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ABSTRACT

We give the implementation of an algorithm developed by Silviu Radu to compute examples of a
wide variety of arithmetic identities originally studied by Ramanujan and Kolberg. Such identities
employ certain finiteness conditions imposed by the theory of modular functions, and often yield
interesting arithmetic information about the integer partition function p(n), and other associated
functions. We compute a large number of examples of such identities taken from contemporary
research, often extending or improving existing results. We then use our implementation as a
computational tool to help us achieve more theoretical results in the study of infinite congruence
families. We finally describe a new method which extends the existing techniques for proving
partition congruence families associated with a genus 0 modular curve.
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LIST OF SYMBOLS

The following are used throughout the body of this paper:

Z Set of integers
Z≥m Set of integers greater than or equal to some m.
R Set of real numbers
C Set of complex numbers
K A field such that Q ⊆ K ⊆ C
SL(2,Z) Group of 2× 2 matrices with entries in Z and determinant 1,

under matrix multiplication
ℓ An arbitrary prime number

� (a; q)∞ =
∏∞

j=0 (1− aqj) = (1− a)(1− aq)(1− aq2)...

� Given a, b ∈ Z, a | b denotes that a divides b. Otherwise, a ∤ b.

� Given a, b,m ∈ Z with m ≥ 1, a ≡ b (mod m) denotes that m | (a− b).

� Given some k ∈ Z≥1 the Laurent series

f =
a(−k)
qk

+
a(−k + 1)

qk−1
+ ...+

a(−1)

q
+ a(0) +

∞∑
n=1

a(n)qn,

define

f (−) :=
a(−k)
qk

+
a(−k + 1)

qk−1
+ ...+

a(−1)

q
+ a(0).

� Given some k ∈ Z and a function f(τ) which can be written in the form

f(τ) =
∞∑
n=k

a(n)e2πinτ ,

define

f̃(q) :=
∞∑
n=k

a(n)qn.

xvii
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0.1 Prologue: Regarding the Title

Martin Eichler is said to have remarked that there are five fundamental operations of arithmetic:
addition, subtraction, multiplication, division, and modular forms. What follows is an exposition
on the methods of computer algebra used to study a small part of the relationship between the
first and the fifth of these important “operations” (the other three are also occasionally useful).



CHAPTER 1
INTRODUCTION

1.1 Background

The premise of our thesis is the study of additive number theory using the theory of modular func-
tions and the methods of computer algebra, i.e., using computer algebra to study the relationship
between the first and the fifth of Eichler’s “operations.”

We begin, however, by mentioning the study of the third of these operations: multiplication.
The fundamental theorem of higher arithmetic states that every positive integer can be expressed
as a unique product of primes—unique, at least up to the ordering of the factors. Thus, the number
6 possesses a single unique representation as a product of primes:

6 = 3 · 2.

Due to the centrality of the primes in this representation, one might define the basic problem of
multiplicative number theory as the study of the primes: their distribution, computation, and
arithmetic properties, as well as the properties of their related functions, e.g., the prime counting
function π(x).

On the other hand, there exists no “additive equivalent” of the primes. The number 6 has no
unique representation in addition—except perhaps as a trivial sum of 1s. Indeed, the number 6
has a total of 11 different additive representations in terms of other positive integers (again, up to
the ordering of the terms):

6,

5 + 1,

4 + 2,

4 + 1 + 1,

3 + 3,

3 + 2 + 1,

3 + 1 + 1 + 1,

2 + 2 + 2,

2 + 2 + 1 + 1,

2 + 1 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1 + 1.

Definition 1.1. Given any nonnegative integer n, an integer partition of n is a representation of
n as a sum of positive integers, called parts, in which ordering of parts is irrelevant. The number
of integer partitions of n is the (unrestricted) partition function, denoted by p(n). For a fixed n0,
p(n0) is sometimes referred to as the partition number of n0.
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Definition 1.2. The number of partitions of n under a given set of restrictions is a restricted
partition function.

Remark 1.3. We count a single-term sum as a distinct partition; thus, 6 counts as a 1-term
partition.

Remark 1.4. For convenience of notation, we will denote p(0) = 1.

Remark 1.5. Without loss of generality, we will write partitions as a weakly decreasing sum of
the parts, e.g., 3 + 2 + 1, rather than 2 + 3 + 1 or any other permutation.

It has been noted [106, 31:30] that, inasmuch as the study of the primes constitutes the
basic problem of multiplicative number theory, the basic problem of additive number theory is the
study of the partitions of a given integer—their number, their computation, the distribution and
arithmetic properties of p(n), and the properties of other functions which are closely associated with
p(n) (e.g., restricted partition functions, or functions which enumerate some important partition
statistics).

We will begin with a discussion of the properties of p(n), since much of the initial motivation
in the theory of partitions stems from here.

The sequence of partition numbers p(n) begins as follows:

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 57, 77, 101, 135, 176, 231, 297, 385, 490, 627, 792, ... (1.1)

Beyond the incidental (and short-lived) coincidence with the Fibonacci sequence, there is no imme-
diately recognizable pattern to these values. On the other hand, the rapid growth of p(n) suggests
a roughly exponential asymptotic.

Euler studied p(n) in 1748 [38]. He identified the generating function for p(n), which we will
denote as

F̃ (q) :=
∞∏
m=1

1

1− qm
=

∞∑
n=0

p(n)qn.

From this, numerous results for p(n) were developed. However, the first useful formula for the
computation of p(n) did not come until the extremely precise asymptotic results of Hardy and
Ramanujan in 1918 [46]. Some twenty years later, their methods were perfected by Rademacher
[86], who provided the following exact formula for p(n):

Theorem 1.6. Let n ∈ Z≥0. Then

p(n) =
1

π
√
2

∞∑
k=1

√
k · An(h, k)

d

dx

sinh
(
π
k

√
2
3

(
x− 1

24

))√
x− 1

24

∣∣∣∣∣
x=n

, (1.2)
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An(h, k) =
∑

0≤h<k
(h,k)=1

ω(h, k)e−2πinh/k,

ω(h, k) = exp

{
πi

k−1∑
µ=1

µ

k

(
hµ

k
−
⌊
hµ

k

⌋
− 1

2

)}
.

The existence of this formula is owed to the fact that the generating function of p(n) is
(with suitable adjustments) a modular form—a function defined on the upper half complex plane
exhibiting powerful and surprising symmetric properties.

What is most astonishing about Theorem 1.6 is not its bizarre analytic structure, but its
efficiency. The modularity of the generating function for p(n) allows us to derive a formula which
is efficient—indeed, very nearly optimally efficient—for direct computation [57].

To compare with the study of the prime numbers, it is well-known that the properties and
symmetries of the Riemann ζ function allow us to extract information about the distribution of
the primes. However, the resulting formulæ for the prime counting function π(n) are notoriously
difficult to compute. For example, the main asymptotic term given by the Prime Number Theorem
only barely overpowers its error term [88, Chapter 7]; a more exact formula for π(n) is possible,
but it is not at all computationally efficient.

Of course, while Theorem 1.6 is remarkable from both a theoretical and a computational
perspective, it only appears to exacerbate our confusion regarding the arithmetic properties of
p(n). It is not at all obvious, for example, when p(n) is prime, composite, a perfect square or cube,
even or odd. Indeed, reexamining (1.1), a first impression suggests that there are no interesting
arithmetic properties. Perhaps, like the primes, there is a certain degree of randomness in these
numbers, with no clear nontrivial arithmetic properties at all.

Only a century ago did we realize that the sequence (1.1) not only contains specific and non-
trivial arithmetic properties; indeed, we realized almost overnight that p(n) contains a considerably
deep and magnificent arithmetic structure. We owe these discoveries to Srinivasa Ramanujan, who
observed the following subsequence of (1.1) in which n ≡ 4 (mod 5):

5, 30, 135, 490, 1575, 4565, 12310, 31185, 75175, 173525, 386155, 831820, 1741630, ... (1.3)

From this he quickly guessed and proved that for all n ≥ 0,

p(5n+ 4) ≡ 0 (mod 5). (1.4)

Given the apparent lack of a pattern for (1.1) at first glance, this divisibility condition is remarkably
simple and elegant. Similarly, Ramanujan was able to demonstrate that
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p(7n+ 5) ≡ 0 (mod 7), (1.5)

p(11n+ 6) ≡ 0 (mod 11). (1.6)

In these and all later examples, such congruences will hold for all nonnegative integers n.
Studying the relevant generating functions for these partition numbers, he discovered the

following identities:

Theorem 1.7.

∞∑
n=0

p(5n+ 4)qn = 5 ·
∞∏
m=1

(1− q5m)5

(1− qm)6
, (1.7)

∞∑
n=0

p(7n+ 5)qn = 49q
∞∏
m=1

(1− q7m)7

(1− qm)8
+ 7

∞∏
m=1

(1− q7m)3

(1− qm)4
. (1.8)

These identities are considered to be among Ramanujan’s finest achievements, and they are
central to the remainder of our dissertation.

Ramanujan did not stop with these results. He could not find similar results for primes
other than 5, 7, and 11; however, noticing similar divisibility patterns for arithmetic progressions
involving powers of 5, 7, 11, he made the following remarkable conjecture in 1918:

p (ℓαn+ λℓ,α) ≡ 0 (mod ℓα), (1.9)

with ℓ ∈ {5, 7, 11} and λℓ,α the minimal positive solution to 24x ≡ 1 (mod ℓα). This conjecture
needed to be modified in the case that ℓ = 7, but was otherwise exactly correct:

Theorem 1.8.

p (5αn+ λ5,α) ≡ 0 (mod 5α), (1.10)

p (7αn+ λ7,α) ≡ 0 (mod 7⌊α/2⌋+1), (1.11)

p (11αn+ λ11,α) ≡ 0 (mod 11α). (1.12)

The case α = 1 for (1.10)-(1.12) is of course (1.4)-(1.6). The congruences for all α ∈ Z≥0

are much more difficult to prove, and is the first known example of a considerably deep class
of arithmetic results about partition numbers. Ramanujan’s notebooks indicate that he had a
proof of (1.10) [24], but the first published proof of (1.10)-(1.11) came from Watson in 1938 [114].
However, (1.12) proved to be much more challenging, and it was not proved until Atkin’s work in
1967 [16].

These results were only the beginning of a century of progress on the arithmetic properties
of p(n) and its related functions. A large variety of other partition-related functions have since
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been found to exhibit similar congruence properties to those of p(n). A quick (and not at all
comprehensive) survey of the literature for proofs of such congruences can be found in Chapter 5
below.

Our understanding of these divisibility properties has advanced very rapidly, in various direc-
tions. Ahlgren and Boylan proved [3] that the only partition congruences of the form

p(ℓn+ λ) ≡ 0 (mod ℓ)

such that ℓ is prime and 0 ≤ λ ≤ ℓ are Ramanujan’s results (1.4)-(1.6).
However, a much larger variety of more intricate congruences have been found, i.e., congru-

ences of the form

p(An+B) ≡ 0 (mod M)

with A,B,M ∈ Z≥0, 0 ≤ B ≤ A− 1. A well known example by Atkin,

p(113 · 13n+ 237) ≡ 0 (mod 13),

can be found in [17]. Other examples include results by Atkin and O’Brien [19], Hjelle and Klove
[53], Klove [59], [60], and Newman [77].

In the last twenty years Ono [80], Ahlgren [2], and Ahlgren–Ono [7] have proved and carefully
studied the existence an infinite number of congruence properties of p(An + B) modulo primes
greater than 5, and their powers. Additionally, Ono [81] and Radu [93] have demonstrated impor-
tant properties of p(An + B) modulo the primes 2 and 3. Much of this work was generalized by
Treneer to include congruences for coefficients of weakly holomorphic modular forms [108]. More
recently, Folsom, Kent, and Ono have studied the general ℓ-adic behavior of p(n) [40].

Combinatorial interpretations of these congruence properties have been pioneered by Dyson
[36], Garvan [42], and Andrews–Garvan [13]. More formal manipulations of integer partitions has
led to an enormous variety of results by Andrews, Berndt, Hirschhorn, Garvan, and others.

At the same time, a more experimental approach to the study of these partition numbers
has developed. Ramanujan himself worked heavily from example, computation, and experiment.
Atkin has remarked [6, “Atkin’s Examples”] that computational work is especially useful in the
study of partitions. This fact has been confirmed in recent decades, as demonstrated by work at
the Research Institute for Symbolic Computation (RISC). For example, Ono began a proof [81] of
an important conjecture by Subbarao regarding the parity of p(n); this proof was completed by
Radu at RISC in 2012 [93]. Similarly, some important congruence conjectures by Sellers [100] were
only resolved after nearly twenty years by Paule and Radu at RISC [82]. More recent progress on
the meromorphic properties of modular functions has been made at RISC. For example Paule and
Radu have also recently shown that the Weierstrass gap theorem may be proved without resorting
to the Riemann–Roch theorem [84]. This has implications which affect not only the theory of
partitions, but also the general theory of Riemann surfaces and algebraic geometry.
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Each of these different approaches to the theory of partitions has contributed to an unexpected
aspect of p(n) and its associated functions: the dependence of their arithmetic properties on the
same modular symmetries that underlie Theorem 1.6—the formula which appears at first sight
only to obscure any understanding of the arithmetic of p(n). The theory of modular forms—in
an ever-more precise and deep form—continues to contribute to the forefront of the study of the
arithmetic of partitions.

Moreover, just as it is useful for the numerical computation of p(n) via Theorem 1.6, mod-
ularity is equally powerful for the symbolic computation of arithmetic information and identities
associated with p(n). We now understand the problem so well that we can use the underlying
modular symmetries of p(n) and related functions to create powerful algorithmic tools which are
useful for deriving important relationships and identities. These identities can then be used for
more experimental results from which deeper revelations may be derived.

For example, many different identities with a form resembling those of Theorem 1.7 have since
been found for p(n), as well as a variety of more restricted partition functions. For example, we
have this result by Zuckerman [117]:

∞∑
n=0

p(13n+ 6)qn (1.13)

=11
∞∏
m=1

(1− q13m)

(1− qm)2
+ 468q

∞∏
m=1

(1− q13m)3

(1− qm)4
+ 6422q2

∞∏
m=1

(1− q13m)5

(1− qm)6

+ 43940q3
∞∏
m=1

(1− q13m)7

(1− qm)8
+ 171366q4

∞∏
m=1

(1− q13m)9

(1− qm)10

+ 371293q5
∞∏
m=1

(1− q13m)11

(1− qm)12
+ 371293q6

∞∏
m=1

(1− q13m)13

(1− qm)14
.

Or consider the following results discovered by Kolberg [63], [62]:

(
∞∑
n=0

p(5n+ 1)qn

)(
∞∑
n=0

p(5n+ 2)qn

)
= 25q

∞∏
m=1

(1− q5m)10

(1− qm)12
+ 2

∞∏
m=1

(1− q5m)4

(1− qm)6
, (1.14)

(
∞∑
n=0

p(7n+ 1)qn

)(
∞∑
n=0

p(7n+ 3)qn

)(
∞∑
n=0

p(7n+ 4)qn

)
(1.15)

= 117649q4
∞∏
m=1

(1− q7m)21

(1− qm)24
+ 50421q3

∞∏
m=1

(1− q7m)17

(1− qm)20
+ 8232q2

∞∏
m=1

(1− q7m)13

(1− qm)16

+588q
∞∏
m=1

(1− q7m)9

(1− qm)12
+ 15

∞∏
m=1

(1− q7m)5

(1− qm)8
,
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(
∞∑
n=0

p(2n)qn

)(
∞∑
n=0

p(2n+ 1)qn

)
=

∞∏
m=1

(1− q2m)2(1− q8m)2

(1− qm)5(1− q4m)
. (1.16)

Similar relationships can be found for a very large variety of restricted partition functions, as well as
other functions which are closely associated with p(n). These identities are generally referred to as
Ramanujan–Kolberg identities (RK identities), after the two mathematicians who were principally
responsible for the initial study of these results.

There exist many different proof techniques for these identities, including the more elementary
manipulation of formal power series. Kolberg’s methods are most notable in this respect [63].
However, these identities emerge very naturally from the theory of modular functions. Indeed,
the techniques used to prove Theorem 1.7 by modularity may also be extended to include all of
Kolberg’s results.

Moreover, these techniques are so well-established, and based on sufficiently strong finiteness
conditions, that they are capable of automation. This was demonstrated by Silviu Radu, who
designed an algorithm [91] in 2014 to compute many more identities in the form above, for a broad
class of arithmetic functions.

We have successfully implemented Radu’s algorithm in Mathematica, and developed a freely
available software package which can be used to examine a large number of contemporary results
in the study of partitions. The associated identities are often far too lengthy to compute by
hand; nevertheless, their computation is the result of a well-understood technique in the theory of
modular functions, and their form often allows for the extraction of arithmetic information about
the associated function.

The value of such computational tools to number theory is immense. In the first place, our soft-
ware package very often enables us to extract optimal congruences for various partition functions.
There are multiple instances in the recent mathematical literature of congruence results—usually
proved by more elementary methods—which often fail to be optimal, and which our implementa-
tion can quickly improve. This is perhaps the most immediate application of our software package,
and its utility may be recognized even by mathematicians who decry the use of computational
techniques.

However, there exists another application of the automated computation of RK identities.
Equations (1.7)-(1.8), along with the existence of similar identities for higher powers of 5 and
7, form the theoretical linchpin from which (1.10)-(1.11) of Theorem 1.8 are proved. Similarly,
there exists a more complex sequence of identities which enable us to prove (1.12). The study of
these congruence families is a far more ambitious problem than the computation of any single RK
identity.

The theory of modular functions was certainly essential to the first proof of (1.10); more recent
proofs can remove a direct reliance on modular functions. However, as we have already mentioned,
over the last century a very large variety of similar infinite families of congruences have been found
for other partition functions. These families vary wildly with respect to the difficulty in proving
them.
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The more difficult congruence families are often subject to complications which necessitate
the use of modular functions, together with the underlying theory of compact Riemann surfaces.
These proofs are generally inductive arguments which rely on a number of initial cases. These initial
cases can often be proved using a modular cusp analysis which is necessary for the computation
of Ramanujan–Kolberg identities with our software. This means that we can adapt much of the
machinery for RK identities in order to prove the initial relations which are necessary for a complete
proof of a given infinite congruence family.

1.2 Thesis Outline

The remainder of our work is as follows:
In Chapter 2 we will provide a very brief review of the underlying theory of modular functions.

We begin with an exposition of the Riemann surface structure of the classical modular curves, and
describe the impact of the topological properties of classical modular curves onto their associated
spaces of modular functions. This will form the theoretical foundation for all of our later results.
We will then define the Dedekind eta function, together with its modular symmetries, before
developing the cusp analysis which allows us to represent and compare modular functions using
computers.

In Chapters 3 and 4 we will demonstrate the application of modular functions to the compu-
tation of the class of identities studied by Ramanujan and Kolberg. We describe our Mathematica
software implementation of Radu’s algorithm, and give a number of interesting examples of the ap-
plication of our implementation. We include new identities, and improvements on standing results.
Radu’s algorithm, together with our implementation, provides the computational foundation for
our later results.

In the remaining chapters we utilize these tools, both theoretical and computational, to the end
of more theoretical results, i.e., proving infinite families of partition congruences. In Chapter 5 we
give a brief history of this subject. We also introduce a weighted partition function, here referred
to as A1(n), connected with the celebrated Rogers–Ramanujan identities, for which an infinite
family of congruences was conjectured by Choi, Kim, and Lovejoy. The difficulty for proving this
infinite family, in contrast to more classical results of the form of Theorem 1.8, is that we have to
contend with certain topological and analytic difficulties of the associated classical modular curve.

In Chapter 6 we first show how our implementation of Radu’s algorithm may be adapted for
the computation of multiple cases of the Choi–Kim–Lovejoy conjecture. This is a highly nontrivial
problem, as the exponential growth of arithmetic progressions associated with infinite congruence
families, together with the already subexponential growth of most restricted partition functions,
very often makes the collection of compelling evidence for an infinite family difficult, even with a
computer. Our methods allow for an explicit form of the Choi–Kim–Lovejoy congruence family to
be stated, and for substantial evidence of its validity to be gathered.

In Chapters 7 and 8 we will give the complete proof using the method developed by Paule and
Radu. We derive the necessary modular equation from which certain important recurrence relations
may be derived, before confronting some of the problems involving the genus of the associated
modular curve, and failure of universal 5-adic convergence. We build an induction argument, and
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use the cusp analysis to prove the initial cases, which will be found in the Appendix.
In the final portion of our work, we give the exposition of a new method of proving partition

congruence families. Recent computational experiments, combined with some important theoret-
ical results, have led us to suspect that the classical techniques for proving infinite families of
congruences are incomplete. In Chapter 9 we give an example in a congruence family with respect
to the smallest parts partition function sptω, associated with Ramanujan’s third-order mock theta
function. In theory, this congruence family should be amenable to a proof not dissimilar to those of
(1.10)-(1.11) from Theorem 1.8: the underlying modular curve has a simple topology, whence the
more classical techniques should be sufficient for a proof. However, in practice the techniques for
handling modular curves with a positive genus were necessary for the very first proof by Liuquan
Wang and Yifan Yang.

In trying to find a more classical proof for this family of congruences, we developed an approach
which may be more complete and applicable to a wide variety of congruence families. Many
interesting algebraic and arithmetic complexities arise, and the potential for further research is
enormous. We finally give our proof of Wang and Yang’s congruence family in Chapter 10.



CHAPTER 2
GENERAL THEORY

2.1 Introduction

In this chapter we will develop the necessary theory of modular functions. The subject is enormous,
and we can only provide a brief introduction to it. We begin with an analytic motivation for the
subject. Thereafter, we work in the context of the theory of Riemann surfaces. We will define the
classical modular curves X0(N), together with their underlying Riemann surface topology. We will
prove some important topological properties, and introduce several extremely important results
concerning functions over X0(N), including a remarkable relationship between the set of functions
over X0(N) and the genus of X0(N).

All of this may seem a little superfluous, but the advantages will be worthwhile. As we will
show in later chapters, a good understanding of the topology of the Riemann surfaces associ-
ated with certain spaces of modular functions can inform our understanding of many arithmetic
functions of interest to us, including p(n).

Once we have established the relevant Riemann surface structure and properties of X0(N),
we will define our relevant classes of modular functions, and list some important properties. We
will describe the remarkable properties of the Dedekind η function, which is closely related to the
generating function F̃ (q) of p(n). Thereafter we will discuss the modular cusp analysis, the means
of using the properties of modularity to establish equivalence of any two modular functions by the
comparison of a finite number of Fourier coefficients. We end with a brief description of the Uℓ
operator.

2.2 Conformal Mappings

We denote H as the upper half complex plane, and define

Ĉ := C ∪ {∞},
Ĥ := H ∪Q ∪ {∞},
Q̂ := Q ∪ {∞},

with a/0 = ∞ for a ̸= 0.
We can ask for the set of all holomorphic mappings φ : Ĉ → Ĉ which are automorphic, i.e.

bijective and conformal [105, Chapter 8, Section 2.1]. We denote the set of all such mappings as
Aut(Ĉ).

Automorphic mappings may be interpreted in a variety of ways. On a global scale, Aut(Ĉ)
may be thought of as the set of all functions which send circles to circles in the Riemann sphere
(considering straight lines as circles which intersect with ∞) [66, II. 9A]. In terms of differential ge-
ometry, Aut(Ĉ) is the set of all bijective functions on Ĉ which preserve angles between intersecting
curves [105, Chapter 8, Section 1, Problem 2].

Consider Möbius transformations, i.e., mappings of the form
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φ : τ 7−→ aτ + b

cτ + d
,

with a, b, c, d ∈ C such that ad− bc ̸= 0. All Möbius transformations are elements of Aut(Ĉ) [66,
II. 8D]. Notice that φ(−d/c) = ∞, and φ(∞) = a/c.

