even
but, admittedly, for beginner students this aspect is probably less pronounced.

2.3 How Software is Embedded into the Course

Our main didactic hypothesis is that for doing (correct and complete) proofs it
is beneficial to first get acquainted with the rules of formal proving based on
the formal language of first-order predicate logic. This contrasts the approach
often seen in mathematics, where proving is taught as an “art” that is just
demonstrated by many examples without actually telling the rules of the game.
Students see many special tricks for particularly interesting special cases but are
often insecure how to do the uninteresting routine cases. Therefore, we explain
a set of “practical” proof rules for FO, where we neglect aspects of completeness
and minimality and concentrate on convenience of the calculus for generating
“nice proofs”. We then view proofs as proof trees, where each connection from
one node to its children must be justified by one of given rules. Finally, we
discuss how a proof tree can be presented in natural language intermixed with
mathematical formulas in different levels of detail depending on the context with
the aim to de-mystify the “art of proving” that they often come across in their
mathematics courses.

This view of proving is, in fact, the key philosophy behind the Theorema
system since its beginnings in the early 1990s. It is based on a natural-deduction-
like set of inference rules inspired by expert human provers and a pattern-based
proof search procedure that aims at finding proofs that are similar to how well-
educated human mathematicians would do the proofs. Proof trees are generated
in form of proof objects that are on the one hand the basic datastructure guiding
the proof search and on the other hand allow nice natural language presentations
of proofs. One of the most important guiding principles in Theorema is natural
style both in input and output. That said, Theorema seems a perfect fit for being
taken as software support in our logic course. Unlike in other modules, where
logic software employs methods taught in the course to solve concrete “practical
problems”, whose size alone would discourage solution attempts without machine
support, we employ the Theorema software in module FOB to help students to
practice methods that they should be able to apply even without the help of a
computer.

The main idea of using Theorema in the frame of the FOB module is that
students do the same proofs twice, once by hand and once with Theorema. We
use the examples from the weekly exercises, which students are required to do



by hand, and let them generate Theorema-proofs in the frame of the respective
bonus exercises. From the sequence of tasks within one unit shown in Fig. [T}
Section 2] one sees that students can either do the proofs manually first and
then check whether Theorema does them the same way, or they generate an
automated proof first and then do the manual proof just following the Theorema-
model. Both scenarios offer some learning benefit for the students.

— The first approach will typically be chosen by students who are able to do
the proofs by hand. Instead of waiting for feedback until the exercise session,
they can compare their own proofs to the system-generated versions. They
can either feel enforced or they can revise their own versions after comparing
to the system proofs.

— The second approach may be a way for students who feel unable to do
the proofs by hand. They can let Theorema do the proofs, then study the
steps the system applied, and finally imitate the system proof in their own
formulation (in the best case).

In the frame of the lab exercise, we try to guide the students towards the second
approach. They are asked to first do a proof with Theorema and then, after
understanding the Theorema proof, formulate a proof in their own words. They
need to give a short oral presentation comparing the two versions of the proof.
It was interesting to observe that many students decided in their hand written
versions to deviate from the path that the Theorema proof had marked. In the
majority of the cases the argument was that they felt their own version was
easier to understand. However, the majority of these cases were logically wrong.

Due to didactical considerations but also organizational reasons, the use of
software is on a voluntary basis only. This leads to (at least) two motivations
for students to spend time on the software. One group of software users are the
curious students that are interested in doing a bit more than required, they want
to get as much as possible out of the course. The other group of users are those
that need the bonus points in order to pass the course. We have no recordings
of students’ motives to do the bonus or lab exercises. Hence, we assume the
statistics presented in the next section cover both groups equally.