Conversely, it turns out that every member of Aut(Ĉ) can be expressed as a Möbius transfor-
mation [66, II. 8D]. Moreover, we may actually restrict the value of ad− bc to 1 (since ad− bc ̸= 0,
we may always normalize by dividing the numerator and denominator by ad−bc, without changing
the output of φ) [66, II. 9A]. We therefore have

Aut(Ĉ) =
{
φ : τ 7→ aτ + b

cτ + d
: a, b, c, d ∈ C, ad− bc = 1

}
.

Recall that

SL(2,C) :=
{(

a b
c d

)
: a, b, c, d ∈ C, ad− bc = 1

}
.

Definition 2.1. We define the group action

SL(2,C)× Ĉ −→ Ĉ,((
a b
c d

)
, τ

)
7−→ aτ + b

cτ + d
.

If γ =

(
a b
c d

)
∈ SL(2,C) and τ ∈ Ĉ, then we write

γτ :=
aτ + b

cτ + d
.

We can express Aut(Ĉ) as the group action of SL(2,C) on C.
If we consider the set of automorphic mappings on H, then we have a simple restriction on

these transformations [101, Chapter VII, Section 1.1]:

Aut(Ĥ) =

{
φ : τ 7→ aτ + b

cτ + d
: a, b, c, d ∈ R, ad− bc = 1

}
.

This set occurs as the group action of Definition 2.1 restricted to SL(2,R).
The set Aut(Ĥ) is of interest to us in part because H is conformally equivalent to the open

unit disk in C [105, Chapter 8, Theorem 1.2]. Notice that the open unit disk is the domain of F̃ (q)
(and indeed, the domain of all of our generating functions of interest).
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From a purely analytic standpoint, it is natural to ask whether there exist any functions over
Ĥ which are invariant (or nearly invariant) on orbits of Aut(Ĥ); however, this is a massive set,
and we are unlikely to find many interesting functions which exhibit symmetry for the entire set.
On the other hand, we can find and functions which are invariant on orbits of certain discrete
subgroups of Aut(Ĥ).

We will be especially interested in subgroups of Aut(Ĥ) determined by the group action of
Definition 2.1 restricted to subgroups of SL(2,Z). A great variety of such subgroups has proven
useful in the study of partition congruences, and the general theory of modular functions. We will
concern ourselves with one specific class of subgroups (although much of the basic theory is very
similar for other subgroups).

Definition 2.2. For any given N ∈ Z≥1, define the congruence subgroup Γ0(N) by

Γ0(N) :=

{(
a b
c d

)
∈ SL(2,Z) : N |c

}
.

We will be working substantially with subgroups of this form; however, we will highlight an
important subset of Γ0(N) which will prove useful in later computations:

Definition 2.3. For any given N ∈ Z≥1, define Γ0(N)∗ by

Γ0(N)∗ :=

{(
a b
c d

)
∈ SL(2,Z) : N |c, a > 0, c > 0, gcd(a, 6) = 1

}
.

This subset has the advantage of generating the entire subgroup.

Lemma 2.4. Γ0(N)∗ multiplicatively generates Γ0(N).

For a proof, see [76].
Hereafter, when we speak of the group action of Γ0(N) on Ĥ, we mean the group action of

Definition 2.1 restricted to Γ0(N).

Definition 2.5. For any subgroup Γ ∈ SL(2,Z) and τ ∈ Ĥ, define the stabilizer subgroup Γτ by

Γτ :=

{(
a b
c d

)
∈ Γ :

aτ + b

cτ + d
= τ

}
/{±I}.

In particular,

Γ∞ :=

{(
±1 b
0 ±1

)
∈ Γ

}
/{±I}.
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An important point is the fact that Γ0(N) is a subgroup of finite index over SL(2,Z). In
particular, we have [34, Problem 1.2.3.e]

Lemma 2.6. For all N ∈ Z≥1,

[SL(2,Z) : Γ0(N)] = N
∏

p: prime,
p|N

(
1 +

1

p

)
.

Definition 2.7. Given N ∈ Z≥1, the orbits of the group action Γ0(N) on Ĥ are denoted by

[τ ]N := {γτ : γ ∈ Γ0(N)} .

Because we are interested in functions which are invariant under transformations from Γ0(N),
it is useful to consider identifying all points in a given orbit.

Definition 2.8. For any N ∈ Z≥1, we define the classical modular curve of level N as the set of

all orbits of Γ0(N) applied to Ĥ:

X0(N) :=
{
[τ ]N : τ ∈ Ĥ

}
From a topological standpoint, the modular curves X0(N) are the principal objects of interest

to us. We can give the natural surjection

π : Ĥ −→ X0(N)

: τ 7−→ [τ ]N .

If our domain was only H, this surjection would give a quotient topology to X0(N), with a relatively
straightforward notion of the neighborhood of a point. But because we also include Q̂ = Q∪{∞},
we have to be more careful about what constitutes a neighborhood. We will approach this in the
next section.

For the moment, we list a few important facts about the behavior of rational points under our
group action. Notice that, for all τ ∈ Q, [τ ]N ⊆ Q. Indeed, Q̂ is the disjoint union

Q̂ =
⊔
τ∈K

[τ ]N ,

for some K ⊆ Q̂.

Definition 2.9. The cusps of X0(N) are the orbits of Γ0(N) acting on Q̂.

The number of cusps of X0(N) is finite:
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Lemma 2.10. We denote the size of K by ϵ∞ (Γ0(N)), and we have

ϵ∞ (Γ0(N)) =
∑
δ|N

ϕ(gcd(δ,N/δ)),

in which ϕ(n) is Euler’s totient function.

See [34, Section 3.8].
In future chapters we will be especially interested in manipulating various representatives

of cusps of a given modular curve. We therefore give some important theorems for comparing
representatives.

The following theorem [34, Proposition 3.8.3] gives a condition for determining whether two
elements of Q̂ represent the same cusp.

Theorem 2.11. Let a/c, a1/c1 ∈ Q∪{∞} with gcd(a, c) = gcd(a1, c1) = 1. Then a1/c1 represents
the same cusp over Γ0(N) as a/c if and only if there exist integers m,n ∈ Z such that

ma1 ≡ a+ nc (mod N),

c1 ≡ mc (mod N),

with gcd(m,N) = 1.

The proof can be found in [34, Section 3.8].

A useful matrix-based interpretation of these cusps may also be given. Suppose

(
a b
c d

)
∈

SL(2,Z). Notice that

(
a b
c d

)
.

(
1 k
0 1

)
=

(
a b+ ak
c d+ ck

)
.

Indeed, every matrix with left terms a, c may be represented in this form. As such, we have a
bijection from Q̂ to SL(2,Z) via the map

a

c
7−→

{(
a b+ ak
c d+ ck

)
: k ∈ Z; b, d ∈ Z such that ad− bc = 1

}
.

Knowing that representatives of a given cusp relate to each other through left multiplication by
elements of Γ0(N), we have [34, Proposition 3.8.5]

Theorem 2.12. The cusps of Γ0(N) may be represented by the double cosets

Γ0(N)\SL(2,Z)/SL(2,Z)∞ = {Γ0(N)γSL(2,Z)∞ : γ ∈ SL(2,Z)} .



16

2.3 Riemann Surface Structure of Modular Curves

2.3.1 A Topology for Ĥ
To build the complete topology for X0(N), we begin with a topology for Ĥ. For τ ∈ H, a
neighborhood is simply that defined for the topology on H: a disk centered at τ ,

Dτ,r := {z : |z − τ | < r} ,

in which the radius r is small enough that Dτ,r ⊆ H.
For convenience we imagine ∞ = i∞, i.e., a point at positive infinity along the imaginary

axis. For any R > 0, we define a neighborhood of ∞ by the half plane

NR := {z : ℑz > R} ∪ {∞}.

Recall that for any γ =

(
a b
c d

)
∈ SL(2,Z), the map γτ is conformal, and sends circles and

lines to circles and lines. One can easily show that the map imposed by γ will send NR to the set

γ (NR) =

{
z :

∣∣∣∣z − (ac + i
1

2Rc2

)∣∣∣∣ < 1

2Rc2

}
∪
{a
c

}
,

with ∞ mapping to a/c. We therefore define the neighborhood of any rational point s ∈ Q as any
open disk (with interior in H) which is tangent to R at s, together with s itself.

Taking these sets as a basis, we can define a topology on Ĥ. We then define the topology on
X0(N) as that imposed by the natural surjection

π : Ĥ −→ X0(N)

: τ 7−→ [τ ]N ,

in which a subset W ⊆ X0(N) is defined to be open if π−1(W) is open in Ĥ.
With some difficulty, it can be shown that X0(N) is Hausdorff. However, it is easier to

demonstrate that X0(N) is connected and compact under this topology. We will prove the latter
two properties here, and direct the reader to Proposition 2.1.1, Corollary 2.1.2, and Proposition
2.4.2 of [34, Chapter 2] for a proof of the former.

Theorem 2.13. For each N , X0(N) is connected.

Proof. We first show that Ĥ is connected. Suppose that Ĥ = U1 ⊔ U2 is a disjoint union of open
sets. Then H ⊆ U1 ⊔ U2. Because H is connected, we may take H ⊆ U1 without loss of generality.
Therefore, we must have U2 ⊆ Q̂. But any neighborhood of a rational point will include points in
H. The only possibility is that U2 = ∅. Therefore, Ĥ is connected.

Because X0(N) is the image of the corresponding map π, which is continuous, X0(N) must
be connected.
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2.3.2 Example: Γ0(1) = SL(2,Z)
In order to prove compactness, we start by considering the example N = 1. To approach this, we
consider two example elements of SL(2,Z), together with their corresponding automorphisms:

S :=

(
1 1
0 1

)
, Sτ = τ + 1

T :=

(
0 −1
1 0

)
, T τ = −1/τ.

We also consider the set

D :=

{
τ ∈ H : |ℜ(τ)| ≤ 1

2
, |τ | ≥ 1

}
.

See the figure below.

Theorem 2.14. The map π : τ 7−→ [τ ]1 is a surjection with the domain of π restricted to D∪{∞}.
Moreover, any two points z, τ in D which lie in the same orbit must lie on the boundary of D with
either z = S±1τ or z = Tτ .

Corollary 2.15. SL(2,Z) is generated by S and T .

The proofs of these may be found in various books. We recommend [101, Chapter VII,
Theorem 1 and Corollary, Theorem 2].

ℜ(τ)

ℑ(τ)

0−1 − 1
2

11
2

H

D

Figure 2.1: D, a fundamental region for SL(2,Z) = Γ0(1)

The figure D gives us a means of visualizing Γ0(N). Notice that the line ℜz = −1/2 and the
line ℜz = 1/2 are equivalent to one another modulo the action of S. Thus, we may imagine gluing
these lines together to make a cylinder.
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Moreover, the arc of the unit circle for π/3 ≤ θ ≤ π/2 is equivalent to the arc for π/2 ≤
θ ≤ 2π/3 modulo the action of T . This allows us to glue the bottom of our cylinder together.
Finally, the lines ℜz = ±1/2 intersect the line ℜz = 0 at z = i∞. We may therefore take D to
be topologically equivalent (i.e., homeomorphic) to a sphere with a single point missing modulo
SL(2,Z). If we add this point (which is of course ∞), then D ∪ {∞} is a connected Hausdorff
topological space homeomorphic to a sphere.

Theorem 2.16. For each N , X0(N) is compact.

Proof. We first show that D ∪ {∞} is compact in the topology we have defined on Ĥ. Let U =
{Uλ}λ∈Λ be a covering of D∪{∞}. Because ∞ must be covered, there must exist some µ ∈ Λ and
some R > 0 such that NR ⊆ Uµ.

If we take D∗ := D \ Uµ, then (D∗)c = Dc ∪ Uµ is open. Therefore, D∗ is closed.
Moreover, D is bounded by |ℜ(τ)| ≤ ±1/2, and bounded below by ℑ(τ) ≥

√
3/2 by definition;

and D∗ is bounded above, since ℑ(τ) ≤ R for all τ ∈ D∗. So D∗ must be closed and bounded, and
therefore compact. Let U∗ = {Uλ1 , ..., Uλk} ⊆ U be a finite subcovering for D∗. Then U∗ ∪ {Uµ} is

a finite subcovering of D ∪ {∞}. This establishes that D ∪ {∞} is compact in the Ĥ topology.
To show that X0(1) is compact, notice that X0(1) = π (D ∪ {∞}), and that π is a continuous

map. More generally, for any N , Γ0(N) is a subgroup of SL(2,Z) with finite index d. Then we can
write

Ĥ = SL(2,Z) (D ∪ {∞}) =
d⋃
j=1

Γ0(N)γj (D ∪ {∞}) ,

with {γj}1≤j≤d a set of right coset representatives. Because Γ0(N)τ = [τ ]N , we have

X0(N) =
d⋃
j=1

π (γj (D ∪ {∞})) .

The action of γj on τ is a continuous function, and D∪{∞} is compact. Therefore, γj (D ∪ {∞})
must be compact. Because π is continuous, π (γj (D ∪ {∞})) must be compact. Finally, because
d is finite, the union of these compact sets must also be compact.

2.3.3 Riemann Surfaces

The fact that X0(N) possesses a comparatively simple topology suggests that we may be able to
treat X0(N) as an object upon which we can do complex analysis. In this section, we will establish
this fact in some detail.

Of course, π is continuous by definition. But we can prove still more:

Lemma 2.17. For any N ≥ 1, π is an open mapping.
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Proof. Let U ⊆ Ĥ be open. We want to show that π(U) is open in X0(N). To do this, we consider

π−1 (π(U)) =
{
τ ∈ Ĥ : π(τ) ∈ π(U)

}
=
{
τ ∈ Ĥ : [τ ]N = [z]N , for some z ∈ U

}
=
{
τ ∈ Ĥ : τ = γz, for some z ∈ U and some γ ∈ Γ0(N)

}
= {γz : γ ∈ Γ0(N), z ∈ U}

=
⋃

γ∈Γ0(N)

γ(U).

Each γ(U) is open by the open mapping theorem [105, Theorem 4.4].

Definition 2.18. An atlas for a topological space X is a collection {(Uλ, φλ) : λ ∈ Λ} of open
sets, together with a set of mappings (local coordinates) in which⋃

λ∈Λ

Uλ = X, and

φλ : Uλ −→ C

is a homeomorphism for each λ ∈ Λ. Each pair (Uλ, φλ) constitutes a local coordinate system of X.

We now give the definition of a Riemann surface. For more details, see [72, Chapter I,
Definition 1.17]

Definition 2.19. Let X be a connected Hausdorff topological space, together with an atlas U :=
{(Uλ, φλ) : λ ∈ Λ}, and the property that, for any µ, ν ∈ Λ, if Uµ ∩ Uν ̸= ∅, then φµφ

−1
ν is

holomorphic over φν (Uµ ∩ Uν). Then (X,U) is a Riemann surface. The charts φλ are said to be
pairwise compatible.

In short, a Riemann surface is a 1-dimensional complex manifold [72, Chapter I: “Real 2-
Manifolds”]. The appeal of such a structure is that we can study many of the functions with
domains over such surfaces using the tools of complex analysis, with little modification.

That X0(N) has a Riemann surface structure is such a remarkable result—with such significant
consequences—that we will give a brief sketch of the proof. For the complete details, see [34,
Chapter 2].

To define a Riemann surface structure on X0(N), we will need to define local coordinates at
each point of X0(N). Notice that each point x ∈ X0(N) can be expressed as

x = π(τ) = [τ ]N ,
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for some τ ∈ Ĥ. For most points τ ∈ H, π will have a local inverse for a sufficiently small
neighborhood of x.

An exception holds for τ ∈ H in which γτ = τ for γ ∈ Γ0(N) \ {±I}, i.e., those τ for which
Γ0(N)τ is nontrivial.

Definition 2.20. If τ ∈ H such that γτ = τ for γ ∈ Γ0(N) \ {±I}, then τ is an elliptic point of
Γ0(N). If τ is an elliptic point of Γ0(N), then [τ ]N is an elliptic point of X0(N).

If τ is an elliptic point of Γ0(N), we must have Γ0(N)τ ⊋ {±I}. Otherwise, Γ0(N)τ = {±I}.
We give an important theorem [34, Proposition 2.2.2] which we will need to extend the Riemann
surface structure of X0(N) to its elliptic points:

Theorem 2.21. For every elliptic point τ of Γ0(N), Γ0(N)τ is finite cyclic.

An additional problem holds for the cusps of X0(N). Fortunately for us, we may recall from
Lemma 2.10 that there are only a finite number of cusps. Moreover, there are only a finite number
of each of these elliptic points for every X0(N) [34, Corollary 2.3.5], and they can be properly
accounted for.

Theorem 2.22. For each N , the classical modular curve X0(N) is a compact Riemann surface.

Proof. We have already established that X0(N) is Hausdorff, connected, and compact. We need
to construct an atlas that covers X0(N), such that the local coordinates are pairwise compatible.

For any x ∈ X0(N) we have of course x = π(τ) for some τ ∈ Ĥ. In this case, τ is either a
member of H, Q, or {∞}. We will build our associated neighborhoods and local coordinates of
π(τ) in each of these cases, before checking compatibility.
Defining the Atlas Away From Cusps.

For points τ ∈ H which are not elliptic, we would ordinarily take a neighborhood of τ which
contains no elliptic points or members of Q̂, and then take the local inverse of π. However, to
consider elliptic points, we will define our local coordinates a little more carefully.

An example of an elliptic point in Ĥ is i under SL(2,Z). Notice that Tz = z only has two
solutions: z = ±i. On the other hand, if we take some z = a + bi such that a2 + b2 = 1, then
Tz = −a + bi. For a close to 0 and b close to 1, both z and Tz are close to i. No matter how
small we make the neighborhood of i, it will always contain equivalent points. A similar problem
persists for the congruence subgroups of SL(2,Z).

To deal with this problem, we take two important facts into account. First, we note that
elliptic points will not be dense in H, by [34, Corollary 2.3.5]. Second, we note that for any τ ∈ H
there exists a neighborhood Uµ such that for all γ ∈ SL(2,Z),

γ (Uµ) ∩ Uµ ̸= ∅ =⇒ γ ∈ Γ0(N)τ (2.1)

[34, Corollary 2.2.3]. These facts together allow the following:
Given some x = π(τ) with τ ∈ H, there exists a neighborhood Uµ of τ which lies entirely in

H, which contains no elliptic points, with the possible exception of τ itself, and with the additional
condition that for any z1, z2 ∈ Uµ, if z1 ∈ [z2]N , we must have z1 = γ(z2) for γ ∈ Γ0(N)τ .
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Let us take such a neighborhood Uµ for x = π(τ) with τ ∈ H. We now define the map

δτ : Ĉ −→ Ĉ,

z 7−→ z − τ

z − τ̄
.

Because τ ∈ H, the determinant of
(
1 −τ
1 −τ̄

)
is −τ̄ + τ = 2 · ℑ(τ) > 0. Therefore, δτ must be

conformal, such that δτ (τ) = 0, and δτ (τ̄) = ∞.
Now, consider the map δτγ, for any γ ∈ Γ0(N)τ . Notice that we have

δτγ(τ) = δτ (τ) = 0,

δτγ(τ̄) = δτ (τ̄) = ∞.

So the map which sends δτ (z) to δτγ(z), i.e., the map

δτγδ
−1
τ : δτ (Uµ) −→ Ĉ,

is a conformal map which sends 0 to 0, and ∞ to ∞. Recall that a conformal map will send circles
to circles, with straight lines counted as circles which intersect ∞. Therefore, δτγδ

−1
τ must send

any given radial vector originating at 0 to another radial vector, also originating at 0. That is, it
must be a rotation combined with a dilation about the point 0 in Ĉ.

Moreover, we know that Γ0(N)τ is finite cyclic by Theorem 2.21; and for any a, b ∈ Z,

δτγ
aγbδ−1

τ =
(
δτγ

aδ−1
τ

)
◦
(
δτγ

bδ−1
τ

)
.

This makes the dilation trivial, and allows us to define an isomorphism between Γ0(N)τ and
a certain group of rotations about 0 in Ĉ. Indeed, since the order of the generator for Γ0(N)τ
must have order |Γ0(N)τ |, the associated group of rotations must be generated by a rotation of
the angle 2π/ |Γ0(N)τ |.

Why is this important? Well, we consider two points z1, z2 ∈ Uµ such that

z1 ∈ [z2]N . (2.2)

Recall, by (2.1), that z1 = γ(z2) for γ ∈ Γ0(N)τ .
We know that δτ (z1), δτ (z2) must lie on radial vectors from 0 which differ by an angle deter-

mined by γ, which must be an integer multiple of 2π/ |Γ0(N)τ |.
This implies that no more than a single representative of every set of Γ0(N)-equivalent points

in δτ (Uµ) will be found in a sector ∆ centered at 0 between two radial lines separated by the angle
2π/ |Γ0(N)τ |. We can then include one of these radial lines, since a point on one radial line of ∆
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will be equivalent to a point on the opposite radial line by the map δτγδ
−1
τ corresponding to the

rotation by 2π/ |Γ0(N)τ |.
To identify the radial lines with one another, we consider the map

ρµ : C −→ C,
z 7−→ z|Γ0(N)τ |.

Now if we take z1, z2 as in (2.2), then ρµδτ (z1), ρµδτ (z2) are no longer separated by an angle: the
power of ρµ cancels all fractional multiples of 2π.

Thus our key function for our chosen neighborhood Uµ of τ is

ψµ : Uµ −→ C,

z 7−→
(
z − τ

z − τ̄

)|Γ0(N)τ |

.

Notice that ψµ is holomorphic, and therefore continuous and open, on Uµ. Moreover, ψµ bijectively
maps the sector of Γ0(N)-equivalent points to an open neighborhood V about 0.

Now, because π is also a continuous open map, the composition ψµπ
−1 is a continuous open

map, with π−1 defined on πδ−1
τ (∆). Finally, as ∆ contains a single representative of every point

in Uµ, it must be that ψµπ
−1 is a bijection. We therefore have the neighborhood π(Uµ) and the

homeomorphism

φµ : π (Uµ) −→ V,

π(z) 7−→ ψµπ
−1(z).

Notice that in the event that τ is not elliptic, then Uµ contains no elliptic points, Γ0(N)τ is
trivial, and our local coordinates are still suitable homeomorphisms.
Defining the Atlas Near Cusps.

Handling the cusps is similar. Suppose x is a cusp of X0(N). We write x = π(a/c) with
a, c ∈ Z and gcd(a, c) = 1. We can find some b, d ∈ Z such that δ := ( a bc d ) ∈ SL(2,Z).

Recall that the map δ : z 7→ az+b
cz+d

is conformal, and therefore sends circles and lines to circles
and lines. In particular, δ sends vertical lines to circles centered on R which intersect a/c.

Let Uκ = δ (NR) be a neighborhood of a/c in Ĥ which contains no elliptic points. In particular,
let us fix some R ≥ 2.

Let us take two points, τ1, τ2 ∈ Uκ with τ1 ∈ [τ2]N . Suppose τ1 = γτ2 with γ ∈ Γ0(N). We
now apply the inverse mapping

δ−1 : τ 7→ dτ − b

−cτ + a
.
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ℜ(z)

ℜ(z) = k2ℜ(z) = k1

ℜ(τ)
k2k1

a
c

ak1+b
ck1+d

ak2+b
ck2+d

δ
H H

Uκ

Figure 2.2: The map δ sends vertical lines to circles centered on the real axis which intersect a/c.

Then we must have

δ−1(τ1) = δ−1γ(τ2),

δ−1(τ1) = δ−1γδ(δ−1(τ2)).

Now of course, δ−1γδ ∈ SL(2,Z). And it can easily be shown that if γ′ ∈ SL(2,Z), and both
τ, γ′τ ∈ NR for R ≥ 2, then γ′ ∈ SL(2,Z)∞.

Since δ−1(τ1), δ
−1(τ2) ∈ NR, we must have δ−1γδ ∈ SL(2,Z)∞.

This means that δ−1(z2) = δ−1(z1) + h, for some h ∈ Z. In particular, the complex numbers
τ such that ℜ(τ1) − 1/2 < ℜ(τ) < ℜ(τ1) + 1/2 and ℑ(τ) ≥ R must be distinct with respect to
Γ0(N)δ, since none of these numbers can be translations of each other.

Such a vertical strip has width 1. However, it might be possible that vertical strips of a greater
width will be needed to contain a single equivalent representative of every point in Uκ. For the
moment we will call the necessary width h. In that case, we define

Sh := {z ∈ NR : −h/2 ≤ ℜz < h/2} ∪ {∞}.

Then every point in Uκ will be equivalent to a single point in δ (Sh) ⊂ Uκ. As Figure 2.2 suggests,
such a δ (Sh) will take the form of a “triangular” sector (in which the sides of the triangle are
circular arcs).

We can map Ĥ to a neighborhood V of 0 (in the standard topology of C) in the following way:
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ρκ : Ĥ −→ V,

z 7−→ exp

(
2πi

1

h
z

)
,

∞ 7−→ 0.

Notice that ρκ is a bijection when restricted to Sh.
If we now start with π(Uκ), we can define

π−1 : π(Uκ) −→ δ (Sh) .

As δ (Sh) contains a single equivalent point to every point of Uκ, π
−1 is well-defined (and of course

bijective) on this domain. If one then composes π−1 with the bijection ρκδ
−1, one has the overall

bijection

φκ : π (Uκ) −→ V, (2.3)

π(z) 7−→ exp

(
2πi

1

h

(
dz − b

−cz + a

))
,

π(a/c) 7−→ 0.

Because π is a continuous open map, its inverse (when it exists over open sets) will also be open
and continuous. Composed with ρκδ

−1, φκ is a homeomorphism from π(Uκ) to V .
The appropriate value of h for Γ0(N) is N/gcd(c2, N) (this is the width of the cusp [a/c]N of

X0(N) [99, Chapter 4, Section 8.3], [34, Section 2.4]).

Local Coordinates in Summary.

We have constructed an atlas for X0(N), which has the form

{π(Uλ), φλ}λ∈Λ ,

in which each Uλ is a neighborhood in Ĥ.

� If we are constructing local coordinates of a point x of X0(N) which is not a cusp, our
neighborhood π(Uµ) of x is constructed in which Uµ is an open set in H such that (2.1)
applies.

� If we are constructing local coordinates of a cusp [a/c]N of X0(N), our Uκ has the form
δ(NR), in which R ≥ 2 and δ ∈ SL(2,Z) such that δ(∞) ∈ [a/c]N .
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Atlas Compatibility.

We now need to check that the charts in this atlas are pairwise compatible—that is, we need to
check that φµφ

−1
ν is holomorphic on the domain φν (π(Uµ) ∩ π(Uν)) whenever π(Uµ) ∩ π(Uν) ̸= ∅.

Notice that—by definition—every point z ∈ φν (π(Uµ) ∩ π(Uν)) can be expressed as z = φν(x)
for some x ∈ π(Uµ) ∩ π(Uν). To prove that φµφ

−1
ν is holomorphic on φν (π(Uµ) ∩ π(Uν)), it is

sufficient to show that for every point z = φν(x) ∈ φν (π(Uµ) ∩ π(Uν)), the mapping φµφ
−1
ν is

holomorphic on some neighborhood V of z such that V ⊆ φν (π(Uµ) ∩ π(Uν)).

Intersecting Neighborhoods Excluding Cusps.

We begin by considering intersecting neighborhoods of X0(N) which do not include cusps.
Suppose that we start with some z = φν(x) for some x ∈ π(Uµ) ∩ π(Uν). We know that

x = π(τµ) = π(τν),

for τµ ∈ Uµ, τν ∈ Uν . More specifically, we will suppose that

τµ = γ(τν),

for some γ ∈ Γ0(N). Define the set

Uµ,ν := γ−1 (Uµ) ∩ Uν .

It is easy to see that x ∈ π(Uµ,ν) ⊆ π(Uµ) ∩ π(Uν), so that z ∈ φν (π(Uµ,ν)). We will show that
φµφ

−1
ν is holomorphic on this set.

Case I: φν(x) = 0.

We first suppose that z = φν(x) = 0. We now take some z′ ∈ φν (π(Uµ,ν)), such that
z′ = φν(x

′) for some x′ ∈ π (Uµ,ν). Next, we let x′ = π(τ ′) for τ ′ ∈ Uµ,ν . We have

z′ = φν(x
′) = φν(π(τ

′)) =

(
τ ′ − τν
τ ′ − τ̄ν

)h(τν)
.

We now want to examine φµφ
−1
ν (z′). Notice that γτ ′ ∈ Uµ, so that we can write

φµφ
−1
ν (z′) = φµ(x

′) = φµ(π(γτ
′)) =

(
γτ ′ − w

γτ ′ − w̄

)h(w)
,
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for the w ∈ Uµ such that φµ(π(w)) = 0. Notice that, by the construction of the local coordinate
φµ, w is the only possible elliptic point in Uµ. Continuing this calculation, we have

φµφ
−1
ν (z′) =

(((
1 −w
1 −w̄

)
γ

(
1 −τν
1 −τ̄ν

)−1
)((

1 −τν
1 −τ̄ν

)
τ ′
))h(w)

=

(((
1 −w
1 −w̄

)
γ

(
1 −τν
1 −τ̄ν

)−1
)(

φν(x
′)1/h(τν)

))h(w)

=

(((
1 −w
1 −w̄

)
γ

(
1 −τν
1 −τ̄ν

)−1
)(

(z′)1/h(τν)
))h(w)

= Φµ,ν

(
(z′)1/h(τν)

)
,

in which Φµ,ν is a well-defined holomorphic map. Notice that if h(τν) = 1, then φµφ
−1
ν (z′) is

holomorphic. Otherwise, τν must be elliptic; and since τµ = γτν , τµ ∈ Uµ must also be elliptic,
with h(τµ) = h(τν). But w is the only elliptic point in Uµ. Therefore, we must have τµ = w, and
h(w) = h(τµ) = h(τν).

Finally, we must examine Φµ,ν . Notice that

(
1 −w
1 −w̄

)
γ

(
1 −τν
1 −τ̄ν

)−1

=

(
1 −τµ
1 −τ̄µ

)
γ

(
1 −τν
1 −τ̄ν

)−1

.

If we denote this product of matrices as

(
A B
C D

)
, then we have

(
A B
C D

)
:

{
0 7−→ 0,

∞ 7−→ ∞.

We must therefore have A(0)+B
C(0)+D

= 0 so that B = 0 and D ̸= 0; and A(∞)
C(∞)+D

= A
C
= ∞, whence

C = 0 and A ̸= 0. We then have

φµφ
−1
ν (z′) = Φµ,ν

(
(z′)1/h(τν)

)
=

((
A 0
0 D

)
(z′)1/h(τν)

)h(τν)
=
Ah(τν)

Dh(τν)
· z′

= r · z′

for some r ∈ C− {0}, and this is of course holomorphic.
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Case II: φµ(x) = 0.

We can apply a similar argument to Case I above for the reverse transition map: that is, we
can prove that the transition map φνφ

−1
µ is holomorphic on φµ (π(Uµ) ∩ π(Uν)). Since the maps

φλ are all homeomorphisms, we can take the inverse

(
φνφ

−1
µ

)−1
= φµφ

−1
ν .

Finally, since the inverse of a holomorphic bijection must also be holomorphic, the map φµφ
−1
ν

must be holomorphic.

Case III: φµ(x) ̸= 0, φν(x) ̸= 0.

Recall that x = π(τν). We can always construct a neighborhood Uλ of τν such that τν is the
only possible elliptic point of Uλ. In that case, by the rules of our atlas construction, we have the
local coordinate

φλ : X0(N) −→ V ⊆ C,
π(τν) 7−→ 0.

We want to prove that φµφ
−1
ν must be holomorphic. To do this, we write

φµφ
−1
ν =

(
φµφ

−1
λ

) (
φλφ

−1
ν

)
.

Because φλ(x) = 0, Case I above shows that φµφ
−1
λ is holomorphic, while Case II shows that φλφ

−1
ν

is holomorphic. The composition is therefore holomorphic.

A Neighborhood in H Intersecting a Neighborhood of a Cusp.

We now consider the neighborhood of a cusp [a/c]N , intersecting a neighborhood which con-
tains no cusp. We take Uµ to be an open neighborhood of a point τ0 ∈ H, in which τ0 is the only

possible elliptic point. We also take Uκ to be an open neighborhood of a/c ∈ Q̂ as defined for our
atlas, i.e., of the form

Uκ := δκ (NR ∪ {∞}) ,

with R ≥ 2 and δκ = ( a bc d ) ∈ SL(2,Z). Notice that because R ≥ 2, Uκ contains no elliptic points.
In that case, we are interested in the intersection π(Uµ) ∩ π(Uκ).
Suppose that x ∈ π(Uµ) ∩ π(Uκ), with x = π(τµ) = π(τκ), with τµ ∈ Uµ and τκ ∈ Uκ. We

know that τκ = γ(τµ) for some γ ∈ Γ0(N).
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In similar manner to the case of neighborhoods with no cusps, we will define

Uµ,κ := Uµ ∩ γ−1 (Uκ) .

We have x = π(τµ) ∈ π(Uµ,κ) ⊆ π(Uµ) ∩ π(Uκ), and

z := φµ(x) ∈ φµ (π(Uµ,κ)) ⊆ φµ (π(Uµ) ∩ π(Uκ)) .

Let z′ ∈ φµ (π(Uµ,κ)). We will show that φκφ
−1
µ (z′) is holomorphic.

We can represent z′ as

z′ = φµ(x
′) =

((
1 −τ0
1 −τ̄0

)
(τ ′)

)h0
,

for some x′ ∈ π(Uµ,κ) τ
′ ∈ Uµ,κ, and h0 = |Γ0(N)τ0|. With this in mind, we write

φκφ
−1
µ (z′) = φκ(π(γτ

′)) = exp

(
2πi

gcd(c2, N)

N
δ−1
κ γτ ′

)
= exp

(
2πi

gcd(c2, N)

N
δ−1
κ γ

(
1 −τ0
1 −τ̄0

)−1(
1 −τ0
1 −τ̄0

)
τ ′

)

= exp

(
2πi

gcd(c2, N)

N
δ−1
κ γ

(
1 −τ0
1 −τ̄0

)−1

φµ(x
′)1/h0

)

= exp

(
2πi

gcd(c2, N)

N
δ−1
κ γ

(
1 −τ0
1 −τ̄0

)−1

(z′)1/h0

)
.

If h0 = 1, then this certainly is holomorphic. On the other hand, if h0 > 1, then the map can
still be considered holomorphic, provided that z′ ̸= 0. But if z′ = 0, then z′ = φµ(τ0), in which
τ0 ∈ Uµ,κ, and γτ0 ∈ Uκ are both elliptic. But by construction, Uκ excludes all elliptic points. So
0 ̸∈ φµ (π(Uµ,κ)), and our map is holomorphic.

Because φκφ
−1
µ is also a bijection, its inverse φµφ

−1
κ is also holomorphic. We have therefore

proved compatibility between a neighborhood with a cusp and a neighborhood with no cusp—in
both directions.

Neighborhoods of Two Cusps.

As a final case, we consider neighborhoods of rational points a1/c1, a2/c2. We let

Uκ := δκ (NR ∪ {∞}) ,
Uχ := δχ (NR ∪ {∞})
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with R ≥ 2 and

δκ :=
(
a1 b1
c1 d1

)
, δχ :=

(
a2 b2
c2 d2

)
∈ SL(2,Z).

Before we examine the transition map, we should take note of an important fact. Supposing that
π(Uκ) ∩ π(Uχ) ̸= ∅, there must exist some γ ∈ Γ0(N) such that

Uκ ∩ γ (Uχ) ̸= ∅,

i.e.,

δ−1
κ γδχ(z) ∈ NR ∪ {∞}

for some z ∈ NR ∪ {∞}.
In constructing our atlas near cusps, we have already demonstrated that if γ ∈ SL(2,Z) and

τ, γτ ∈ NR for R ≥ 2, then γ ∈ SL(2,Z)∞, i.e., γ acts on τ by translation. Therefore, we have

δ−1
µ γδν = Sk,

γδνS
−k = δµ,

for some k ∈ Z. Therefore, a1/c1 ∈ [a2/c2]N , and we are only near one cusp of X0(N). Moreover,
recall from Theorem 2.11 that we must have

c2 ≡ mc1 (mod N)

for some m ∈ Z with gcd(m,N) = 1. Therefore, c2 = mc1 +Nk for some k ∈ Z, and

gcd(c22, N) = gcd(m2c21 + 2mc1Nk +N2k2, N) = gcd(m2c21, N) = gcd(c21, N).

With this in mind, we take some x ∈ π(Uκ) ∩ π(Uχ), with x = π(τκ) = π(τχ), with τκ ∈ Uκ,
τχ ∈ Uχ, and τχ = γ(τκ) for some γ ∈ Γ0(N).

We want to verify that the transition map φχφ
−1
κ is holomorphic. To do this, we again define

Uκ,χ := Uκ ∩ γ (Uχ) ,

and take some x ∈ π(Uκ,χ). We then define q = φκ(x) ∈ φκ (π(Uκ,χ)), and we have

q = exp

(
2πi · gcd(c

2
1, N)

N
δ−1
κ (τκ)

)
.
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Notice that γτ ∈ Uχ.
Our transition map, then, is

φχφ
−1
κ (q) = exp

(
2πi · gcd(c

2
2, N)

N
δ−1
χ γ(τ)

)
= exp

(
2πi · gcd(c

2
2, N)

N
δ−1
χ γδκ

(
δ−1
κ τ
))

= exp

(
2πi · gcd(c

2
1, N)

N

(
δ−1
κ τ + k

))
= e2πik·gcd(c

2
2,N)/N exp

(
2πi · gcd(c

2
1, N)

N

(
δ−1
κ τ
))

= e2πik·gcd(c
2
2,N)/Nq,

which is holomorphic in q.
We have verified that the local coordinates constructed for the neighborhoods of X0(N) are

pairwise compatible, and the Riemann surface structure of X0(N) is established.

2.3.4 Some Important Theorems

Analytic Restrictions

The Riemann surface structure of X0(N) allows the tools of complex analysis to be used to study
the functions whose domain is X0(N). Moreover, the compactness of X0(N) imposes an especially
strong condition on its associated holomorphic functions.

Definition 2.23. Let X be a Riemann surface. A function f̂ : X −→ Ĉ is meromorphic at x ∈ X
if there exists a local coordinate (U,φ) at x, expressed as q = φ(x′) for x′ ∈ U , with φ(x) = 0,
such that for all x′ ∈ U ,

f̂(x′) =
∞∑

n=n0

α(n)qn

where α(n) ∈ C for all n ≥ n0, α(n0) ̸= 0, and n0 ∈ Z. If n0 ≥ 0, then f̂ is analytic at x. The
number n0 is the order of f̂ at x. If n0 > 0, then f̂ has a zero at x. If n0 < 0, then f̂ has a pole
at x.

These are the Riemann surface analogues for meromorphic and analytic functions of complex
analysis, and many of the important properties for analytic functions over C still apply.

Theorem 2.24. [72, Chapter II, Theorem 1.37 ] Let X be a compact Riemann surface, and let
f̂ : X −→ C be analytic on all of X. Then f̂ must be a constant function.



31

Proof. Let f̂ : X −→ C be analytic on all of X. Because X is compact, |f̂(x′)| must attain a
maximum at some point x ∈ X. But f̂ is holomorphic, and therefore an open mapping. Therefore,
given a neighborhood U of x, the set f̂(U) is an open set containing f̂(x).

Lehner has referred to this theorem as “the fundamental theorem of the subject [of modular
functions]” [69, Chapter 1, Section 3]. Certainly from a computational standpoint, its importance
cannot easily be overstated.

In the first place, it prohibits functions which are holomorphic over the whole of X0(N). On
the other hand, we shall see that X0(N) admits meromorphic functions (this is a nontrivial fact,
but we will demonstrate it by producing examples). Because of this, Theorem 2.24 is an extremely
powerful tool. Supposing we have two functions, f̂ , ĝ which are meromorphic over X0(N), with
matching poles x1, x2, ..., xm. By hypothesis, each function is analytic everywhere else on X0(N),
and has a principal part at each xj, which we may denote as

(
f̂(x′j)

)(−)

:=
−1∑

n=nj(f̂)

αj(n)q
n
j ,

(
ĝ(x′j)

)(−)
:=

−1∑
n=nj(ĝ)

βj(n)q
n
j .

for x′j in a given neighborhood of xj, and qj = φ(x′j) the corresponding local variable at φ(xj),
1 ≤ j ≤ m.

Let us suppose that for each j, nj(f̂) = nj(ĝ), and that αj(n) = βj(n) for n < 0. In this case,

f̂ − ĝ must have have no principal part at any xj, and thus must be analytic at each xj. Since f̂ ,
ĝ are analytic everywhere else on X0(N), and subtraction of analytic functions does not induce a
pole, Theorem 2.24 compels that f̂ − ĝ − c = 0 for some c ∈ C.

Now, the compactness of X0(N), together with the meromorphicity of f̂ , ĝ, demand that f̂ , ĝ
can only have a finite number of poles. This fact, together with the fact that each principal part
is finite in length, allows us to determine whether f̂ = ĝ in only a finite number of steps.

Thus, the somewhat baroque theory of compact Riemann surfaces described above gives us (in
principle, at least) a means of examining their corresponding meromorphic functions using a finite
computational method. Indeed, this theory justifies the soundness of the sophisticated algorithmic
tools that we will describe and utilize in Chapter 3, and whose significance will follow into the
later chapters.

The Genus

Theorem 2.24 is certainly useful with respect to its algorithmic potential. However, we can go still
further. The manifold structure of a Riemann surface implies the following proposition:

Proposition 2.25. A compact Riemann surface X is an orientable path-connected 2-dimensional
C∞ real manifold, which is diffeomorphic to a g-handled torus for a unique g ∈ Z≥0.
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Consult [102] for a proof. We emphasize that in this context, a 0-handled torus is here defined
as a sphere.

Definition 2.26. Let g ∈ Z≥0. A manifold X has genus g if X is diffeomorphic to a torus with g
handles. The genus of X is often denoted as g (X).

As a consequence of the proposition above, X0(N) must be homeomorphic to a torus with a
finite (possibly 0) number of handles.

For example, g (X0(1)) = 0. The genus will play a fundamental role in our later work. In
particular, the genus affects the rank of the spaces of modular functions associated with a given
family of partition congruences.

A more complete description of the impact of g (X) on our ability to do analysis on X is
embodied in the Riemann-Roch theorem [72, Chapter VI, Theorem 3.1]. However, we will not
require the full theorem, and instead focus on one of its important corollaries:

Theorem 2.27 (Weierstrass). Let X be a compact Riemann surface, and let

f : X −→ Ĉ

be holomorphic over X, except for a pole at a point p ∈ X. Then the order of f at p can assume any
negative integer, with exactly g (X) exceptions, which must be members of the set {1, 2, ..., 2g− 1}.

This is the Lückensatz, or gap theorem. Traditionally it may be proved after the Riemann–
Roch theorem, but it has recently been proved as a consequence of the Riemann–Hurwitz formula
[84].

Theorems 2.24 and 2.27 are enormously useful to us, in that they give important restrictions
to the behavior of meromorphic functions defined on X.

We provide a formula which can be used to compute g (X0(N)) [34, Theorem 3.11, Corollary
3.7.2, Section 3.8].

Theorem 2.28.

g (X0(N)) = 1 +
[SL(2,Z) : Γ0(N)]

12
− ϵ2 (Γ0(N))

4
− ϵ3 (Γ0(N))

3
− ϵ∞ (Γ0(N))

2
,

with

[SL(2,Z) : Γ0(N)] = N
∏
p|N

(
1 +

1

p

)
,

ϵ2 (Γ0(N)) =

{∏
p|N

(
1 +

(
−4
p

))
, 4 ∤ N,

0, 4|N,
,

ϵ3 (Γ0(N)) =

{∏
p|N

(
1 +

(
−3
p

))
, 9 ∤ N,

0, 9|N,
,

ϵ∞ (Γ0(N)) =
∑
δ|N

ϕ (gcd(δ,N/δ)) .
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Here, ϕ(n) is Euler’s totient function,
(

·
p

)
is the Legendre–Jacobi quadratic residue character, and

any product over p|N is taken only over the positive prime divisors of N . The product or sum over
δ|N is taken over all of the positive divisors of N .

Remark 2.29 (Important!). Many formula implementations for g (X0(N)), e.g., that found in
[99, Chapter 4, Theorem 15] do not always return the correct value. The reader is advised to
use these formulæ with care. A useful precaution is to compare computational results of a given
implementation of g (X0(N)) with Sequence A001617 of Sloane’s On-Line Encyclopedia of Integer
Sequences [78].

Using this formula, we can establish that for 1 ≤ N ≤ 30, we have

g (X0(N)) =


0, 1 ≤ N ≤ 10, N = 12, 13, 16, 18, 25,

1, N = 11, 14, 15, 17, 19, 20, 21, 24, 27

2, N = 22, 23, 26, 28, 29

3, N = 30.

2.4 Modular Functions

With this background in modular curves established, we take a meromorphic function f̂ : X0(N) −→
Ĉ. We may define a function f : Ĥ −→ Ĉ with f(τ) := f̂([τ ]N). This function f exhibits the
symmetry

f

(
aτ + b

Ncτ + d

)
= f(τ),

for all a, b, c, d ∈ Z such that ad−Nbc = 1.
Hereafter, we let q := q(τ) = e2πiτ , τ ∈ H.

Definition 2.30. Let f : H −→ C be holomorphic on H. Then f is a modular function over
Γ0(N) if the following properties are satisfied:

1. If τ1, τ2 ∈ H such that τ2 ∈ [τ1]N , we have f(τ2) = f(τ1);

2. For every γ = ( a bc d ) ∈ SL(2,Z), we have

f (γτ) =
∞∑

n=nγ

αγ(n)q
n gcd(c2,N)/N ,

with nγ ∈ Z, and αγ(nγ) ̸= 0. If nγ ≥ 0, then f is holomorphic at a/c. Otherwise, f is
meromorphic with a pole of order nγ, and principal part

−1∑
n=nγ

αγ(n)q
n gcd(c2,N)/N , (2.4)

at a/c.
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We refer to ord
(N)
a/c (f) := nγ(f) as the order of f at a/c.

The notions of pole order and cusps of f used in Definition 2.30 have been constructed so
as to coincide with the notions of Definition 2.23. Indeed, there is a bijection between the set of
modular functions over Γ0(N) and the set of meromorphic functions for X0(N) with poles only
at the cusps [66, Chapter VI, Theorem 4A]. Moreover, many of the most important properties of
either set of functions coincide.

In particular, (2.4) represents the principal part of f̂ in a local coordinate near the cusp [a/c]N .
Notice the similarity to the local variable in the neighborhood of π(a/c) in (2.3). Intuitively, we
can see that as τ → i∞, we must have γτ → a/c, and q → 0. Understanding the close relationship
between f and f̂ , the reader might expect that the order of a modular function at a given cusp is
unique, regardless of the representative of the cusp. This is correct:

Lemma 2.31. Given two elements a1/c1, a2/c2 ∈ Q̂ which reside in the same orbit, and some

function f which is modular over Γ0(N), we have ord
(N)
a1/c1

(f) = ord
(N)
a2/c2

(f).

Definition 2.32. For N ≥ 1 we define a function f̂ : X0(N) → C to be induced by a modular
function f if for all τ ∈ Ĥ we have

f̂([τ ]N) = f(τ).

The usefulness of this correspondence between meromorphic functions on X0(N) and modular
functions over Γ0(N) becomes clear when we remember that many important properties of the
functions on X0(N) are determined by its topology. Thus, the topology of Riemann surfaces can
influence the form of the associated modular functions, which in turn can influence our under-
standing of partition congruences, as we will see in the sequel.

Remark 2.33. Some authors consider a modular function to have possible poles anywhere in
Ĥ, rather than exclusively on Q̂ as we have defined. Other authors prefer the term weight-0
automorphic form for such functions [34, Section 3.2]. Many of the objects that we call modular
functions, e.g., modular eta quotients, are sometimes referred to as modular units [65]. The reader
is advised to be careful in consulting the technical literature, as conventions are not standardized.