3 Results

Fig. [ shows the distribution of content over the FOB module. Examples to be
solved with Theorema in the frame of the bonus exercises FOBnB are always
examples taken from the corresponding exercise sheet FOBnE. E.g., in FOB3E
students have to prove that a function f: A — B is surjective if its restriction
fle: C — B for C < A is surjective. The usual definition of surjectivity, i.e.,
v 3 flz)=y
yeB x€A

and the implicit definition of f|c to be the unique function g: C — B with

v g(z) = f(z) are given, the task is to apply the definitions correctly and han-
zeC

dle the (alternating) quantifiers appropriately depending on whether they appear



FOBnE/FOBnQ FOBnB

FOB1 pattern-based proof search proce- first-order proofs without quan-
dure with hypothetical inference | tifiers from FOB1E

rules, first-order proofs without
quantifiers

FOB2 | first-order proofs with quantifiers first-order proofs with quanti-
fiers from FOB2E

FOB3 first-order proofs with quantifiers concrete mathematical proofs
and informal natural language | from FOB3E

presentation referring to concrete
mathematical concepts introduced
by definitions; induction proofs

Fig. 2. Module FOB unit contents.

in the goal or in the knowledge. Consequently, FOB3B consists of a Theorema
notebook containing the theorem and all necessary definitions in Theorema lan-
guage. In addition, there are some hints concerning prover configuration because
with standard settings Theorema would explore too many failing branches be-
fore it finds the successful proof. The task in FOB3B is then to generate a proof
with Theorema. Fig. [3| shows part of an automated proof as generated by the
Theorema system and the corresponding proof tree. The screenshot of the proof
window does not show the entire proof, the intention is to only give a flavor of
the style how automated proofs appear for students, namely with natural lan-
guage explanation of each step and nicely formatted mathematical expressions.
Moreover, both the proof as well as the proof tree are hyperlinked, meaning that
a mouse-click on a formula in the proof will highlight the corresponding node in
the tree, whereas clicking a node in the tree would highlight the corresponding
cells in the proof notebook. We claim that this style of proof presentation is
feasible for tutoring purposes for undergraduate students.

We try to capture two different aspects of using software in teaching logic:
the personal impression of students after doing proofs with Theorema is col-
lected using a questionnaire, while the performance of students in the quizzes is
correlated to their participation and their performance in the bonus exercises.

The case study has been done in two consecutive years (winter 2020 and
winter 2021) with identical content and only slight organizational changes. Most
notably, in 2021 the submission deadline for the bonus exercises was right before
the corresponding quiz with the consequence that the bonus exercise with The-
orema had to be completed before doing the quiz. In 2020 the deadline was a
little later so that it was possible in principle to do the bonus after the quiz.

3.1 Personal Impression of Students

Before being admitted to submit the solution of a bonus exercise, students were
required to answer at most two standard questions about their experiences with
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Fig. 3. Final part of a proof generated by Theorema (left) and proof tree visualization
in the Theorema commander (right).

Theorema depending on whether they were successful in generating an auto-
mated proof with the system (Group A) or not (Group B). In each group they
had to select the answer that fitted best to their personal situation regarding the
relation between automated proving with software support and doing (the same)
proofs by hand for the exercises. The possible answers are shown in Fig. [d and [5]
and according to their answers we formed categories A.1-A.9 and B.10-B.16. In
both years we had 200-300 self-assessments for each of the bonus exercises and
the ratio A:B was a constant ~2:1. With these high numbers we consider the
results to be non-random.

First we analyze the relative sizes of the categories in group A and compare
the two classes winter 2020 and winter 2021, see Fig. [l In both instances the
top four are A.1, A.4, A5, and A.8 and they separate quite clearly from the
remaining five. Quite encouraging are A.IEI, which ranks first in FOB3B in 2020
and, in 2021, first in average over all three bonus exercises and first overall
(groups A and B together). We also highlight A.ﬂ particularly in 2021, where
this category shows a monotonic increase over time to finally rank clearly first in
FOB3B with a huge margin to the second-biggest group. Category A.Eﬂ displays
an interesting development in 2021 from rank 1 with 23% in FOB2B dropping
to rank 6 with only 7% in FOB3B.

3 Not able to do the proofs by hand but feel capable after using Theorema.

4 Hard time doing the proofs by hand but feel improvement through using Theorema.

5 No problems doing the proofs by hand but will do proofs differently after having
used Theorema.



Al

A2

A3

A4

A5

A6

AT

A8

A9

I did not try or was not able to do the examples by hand, but now I think would
be able to do them.