We now define the relevant sets of all modular functions:

Definition 2.34. Denote the set of modular functions on Γ0(N) byM (Γ0(N)). For any a/c ∈ Q̂,
let Ma/c (Γ0(N)) ⊂ M (Γ0(N)) denote the set of modular functions over Γ0(N) with a pole
only at the cusp [a/c]N . These are commutative algebras with 1, under standard addition and
multiplication. Finally, if Ma/c (Γ0(N)) = C[t] for a function t, then t is a principal modular
function, or Hauptmodul, for Ma/c (Γ0(N)).

As an additional notational matter, for any set S ⊆ M (Γ0(N)), and any field K ⊆ C, define

SK := {f ∈ S : αI(n) ∈ K for all n ≥ nI(f)} ,
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in which the αI(n) are the coefficients in the expansion of f at ∞ as in Definition 2.30. Also, for
any set S of functions on C, denote

⟨S⟩K :=

{
v∑

u=1

ru · gu : gu ∈ S, ru ∈ K

}
.

These notations will become useful later.
We now give a theorem which is a natural consequence of Theorem 2.24:

Theorem 2.35. A modular function over Γ0(N) which is holomorphic at every cusp must be a
constant.

Proof. Let f ∈ M (Γ0(N)), and let f̂ : X0(N) −→ Ĉ be the induced function over X0(N). Suppose
that f is holomorphic on H and at every cusp. Then f̂ must be holomorphic on all of X0(N).
Therefore, f̂([τ ]N) = f(τ) must be a constant for all [τ ]N ∈ X0(N), and therefore for all τ ∈ Ĥ.

This means that any nonconstant modular function must have a pole somewhere. Since we
will take holomorphicity on H as a necessity, these poles must exist at Q̂.

We can give yet another restriction on the meromorphic behavior of modular functions, now
imposed by Theorem 2.27:

Theorem 2.36. Suppose that N ∈ Z≥1 and that g (X0(N)) ≥ 1. Then there cannot exist an

f ∈ Ma/c (Γ0(N)) such that ord
(N)
a/c (f) = −1.

Proof. Suppose that such a function f exists. Then f must induce the function f̂ which is holo-
morphic on X0(N) except for the cusp [a/c]N , at which f̂ has order −1. But then f̂n will produce
a function of order −n for any negative integer −n with 0 exceptions. This is a contradiction, as
Theorem 2.27 demands that a single exception must exist.

Proving that modular functions of a given order over Γ0(N) actually exist is generally a more
difficult problem. However, in Chapters 5-10, we will work with spaces of modular functions in
which the underlying modular curve has genus 0 or 1, and in which a function of any order that
does not conflict with Theorems 2.35 and 2.27 may be constructed.

For example, for N = 5, 7, 10, we will construct modular functions in M0 (Γ0(N)) and
M∞ (Γ0(N)) with order −1 (which is permitted, since the underlying modular curves have genus
0). On the other hand, for N = 11, 20, when the genus is 1, we will construct analogous functions
with orders −2,−3, i.e., all orders that are not excluded by Theorem 2.27.

The means by which most of the modular functions relevant to us are actually constructed is
revealed in the following section.
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2.5 The Eta Function

2.5.1 Definition

The preceding theory does not address how to actually construct modular functions over a given
congruence subgroup. The traditional theory generally begins with the Eisenstein series, and
subsequent construction of the modular discriminant and the j invariant.

However, as the modular functions of interest to us will be expressed in terms of functions
resembling F̃ =

∏∞
m=1(1 − qm)−1, we will begin by defining the eta (η) function of Dedekind [61,

Chapter 3], and proceed to show how modular functions may be constructed using η.

Definition 2.37. For τ ∈ H,

η(τ) := eπiτ/12
∞∏
n=1

(
1− e2πinτ

)
.

The η function is not a modular function; it is a modular form of half-integral weight with a
nontrivial multiplier system [61, Chapter 3, Theorem 10]. In particular, it exhibits near-symmetries
with respect to the action of SL(2,Z) which are extraordinary, as well as useful.

Theorem 2.38. Given ( a bc d ) ∈ SL(2,Z), such that c ≥ 0, we have

η

(
aτ + b

cτ + d

)
= ϵ(a, b, c, d)(−i(cτ + d))1/2η(τ),

and

ϵ(a, b, c, d) :=


exp

(
πib
12

)
, c = 0,(

d
c

)
i(1−c)/2 exp

(
πi
12
(bd(1− c2) + c(a+ d))

)
, c > 0, 2 ∤ c,(

c
d

)
exp

(
πid
4

+ πi
12
(ac(1− d2) + d(b− c))

)
, c > 0, 2 ∤ d.

Here, z1/2 is taken along the principal branch, i.e., taking z = reiθ with r ≥ 0, −π < θ ≤ π.
Proofs can be found in [61, Chapters 3, 4], [88, Chapter 9], [10, Chapter 5, Examples 6-17],

[23], and many others. None of the proofs are easy, but the proof in [61] is perhaps the most
accessible.

We may construct modular functions of the form
∏

δ|N η(δτ)
rδ , for some integer-valued vector

(rδ)δ|N .
For example, let us take the function

t(τ) :=
η(5τ)6

η(τ)6
= q

∞∏
m=1

(
1− q5m

1− qm

)
. (2.5)

Theorem 2.39. t ∈ M0 (Γ0(5)), and 1/t ∈ M∞ (Γ0(5)).
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Proof. We will verify that t satisfies the properties of Definition 2.30.

Definition 2.30, Point 1.

We want to show that t(γτ) = t(τ) for τ ∈ H and γ ∈ Γ0(5).
Let γ = ( a b

5c d ) ∈ Γ0(5) with c ≥ 0. Notice that, because ( a 5b
c d ) ∈ SL(2,Z), we can write

t

(
aτ + b

5cτ + d

)
=
η
(
5 · aτ+b

5cτ+d

)6
η
(
aτ+b
5cτ+d

)6 =
η
(
a(5τ)+5b
c(5τ)+d

)6
η
(
aτ+b
5cτ+d

)6
=
ϵ(a, 5b, c, d)6

ϵ(a, b, 5c, d)6
(−i(c(5τ) + d))3

(−i(5cτ + d))3
η(5τ)6

η(τ)6

=
ϵ(a, 5b, c, d)6

ϵ(a, b, 5c, d)6
t(τ).

We need only determine that ϵ(a, 5b, c, d)6/ϵ(a, b, 5c, d)6 = 1.
For c = 0 we have

ϵ(a, 5b, c, d)6

ϵ(a, b, 5c, d)6
= exp

(
6πi

12
(5b− b)

)
= exp

(
πi

2
(4b)

)
= 1.

For c ̸= 0 and c odd, we have

ϵ(a, 5b, c, d)6

ϵ(a, b, 5c, d)6
=

(
d
c

)6
i3(1−c) exp

(
6πi
12

(5bd(1− c2) + c(a+ d))
)(

d
5c

)6
i3(1−5c) exp

(
6πi
12

(bd(1− 25c2) + 5c(a+ d))
)

=i3(4c) exp

(
πi

2

(
5bd(1− c2) + c(a+ d)− bd(1− 25c2)− 5c(a+ d)

))
=exp

(
πi

2

(
5bd(1− c2) + c(a+ d)− bd(1− 25c2)− 5c(a+ d)

))
=exp

(
πi

2

(
4bd(1− 25c2)− 4c(a+ d)

))
=1.

A similar result is achieved for c ̸= 0 and d odd.

Definition 2.30, Point 2.

We now want to examine the behavior of t with respect to a γ = ( a bc d ) ∈ SL(2,Z) \ Γ0(5). In
this case, we have
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(
a b
c d

)
S−kT−1 =

(
a b
c d

)
.

(
k 1
−1 0

)
=

(
∗ ∗

ck − d ∗

)
.

Rearranging terms, we have

(
a b
c d

)
=

(
∗ ∗

ck − d ∗

)
TSk.

Since γ ̸∈ Γ0(5), we have gcd(c, 5) = 1. Therefore, as k cycles through the residues mod 5, so does
ck, and ck − d. So for some k, we have ck − d ≡ 0 (mod 5), and

(
a b
c d

)
∈ Γ0(5)\T/SL(2,Z)∞.

Therefore, we can write

γ = γ0 · T · Sk (2.6)

for some γ0 ∈ Γ0(5) and some k ∈ Z≥0. We therefore have

t(γτ) = t
(
γ0 · T · Skτ

)
(2.7)

= t
(
T · Skτ

)
(2.8)

= t (T · τ ′) (2.9)

= t (−1/τ ′) (2.10)

=
η (5 · −1/τ ′)6

η (−1/τ ′)6
(2.11)

=
η (−1/(τ ′/5))6

η (−1/τ ′)6
(2.12)

for τ ′ = τ + k ∈ H. Examining the behavior of η with respect to ( 0 −1
1 0 ), we have

η (−1/τ ′)
6
= (−iτ ′)3η(τ ′)6,

and therefore,
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η (−1/(τ ′/5))6

η (−1/τ ′)6
=

(−iτ/5)3

(−iτ)3
η (τ ′/5)6

η (τ ′)6

=
1

125
· 1

t(τ ′/5)

=
1

125
· e−2πik/5 1

q1/5

∞∏
m=1

(
1− e2πikm/5qm/5

1− e2πikmqm

)6

∈ q−1/5C[[q1/5]],

which is sufficient to us, since gcd(5, 12)/5 = 1/5. We therefore have t ∈ M (Γ0(5)).
Notice that we have

ord(5)
∞ (t) = 1, (2.13)

α∞(1) = 1 (2.14)

and

ord
(5)
0 (t) = −1, (2.15)

α0(1) = 1/125. (2.16)

We therefore have t ∈ M0 (Γ0(5)), and 1/t ∈ M∞ (Γ0(5)).

This process of checking membership in M (Γ0(N)), while straightforward, is perhaps some-
what tedious. We need a more direct means of determining whether a given quotient of eta
functions will exhibit modularity.

We now give two key theorems that will prove useful in checking the modularity of certain
functions. The first is a theorem which gives us a means of constructing modular functions using
η [76, Theorem 1], [90, Remark 2.36]:

Theorem 2.40. Let f =
∏

δ|N η(δτ)
rδ , with r̂ = (rδ)δ|N an integer-valued vector, for some N ∈

Z≥1. Then f ∈ M (Γ0(N)) if and only if the following apply:

1.
∑

δ|N rδ = 0;

2.
∑

δ|N δrδ ≡ 0 (mod 24);

3.
∑

δ|N
N
δ
rδ ≡ 0 (mod 24);

4.
∏

δ|N δ
|rδ| is a perfect square.
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Taking t(τ) = η(5τ)6 · η(τ)−6, we have the vector r̂ = (−6, 6). One can verify very quickly
that each of the conditions of the theorem above are satisfied, and that therefore t ∈ M (Γ0(5)).

To study the order of an eta quotient at a given cusp, we make use of a theorem that can be
found in [91, Theorem 23], generally attributed to Ligozat:

Theorem 2.41. If f =
∏

δ|N η(δτ)
rδ ∈ M (Γ0(N)), then the order of f at the cusp [a/c]N is given

by the following:

ord
(N)
a/c (f) =

N

24 gcd (c2, N)

∑
δ|N

rδ
gcd (c, δ)2

δ
.

Examining t once more, we can quickly verify that ord(5)
∞ (t) = 1, ord

(5)
0 (t) = −1.

Definition 2.42. An eta quotient on Γ0(N) is an object of the form

∏
λ|N

η(λτ)sλ ∈ M (Γ0(N)) .

Define E(N) as the set of all eta quotients on Γ0(N), and Ea/c(N) := E(N) ∩Ma/c (Γ0(N)).

Thus, t ∈ E0(5), and 1/t ∈ E∞(5).
We finish with a useful simplification of the factor ϵ(a, b, c, d) in Theorem 2.38.

Theorem 2.43. Consider the root of unity ϵ from Theorem 2.38. Given ( a bc d ) ∈ Γ0(N)∗, then

ϵ(a, b, c, d) := exp

(
−πia

12
(c− b− 3)

)
.

This theorem is proved in [76].

2.5.2 Eta Algebra

It is easy to see that
〈
Ea/c(N)

〉
K fulfills the conditions of a K-algebra. Notice that, as in the case

of t above, examining the order, principal part, and constant term of a function’s expansion at
∞ is often easy, provided that t is given a representation in its Fourier variable q: one need only
expand the function in terms of the nonpositive powers of q. Therefore, for the next few chapters
we will place an emphasis on ⟨E∞(N)⟩K .

Theorem 2.44. For any N ∈ Z≥2, E∞(N) is a finitely generated monoid. Moreover, there exist
functions t, g1, g2, ..., gv−1 ∈ M∞ (Γ0(N)) such that for g0 = 1, we have
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ord(N)
∞ (t) = v − 1, (2.17)

ord(N)
∞ (gi) < ord(N)

∞ (gj), for 1 ≤ i < j ≤ v − 1, (2.18)

ord(N)
∞ (gi) ̸≡ ord(N)

∞ (gj) (mod ord(N)
∞ (t)), for 1 ≤ i < j ≤ v − 1, (2.19)

ord(N)
∞ (gi) ̸≡ 0 (mod ord(N)

∞ (t)), for 1 ≤ i ≤ v − 1, (2.20)

⟨E∞(N)⟩Q =
v−1⊕
j=0

gjQ[t]. (2.21)

The proof can be found in [91, Sections 2.1, 2.2]. The structure given in (2.21) will prove
extremely useful us. Moreover, there exist algorithms which can be used to compute the functions
t, g1, g2, ..., gv−1, as we will determine in the sequel.

2.6 Modular Cusp Analysis

By the term cusp analysis, we mean the computation and comparison of principal parts of mod-
ular functions at their cusps as a means of proving when any two such functions are equal, and
determining representations. The subject is extremely powerful from a computational point of
view, and it is based principally on Theorems 2.24 and 2.35 above.

Let us consider two functions f1, f2 ∈ M (Γ0(N)). We want to determine whether f1 = f2.
Theorem 2.35 would require that we examine the principal parts of f1−f2 at every cusp of Γ0(N).
This is often unwieldy, since the principal parts of a given modular function at the cusps besides
[∞]N can often be difficult to precisely compute.

On the other hand, we will see that we can often compute bounds for the order of a function
at a given cusp with relatively little work. Thus, we may apply our understanding of eta quotients
to the problem, provided we have the following:

Theorem 2.45. For every N ∈ Z≥2, there exists a function µ ∈ E∞(N) which has positive order
at every cusp of Γ0(N) except ∞.

A proof can be found in [91, Lemma 20]. The significance of this theorem is that, for a large
enough k1 ∈ Z≥0, we must have µk1 · f1, µk1 · f2 ∈ M∞ (Γ0(N)). If we have lower bounds for the
orders of f1, f2 at their respective cusps, we may simply take k1 to exceed the maximum magnitude
of those bounds. In this case, we need only compare the principal parts of µk1 · f1, µk1 · f2.

For example, we will soon want to determine whether a given f ∈ M (Γ0(N)) can be expressed
as a linear combination of eta quotients, i.e., whether f ∈ ⟨E(N)⟩Q. To do this directly, we would
be forced to have a complete set of generators for ⟨E(N)⟩Q, and to study the behavior of f at each
cusp of Γ0(N).

However, by Theorem 2.45, the condition of f ∈ ⟨E(N)⟩Q is equivalent to

µk1 · f ∈ M∞ (Γ0(N))Q ∩ ⟨E(N)⟩Q
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for a sufficiently large k1. This requires only a single principal part to be examined.
Ideally, this membership condition would equate to checking whether

µk1 · f ∈ ⟨E∞(N)⟩Q .

However, one theoretical problem persists. We know that

M∞ (Γ0(N))Q ∩ ⟨E(N)⟩Q ⊇ ⟨E∞(N)⟩Q ,

but we have not yet established that

M∞ (Γ0(N))Q ∩ ⟨E(N)⟩Q ⊆ ⟨E∞(N)⟩Q .

Current evidence suggests that the two sets are equal, and we strongly suspect that this is true.
Unfortunately, we are as of yet unable to prove it. However, Radu was able [91, Lemma 28] to
establish a weaker theorem:

Theorem 2.46. Given some N ∈ Z≥2 and a µ ∈ E∞(N) which has positive order at every cusp
except ∞, there exists some k0 ∈ Z≥0 such that

µk0 ·
(
M∞ (Γ0(N))Q ∩ ⟨E(N)⟩Q

)
⊆ ⟨E∞(N)⟩Q .

The ambiguity of whether k0 = 0 will become important later. But what is important for the
time being is that an upper bound for k0 is at least computable [91, Proof of Lemma 28]. With the
previous two theorems, in order to check whether f ∈ ⟨E(N)⟩Q, we need to calculate a µ ∈ E∞(N)
which satisfies the conditions of Theorem 2.45, preferably with a minimal order at ∞; we can then
compute k0, k1 and check whether

µk0+k1 · f ∈ ⟨E∞(N)⟩Q ,

by examining the single principal part of µk0+k1 · f . The precise algebraic form of ⟨E∞(N)⟩Q given
in Theorem 2.44 will be used to build the proper algorithm for determining membership.

We now suppose that f0 = µk0+k1 · f ∈ M∞ (Γ0(N))Q, with µ, k0, and k1 defined as in
Theorems 2.45 and 2.46.

We know that we can expand f0 as the following:

f =
c(−m1)

qm1
+
c(−m1 + 1)

qm1−1
+ ...+

c(−1)

q
+ c(0) +

∞∑
n=1

c(n)qn, (2.22)

with c(−m1) ̸= 0. Here we define
∣∣∣ord(N)

∞ (f0)
∣∣∣ := m1, and LC(f0) := c(−m1).
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To determine whether f ∈ ⟨E(N)⟩Q, we need only determine whether f0 ∈ ⟨E∞(N)⟩Q. We
construct an algebra basis {t, g1, g2, ..., gv−1} of the form described in Theorem 2.44; we want to
know whether

f0 ∈ ⟨E∞(N)⟩Q =
v−1⊕
j=0

gjQ[t]. (2.23)

Because the orders of the functions gj give a complete set of representatives of the residue classes

modulo v, we know that m1 ≡
∣∣∣ord(N)

∞ (gj1)
∣∣∣ (mod v), for some j1 with 1 ≤ j1 ≤ v − 1.

Suppose first that 0 < m1 <
∣∣∣ord(N)

∞ (gj1)
∣∣∣. In this case, no nonnegative power of gj1 can reduce

the order of f0, and no other element in our basis can have a matching order modulo v. We must
immediately conclude that the principal part of f0 cannot be reduced in terms of the principal
parts of {g1, g2, ..., gv−1}. Of course, this implies that

f0 ̸∈
v−1⊕
j=0

gjQ[t].

Now consider that m1 ≥
∣∣∣ord(N)

∞ (gj1)
∣∣∣. Let gj1 have the expansion

gj1 =
b1(−n1)

qn1
+
b1(−n1 + 1)

qn1−1
+ ...+

b1(−1)

q
+ b1(0) +

∞∑
n=1

b1(n)q
n, (2.24)

with b1(−n1) ̸= 0. Then we can write

f1 = f0 −
c(−m1)

LC
(
gj1 · t

m1−n1
v

) · gj1 · t
m1−n1

v , (2.25)

∣∣∣ord(N)
∞ (f1)

∣∣∣ = m2 < m1. (2.26)

Now let m2 ≡
∣∣∣ord(N)

∞ (gj2)
∣∣∣ (mod v), with 1 ≤ j2 ≤ v− 1. If m2 ≥

∣∣∣ord(N)
∞ (gj2)

∣∣∣, then we may

construct f2 in similar fashion as to f1.

In this way, we may construct a sequence of functions (fl)l≥1, with
∣∣∣ord(N)

∞ (fl)
∣∣∣ ≥ ∣∣∣ord(N)

∞ (fl+1)
∣∣∣

for each l. Since
∣∣∣ord(N)

∞ (fl)
∣∣∣ ∈ Z≥0 for each l, there are two possible outcomes. The first outcome

is that for some k ∈ Z>1, we produce a function fk such that 0 <
∣∣∣ord(N)

∞ (fk)
∣∣∣ = mk <

∣∣∣ord(N)
∞ (gjk)

∣∣∣.
At such a point, our sequence immediately terminates, and we must conclude that
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f0 ̸∈
v−1⊕
j=0

gjQ[t] = ⟨E∞(N)⟩Q .

The second possible outcome is that for some k ∈ Z>1 we will have fk−1 with

fk−1 = ck−1(0) +
∞∑
n=1

ck−1(n)q
n. (2.27)

Of course, ck−1(0) ∈
v−1⊕
j=0

gjQ[t], so that fk = fk−1 − ck−1(0) has no principal part and no constant.

In this case, we have shown that the principal part of f0 can be constructed through combinations
of the principal parts of monomials within our basis. Since we only need to match the principal
parts and constants, we can conclude that

f0 ∈
v−1⊕
j=0

gjQ[t] = ⟨E∞(N)⟩Q ,

f ∈ ⟨E(N)⟩Q .

As we reduce the principal part of f0, we can collect the terms

c(−ml)

LC
(
gjl · t

ml−nl
v

) · gjl · t
ml−nl

v

into a set V of v polynomials, each a sum of all the terms which use the same element gjl . In the
event that we can completely reduce the principal part of f0, V represents the basis decomposition
of f0 over

⊕v−1
j=0 gjQ[t].

2.6.1 The Newman–Radu Condition

The utility and interest of the η function naturally compels the question of whether all modular
functions over a given congruence subgroup may be expressed in terms of eta quotients. It is known
that all automorphic functions over Γ0(N) may be written as rational polynomials in j(τ), j(Nτ)
[34, Proposition 7.5.1]. Because the j invariant can be written as a combination of eta functions,
we may answer this general question in the affirmative.

However, if we focus exclusively on modular functions as we have defined them, and restrict
to ⟨E(N)⟩C, the question becomes more difficult, and our understanding less certain. In particular,
as we shall see, the very natural equality
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M (Γ0(N)) = ⟨E(N)⟩C
does not apply for all N. For example, this equality fails for N = 11. Nevertheless, this relation
applies for a large number of values of N .

Definition 2.47. Let N ∈ Z≥2. The space M (Γ0(N)) satisfies the Newman–Radu condition if

M∞ (Γ0(N)) = ⟨E∞(N)⟩C .

Notice that this implies that

M (Γ0(N)) = ⟨E(N)⟩C .

The significance of this condition will be revealed in the sequel.

Conjecture 2.48. For every N ∈ Z≥2 divisible by two distinct primes, the Newman-Radu condi-
tion applies.

The original conjecture applied to all composite N . However, Radu found a counterexample
for N = 49 [91, Section 3.3], and subsequently adjusted the conjecture.

2.7 Uℓ Operator

We will finish with a review of the classical Uℓ operator, which will play a significant role in our
later chapters. Let q = e2πiτ , τ ∈ H as usual.

Definition 2.49. Let ℓ ∈ Z>0 be a prime, and f(τ) =
∑

m≥M a(m)qm. Then define

Uℓ (f(τ)) :=
∑

ℓ·m≥M

a(ℓ ·m)qm.

This operator is often enormously useful, because it gives us a means of constructing important
sequences of modular functions over a given congruence subgroup.

We will list some key properties of Uℓ in which ℓ is an arbitrary but fixed prime. These
properties are standard to the theory of partition congruences, and proofs can be found in [10,
Chapter 10] and [61, Chapter 8].

Lemma 2.50. Given two functions

f(τ) =
∑
m≥M

a(m)qm, g(τ) =
∑
m≥N

b(m)qm,

any α ∈ C, a primitive ℓ-th root of unity ζ, and the convention that q1/ℓ = e2πiτ/ℓ, we have the
following:
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1. Uℓ (α · f + g) = α · Uℓ (f) + Uℓ (g);

2. Uℓ (f(ℓτ)g(τ)) = f(τ)Uℓ (g(τ));

3. ℓ · Uℓ (f) =
∑ℓ−1

r=0 f
(
τ+r
ℓ

)
.