I did not try or was not able to do the examples by hand. I think I would still
not be able to do such proofs.

I had no problems doing the proofs by hand. However, they are different from
the Theorema proofs and I’'m confused now whether my proofs are wrong.

I had no problems doing the proofs by hand. However, they are slightly different
from the Theorema proofs because Theorema uses certain rules that I did not
know. Still, I think my proofs are fine.

I had no problems doing the proofs by hand. However, they are slightly different
from the Theorema proofs and in the future I would do my proofs differently.
I had no problems doing the proofs by hand. After doing the proofs with The-
orema I realized that at least one of my original proofs was wrong.

I had a hard time doing the proofs by hand. However, I think when doing the
next proof by hand, it will be equally difficult, doing the proof with Theorema
did not help me for improving my own skills.

I had a hard time doing the proofs by hand. After doing the proof with Theorema
T understand much better how all of this works. I feel that my own skills improved
by using Theorema.

I don’t see any connection between the examples from the exercises and the
Bonus Exercise with Theorema

Fig. 4. Possible answers for Group A.

B.10

B.11

B.13

B.14

B.15

B.16

I did not try or was not able to do these examples by hand. I wanted to see how
Theorema does the proofs, but I failed to produce a complete proof.

I did not try or was not able to do these examples by hand. Theorema is much
too complicated for me to use it for such exercises.

I had no problems doing the proofs by hand. Unfortunately, I failed to produce
a complete proof with Theorema. It would have been interesting to compare.

I had no problems doing the proofs by hand. I’'m not interested how an auto-
mated proof looks, I have done them by hand anyway.

I had a hard time doing the proofs by hand. Unfortunately, I failed to produce
a complete proof with Theorema. It would have been interesting to compare.

T had a hard time doing the proofs by hand. I’'m not interested how an automated
proof looks, I have done them by hand anyway.

I don’t see any connection between the examples from the exercises and the
Bonus Exercise with Theorema.

Fig. 5. Possible answers for Group B.
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Fig. 6. Development of the group sizes (relative) in self-assessment from FOB1B to
FOB3B in group A in winter 2020 (left) and winter 2021 (right).

The situation is less pronounced in group B, which are generally the less
interesting cases, since these are the students who failed to generate automated
proofs with Theorema, see Fig. [7] We are happy that those who consider Theo-
rema too complicated (B.11) are a rather small group, and that, at least in 2021,
those that were interested in Theorema at least in principle (though unsuccess-
ful, categories B.10, B.12, and B.14) dominate those that show no interest at all
(B.13 and B.15). Common to both instances is the significant drop of B.19|from
FOB2B to FOB3B. We think that this is mainly due to fact that less people had
no problems doing the proofs by hand, so the fraction of them that also had
problems with the software shrunk as a consequence of that.

40% 35%
Group B Group B
3% 0%
309
25%
—=—-8.10 —=—-8.10
= ——B.11 ——B.11
e - 20% -
2000 B.12 B.12
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153 —-—B.14 5% —-—B.14
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1o T— = B.16 10% = B.16
— —:_gﬁ/
506 5%
0%

0%
FOB1B FOB28 FOB38 Total (Bonus 1-3) FOB1B FOB2B FOB38 Total (1-3)

Fig. 7. Development of the group sizes (relative) in self-assessment from FOBI1B to
FOB3B in group B in winter 2020 (left) and winter 2021 (right).

3.2 Performance in the Quizzes

In addition to the students’ opinion about the effects of software support on
their own proving skills presented in the previous section we now analyze their

% No problems doing the proofs by hand but unable with Theorema although keen.

11



performance in the quizzes. The numbers do not differ much between the two
instances of the course, the concrete numbers shown below are from winter 2021.
In each quiz FOBnQ we compare the average points scored in the following
groups:

All: all students in FOBnQ.