Finally, we give an important theorem on the stability of Uℓ.

Theorem 2.51. Let N ∈ Z≥1, with ℓ some prime number. Then the following are true:

1. Uℓ (f) ∈ M (Γ0(ℓ)) for all f ∈ M (Γ0(1)).

2. If ℓ|N , then Uℓ (f) ∈ M (Γ0(N)) for all f ∈ M (Γ0(N)).

3. If ℓ2|N , then Uℓ (f) ∈ M (Γ0(N/ℓ)) for all f ∈ M (Γ0(N)).

For a proof, see [18, Lemma 7].



CHAPTER 3
RAMANUJAN–KOLBERG IDENTITIES

3.1 Introduction

In many respects, this chapter is the core of our dissertation. It applies the use of the theoretical
machinery of the previous chapter to the more concrete question of computing identities of a
certain class, for a broad range of arithmetic functions. There are many interesting aspects of such
an application. In the first place, many of the identities of interest convey arithmetic information
about the associated functions. In the sequel we will demonstrate how the class of identities of
interest to us is useful for determining optimal congruences for restricted partition numbers over
different arithmetic progressions. This chapter and the sequel are based largely on work which was
published in [104].

Some, including the classic results of Ramanujan [95], are quite beautiful. Consider again
(1.7)-(1.8):

∞∑
n=0

p(5n+ 4)qn = 5
∞∏
m=1

(1− q5m)5

(1− qm)6
,

∞∑
n=0

p(7n+ 5)qn = 49q
∞∏
m=1

(1− q7m)7

(1− qm)8
+ 7

∞∏
m=1

(1− q7m)3

(1− qm)4
.

On the other hand, some identities of interest are quite cumbersome; these identities point
to important subtleties in the structure of the relevant modular functions. For example, in the
sequel we will examine a partition identity for p(11n+ 6), and its relationship to the failue of the
Newman-Radu condition over M (Γ0(11)). This fact has led to an enormous amount of work over
the past century, and there is sill more to discover. Thus, the “ugly” identities offer us even more
than those which are considered “beautiful.”

Moreover, beginning with Chapter 5, we will once again consider more abstract—and more
ambitious—objectives. In so doing, much of the results of the previous chapter will become ex-
tremely important. However, our objects of study will become very difficult to closely examine,
and we will witness a growing complexity which necessitates the use of computational machinery.
Not only will the implemented algorithms presented below be extremely useful for manipulating
and computing important auxiliary results, but much of our experimental methods will lead to
important theoretical insights, e.g., techniques for proving ℓ-adic convergence of function sequences
on a given modular curve.

3.1.1 Notation

In the previous chapter, we used j to refer to the principal modular function over SL(2,Z). How-
ever, as the j-invariant will not be frequently referenced for the rest of this dissertation, we will
henceforth refer to j as the initial value of a linear progression with base m ∈ Z≥2.
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We will also define

(qa; qb)∞ :=
∞∏
m=0

(1− qa+bm),

for any a, b ∈ Z with b ≥ 1. In particular,

(q; q)∞ =
∞∏
m=1

(1− qm).

3.1.2 Motivating Examples

Nearly 40 years after Ramanujan’s classic results, Kolberg realized [63] that these identities of
Ramanujan could, with a very slight generalization, be extended to include a much larger variety
of similar identities for p(5n+ j), p(7n+ j), p(3n+ j), p(2n+ j), and others. For instance, Kolberg
proved

(
∞∑
n=0

p(5n)qn

)(
∞∑
n=0

p(5n+ 3)qn

)
= 25q

(q5; q5)10∞
(q; q)12∞

+ 3
(q5; q5)4∞
(q; q)6∞

, (3.1)

along with (1.14). He also proved

(
∞∑
n=0

p(7n+ 1)qn

)(
∞∑
n=0

p(7n+ 3)qn

)(
∞∑
n=0

p(7n+ 4)qn

)

=117649q4
(q7; q7)21∞
(q; q)24∞

+ 50421q3
(q7; q7)17∞
(q; q)20∞

+ 8232q2
(q7; q7)13∞
(q; q)16∞

+ 588q
(q7; q7)9∞
(q; q)12∞

+ 15
(q7; q7)5∞
(q; q)8∞

.

In recent years a very large number of such identities have been produced. They often concern the
coefficients of various q-Pochhammer quotients, many of which can be used to enumerate various
restricted partitions. For example, if we define

∞∑
n=0

B5(n)q
n =

(q5; q5)2∞
(q; q)2∞

,

then we have the following identity:
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∞∑
n=0

B5(5n+ 3)qn = 125q
(q5; q5)10∞
(q; q)10∞

+ 10
(q5; q5)4∞
(q; q)4∞

. (3.2)

This identity confirms that B5(5n + 3) ≡ 0 (mod 5), a congruence discovered by Liuquan Wang
[110].

Or consider a conjecture from Michael Schlosser of the University of Vienna [98]: if

∞∑
n=0

b(n)qn :=
(q; q)3∞

(q11; q11)3∞
,

then b(11n+ 4) is divisible by 11. Indeed, the following identity was found to confirm Schlosser’s
conjecture:

∞∑
n=0

b(11n+ 4)qn = −11q
(q11; q11)3∞
(q; q)3∞

.

We will examine these latter two identities and many more in the sequel.
Examining the identities above, we emphasize the following:

� The arithmetic function of interest is enumerated by a generating function of the form∏
δ|M(qδ; qδ)rδδ|M , such that M ∈ Z≥1 and r = (rδ)δ|M is an integer-valued vector;

� The left-hand side of a given identity consists of products involving our function of interest,
taken over some set of linear progressions of the form mn + j, in which m is fixed, and j
varies over some finite set such that 0 ≤ j ≤ m− 1;

� The right-hand side consists of linear combinations of eta quotients indexed over the divisors
of some N ∈ Z≥2.

We will show that a given Ramanujan–Kolberg identity (hereafter referred to as an RK iden-
tity) is characterized by the 5-tuple (N,M, r,m, j).

3.2 Motivating Examples: p(5n+ j)

To understand the key principles of Radu’s algorithm, we will take some time to walk through a
proof of (1.7), together with a proof of (1.14) and (3.1).

What follows is by no means the only proof of these identities. A more elegant proof of (1.7)
can be found in [61, Chapter 8, Section 3] via a modular equation (although the modular equation
itself is similarly difficult to prove). Ramanujan’s original proof [95, Section 4] was based not on
modularity, but depended instead on the manipulation of certain formal power series. Similar
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proofs of (1.7), (1.14), and (3.1) by formal power series manipulations have been given by Kolberg
[63] and Hirschhorn [51, Chapters 5-6].

The proof we give is a reduction of the more generalized proof by Radu found in [89] and
[91]. It is similar to that of Rademacher [87], and reduces to an application of the modular cusp
analysis from the previous chapter. This is perhaps the longest and most technical proof of (1.7).
Its appeal is that the steps are so well understood that they can be generalized and automated with
relative ease. In contrast, the proof in [61] depends on the form of a specific modular equation,
and therefore cannot be generalized.

On the other hand, the techniques in the proofs in [95], [63], and [51] can indeed be extended
to other problems; however, these problems depend on evaluating and reducing the determinant
of a certain large matrix, or in reducing a certain massive polynomial modulo a given ideal. For
the moment, this technique, so much more elegant in proving (1.7) than Rademacher’s method,
appears far more cumbersome for more generalized problems.

It is interesting to consider an algorithmic approach to the methods of Ramanujan, Kolberg,
and Hirschhorn by incorporation of a Gröbner basis manipulation. However, such an approach
still requires a very careful study before it can be demonstrated as useful. For the time being,
we will proceed on the assumption that these identities, in Rademacher’s words, “belong to the
theory of modular functions.” [88, Chapter 13, Section 105].

3.2.1 Constructing the hj

We begin by examining the generating function for p(n). Let τ ∈ H and q = e2πiτ . Moreover, let
q1/5 = e2πiτ/5, ρ = e2πi/5, and let κ ∈ Z with κ not divisible by 5. We write

F̃ (q) = F (τ) :=
∞∑
n=0

p(n)qn =
1

(q; q)∞
=
q1/24

η(τ)
.

Now we consider taking a sum over F with a modified input:
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4∑
λ=0

F̃
(
ρλq1/5

)
=

4∑
λ=0

F

(
τ + λ

5

)

=
4∑

λ=0

∞∑
n=0

p(n)e2πin(τ+λ)/5

=
∞∑
n=0

p(n)e2πinτ/5
4∑

λ=0

e2πinλ/5

= 5
∞∑
n=0

p(5n)e2πinτ

= 5
∞∑
n=0

p(5n)qn.

This is of course the manipulation which allows us to define Uℓ in the previous chapter, with ℓ = 5.
We can use this manipulation to our advantage by introducing a root of unity and an additional
q factor into the sum. Let us take some j with 0 ≤ j ≤ 4:

4∑
λ=0

ρ−jκλq−j/5F̃
(
ρκλq1/5

)
=

4∑
λ=0

ρ−jκλq−j/5F

(
τ + κλ

5

)
(3.3)

=
4∑

λ=0

∞∑
n=0

e−2πi·jκλ/5e−2πiτ ·j/5p(n)e2πin(τ+κλ)/5 (3.4)

=
∞∑
n=0

p(n)e2πiτ(n−j)/5
4∑

λ=0

e2πiκλ(n−j)/5 (3.5)

= 5
∞∑
n=0

p(5n+ j)qn. (3.6)

This gives us a precise expression of
∑∞

n=0 p(5n+ j)qn that can be suitably manipulated. Indeed,
rewriting (3.3) in terms of eta functions, we have

4∑
λ=0

ρ−jκλq−j/5F̃
(
ρκλq1/5

)
=

4∑
λ=0

ρλκ(−24j+1)/24q(1−24j)/(24·5)η

(
τ + κλ

5

)−1

,

so that

q(24j−1)/(24·5)
∞∑
n=0

p(5n+ j)qn =
1

5

4∑
λ=0

ρλκ(j+1)/24η

(
τ + κλ

5

)−1

.
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Let us take κ = 24, and define our expression as hj:

hj(τ) := q(24j−1)/(24·5)
∞∑
n=0

p(5n+ j)qn =
1

5

4∑
λ=0

ρλ(j+1)η

(
τ + 24λ

5

)−1

.

3.2.2 Constructing Modular Symmetry

Let us consider hj(γτ) for γ ∈ Γ0(5). We want to build modular functions out of the hj, i.e.,
functions invariant under the action of Γ0(5) with the additional meromorphic properties of the
previous chapter.

Notice that it is sufficient to study γ ∈ Γ0(5)
∗, since Γ0(5)

∗ generates Γ0(5). Therefore we let
γ = ( a bc d ) ∈ Γ0(N)∗.

We first examine η
(
γτ+24λ

5

)
. Notice that there exist integers x, y ∈ Z such that

(
1 24λ
0 5

)(
a b
c d

)
=

(
a+ 24λc −y

5c x

)(
1 (b+ 24λd)x+ 5dy
0 5

)
,

with

(
a+ 24λc −y

5c x

)
∈ SL(2,Z)∗.

Moreover, without loss of generality, we can assume that y ≡ 0 (mod 24k), for k as large as we
like. With this in mind, we can write

η

(
γτ + 24λ

5

)
= (−i(cτ + d))1/2ϵ(a+ 24λc,−y, 5c, x)η

(
τ + (b+ 24λd)x+ 5dy

5

)
= (−i(cτ + d))1/2ϵ(a+ 24λc,−y, 5c, x) · e5πia′b/12η

(
τ + (b+ 24λd)x− 25a′b

5

)
= (−i(cτ + d))1/2ϵ(a+ 24λc,−y, 5c, x) · e5πia′b/12η

(
τ + 24(λdx+ b(x− 25a′)/24)

5

)
= (−i(cτ + d))1/2ϵ(a+ 24λc,−y, 5c, x) · e5πia′b/12η

(
τ + 24µ

5

)
, (3.7)

with a′a ≡ 1 (mod 24c), and

µ = λdx+ b(x− 25a′)/24.

Notice that
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ax ≡ 1 (mod 24c). (3.8)

Therefore, we must have x ≡ a′ (mod 24), and therefore x − 25a′ ≡ 0 (mod 24), so that µ ∈ Z.
Moreover, gcd(dx, 5) = 1. Therefore, as λ ranges from 0 to 4, so too must µ.

Note that because gcd(a, 6) = 1, we must have a2 ≡ 1 (mod 24), and therefore a ≡ a′

(mod 24). Therefore, we have

η

(
γτ + 24λ

5

)−1

= (−i(cτ + d))−1/2ϵ(a+ 24λc,−y, 5c, x)−1e−5πiab/12η

(
τ + 24µ

5

)−1

.

We can express our root of unity using Theorem 2.43:

ϵ(a+ 24λc,−y, 5c, x)−1e−5πiab/12

=

(
5c

a+ 24λc

)
· exp

(
(a+ 24λc)

πi

12
(5c− 3)− 5πiab

12

)
.

Let us take 5c = 2u · v, with u ≥ 0 and v odd. Then we can write

(
5c

a+ 24λc

)
=

(
2u

a+ 24λc

)(
v

a+ 24λc

)
.

Because both a and v are odd, we may invoke quadratic reciprocity:

(
v

a+ 24λc

)
=

(
a+ 24λc

v

)
(−1)

v−1
2

a+24λc−1
2

=

(
a+ 24λc

v

)
(−1)

v−1
2

a−1
2 .

Moreover, a+ 24λc ≡ a (mod 5c/2u) ≡ a (mod v), so that

(
v

a+ 24λc

)
=

(
a+ 24λc

v

)
(−1)

v−1
2

a−1
2

=
(a
v

)
(−1)

v−1
2

a−1
2

=
(v
a

)
,
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invoking reciprocity once more.
Next we examine the corresponding character for 2u. If u is odd, then

(
2u

a+ 24λc

)
=

(
2

a+ 24λc

)
= (−1)

(a+24λc)2−1
8

= (−1)
a2−1

8

=

(
2

a

)
=

(
2u

a

)
.

On the other hand, if u is even, then
(

2u

a+24λc

)
=
(
2u

a

)
= 1. Either way, we may write

(
2u

a+ 24λc

)
=

(
2u

a

)
,

whence we have

(
5c

a+ 24λc

)
=

(
2u

a+ 24λc

)(v
a

)
=

(
2u

a

)(v
a

)
=

(
5c

a

)
,

and

ϵ(a+ 24λc,−y, 5c, x)−1e−5πiab/12

=

(
5c

a

)
· exp

(
(a+ 24λc)

πi

12
(5c− 3)− 5πiab

12

)
=

(
5c

a

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

)
.

We now have
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hj(γτ) = (−i(cτ + d))−1/2

(
5c

a

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

) 4∑
λ=0

ρλ(j+1)η

(
τ + 24µ

5

)−1

.

To write λ in terms of µ, we remember that x ≡ a′ (mod 24c), so that

24µ ≡ 24λdx+ bx− 25a′b (mod 24c)

≡ 24λdx+ bx− 25bx (mod 24c)

≡ 24λdx− 24bx (mod 24c)

≡ 24 (λdx− bx) (mod 24c),

and

µ ≡ λdx− bx (mod c).

Moreover, ad ≡ ax ≡ 1 (mod c), so that d ≡ x (mod c), and

µ ≡ λd2 − bd (mod c),

µa2 ≡ λa2d2 − a2bd (mod c),

µa2 ≡ λ− ab (mod c),

λ ≡ µa2 + ab (mod c).

We therefore have

ρλ(j+1) = ρ(µa
2+ab)(j+1),

and

hj(γτ) = (−i(cτ + d))−1/2ρab(j+1)

(
5c

a

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

)
1

5

4∑
µ=0

ρµa
2(j+1)η

(
τ + 24µ

5

)−1

= (−i(cτ + d))−1/2ρab(j+1)

(
5c

a

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

)
1

5

4∑
µ=0

ρµ(j
′+1)η

(
τ + 24µ

5

)−1

,

= (−i(cτ + d))−1/2ρab(j+1)

(
5c

a

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

)
hj′(τ), (3.9)

with
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j′ ≡ a2(j + 1)− 1 (mod 5). (3.10)

We have here some semblance of modular symmetry. Notice that

If j ≡ 4 (mod 5), then j′ ≡ 4 (mod 5), (3.11)

If j ≡ 1, 2 (mod 5), then j′ ≡ 1, 2 (mod 5), (3.12)

If j ≡ 0, 3 (mod 5), then j′ ≡ 0, 3 (mod 5). (3.13)

Moreover, because 5 ∤ a, we have a2 ≡ 1, 4 (mod 5). If a2 ≡ 1 (mod 5), then j′ ≡ j (mod 5).
On the other hand, if a2 ≡ 4 (mod 5), then j′ ≡ 4j + 3 (mod 5). In the latter case, h1 and h2
interchange in their respective transformation equations, as do h0 and h3.

Therefore, buried in these tedious calculations, we have the forewarning of three significant
identities. The case for j ≡ 4 (mod 5) is the simplest, and we will give it the majority of our
attention.

3.2.3 Ramanujan’s Identity

Notice that (3.9) is true only for γ ∈ Γ0(5)
∗. For an arbitrary γ ∈ Γ0(5), the relationship between

hj(γτ) and hj(τ) will be more complicated. On the other hand, if we can construct a function
using h4 which is invariant under transformations of Γ0(5)

∗, then it will also be invariant under
Γ0(5), as the former generates the latter. Let us reexamine h4(γτ). Notice that because ρ is a fifth
root of unity, we must have

h4(γτ) = (−i(cτ + d))−1/2

(
5c

a

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

)
h4(τ).

To construct an exact invariance, let us consider η(5τ). As we have already shown in Theorem
2.39,

η(5γτ) = η

(
5
aτ + b

cτ + d

)
(3.14)

= η

(
a(5τ) + 5b

c(5τ)/5 + d

)
(3.15)

= η(γ′(5τ)), (3.16)

with γ′ =
(

a 5b
c/5 d

)
∈ SL(2,Z)∗. We therefore have

η(5γτ) = (−i(cτ + d))1/2ϵ(a, 5b, c/5, d)η(5τ), (3.17)

= (−i(cτ + d))1/2
(
c/5

a

)
exp

(
−aπi

12
(c/5− 5b− 3)

)
η(5τ). (3.18)
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Because

(
c/5

a

)
=

(
c/5

a

)(
5

a

)2

=

(
c/5

a

)(
52

a

)
=

(
5c

a

)
,

we have

η(5γτ) = (−i(cτ + d))1/2
(
5c

a

)
exp

(
−aπi

12
(c/5− 5b− 3)

)
η(5τ). (3.19)

Notice that

η(5τ) · h4(τ) = (q5; q5)∞

∞∑
n=0

p(5n+ 4)qn+1,

and

η(5γτ) · h4(γτ) =
(
5c

a

)2

exp

(
−aπi

12
(c/5− 5b− 3)

)
· exp

(
a
πi

12
(5c− 3)− 5πiab

12

)
η(5τ)h4(τ)

= exp

(
−aπi

12
(c/5− 5b− 3) + a

πi

12
(5c− 3)− 5πiab

12

)
η(5τ)h4(τ).

Now,

− a(c/5− 5b− 3) + a(5c− 3)− 5ab

=− ac/5 + 5ab+ 3a+ 5ac− 3a− 5ab

≡ac/5(−1 + 25) ≡ 0 (mod 24),

so that

η(5γτ)h4(γτ) = η(5τ)h4(τ).

If we let F4(τ) := η(5τ)h4(τ), then we have established modular symmetry of F4(τ) over Γ0(5).
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This verifies Condition 1 of Definition 2.30. To verify that F4 satisfies the second property,
we need to verify the meromorphic behavior of F4 over any element of SL(2,Z). For members of
Γ0(5), notice that F4 has the expansion

q · (q5; q5)∞ ·
∞∑
n=0

p(5n+ 4)qn,

and therefore has

ord(5)
∞ (F4) = 1,

with leading coefficient p(4) = 5.
Next we examine the behavior of F4(γτ) in which γ ∈ SL(2,Z) \Γ0(5). Recall from (2.6) that

we can express any γ ∈ SL(2,Z) \ Γ0(5) as

γ = γ0 · T · Sk,

with γ0 ∈ Γ0(5) and k ∈ Z. If we let τ ′ = τ + k, then we can write

F4(γτ) = F4(γ0 · T · Skτ)
= F4(Tτ

′)

= F4(−1/τ ′).

Therefore, F4(γτ) has a Fourier expansion similar in form to F4(Tτ), and our problem is reduced
to considering F4(Tτ).

As previously demonstrated in (2.7)-(2.12), we have

η(5 · −1/τ) = η(−1/(τ/5)) =
(−iτ)1/2√

5
η(τ/5).

Now we take 1 ≤ λ ≤ 4, and we have

η

(
Tτ + 24λ

5

)
= η

(
24λτ − 1

5τ

)
= η

(
24λz − y

5z + x

)
,

with z = (τ − x)/5, and x, y ∈ Z such that 24λx+ 5y = 1. Continuing, we have
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η

(
Tτ + 24λ

5

)
= (−i(5z + x))1/2ϵ(24λ,−y, 5, x)η

(
τ − x

5

)
,

= (−iτ)1/2ϵ(24λ,−y, 5, x)η
(
τ − x

5

)
.

On the other hand, if λ = 0, then we have

η

(
Tτ + 24λ

5

)
= η

(
−1

5τ

)
=

√
5(−iτ)1/2η (5τ) .

We therefore have

F4(Tτ) =
1√
5
(−iτ)1/2η(τ/5)

(
1

5
√
5
(−iτ)−1/2η(5τ)−1 +

1

5

4∑
λ=1

(−iτ)−1/2ϵ(24λ,−y, 5, x)η
(
τ − x

5

)−1
)

=
1

25
q1/5(24)(q1/5; q1/5)∞

(
q−5/24(1 + ...) +

√
5

4∑
λ=1

q−1/5(24)ϵ(24λ,−y, 5, x)(1 + ...)

)
=

1

25
q−1/5(1 + ...).

Notice that

ord
(5)
0 (F4) = −1,

with leading coefficient 1/25, at [0]5.
We have established that F4(τ) ∈ M0 (Γ0(5)). Recall the function t that we examined in

Theorem 2.39:

t(τ) =
η(5τ)6

η(τ)6
= q

∞∏
m=1

(
1− q5m

1− qm

)
.

Notice from (2.15)-(2.16) that F4 has a matching principal part to that of 5t.
Therefore, F4 − 5t = c for some constant c. But we can quickly verify that

(q5; q5)∞ ·
∞∑
n=0

p(5n+ 4)qn+1 − 5t

has constant term 0. With this, we have c = 0, from which (1.7) follows.
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3.2.4 Kolberg’s Identities

On the other hand, if we consider j ≡ 1 (mod 5), then matters are slightly more complicated.
We see from (3.12) that the congruence classes j ≡ 1, 2 (mod 5) are closely related. Multiplying
h1(γτ) and h2(γτ) together, we have

h1(γτ) · h2(γτ) = (−i(cτ + d))−1 exp

(
a
πi

6
(5c− 3)− 5πiab

6

)
h1(τ)h2(τ).

The weight of this transformation suggests that η(5τ) is a sufficient prefactor. We see that

η(5τ)2h1(τ)h2(τ) = q10/24+23/24(5)+47/24(5)(q5; q5)2∞

(
∞∑
n=0

p(5n+ 1)qn

)(
∞∑
n=0

p(5n+ 2)qn

)

= q(q5; q5)2∞

(
∞∑
n=0

p(5n+ 1)qn

)(
∞∑
n=0

p(5n+ 2)qn

)
. (3.20)

If we refer to this as F1(τ), then

F1(γτ) = exp

(
πi

6
(5ac− 3a− 5ab− ac/5 + 5ab+ 3a)

)
F1(τ)

= exp

(
πi

6
ac/5(24)

)
F1(τ)

= F1(τ).

To establish the necessary meromorphic properties, we note from (3.20) that F1 has a zero of
order 1 at [∞]5.