FOBnB: those students in FOBnQ who did bonus exercise FOBnB successfully.
FOB*B: those students in FOBnQ who did FOB1B-FOBnB successfully.
FOBOB: those students who did no bonus exercise successfully.

We not only record the average scores and standard deviations but add a sta-
tistical assessment in form of a (two-sided) Student’s T-Test [1] comparing the
sample values of different groups. The Student’s T-Test gives a probability (p-
value) that the given sample data occur under the hypothesis of equal mean
values of underlying distributions. We use a variant of the test that does not
assume equal variances of the underlying distributions. When we compare two
samples with different averages, then a low p-value means that there is a low
probability that the different averages occur although the underlying distribu-
tion have equal mean value, i.e., the mean values are equal and the different
sample averages just occur by chance. Typically, in statistics, one calls a differ-
ence statistically significant if p < 0.05, so the smaller the numbers in the tables
below, the more significant are the different averages in the samples compared.
For example, the analysis of quiz FOB1Q (see Table [1]) tells us that the average
score 4.74 of the 107 students that also did bonus FOBI1B is significantly bet-
ter (p = 5.65 x 107%) than the 4.36 scored by the 187 students that neglected
FOBI1B, and still significantly better (p = 0.0003) than the 4.50 scored overall
by the 294 participant&ﬂ The under-average performance of those not having
done the bonus is statistically not significant (p = 0.0943).

Table 1. Results of FOB1Q (max. 5 points) with p-values for equal means. Values in
parentheses show the size of the groups and column ‘x + ¢’ contains the average scores
(1) in the group samples together with their standard deviations (o).

| wto || Al | FOBOB
All (294) 4.50 + 0.81 — —
FOBOB (187) | 4.36 + 0.93 || 0.0943 —
FOBIB (107) | 4.74 + 0.49 || 0.0003 | 5.65 x 10~°

Table [2] shows the corresponding figures for quiz FOB2Q, which we consider
the most difficult quiz because it is the first one with quantifier rules and it is
only about quantifier proving whereas in FOB3Q it is quantifier proving as a

" Note that the statistical test gives much more confidence in different mean values
than only comparing observed averages and taking into account the standard devi-
ations or variances in the samples.
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repetition plus induction proofs. The situation is similar to the one above: those
who do the bonus perform best, followed by the overall average, and the no-
bonus-group is the weakest. The different averages are statistically significant,
since all p-values are far below 5%. Among the bonus students, we even distin-
guish between those who did only FOB2B and those who did FOB1B-FOB2B.
The latter are marginally better scoring 3.87 against 3.79, but this difference
cannot be confirmed statistically with p = 0.6353, meaning that it can be by
chance with a probability of over 60%.

Table 2. Results of FOB2Q (max. 5 points) with p-values for equal means. Values in
parentheses show the size of the groups and column ‘i + o’ contains the average scores
(@) in the group samples together with their standard deviations (o).

| pwto || Al | FOBOB |FOB2B
All (290) 3.30 + 1.29 — — —
FOBOB (166) | 2.99 + 1.24 || 0.0102 —
FOB2B (109) | 3.79 + 121 [[ 0.0006 [ 241 x 10 " | —
FOB*B (91) | 3.87+1.20 || 0.0002 | 8.43 x 10 ° | 0.6353

Finally we discuss our observations in quiz FOB3Q), see Table[3] Again, those
who do the bonus perform best, followed by the overall average, and the no-
bonus-group is the weakest, but the averages differ much less. The only message
that is supported by statistics is that those who did bonus exercises perform
better than those who do not. As in FOB2Q), the difference between those who
did only the last bonus to those who did all bonus exercises (3.58 vs. 3.68) is not
supported by statistics with p = 0.5620.