For similar reasons to those of F4, we need only examine F1(Tτ) to finish the proof that
F1 ∈ M0 (Γ0(5)). We have

F1(Tτ) =
1

5
(−iτ)η(τ/5)2

2∏
j=1

(
1

5
√
5
(−iτ)−1/2η(5τ)−1 +

1

5

4∑
λ=1

ρλ(j+1)(−iτ)−1/2ϵ(24λ,−y, 5, x)η
(
τ − x

5

)−1
)

=
1

5
q2/5(24)(q1/5; q1/5)∞

(
1

125
q−5/24(1 + ...) + q−1/5(24)ρϵ(24λ,−y, 5, x)(1 + ...)

)
=

1

625
q−2/5(1 + ...).

Thus, F1 has a pole of order −2 at [0]5.
Notice that explicitly computing the principal part of F1 is tedious. However, because we

know from Theorem 2.39 that 1/t has a zero of order 1 at [0]5, we can easily simplify the problem
by multiplying F1 by 1/t2:
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t−2F1(τ) =
1

q2
(q; q)12∞
(q5; q5)10∞

(
∞∑
n=0

p(5n+ 1)qn

)(
∞∑
n=0

p(5n+ 2)qn

)
∈ M∞ (Γ0(5)) .

The single pole that t−2F1 has can now be very easily examined as

t−2F1(τ) =
2

q
+ 13 + q(1 + ...),

t−2F1(τ)− 2t−1 = 25 + ...

We find that t−2F1 − 2t−1 − 25 ∈ M (Γ0(5)) has no poles at any cusp, and no constant term.
Therefore, it is identically 0. Rearranging, we find that

t−2F1(τ) = 2t−1 + 25,

F1(τ) = 2t+ 25t2,

and we have proved (1.14).
In a similar manner, if we define

F0(τ) := η(5τ)2h0(τ)h3(τ) = q(q5; q5)2∞

(
∞∑
n=0

p(5n)qn

)(
∞∑
n=0

p(5n+ 3)qn

)
,

then we can prove that

F0(τ) = 3t+ 25t2.

3.3 General Setup

The previous section highlights the computational complexities of the problem. However, the
reader may notice that the required computations, tedious though they may be, will not substan-
tially vary for p(mn + j) for any progression defined by 0 ≤ j ≤ m − 1. Indeed, the steps of
verifying modular symmetry and appropriate meromorphic conditions are so straightforward that
we may go further, and study a(mn+ j) with a(n) a much more general arithmetic function. We
will now give a brief overview of these steps.

Let us take q1/m = e2πiτ/m, ρ = e2πi/m for some m ≥ 1, 0 ≤ j ≤ m− 1, Then define
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w(r) :=
∑
δ|M

rδ,

σ∞(r) :=
∑
δ|M

δrδ,

σ0(r) :=
∑
δ|M

M

δ
rδ, and

Π(r) :=
∏
δ|M

δ|rδ|.

We will define an arithmetic function a(n) by the generating function

Fr(τ) :=
∞∑
n=0

a(n)qn =
∏
δ|M

(qδ; qδ)rδ∞ = q−σ∞(r)/24
∏
δ|M

η(δτ)rδ ,

with M ≥ 1, and let r := (rδ)δ|M be an integer-valued vector. Through a nearly identical process
to the previous section, we can show that

1

m

m∑
λ=0

ρ−jκλq−j/mF

(
τ + κλ

m

)
=

∞∑
n=0

a(mn+ j)qn,

with κ = gcd(m2 − 1, 24). We will construct a function hm,j(τ, r) in a similar fashion to the
functions hj in the previous section:

hm,j(τ) : = hm,j(τ, r) =
1

m

m∑
λ=0

ρ−jκλ
∏
δ|M

η

(
δ · τ + κλ

m

)rδ
= q(24j+σ∞(r))/24m

∞∑
n=0

a(mn+ j)qn

As before, we will be working primarily over Γ0(N)∗. However, the matter of selecting the appro-
priate N is by no means a trivial task. We describe the following list of criteria that such an N
will generally need to satisfy:

Definition 3.1. Define ∆∗ as the set of 5-tuples (N,M, r,m, j) such that

� N,M ∈ Z≥1;

� j,m ∈ Z have 0 ≤ j ≤ m− 1;
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� r = (rδ)δ|M is an integer-valued vector;

� for every prime p such that p|m, we have p|N ;

� if δ|M and rδ ̸= 0, then δ|mN ;

� For κ := gcd(m2 − 1, 24):

– κ · mN2

M
σ0(r) ≡ 0 (mod 24);

– κ ·Nw(r) ≡ 0 (mod 8);

– N ≡ 0 (mod 24m
gcd(κ·(−24j−σ∞(r)),24m)

);

– if 2|m, Π(r) = 2υ · ω with υ, ω ∈ Z≥0, ω ≡ 1 (mod 2) then at least one of the following
applies:

* κ ·N ≡ 0 (mod 4) and Nυ ≡ 0 (mod 8),

* υ ≡ 0 (mod 2) and N · (1− ω) ≡ 0 (mod 8).

One can see, for example, that (5, 1, (−1), 5, 4) ∈ ∆∗.
This is admittedly a long list of criteria. However, it can be shown [91, Section 3.1] that for

any M, r,m, j, some N exists such that (N,M, r,m, j) ∈ ∆∗. Moreover, these conditions can be
checked rapidly by a computer.

It should also be noted that there are some RK identities in which an N can be chosen which
does not satisfy ∆∗. This is incorporated into Radu’s algorithm. We give one interesting example
in the sequel. However, such identities are still closely related to other congruence levels which do
satisfy ∆∗.

If an appropriate N has been selected, then we can construct a rough modular transformation
equation as follows [89, Theorem 2.14]:

Theorem 3.2. Let (N,M, r,m, j) ∈ ∆∗, and γ =

(
a b
c d

)
∈ Γ0(N)∗. Then

hm,j(γτ) = β(γ, r) · exp
(
2πi

ab(1−m2)(24j + σ∞(r))

24m

)
(−i(cτ + d))w(r)/2 · hm,γ⊙rj(τ),

with

β(γ, r) :=
∏
δ|M

(
mcδ

a

)|rδ|

exp

(
−πia

12

(mc
M
σ0(r)−mbσ∞(r)− 3w(r)

))
,

γ ⊙r j :≡ ja2 +
a2 − 1

24
σ∞(r) (mod m).

As in the previous section, some semblance of modular symmetry is noticeable. We will define
the collection of all possible γ ⊙r j for a given (N,M, r,m, j):
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Definition 3.3. Let

Pm,r(j) := {γ ⊙r j : γ ∈ Γ0(N)∗} .

This set may be described in many different ways. We give a lemma which describes the set
in a highly constructive manner [89, Lemma 3.11].

Lemma 3.4. Let Z/nZ×2 be the set of quadratic residues modulo n; and for any s ∈ Z, let [s] be
the residue class of s mod 24m. Given (N,M, r,m, j) ∈ ∆∗, define

Pm,r(j) :=

{
js+

s− 1

24
· σ∞(r) : 0 ≤ s ≤ 24m− 1, gcd(s, 24m) = 1, [s] ∈ Z/24mZ×2

}
.

Thus, for (5, 1, (−1), 5, 4) ∈ ∆∗, we have P5,(−1)(4) = {4}. On the other hand, for (5, 1, (−1), 5, 1) ∈
∆∗, we have P5,(−1)(1) = {1, 2}.

We now come to the principal theorem of Ramanujan–Kolberg identities which gives us the
means of constructing a suitable algorithm for their construction [91, Theorem 45].

Theorem 3.5. Let (N,M, r,m, j) ∈ ∆∗, s = (sδ)δ|N an integer-valued vector indexed over the
divisors of N , and ν ∈ Z such that

ν ≡
∑

j′∈Pm,r(j)

(1−m2)(24j′ + σ∞(r))/m (mod 24).

Then

f(N, s,M, r,m, j) := f(N, s,M, r,m, j)(τ) =
∏
δ|N

η(δτ)sδ
∏

j′∈Pm,r(j)

hm,j′(τ) ∈ M (Γ0(N))

if and only if the following conditions are met:

|Pm,r(j)|w(r) + w(s) = 0, (3.21)

ν + |Pm,r(j)|mσ∞(r) + σ∞(s) ≡ 0 (mod 24), (3.22)

|Pm,r(j)|
mN

M
σ0(r) + σ0(s) ≡ 0 (mod 24), (3.23)∏

δ|M

(mδ)|rδ|

|Pm,r(j)|

· Π(s) ∈ Z2. (3.24)

For example, let us take (5, 1, (−1), 5, 4) ∈ ∆∗. Then by the last theorem, we have N = 5,
M = 1, r = (−1), m = 5, j = 4. We already derived P5,(−1)(4) = {4}. Next, we can define h5,4 as
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h5,4(τ, (−1)) = q19/24
∞∑
n=0

p(5n+ 4)qn.

With a trivial product P5,(−1)(4), the product on the left-hand side of the corresponding RK identity
will have the form

∏
j′∈P5,(−1)(4)

h5,j′(τ) = h5,4(τ).

We have N = 5. If we take s := (0, 1), then we have

∏
δ|N

η(δτ)sδ = η(5τ).

One can verify that ν ≡ 0 (mod 24), and that

|P5,(−1)(4)|w((−1)) + w((0, 1)) = 1(−1) + 1 = 0,

ν + |P5,(−1)(4)| · 5 · σ∞((−1)) + σ∞((0, 1)) ≡ 5(−1) + 5 ≡ 0 (mod 24),

|P5,(−1)(4)| · 25/1 · σ0((−1)) + σ0((0, 1)) ≡ 25(−1) + 1 ≡ 0 (mod 24),(
(5)−1

)1 · 10 · 51 = 0.

Therefore,

f(5, (0, 1), 1, (−1), 5, 4) = η(5τ) · q19/24
∞∑
n=0

p(5n+ 4)qn

= (q5; q5)∞ ·
∞∑
n=0

p(5n+ 4)qn+1 ∈ M (Γ0(5)) .

As a final useful theorem, we give a means of establishing bounds for the order of f at the
cusps of X0(N) [91, Lemma 46]. This will help us to push all the poles of a given f to a single
cusp later.

Theorem 3.6. Let (N,M, r,m, j) ∈ ∆∗, κ = gcd(m2 − 1, 24), and let (sδ)δ|N be an integer-valued
vector such that f(N, s,M, r,m, j) ∈ M (Γ0(N)) as in Theorem 3.5, and let γ ∈ SL(2,Z). Then

ord(N)
γ (f(N, s,M, r,m, j)) ≥ N

gcd(c2, N)
(|Pm,r(j)| p(γ, r) + p∗(γ, s)) ,
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for

p(γ, r) := min0≤λ≤m−1
1

24

∑
δ|M

rδ
gcd (δ(a+ κλc),mc)2

δm
,

p∗(γ, s) :=
1

24

∑
δ|N

sδ
gcd (δ, c)2

δ
.

For example, for (5, 1, (−1), 5, 4) ∈ ∆∗, we have

p(I, (−1)) : = min0≤λ≤4
1

24
(−1)

gcd (1, 0)2

5
,

= − 1

120
,

p(T, (−1)) : = min0≤λ≤4
1

120
(−1)gcd (24λ, 5)2 ,

= − 5

24
,

p∗(I, (0, 1)) : =
1

120
gcd (5, 0)2

=
5

24
,

p∗(T, (0, 1)) : =
1

120
gcd (5, 1)2

=
1

120
.

We now have enough information to give lower bounds to the order of f(5, (0, 1), 1, (−1), 5, 4) at
the cusps:

ord
(5)
I (f(5, (0, 1), 1, (−1), 5, 4)) ≥ 5

gcd(0, 5)
(p(I, (−1)) + p∗(I, (0, 1)))

= − 1

120
+

5

24
=

1

5
≥ 0,

ord
(5)
T (f(5, (0, 1), 1, (−1), 5, 4)) ≥ 5

gcd(1, 5)
(p(T, (−1)) + p∗(T, (0, 1)))

= 5

(
− 5

24
+

1

120

)
= −5 · 1

5
= −1.

3.3.1 Membership Algorithm

The previous subsection discusses what is in effect the left-hand side of a potential RK identity. To
handle the right-hand side, we need to understand the space of eta quotients over Γ0(N). By the



67

modular cusp analysis in the previous chapter, we will focus on the space ⟨E∞(N)⟩Q. Given any
N ∈ Z≥2, the corresponding monoid generators of E∞(N) can be computed through a terminating
algorithm [91, Lemma 25].

PROCEDURE: etaGenerators (Eta Monoid Generators)

INPUT:
N ∈ Z≥2

OUTPUT:
{g1, g2, ..., gr} such that

{
gk11 · gk22 · ... · gkrr : k1, k2, ..., kr ∈ Z≥0

}
= E∞(N).

Similarly, the corresponding basis elements of ⟨E∞(N)⟩Q can be computed through a termi-
nating algorithm [91, Theorem 16].

PROCEDURE: AB (Algebra Basis)

INPUT:
A set of modular functions F = {f1, f2, ..., fr} ⊆ M∞ (Γ0(N))

OUTPUT:
t, g1, g2, ..., gv−1 ∈ M∞ (Γ0(N)) such that conditions (2.17)-(2.20) are satisfied, and

v−1⊕
j=0

gjQ[t] = ⟨FM⟩Q ,

with FM :=
{
fk11 · fk22 · ... · fkrr : k1, k2, ..., kr ∈ Z≥0

}
.

If we give the output of etaGenerators[N] as input for AB, then we will produce a generating
set of functions satisfying the criteria of Theorem 2.44.

Below, let f (−) be the principal part of f (including its constant):

PROCEDURE: MW (Membership Witness)

INPUT:

� N ∈ Z≥2,

� t, g1, g2, ..., gv−1 ∈ M∞ (Γ0(N)) satisfying (2.17)-(2.21),

� f (−), for some f ∈ M∞ (Γ0(N)).
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OUTPUT:

IF f ∈ ⟨E∞(N)⟩Q , RETURN {p0, p1, ..., pk} ⊆ Q[x] such that

f =
v−1∑
k=0

gk · pk(t) with g0 = 1;

ELSE, PRINT “NO MEMBERSHIP”.

3.3.2 Main Procedure

Let us take an arithmetic function a(n) with the generating function

Fr(τ) =
∞∑
n=0

a(n)qn =
∏
δ|M

(qδ; qδ)rδ∞, (3.25)

with r = (rδ)δ|M an integer-valued vector. Suppose we are interested in a possible RK identity for
a(mn + j), with 0 ≤ j ≤ m− 1, and that we wish for the eta quotients on the right-hand side to
have factors indexed over the divisors of some N ∈ Z≥2.

With few exceptions, most RK identities of interest will occur for an N chosen such that
(N,M, r,m, j) ∈ ∆∗. We will therefore work with two distinct cases, depending on whether
(N,M, r,m, j) ∈ ∆∗. Let us first assume that this condition applies.

In this case, our first requirement is to compute Pm,r(j). Then we must solve the system of
equations (3.21)-(3.24) for an acceptable integer-valued vector s = (sδ)δ|N . Such a vector s satisfies

f(N, s,M, r,m, j) =
∏
δ|N

η(δτ)sδ
∏

j′∈Pm,r(j)

hm,j′(τ) ∈ M (Γ0(N)) .

We will in fact do more. Since we ultimately want a function with a pole only at ∞, we will
compute the function µ ∈ ⟨E(N)⟩Q with positive order at every cusp except ∞. We will then
compute the order of f(N, s,M, r,m, j) at every cusp, and therefore the minimal power k1 such
that

fL := fL(N, s,M, r,m, j) = µk1f(N, s,M, r,m, j) ∈ M∞ (Γ0(N)) .

Our next step is to determine whether fL(N, s,M, r,m, j) ∈ ⟨E∞(N)⟩Q.
We compute the set of possible solutions, and then select the optimal vector in the sense that

fL will have minimal order at ∞. This is why we incorporate µk1 into our s vector: doing so
will greatly simplify our later calculations, since a smaller total order on the left hand side of our
prospective identity ensures that less computation time will be needed to determine membership
of fL (we completely ignore µk0 for the time being).
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We now define f1 as our prefactor, together with the fractional powers of q taken in each hm,j′ .
This gives us another way to write fL:

f1(N, s,M, r,m, j) =
∏
δ|N

η(δτ)sδ · q
∑

j′∈Pm,r(j)

24j′+
∑

δ|M δ·rδ
24m , (3.26)

fL(N, s,M, r,m, j) =
∏
δ|N

η(δτ)sδ ·
∏

j′∈Pm,r(j)

hm,j′(τ) (3.27)

= f1(N, s,M, r,m, j) ·
∏

j′∈Pm,r(j)

(
∞∑
n=0

a(mn+ j′)qn

)
. (3.28)

At last, we come to the question of how to program fL into a computer. Of course, a computer
cannot store an infinitely large generating function. However, owing to the finiteness conditions
of modular functions, it does not have to. We have already established that fL has only one pole
over Γ0(N), and we will ultimately express fL in terms of other modular functions with a single
pole; we therefore only need to examine the principal part and constant of fL.

Notice that f1 has a principal part in q, and
∏

j′∈Pm,r(j)
(
∑∞

n=0 a(mn+ j′)qn) has no principal
part in q. To take the full principal part and constant of fL, we need only take the principal part

of f1, and every term of the form a(mn+ j′)qn, with n ≤
∣∣∣ord(N)

∞ (f1)
∣∣∣.

Let us take
∣∣∣ord(N)

∞ (f1)
∣∣∣ = n1, and write

f1 =
∞∑

n=−n1

c(n)qn

=
c(−n1)

qn1
+
c(−n1 + 1)

qn1−1
+ ...+

c(1)

q
+ c(0) +

∞∑
n=1

c(n)qn,

f
(−)
1 =

c(−n1)

qn1
+
c(−n1 + 1)

qn1−1
+ ...+

c(1)

q
+ c(0).

How many terms a(n) of Fr(τ) do we need? We know that 0 ≤ j′ ≤ m − 1; we also know

that if n0 >
∣∣∣ord(N)

∞ (f1)
∣∣∣ = n1, then a(mn0 + j′)qn0 cannot contribute to the principal part of fL.

Therefore, to have the principal part completely calculated, we need only take

mn+ j′ ≤ m ·
∣∣∣ord(N)

∞ (f1)
∣∣∣+ j′ < m · n1 +m = m(n1 + 1).

We can compute and store

L :=

m·(n1+1)∑
n=0

a(n)qn.
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We need not consider any larger values of a(n).
Now we take

f
(−)
L =

f (−)
1 ·

∏
j′∈Pm,r(j)

(
m∑
n=0

a(mn+ j′)qn

)(−)

.

Of course, f
(−)
L is a polynomial in q−1. In particular, f

(−)
L is finite, and can therefore be examined

by a computer.
We can now define our main procedure. We want to determine whether our constructed

fL ∈ ⟨E∞(N)⟩Q. We construct [91, Section 2.1] the functions t, g1, g2, ..., gv−1 ∈ M∞ (Γ0(N)),
satisfying conditions (2.17)-(2.21):

⟨E∞(N)⟩Q =
v−1⊕
u=0

guQ[t].

We may now use our MW procedure to check whether fL ∈
⊕v−1

u=0 guQ[t] by examining f
(−)
L .

Notice that we cannot merely construct the principal parts of the functions t, gu, and disregard
the rest of each function. We reduce f

(−)
L by subtracting monomials of the form gu · tn; terms other

than the principal parts of t, gu will influence the overall principal part of the product. We must
therefore be careful to construct the complete principal part of each gu · tn.

If MW returns “NO MEMBERSHIP”, then the suspected identity does not exist—at least over
Γ0(N). One may attempt a different N to find an identity. Otherwise, MW will return

{p0, p1, ..., pv−1} ⊆ Q[x], (3.29)

and we have the complete identity

f1(N, s,M, r,m, j) ·
∏

j′∈Pm,r(j)

(
∞∑
n=0

a(mn+ j′)qn

)
=

v−1∑
u=0

gu · pu(t). (3.30)

Finally, we make note of an application so ubiquitous that we include it in our main procedure.
We will attempt to extract the GCD of all of the coefficients of the pu. Mathematica has a GCD
procedure. If all of the coefficients of the pu are integers, the procedure returns the GCD, which we
will denote here as D. On the other hand, if there exists some K ∈ Z≥2 such that the coefficients
are elements in 1

K
Z, then the GCD procedure will return 1

K
D, with D defined as the GCD of the

coefficients with the factor 1/K removed.
Our procedure, RK[N,M, r,m, j], takes as input an N ∈ Z≥2 which defines the congruence

subgroup Γ0(N) to work over; a generating function (defined by M and r), an arithmetic progres-
sion mn+ j, with 0 ≤ j ≤ m− 1.



71

PROCEDURE: RK (Ramanujan–Kolberg Implementation)

INPUT:

N ∈ Z≥2, , (3.31)

M ∈ Z≥1, (3.32)

r = (rδ)δ|M , rδ ∈ Z (3.33)

m, j ∈ Z such that 0 ≤ j ≤ m− 1. (3.34)

OUTPUT:

∏
δ|M

(qδ; qδ)rδ∞ =
∞∑
n=0

a(n)qn (3.35)

f1(q) ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn+ j′)qn =
∑
g∈AB

g · pg(t) (3.36)

Modular Curve: X0(N) (3.37)

N: N (3.38)

{M, (rδ|M)}: {M, r} (3.39)

m : m (3.40)

Pm,r(j): Pm,r(j) (3.41)

f1(q): f1(q) (3.42)

t: t (3.43)

AB: {1, g1, g2, ..., gv−1} (3.44)

{pg(t):g ∈ AB}: {p1, pg1 , ..., pgv−1} (3.45)

Common Factor: D (3.46)

Lines (3.35), (3.36), (3.37) are unsubstituted expressions which are printed before the remain-
ing lines are computed. They are meant to serve as a guide for the remainder of the output. Lines
(3.35), (3.36) indicate the form of a potential RK identity, while line (3.37) indicates the associated
modular curve.

The remaining lines give the appropriate substitutions. First, (3.38), (3.39), (3.40) return
N,M, r,m. Line (3.41) gives all the possible values for j′, including the initial input j. If a vector
s cannot be found, then line (3.42) will return

f1(q): Select Another N
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indicating that we are unable to construct the necessary modular function on the given Γ0(N).
Similarly, if fL ̸∈ ⟨E∞(N)⟩Q, then line (3.45) will return

{pg(t):g ∈ AB}: No Membership

Otherwise, the corresponding membership witness is returned.
Finally, if a greatest common factor exists and is greater than one, then D is returned in line

(3.46); otherwise, the line will return

Common Factor: None

3.3.3 Some Remarks

Delta

Reexamining the identities of the introduction—(1.7) and (1.8) in particular—one may naturally
guess that for a given progression mn+ j, we must work over ⟨E∞(m)⟩Q, i.e., that the level N of
the associated modular curve must be equal to m. In fact, while N and m are not always equal,
they are usually closely related. As we shall see, determination of the correct value of N is an
important problem for the computation of RK identities.

With a single exception, all of the examples found so far rely upon what Radu has called the
∆∗ criterion. For a complete definition of this criterion, see [91, Definitions 34, 35]. We provide a
procedure to check this criterion, in Delta[N, M, r, m, j].

PROCEDURE: Delta

INPUT:

N ∈ Z≥2 (3.47)

M ∈ Z≥1 (3.48)

r = (rδ)δ|M , rδ ∈ Z (3.49)

m, j ∈ Z such that 0 ≤ j ≤ m− 1. (3.50)

OUTPUT:

IF ∆∗ IS SATISFIED, RETURN TRUE,

ELSE, RETURN FALSE
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We provide an additional procedure, in minN[M, r, m, j], which will compute the minimal
N that satisfies the ∆∗ criterion.
PROCEDURE: minN

INPUT:

M ∈ Z≥1

r = (rδ)δ|M , rδ ∈ Z
m, j ∈ Z such that 0 ≤ j ≤ m− 1.

OUTPUT:

N ∈ Z≥2 such that Delta[N, M, r, m, j]=True.

The RK algorithm works in two distinct cases: Case 1, in which the ∆∗ criterion is satisfied,
and Case 2, in which it fails [91, Section 3.1]. The great majority of identities we have found arise
from the first case. We will provide one interesting example of an identity arising from Case 2.
However, Case 1 is generally a faster algorithm, and we recommend that users compute an N for
which the ∆∗ criterion is satisfied.

At any rate, for any given M, r = (rδ)δ|M ,m, j with 0 ≤ j ≤ m − 1, there must exist an
N ∈ Z≥2 such that the ∆∗ criterion is satisfied [91, Section 3.1]. It is generally convenient to
work with the smallest possible N that satisfies the criterion. However, we will see in subsequent
examples that the minimum value of N is not always the most useful. We will therefore leave
the criterion for establishing N as separate from the main algorithm, and define N as part of the
input.

RKMan

We also include a slightly modified implementation that we refer to as RKMan. This procedure is
nearly identical to that used for Radu’s algorithm, except that the algebra basis is included in the
input. This is often helpful because, as we will see in some examples, construction of the algebra
basis for ⟨E∞(N)⟩Q is often inefficient. If we already have a suitable algebra basis calculated
(perhaps from a database, or a general study of eta quotient spaces), and if we know the genus of
the corresponding Riemann surface, we may be able to construct a basis by inspection. This can
often easily shorten the computation time. See Section 4.1.5 in the sequel for an example.
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RKE

Regarding the value of k0 in Theorem 5, and considering Conjecture 2.48, we very strongly suspect
that k0 may always be set to 0, and that therefore

M∞ (Γ0(N))Q ∩ ⟨E(N)⟩Q = ⟨E∞(N)⟩Q .

for all N ∈ Z≥2. This is important, because the computation of a bound for k0 is costly, and
increases the runtime of our package. We therefore include the procedure RKE in addition to RK

command. The two commands are nearly identical, except that RKE includes the power µk0 in
our prefactor. This often increases runtime. See our examples at https://www3.risc.jku.at/
people/nsmoot/RKAlg/RKSupplement1.nb.

We finally include RKManE, which is identical to RKMan, except that it includes µk0 .



CHAPTER 4
EXAMPLES

4.1 Introduction

We now give an overview of applications of our package. Except for Sections 4.1.1-4.1.2, which
cover the classical cases, each of our examples is chosen from contemporary work done in partition
theory over the last ten years—in most cases, within the last five years. In many cases we give
substantial improvements on previous results, and (with the notable exception of the identities
found with respect to p̄(n)) the necessary computations take a few minutes at most on a modest
laptop.

4.1.1 Ramanujan’s Classics

The most obvious examples to check are the classic identities of Ramanujan and Kolberg for
p(5n+ 4) and p(7n+ 5).

The generating function for p(n) is of course 1/(q; q)∞, which can be described by setting
M = 1, r = (−1). If we now take m = 5, guess N = 5, and take j = 4, then we have

In[1] = RK[5, 1, {−1}, 5, 4]∏
δ|M

(qδ; qδ)rδ∞ =
∞∑
n=0

a(n)qn

f1(q) ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn+ j′)qn =
∑
g∈AB

g · pg(t)

Modular Curve: X0(N)

Out[1] =

N: 5

{M, (rδ|M)}: {1, {−1}}
m : 5

Pm,r(j): {4}

f1(q):
((q; q)∞)6

((q5; q5)∞)5

t:
((q; q)∞)6

q((q5; q5)∞)6

AB: {1}
{pg(t):g ∈ AB}: {5}
Common Factor: 5
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We see that Pm,r(j) = {4}, indicating that our left hand side will only contain the series∑
n≥0 p(5n+ 4)qn. With f1, we have the left hand side of any possible identity as

fL =
(q; q)6∞
(q5; q5)5∞

∞∑
n=0

p(5n+ 4)qn ∈ M∞ (Γ0(5)) .

In this case our algebra basis is extremely simple:

⟨E∞(5)⟩Q = ⟨1⟩Q[t] = Q[t],

t =
(q; q)6∞
q(q5; q5)6∞

.

Because the basis contains only the identity, we only need a single polynomial in t. In this case,
the polynomial is 5.

(q; q)6∞
(q5; q5)5∞

∞∑
n=0

p(5n+ 4)qn = 5.

A quick rearrangement gives us (1.7)
Similarly, taking m = 7, j = 5, and guessing N = 7, we have
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In[2] = RK[7, 1, {−1}, 7, 5]∏
δ|M

(qδ; qδ)rδ∞ =
∞∑
n=0

a(n)qn

f1(q) ·
∏

j′∈Pm,r(j)

∞∑
n=0

a(mn+ j′)qn =
∑
g∈AB

g · pg(t)

Modular Curve: X0(N)

Out[2] =

N: 7

{M, (rδ|M)}: {1, {−1}}
m : 7

Pm,r(j): {5}

f1(q):
((q; q)∞)8

q((q7; q7)∞)7

t:
((q; q)∞)4

q((q7; q7)∞)4

AB: {1}
{pg(t):g ∈ AB}: {49 + 7t}
Common Factor: 7

This gives us

(q; q)8∞
q(q7; q7)7∞

∞∑
n=0

p(7n+ 5)qn = 49 + 7
(q; q)4∞
q(q7; q7)4∞

,

which yields (1.8) on rearrangement.
In the following examples, we will omit the three printed lines, as well as the first three lines

of output from each example for the sake of brevity.

4.1.2 Classic Identities by Kolberg and Zuckerman

A large number of classic analogues to Ramanujan’s results have been found. We start with an
identity discovered by Zuckerman [117] for p(13n+ 6).
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Theorem 4.1.
∞∑
n=0

p(13n+ 6)qn =11
(q13; q13)∞
(q; q)2∞

+ 468q
(q13; q13)3∞
(q; q)4∞

+ 6422q2
(q13; q13)5∞
(q; q)6∞

+ 43940q3
(q13; q13)7∞
(q; q)8∞

+ 171366q4
(q13; q13)9∞
(q; q)10∞

+ 371293q5
(q13; q13)11∞
(q; q)12∞

+ 371293q6
(q13; q13)13∞
(q; q)14∞

.

In[3] = RK[13, 1, {−1}, 13, 6]
Out[3] =

Pm,r(j): {6}

f1(q):
((q; q)∞)14

q6((q13; q13)∞)13

t:
((q; q)∞)2

q((q13; q13)∞)2

AB: {1}
{pg(t):g ∈ AB}: {371293 + 371293t+ 171366t2 + 43940t3 + 6422t4 + 468t5 + 11t6}
Common Factor: None

We will now use our algorithm to derive the identities which Kolberg found [63] for p(5n+ j),
p(7n+ j), and p(3n+ j).

Starting with p(5n + j) for 0 ≤ j ≤ 4, if we take N = 5 once more, and set j = 1, [63, (4.2)]
we have

In[4] = RK[5, 1, {−1}, 5, 1]
Out[4] =

Pm,r(j): {1, 2}

f1(q):
((q; q)∞)12

((q5; q5)∞)10

t:
((q; q)∞)6

q((q5; q5)∞)6

AB: {1}
{pg(t):g ∈ AB}: {25 + 2t}
Common Factor: None

Working over the same congruence subgroup Γ0(5), we keep the same algebra basis and t.
The most notable difference is that we have the product
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(∑
n≥0

p(5n+ 1)qn

)(∑
n≥0

p(5n+ 2)qn

)

on the left hand side. Our right-hand side is given as a more complicated 25 + 2t, and we have

(q; q)12∞
(q5; q5)10∞

(
∞∑
n=0

p(5n+ 1)qn

)(
∞∑
n=0

p(5n+ 2)qn

)
= 25 + 2

(q; q)6∞
q(q5; q5)6∞

.

We can similarly examine j = 3 [63, (4.3)] and derive the identity

(q; q)12∞
(q5; q5)10∞

(
∞∑
n=0

p(5n+ 3)qn

)(
∞∑
n=0

p(5n)qn

)
= 25 + 3

(q; q)6∞
q(q5; q5)6∞

.

On the other hand, we can set m = 7, j = 1, N = 7, [63, (5.2)] and we will derive

In[5] = RK[7, 1, {−1}, 7, 1]
Out[5] =

Pm,r(j): {1, 3, 4}

f1(q):
((q; q)∞)24

q((q7; q7)∞)21

t:
((q; q)∞)4

q((q7; q7)∞)4

AB: {1}
{pg(t):g ∈ AB}: {117649 + 50421t+ 8232t2 + 588t3 + 15t4}
Common Factor: None

and the identity

(q; q)24∞
q4(q7; q7)21∞

(
∞∑
n=0

p(7n+ 1)qn

)(
∞∑
n=0

p(7n+ 3)qn

)(
∞∑
n=0

p(7n+ 4)qn

)

=117649 + 50421
(q; q)4∞
q(q7; q7)4∞

+ 8232
(q; q)8∞

q2(q7; q7)8∞
+ 588

(q; q)12∞
q3(q7; q7)12∞

+ 15
(q; q)16∞

q4(q7; q7)16∞
.

The corresponding identity for p(7n+ 2) [63, (5.3)] can be easily found.
Finally, we set m = 3, j = 1, N = 9, [63, (3.4)] and derive
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In[6] = RK[9, 1, {−1}, 3, 1]
Out[6] =

Pm,r(j): {0, 1, 2}

f1(q):
((q; q)∞)10

q(q3; q3)∞((q9; q9)∞)6

t:
((q; q)∞)3

q((q9; q9)∞)3

AB: {1}
{pg(t):g ∈ AB}: {9 + 2t}
Common Factor: None

And we have

(q; q)10

q(q3; q3)(q9; q9)6

(
∞∑
n=0

p(3n)qn

)(
∞∑
n=0

p(3n+ 1)qn

)(
∞∑
n=0

p(3n+ 2)qn

)

=9 + 2
(q; q)3

q(q9; q9)3
.

Finally, we give another result found by Kolberg [62, (2.4)]. We set m = 2, j = 1, N = 8 and
derive

In[7] = RK[8, 1, {−1}, 2, 1]
Out[7] =

Pm,r(j): {0, 1}

f1(q):
((q; q)∞)5(q4; q4)∞

((q2; q2)∞)2((q8; q8)∞)2

t:
((q4; q4)∞)12

q((q2; q2)∞)4((q8; q8)∞)8

AB: {1}
{pg(t):g ∈ AB}: {1}
Common Factor: None

And we have

((q; q)∞)5(q4; q4)∞
((q2; q2)∞)2((q8; q8)∞)2

(
∞∑
n=0

p(2n)qn

)(
∞∑
n=0

p(2n+ 1)qn

)
= 1.
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4.1.3 Radu’s Identity for 11

A substantial amount of work has been done attempting to find a witness identity for p(11n+6) ≡ 0
(mod 11). We will show one interesting attempt by Radu, though we hasten to add that a great
deal of work has been done by others on the problem (for an interesting approach, see [47]). If we
attempt to find such an identity for M = 1, r = (−1), m = 11, N = 11, j = 6, then our algorithm
returns

In[8] = RK[11, 1, {−1}, 11, 6]
Out[8] =

Pm,r(j): {6}

f1(q):
(q; q)12∞

q4(q11; q11)11∞

t:
(q; q)12∞

q5(q11; q11)12∞
AB: {1}
{pg(t):g ∈ AB}: No Membership

Common Factor: None

Our membership witness returns a null result, indicating that our constructed modular func-
tion does not lie within ⟨E∞(11)⟩Q. If we take N = 22, however, we get
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In[9] = RK[22, 1, {−1}, 11, 6]
Out[9] =

Pm,r(j): {6}

f1(q):
(q; q)12∞(q2; q2)2∞(q11; q11)11∞

q14(q22; q22)22∞

t: − 1

8

(q2; q2)∞(q11; q11)11∞
q5(q; q)∞(q22; q22)11∞

+
1

11

(q2; q2)8∞(q11; q11)4∞
q5(q; q)4∞(q22; q22)8∞

+
3

88

(q; q)7∞(q11; q11)3∞
q5(q2; q2)3∞(q22; q22)7∞

AB: {1,−1

8

(q2; q2)∞(q11; q11)11∞
q5(q; q)∞(q22; q22)11∞

+
2

11

(q2; q2)8∞(q11; q11)4∞
q5(q; q)4∞(q22; q22)8∞

+
5

88

(q; q)7∞(q11; q11)3∞
q5(q2; q2)3∞(q22; q22)7∞

,

5

4

(q2; q2)∞(q11; q11)11∞
q5(q; q)∞(q22; q22)11∞

− 3

11

(q2; q2)8∞(q11; q11)4∞
q5(q; q)4∞(q22; q22)8∞

+
1

44

(q; q)7∞(q11; q11)3∞
q5(q2; q2)3∞(q22; q22)7∞

}

{pg(t):g ∈ AB}: {6776 + 9427t+ 15477t2 + 13332t3 + 1078t4,

− 9581 + 594t+ 5390t2 + 187t3,

− 6754 + 5368t+ 2761t2 + 11t3}
Common Factor: 11

Our procedure returns a variation on a result that Radu already computed [91]. It serves as
a witness identity for the divisibility of p(11n + 6) by 11, though it is not very satisfying. It has
a form resembling the classic witness identities which Ramanujan discovered for his congruences
of p(5n + 4), p(7n + 5) by 5, 7, respectively. In particular, the coefficients of t in the membership
witness are all divisible by 11. Therefore, the result is a witness identity, provided one accepts
that the functions of the algebra basis have integer power series expansions. This is true, but not
obvious.

In particular, we find a prevalence of 11 throughout the denominators of each function in our
basis. This is of course the one factor we would not want to find in the denominators! Peter Paule
was the first to realize that it is necessary to prove that the expansions of the basis functions are
in fact integral; he successfully did so in [85, Discussion, pp. 541-542].

4.1.4 An Identity for Broken 2-Diamond Partitions

Broken k-diamond partitions, denoted by ∆k(n), were defined by Andrews and Paule in 2007 [14].
They conjectured that
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Theorem 4.2. For all n ∈ Z≥0, we have

∆2(25n+ 14) ≡ ∆2(25n+ 24) ≡ 0 (mod 5).

This was subsequently proved in 2008 by Chan [26]. In 2015 Radu was able [91] to give a
proof by studying another arithmetic function with a simpler generating function. Our complete
implementation allows us to verify these congruences by directly examining the generating function
for ∆2(n).

We take N = 10,M = 10, r = (−3, 1, 1,−1),m = 25, j = 14. Our package returns

In[10] = RK[10, 10, {−3, 1, 1,−1}, 25, 14]
Out[10] =

Pm,r(j): {14, 24}

f1(q):
(q; q)126∞ (q5; q5)70∞

q58(q2; q2)2∞(q10; q10)190∞

t:
(q2; q2)∞(q5; q5)5∞
q(q; q)∞(q10; q10)5∞

AB: {1}
{pg(t):g ∈ AB}: {...}
Common Factor: 25

The membership witness returns a lengthy result, with terms of the order of 1076. However,
the computation time is short—less than 40 seconds with a 2.6 GHz Intel Processor on a modest
laptop. The complete witness is available, and easily computed, at https://www3.risc.jku.at/
people/nsmoot/RKAlg/RKSupplement1.nb.

Each term in the membership witness is divisible by 25. By expanding the generating function
for ∆2(n), one determines that ∆2(14) = 10445, and that ∆2(49) = 1022063815.

Because each of these numbers is divisible by 5 but not by 25, it follows that
∑

n≥0∆2(25n+
14)qn,

∑
n≥0∆2(25n+24)qn must each be divisible by exactly one power of 5. This completes the

proof.

4.1.5 Congruences with Overpartitions

An enormous amount of work has been published in recent years on the congruence properties of
overpartition functions, and our package has a great deal of utility in this subject. We will examine
three distinct problems here: two will involve the standard overpartition function p̄(n), and one
will involve an overpartition function with additional restrictions Am(n). In each case, we are able
to make substantial improvements to previously established results.

As a preliminary, an overpartition of n is a partition of n in which the first occurrence of a
part may or may not be “marked.” Generally, this “mark” is denoted with an overline (hence the
term “overpartition”). For example, the number 3 has 8 overpartitions:
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3,

3̄,

2 + 1,

2̄ + 1,

2 + 1̄,

2̄ + 1̄,

1 + 1 + 1,

1̄ + 1 + 1.

We denote the number of overpartitions of n by p̄(n). The generating function for p̄(n) has the
form

∞∑
n=0

p̄(n)qn =
(−q; q)∞
(q; q)∞

=
(q2; q2)∞
(q; q)2∞

Part of the appeal of p̄(n) is the simplicity of the combinatorial interpretation, given the relative
complexity of its generating function [33].

Congruences for p̄(n)

We will begin by giving some remarkable improvements to previously established congruences for
p̄(n). Moreover, we have the opportunity to apply our “manual” procedure, and use the connection
of modular functions with the topology of associated Riemann surfaces in order to construct a
suitable algebra basis.

In 2016 Dou and Lin showed [35] that

p̄(80n+ 8) ≡ p̄(80n+ 52) ≡ p̄(80n+ 68) ≡ p̄(80n+ 72) ≡ 0 (mod 5). (4.1)

Hirschhorn in 2016 [52], and Chern and Dastidar in 2018 [29] have studied these congruences as
well, with the latter improving these congruences:

p̄(80n+ 8) ≡ p̄(80n+ 52) ≡ p̄(80n+ 68) ≡ p̄(80n+ 72) ≡ 0 (mod 25).

Chern and Dastidar go on to point out that

p̄(135n+ 63) ≡ p̄(135n+ 117) ≡ 0 (mod 5).
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However, a quick computation of each of these sequences of overpartition numbers reveals
much more. For instance,

n p̄(80n+ 8)

0 100

1 8638130600

2 350865646632400

3 1512900775311002400

4 1919738036947929590800

5 1092453314947897908542800

6 348534368588210202093102600

7 71377855377904690816918291600

8 10261762697785410674339371853700

A very much stronger congruence clearly suggests itself. We are able to make the following
substantial improvements in each case:

Theorem 4.3.

p̄(80n+ 8) ≡ p̄(80n+ 72) ≡ 0 (mod 100),

p̄(80n+ 52) ≡ p̄(80n+ 68) ≡ 0 (mod 200).

Theorem 4.4.

p̄(135n+ 63) ≡ p̄(135n+ 117) ≡ 0 (mod 40).

Our package can be used to demonstrate each of these, though with some adjustments. In
the case of p̄(80n+ j), we are forced to work over the congruence subgroup Γ0(40).

Recall that we have an algorithm to calculate the generators of the monoid E∞(40) of monopo-
lar eta quotients can be computed with relative ease using etaGenerators (Section 3.3.1). Let us
order the set of generators by the order of the elements at ∞, and denote the resulting vector as
G0(40) = (G0(40)n)1≤n≤n40 , for n40 ∈ Z≥1. This vector is extremely large, and our procedure to
compute the algebra basis using AB would be extremely inefficient.

We can remedy the problem by taking advantage of the Weierstrass gap theorem, (see [115,
Part 2, Section 17] for a classical introduction to the subject; see [84] for a more modern treatment
of the theorem). We use [34, Theorem 3.1.1] to compute the genus of the corresponding modular
curve X0(40) as 3, which implies that all modular functions with a pole only at ∞ on Γ0(40) must
have order 4 or greater. Radu’s refinement of Newman’s conjecture (see Section 2.6.1) suggests
that a suitable combination of eta quotients will yield functions in ⟨E∞(40)⟩Q with orders -4, -5,
-6, -7. Such a set of functions would be a sufficient algebra basis for ⟨E∞(40)⟩Q.
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In this case, we are lucky, because a simple ordering of G0(40) by the order of the elements at
∞ reveals that

G0(40)1 =
(q4; q4)3∞(q20; q20)∞
q4(q8; q8)∞(q40; q40)3∞

,

G0(40)4 =
(q2; q2)3∞(q5; q5)∞(q20; q20)2∞
q5(q; q)∞(q10; q10)∞(q40; q40)4∞

,

G0(40)7 =
(q2; q2)6∞(q5; q5)2∞(q8; q8)∞(q20; q20)3∞
q6(q; q)2∞(q4; q4)3∞(q10; q10)2∞(q40; q40)5∞

,

G0(40)17 =
(q; q)2∞(q5; q5)2∞(q8; q8)2∞(q20; q20)3∞

q7(q2; q2)∞(q4; q4)∞(q10; q10)∞(q40; q40)6∞
.

We can then define our algebra basis as

T = G0(40)1,

Ab40 = {T, {1,G0(40)4,G0(40)7,G0(40)17}} .

Since we computed our algebra basis separately, we may now employ the manual case of our
package, RKMan:

In[11] = RKMan[40, 2, {−2, 1}, 80, 8, Ab40]
Out[11] =

Pm,r(j): {8, 72}

f1(q):
(q; q)333∞ (q8; q8)66∞(q10; q10)36∞(q20; q20)165∞

q400(q2; q2)168∞ (q4; q4)31∞(q5; q5)65∞(q40; q40)334∞

t:
(q4; q4)3∞(q20; q20)∞
q4(q8; q8)∞(q40; q40)3∞

AB: {1, (q2; q2)3∞(q5; q5)∞(q20; q20)2∞
q5(q; q)∞(q10; q10)∞(q40; q40)4∞

,

(q2; q2)6∞(q5; q5)2∞(q8; q8)∞(q20; q20)3∞
q6(q; q)2∞(q4; q4)3∞(q10; q10)2∞(q40; q40)5∞

,

(q; q)2∞(q5; q5)2∞(q8; q8)2∞(q20; q20)3∞
q7(q2; q2)∞(q4; q4)∞(q10; q10)∞(q40; q40)6∞

}

{pg(t):g ∈ AB}: {...}
Common Factor: 10000

The membership witness is too lengthy to present here. The complete output of the algorithm
can be found at https://www3.risc.jku.at/people/nsmoot/RKAlg/RKSupplement2.nb. It is
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trivial to compute p̄(80n + 8), p̄(80n + 72) for a handful of small n in order to demonstrate
that neither is divisible by 23 or 53. Since the left hand side consists of a prefactor (with initial
coefficient 1) and a product of the form

(∑
n≥0

p̄(80n+ 8)qn

)(∑
n≥0

p̄(80n+ 72)qn

)
,

with neither factor divisible by 23 or 53, the only remaining possibility is that each factor is divisible
by 22 · 52 = 100.

An almost identical output is produced for

In[11] = RKMan[40, 2, {−2, 1}, 80, 52, Ab40]

but with a common factor of 40000 for congruences. This is also available at https://www3.risc.
jku.at/people/nsmoot/RKAlg/RKSupplement2.nb. We may show that p̄(80n+52), p̄(80n+ 68)
are each divisible by 200, in a similar manner to the case of p̄(80n+ 8), p̄(80n+ 72).

Finally, we consider the case of p̄(135n + 63), p̄(135n + 117). We may similarly construct an
algebra basis manually. In this case, the most convenient congruence subgroup is Γ0(30) (N = 30).
The genus of X0(30) is 3, but we are at a slight disadvantage: there are eta quotients in E∞(30)
with orders -4, -6, and -7, but none with order -5. But we can construct a difference of eta
quotients, each with order 6, to produce a function of order 5. If we define G0(30) in a matter
similar to G0(40), i.e., by ordering the generators of E∞(30) by order at ∞, then

G0(30)[1] =
(q; q)∞(q6; q6)6∞(q10; q10)2∞(q15; q15)3∞
q4(q2; q2)2∞(q3; q3)3∞(q5; q5)∞(q30; q30)6∞

,

G0(30)[4]− G0(30)[3] =
(q2; q2)4∞(q10; q10)4∞(q15; q15)4∞
q6(q; q)2∞(q5; q5)2∞(q30; q30)8∞

− (q; q)∞(q6; q6)2∞(q10; q10)10∞(q15; q15)5∞
q6(q2; q2)2∞(q3; q3)∞(q5; q5)5∞(q30; q30)10∞

,

G0(30)[2] =
(q; q)∞(q2; q2)∞(q5; q5)∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞

q6(q3; q3)∞(q30; q30)7∞
,

G0(30)[6] =
(q; q)∞(q5; q5)2∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞

q7(q30; q30)8∞
.