Table 3. Results of FOB3Q (max. 5 points) with p-values for equal means. Values in
parentheses show the size of the groups and column ‘i + ¢’ contains the average scores
() in the group samples together with their standard deviations (o).

| wto || Al | FOBOB | FOB3B
All (282) 3.46 + 1.05 — — —
FOBOB (147) [ 330 + 104 [[ 01329 | — —
FOB3B (97) [ 3.58+ 1.07 || 0.3560 | 0.0474 [ —
FOB*B (64) | 3.68+1.10 || 0.1529 | 0.0215 | 0.5620

We also compared the performance of the groups A.1-B.16, see Section [3.1}
against each other. We do not go into further detail because only a few of the
different averages could be confirmed as statistically significant in winter 2020
and, unfortunately, even less in winter 2021.
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A final observation we want to share is given in Fig. [8] which shows the
development of the performance over time split up into the groups A.1-B.16 from
Section [3.1] The striking development of group A.3 is less telling that one might
expect because of the small size of that group (4%, 2%, and 3%), hence we neglect
A3 in the further analysis. One can see that subgroups in group A are a bit closer
to each other than those in group B. There is a falling tendency from FOB1Q
to FOB2Q, regardless of what happened in the bonus, and this is certainly
due to the difficulty of FOB2Q), see above. Between FOB2(Q and FOB3Q we see
more diversity, some groups improve whereas some decline. Among the declining
groups, A.2 and B.11 correspond to each other, it contains those that are not
able to do the proofs by hand and that see no improvement through software
support. Also declining are A.6 and B.13, both having no problems doing the
proofs by hand. Those that used Theorema successfully at least detected that
their hand-proofs are wrong. However, they seem to not have been drawing the
right conclusions because still their performance got worse. Among the improving
groups, A.7 is a strange phenomenon, because they improve in group A from last
position (neglecting A.3) in FOB2Q to second in FOBQ3, although their self-
assessment says they had a hard time with hand-proofs and the software did
not help them. On the other hand, A.8 claimed to have the feeling their skills
had improved through using Theorema, but their performance stays constant.
Another nice facet is the development of B.14 and B.15 from FOB2Q to FOBQ3.
Starting from the same level in FOB2Q, the ones that show interest in the
software (although finally failing, B.14) improve in FOB3Q, while those that
confess not being interested in the automated proofs show no improvement.

Group A Group B
5.00
A1 450
—— A2 =@ B.10
A3 4.00 ——B.11
—— A4 B.12
—-—as 350 == ——B.13
A ——B.14
—— AT 300 B.15
AB 250 —4-B.16
——A0
2.00 2.00

FOBIQ FOB2Q FOB3Q FOB1Q FOB2Q FOB3Q

Fig. 8. Development of the performance from FOB1Q to FOB3Q in winter 2021 in
group A (left) and group B (right).

4 Conclusion
We report on a big case study using the Theorema system as a proof tutor in

a big logic course for almost 400 first semester students of computer science
or artificial intelligence. The case study consists of a self-assessment of students
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after using the software and a statistical evaluation of test results based on groups
defined through the answers in the self-assessment. Our didactical hypothesis
is that students can improve their own proving skills through working with a
natural-style automated theorem prover. Some statistics support this claim, e.g.,
in general, students that worked with the software performed better than average
while the others show results under average. However, there are also surprising
results that do not exactly match our expectations, e.g., students, who reported
that the automated proofs were of no help, improved, while those, who claimed
better understanding through working with the software, did not improve. Our
expectation was just the other way round. In this context, it is important to recall
that statistical tests can only reveal correlations but no causalities. This has to
be emphasized in particular in our scenario where the groups are not assigned
randomly but students actively join a group or not. Now, if one group performs
better than another, this can be because students are better because of being
in that group or because the better students (more talented, more interested, or
more motivated) chose that group. A superior setup would be to divide the entire
class into a group that does the bonus exercises and compare them to those that
do no bonus exercises, but this is not feasible in our logic course because of the
voluntary character of the software-related parts.

In future versions of the case study we have to take measures that answers
in the self-assessment become more reliable so that students see no benefit in
checking answers that the teachers might like better than others. Moreover,
we will also try to investigate the development of individual students during
the course like, e.g., follow the paths through which of the categories A.1-B.16
individual students travel from FOB1Q to FOB3Q. In any case, we are happy
that the Theorema system can be applied in a reasonable way in education with
a big group of first-semester students.
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