The orders here are (respectively) −4,−5,−6,−7, again sufficient for an algebra basis:
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T = G0(30)1,

G1 = G0(30)4 − G0(30)3,

G2 = G0(30)2,

G3 = G0(30)6,

Ab30 = {T, {1, G1, G2, G3}} .

Employing RKMan once again, we get

In[12] = RKMan[30, 2, {−2, 1}, 135, 63, Ab30]
Out[12] =

Pm,r(j): {63, 117}

f1(q):
(q; q)653∞ (q6; q6)235∞ (q10; q10)272∞ (q15; q15)358∞

q507(q2; q2)359∞ (q3; q3)275∞ (q5; q5)226∞ (q30; q30)656∞

t:
(q; q)∞(q6; q6)6∞(q10; q10)2∞(q15; q15)3∞
q4(q2; q2)2∞(q3; q3)3∞(q5; q5)∞(q30; q30)6∞

AB: {1, (q
2; q2)4∞(q10; q10)4∞(q15; q15)4∞
q6(q; q)2∞(q5; q5)2∞(q30; q30)8∞

− (q; q)∞(q6; q6)2∞(q10; q10)10∞(q15; q15)5∞
q6(q2; q2)2∞(q3; q3)∞(q5; q5)5∞(q30; q30)10∞

,

(q; q)∞(q2; q2)∞(q5; q5)∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞
q6(q3; q3)∞(q30; q30)7∞

,

(q; q)∞(q5; q5)2∞(q6; q6)∞(q10; q10)∞(q15; q15)3∞
q7(q30; q30)8∞

}

{pg(t):g ∈ AB}: {...}

Common Factor:
1600

3

Once again, the membership witness is too large to present here. It can be found in its en-
tirety at https://www3.risc.jku.at/people/nsmoot/RKAlg/RKSupplement2.nb. However, the
fractional common factor emerges because each polynomial pg in the witness has integer coeffi-
cients, except for pG1 , which is a polynomial in 1

3
Z. Because the remaining polynomials have

integer coefficients (and all of the eta quotients involved have integer-coefficient expansions), we
can conclude that G1 has coefficients divisible by 3. At any rate, this makes no difference for
congruences with respect to powers of 2 or 5.

We may again quickly demonstrate that p̄(135n + 63), p̄(135n + 117) are not divisible by 24

or 52, indicating that they must each be divisible by 23 · 5 = 40.
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A Congruence for p̄(n) Modulo 243

In 2017 Xia conjectured [116] that

p̄(96n+ 76) ≡ 0 (mod 35)

for all n ∈ Z≥0. This conjecture was recently proved by Huang and Yao [54].
We have extended the theorem further:

Theorem 4.5.

p̄(96n+ 76) ≡ 0 (mod 2335)

for all n ∈ Z≥0.

The optimal congruence subgroup to work over in this case is Γ0(24). Setting N = 24, our
software returns

In[13] = RK[24, 2, {−2, 1}, 96, 76]
Out[13] =

Pm,r(j): {76}

f1(q):
(q; q)213∞ (q6; q6)33∞(q8; q8)77∞(q12; q12)113∞

q150(q2; q2)107∞ (q3; q3)64∞(q4; q4)37∞(q24; q24)227∞

t:
(q6; q6)3∞(q8; q8)∞

q2(q2; q2)∞(q24; q24)3∞

AB: {1, (q6; q6)3∞(q8; q8)∞
q2(q2; q2)∞(q24; q24)3∞

+
(q; q)∞(q3; q3)∞(q12; q12)∞(q4; q4)3∞

q3(q2; q2)2∞(q24; q24)4∞
}

{pg(t):g ∈ AB}: {...}
Common Factor: 1944

The theorem is then established, since 1944 = 23 · 35. The full identity can be found at
https://www3.risc.jku.at/people/nsmoot/RKAlg/RKSupplement2.nb.

A Restricted Overpartition Function

Let Am(n) be the number of overpartitions of n in which only the parts not divisible by m may
be overlined. Then it can be shown [73] that

∞∑
n=0

Am(n)q
n =

(q2; q2)∞(qm; qm)∞
(q; q)2∞(q2m; q2m)∞

.
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In 2014, Munagi and Sellers give a variety of interesting congruences for Am(n).
For instance, [73, Corollary 4.4, Theorem 4.5]:

Theorem 4.6.

A3(3n+ 1) ≡ 0 (mod 2),

A3(3n+ 2) ≡ 0 (mod 4).

Both of these can be proved quickly with our package. For example, to prove A3(3n+ 1) ≡ 0
(mod 2):

In[14] = RK[6, 6, {−2, 1, 1,−1}, 3, 1]
Out[14] =

Pm,r(j): {1}

f1(q):
(q; q)3∞(q2; q2)∞(q3; q3)6∞

q(q6; q6)9∞

t:
(q; q)5∞(q3; q3)∞
q(q2; q2)∞(q6; q6)5∞

AB: {1}
{pg(t):g ∈ AB}: {16 + 2t}
Common Factor: 2

On the other hand, [73, Theorem 4.7, Theorem 4.9] A3(27n+26) ≡ 0 (mod 3), and A9(27n+
24) ≡ 0 (mod 3). Using our package, we can prove more:

Theorem 4.7.

A3(27n+ 26) ≡ 0 (mod 12),

A9(27n+ 24) ≡ 0 (mod 24).

For example, to show that A9(27n+ 24) ≡ 0 (mod 24):
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In[15] = RK[6, 18, {−2, 1, 0, 0, 1,−1}, 27, 24]
Out[15] =

Pm,r(j): {24}

f1(q):
(q; q)47∞(q3; q3)12∞

q9(q2; q2)7∞(q6; q6)51∞

t:
(q; q)5∞(q3; q3)∞
q(q2; q2)∞(q6; q6)5∞

AB: {1}
{pg(t):g ∈ AB}: {7703510787293184 + 5456653474332672t

+ 1649478582927360t2 + 276646783352832t3

+ 27989228519424t4 + 1735943602176t5

+ 63885293568t6 + 1269340416t7 + 10941888t8

+ 22056t9}
Common Factor: 24

We expect that a very large variety of other congruences and associated results for overparti-
tion functions still await discovery, and that our package will prove extremely useful.

4.1.6 Some Identities by Baruah and Sarmah

For r ∈ Z, define

∞∑
n=0

pr(n)q
n = (q; q)r∞.

In 2013 Baruah and Sarmah [22] gave a large variety of results for pr(n), all of which are acces-
sible through our package. One especially interesting example, [22, Theorem 2.1, (2.10)] is not a
congruence, but rather a simple identity:

Theorem 4.8.

p8(3n+ 1) = 0.

We can verify this by taking M = 1, r = (8),m = 4, j = 3, N = 4:
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In[16] = RK[4, 1, {8}, 4, 3]
Out[16] =

Pm,r(j): {3}

f1(q):
(q2; q2)12∞

q(q; q)4∞(q4; q4)16∞

t:
(q; q)8∞
q(q4; q4)8∞

AB: {1}
{pg(t):g ∈ AB}: {0}
Common Factor: 0

Baruah and Sarmah list several congruences [22, Theorem 5.1] which may easily be proved.
For example:

Theorem 4.9.

p−4(4n+ 3) ≡0 (mod 8),

p−8(4n+ 3) ≡0 (mod 64),

p−2(5n+ 2) ≡ p−2(5n+ 3) ≡ p−2(5n+ 4) ≡0 (mod 5),

p−4(5n+ 3) ≡ p−4(5n+ 4) ≡0 (mod 5).

We prove the first case by setting M = 1, r = (−4),m = 4, j = 3, N = 8.

In[17] = RK[8, 1, {−4}, 4, 3]
Out[17] =

Pm,r(j): {3}

f1(q):
(q; q)19∞(q4; q4)15∞

q4(q2; q2)8∞(q8; q8)22∞

t:
(q4; q4)12∞

q(q2; q2)4∞(q8; q8)8∞
AB: {1}
{pg(t):g ∈ AB}: {512t+ 1408t2 + 480t3 + 40t4}
Common Factor: 8

The other cases of this theorem can be proved similarly.
In another example, they prove [22, Theorem 5.1, (5.3)] that p−8(8n + 7) ≡ 0 (mod 29), but

we prove even more:
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Theorem 4.10.

p−8(8n+ 7) ≡ 0 (mod 211).

We set N = 4:

In[18] = RK[4, 1, {−8}, 8, 7]
Out[18] =

Pm,r(j): {7}

f1(q):
(q; q)84∞

q8(q2; q2)4∞(q4; q4)72∞

t:
(q; q)8∞
q(q4; q4)8∞

AB: {1}
{pg(t):g ∈ AB}: {576460752303423488 + 162129586585337856t

+ 18718085951258624t2 + 1139094046375936t3

+ 38970385760256t4 + 737593524224t5

+ 7041187840t6 + 27033600t7 + 22528t8}
Common Factor: 2048

4.1.7 5-Regular Bipartitions

In 2016 Liuquan Wang developed [110] a large class of interesting congruences for the 5-regular
bipartition function B5(n), with the generator

∞∑
n=0

B5(n)q
n =

(q5; q5)2∞
(q; q)2∞

.

Among many results were the following:

B5(4n+ 3) ≡ 0 (mod 5),

B5(5n+ 2) ≡ B5(5n+ 3) ≡ B5(5n+ 4) ≡ 0 (mod 5),

B5(20n+ 7) ≡ B5(20n+ 19) ≡ 0 (mod 25).

We are able to make the following improvements:

Theorem 4.11.

B5(4n+ 3) ≡ 0 (mod 10),

B5(5n+ 2) ≡ B5(5n+ 3) ≡ B5(5n+ 4) ≡ 0 (mod 5),

B5(20n+ 7) ≡ B5(20n+ 19) ≡ 0 (mod 100).
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In[19] = RK[20, 5, {−2, 2}, 4, 3]
Out[19] =

Pm,r(j): {3}

f1(q):
(q; q)6∞(q2; q2)∞(q4; q4)∞(q10; q10)7∞

q7(q5; q5)2∞(q20; q20)13∞

t:
(q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

AB: {1, (q4; q4)∞(q5; q5)5∞
q3(q; q)∞(q20; q20)5∞

− (q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

}

{pg(t):g ∈ AB}: {50− 40t− 50t2 + 40t3,−50 + 40t+ 10t2}
Common Factor: 10

In[20] = RK[5, 5, {−2, 2}, 5, 2]
Out[20] =

Pm,r(j): {2, 4}

f1(q):
(q; q)20∞

q2(q5; q5)20∞

t:
((q; q)∞)6

q((q5; q5)∞)6

AB: {1}
{pg(t):g ∈ AB}: {15625 + 2500t+ 100t2}
Common Factor: 25

In[21] = RK[5, 5, {−2, 2}, 5, 3]
Out[21] =

Pm,r(j): {3}

f1(q):
(q; q)10∞
q(q5; q5)10∞

t:
((q; q)∞)6

q((q5; q5)∞)6

AB: {1}
{pg(t):g ∈ AB}: {125 + 10t}
Common Factor: 5
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In[22] = RK[10, 5, {−2, 2}, 20, 7]
Out[22] =

Pm,r(j): {7, 19}

f1(q):
(q; q)77∞(q5; q5)31∞

q27(q2; q2)21∞(q10; q10)87∞

t:
(q2; q2)∞(q5; q5)5∞
q(q; q)∞(q10; q10)5∞

AB: {1}
{pg(t):g ∈ AB}: {7388718138654720000t2 + 153008038121308160000t3

+ 1257731351012966400000t4 + 5675499664745431040000t5

+ 16507857641427435520000t6 + 34080767872618987520000t7

+ 53266856094927421440000t8 + 65937188949118156800000t9

+ 66700597538020392960000t10 + 56314162511641313280000t11

+ 40234227634725191680000t12 + 24527816166851215360000t13

+ 12802067441385472000000t14 + 5714660420762992640000t15

+ 2169098785981726720000t16 + 691839480120197120000t17

+ 181850756413399040000t18 + 38175700204339200000t19

+ 6075890734530560000t20 + 680092466755680000t21

+ 49080942745680000t22 + 2083485921960000t23

+ 46908276350000t24 + 483406090000t25 + 1812970000t26

+ 1190000t27}
Common Factor: 10000

4.1.8 Some Congruences Related to the Tau Function

Please note that in this section we will assume q = e2πiz with z ∈ H, to avoid confusion with τ ,
which will be used to identify a certain arithmetic function.

Ramanujan’s tau function is defined by the following:

∆(z) :=
∞∑
n=1

τ(n)qn = q(q; q)24 = η(z)24.

The functions ∆(z) and τ(n) are among the most studied objects in the theory of modular forms.
In particular, numerous interesting congruences have been found. Many classic examples include
the following, discovered by Ramanujan [96]:
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Theorem 4.12.

τ(7n+m) ≡ 0 (mod 7)

for m ∈ {0, 3, 5, 6}.

Our algorithm can easily handle each of these cases. For example, we take the case of τ(7n)
(notice that we study (q; q)24∞, rather than q(q; q)24∞; because of this, we need to examine the
progression 7n+ 6):

In[23] = RK[7, 1, {24}, 7, 6]
Out[23] =

Pm,r(j): {6}

f1(q):
1

q6(q7; q7)24∞

t:
(q; q)4∞
q(q7; q7)4∞

AB: {1}
{pg(t):g ∈ AB}: {−1977326743− 16744t6}
Common Factor: 7

We will give a more recent example discovered by Koustav Banerjee [20]:

Theorem 4.13.

τ(8(14n+ k)) ≡ 0 (mod 23 · 3 · 5 · 11),

for all n ∈ Z≥0 and k an odd integer mod 14.

This may be broken up into three distinct RK identities. We give the case of 112n+ 56 (here
shifted to 112n+ 55)
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In[24] = RK[14, 1, {24}, 112, 55]
Out[24] =

Pm,r(j): {55}

f1(q):
(q2; q2)12∞(q7; q7)30∞
q25(q; q)6∞(q14; q14)60∞

t:
(q2; q2)∞(q7; q7)7∞
q2(q; q)∞(q14; q14)7∞

AB: {1, (q2; q2)8∞(q7; q7)4∞
q3(q; q)4∞(q14; q14)8∞

− 4
(q2; q2)∞(q7; q7)7∞
q2(q; q)∞(q14; q14)7∞

}

{pg(t):g ∈ AB}: {1483245480837120 + 22804899267870720t

− 281353127146291200t2 + 4813307313059266560t3

− 2117115491136307200t4 − 3347863578673152000t5

+ 845098635118510080t6 + 77358598094131200t7

− 25371836549283840t8 − 1132615297820160t9

− 512964938787840t10 − 114993988032000t11

− 349389680640t12,

− 1483245480837120− 6489198978662400t

+ 990900684041748480t2 − 151791226737131520t3

− 1234180893392240640t4 + 461934380423577600t5

− 65498418207129600t6 + 2233732210913280t7

+ 170807954042880t8 + 855016378191360t9

− 4703322624000t10 − 1414533120t11}
Common Factor: 591360

The congruence here is even stronger than in the more general case, since 591360 = 29·3·5·7·11.

4.1.9 Conjectures of Schlosser

Michael Schlosser has recently [98] made a large number of conjectures regarding congruences and
vanishing properties (similar to those seen in Section 4.1.6 above). We have begun to collaborate
on possible extensions of Radu’s algorithm which would prove these conjectures. We give one
example which was already alluded to in Chapter 3. Schlosser conjectured that if

∞∑
n=0

b(n)qn :=
(q; q)3∞

(q11; q11)3∞
,
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then b(11n + 4) is divisible by 11. We found the following elegant identity which confirmed this
conjecture:

∞∑
n=0

b(11n+ 4)qn = −11q
(q11; q11)3∞
(q; q)3∞

.

In[25] = RK[11, 11, {3,−3}, 11, 4]
Out[25] =

Pm,r(j): {4}

f1(q):
(q; q)3∞

q(q11; q11)3∞

t:
((q; q)∞)12

q5((q11; q11)∞)12

AB: {1}
{pg(t):g ∈ AB}: {−11}
Common Factor: 11

We are confident that continued work with Dr. Schlosser will likely result in the discovery of
additional interesting identities.



CHAPTER 5
AN INFINITE FAMILY OF CONGRUENCES (I)

5.1 Introduction

In the previous two chapters we showed how the theory of modular functions can give us a means to
prove various partition identities (for p(n) and many other functions), and in so doing, to retrieve
important arithmetic information. Indeed, we understand these methods of proof so well that we
can fully automate the procedure, as our software has shown.

We now turn to a problem which is more ambitious, and considerably “deeper” in nature.
Functions such as p(n) contain a far richer arithmetic structure than is revealed in the fact that,
say, 5 | p(5n + 4). The remaining chapters of our dissertation will focus on the problem of
infinite families of congruences modulo powers of a prime ℓ. This chapter will begin with a brief
history of the subject. We will then focus on the techniques developed by Paule and Radu [82]
to prove congruence families which are associated with a modular curve in which piecewise ℓ-adic
convergence fails. To show how these techniques may be applied, we will introduce a weighted
partition function introduced by [64] which exhibits a family of congruences recently conjectured
by Choi, Kim, and Lovejoy [31]. The following three chapters will discuss the examination of these
congruences, as well as their proof, as published in [94] and [103].

5.2 History

5.2.1 Overview

Recall the remarkable congruences of Theorem 1.8:

p (5αn+ λ5,α) ≡ 0 (mod 5α),

p (7αn+ λ7,α) ≡ 0 (mod 7⌊α/2⌋+1),

p (11αn+ λ11,α) ≡ 0 (mod 11α),

with λℓ,α the least positive solution to 24x ≡ 1 (mod ℓα). Considering that no specific arithmetic
properties about p(n) were known at all prior to 1918, Ramanujan’s discovery of the congruences
in Theorem 1.8 was extraordinary and groundbreaking. This theorem has led to an extremely
prolific century of work in the arithmetic theory of p(n) and related functions. The theorem itself
was proved gradually between 1919 and 1967. Ramanujan’s notebooks suggest that he understood
the proof in the case ℓ = 5 [24], although he did not publish it before his death in 1920.

In 1934, Chowla showed that Ramanujan’s original conjecture (1.9), fails for (1.11) when
α = 3 [32]. The corrected congruence family for (1.11) was proved by Watson in 1938, alongside
the first published proof for (1.10) [114]. Indeed, both cases can be proved by a similar method,
as we shall see.

The case for (1.12), on the other hand, is far more difficult, and a proof was not produced
until Atkin’s work in 1967 [16]. Since then, other proofs have been found, e.g., [85], but none are
really easy.
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Similar infinite families of congruences have been found for a very large variety of arithmetic
functions. An extremely small sample includes [67], [68], [97], [45], [44], [25], [79], [41], [82], [22],
[50], [111], [113], [30], [71].

For our purposes, we provide the following as a definition for an infinite family of congruences:

Definition 5.1. Given an arithmetic function a(n), an infinite congruence family, or simply con-
gruence family, for a(n) with respect to a prime ℓ, is a collection of congruence relations of the
form

a (ℓαn+ δℓ,α) ≡ 0 (mod ℓβ(ℓ,α)),

in which n ∈ Z≥0, α ∈ Z≥1, β(ℓ, α) is some invertible function in α, and δℓ,α is the minimal positive
solution to

C · δℓ,α ≡ 1 (mod ℓα),

for some fixed C ∈ Z.

In general, we will be interested in congruence families for functions a(n) which are either
coefficients of a quotient of q-Pochhammer rising factorials, or which are closely related to such
coefficients.

The means by which a given congruence family is actually proved is as follows: for each α ≥ 1,
one constructs a function Lα ∈ M (Γ0(N)) with the form

Lα = Φα ·
∑

C·n≡1 mod ℓα

a(n)q⌊n/ℓ
α⌋+1,

in which Φα is a suitable prefactor (usually of the form given to Ramanujan–Kolberg identities in
the previous two chapters), and N ∈ Z≥1. One then must determine whether the sequence

L := (Lα)α≥1

is ℓ-adically convergent, as defined below:

Definition 5.2. A given sequence L = (Lα)α≥1 of power series with integer coefficients is ℓ-adically
convergent to 0 if, for any M ∈ Z≥0 there exists some A ∈ Z≥0 such that for all α ≥ A,

Lα ≡ 0 (mod ℓM).

We will not give an exposition of ℓ-adic topology here, but we will briefly explain its analytic
appeal in the final section of the sequel. In particular, we would want to determine that A =
β−1(ℓ,M) is sufficient.

The problem of proving ℓ-adic convergence varies enormously in difficulty, depending on a
great variety of different factors. Complications include the genus g (X0(N)), possible failure of
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the Radu–Newman condition over M (Γ0(N)), and certain extremely technical matters involving
ℓ-adic convergence of the generating function elements of an appropriate subspace of M (Γ0(N))
(see Chapter 7 for a discussion of this kind of difficulty).

None of these complications arise in the cases of ℓ = 5, 7 in Theorem 1.8. In these cases,
g (X0(ℓ)) = 0, and the spaces M0 (Γ0(ℓ)) are isomorphic to the polynomial ring C[X]. This means
that most of the proof involves manipulating a single well-behaved Hauptmodul. In this case,
most serious complications are not present. Moreover, the Newman–Radu condition applies, and
we may represent this Hauptmodul as an appropriate eta quotient.

In the case of ℓ = 11 we have g (X0(11)) = 1, instantly complicating matters. At the very
best, we have

M0 (Γ0(11)) = C[t]⊕ g1C[t],

for some t, g1 ∈ M0 (Γ0(11)) such that

ord
(11)
0 (t) = −2,

ord
(11)
0 (g1) = −3.

Rather than working over a ring isomorphic to Z[t], our implied algebraic structure is a free rank
2 Z[t]-module.

The implications of this are enormous. In the first place, the complexity of the space neces-
sitates a larger number of computations. In addition, a larger number of generators of the space
immediately raises the question of whether all relevant functions converge to 0 in the ℓ-adic sense.
In the case of Γ0(11) this problem does not arise, but it will become important later.

Given the complications induced by the increase in the genus, it is perhaps understandable
that to date every proof of Theorem 1.8 when ℓ = 11 has been enormously technical, and has
relied heavily on computer calculations (although the question of finding a proof which minimizes
such calculations is still open). Atkin produced the first proof in 1967 [16].

The next breakthrough of importance to us came from a congruence family conjectured in 1994
by James Sellers [100] for a partition function first studied by George Andrews [8]. The generalized
2-color Frobenius partition function cϕ2(n) is the coefficient of the following generating function:

CΦ2 :=
∞∑
n=0

cϕ2(n)q
n =

(q2; q4)∞
(q; q2)4∞(q4; q4)∞

=
(q2; q2)5∞

(q; q)4∞(q4; q4)2∞
. (5.1)

Sellers conjectured that for all α ∈ Z≥1 and n ∈ Z≥0,

cϕ2(5
αn+ λα) ≡ 0 (mod 5α),

with λα the minimal positive integer such that
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12λα ≡ 1 (mod 5α).

One can show that the relevant space of modular functions isM (Γ0(20)). From Theorem 2.28,
we have g (X0(20)) = 1, and we therefore expect many of the complexities associated with Theorem
1.8 when ℓ = 11.

On the other hand, the Newman–Radu condition applies, so that M (Γ0(20)) = E(20). This
at least guarantees that any specific Lα can be represented in terms of eta quotients over Γ0(20).
One would certainly expect that resolving this conjecture would be no more difficult than proving
the case ℓ = 11 of Theorem 1.8.

However, the conjecture proved to be far more resistant than expected. It was not until
2012 that a proof was finally given by Peter Paule and Cristian-Silviu Radu [82]. It is here that
the question of piecewise ℓ-adic convergence becomes a serious concern. The method developed
by Paule and Radu was not only sufficient to resolve the Andrews–Sellers conjecture, but other
congruence families which present similar problems.

We devote the next few chapters to an exposition of the complication of piecewise ℓ-adic
convergence, as well as the method devloped to overcome it. One could of course outline the proof
of the Andrews–Sellers congruence family. However, in the interest of illustrating the breadth of
the method to other problems, we will examine a different and quite interesting infinite family of
congruences whose existence was originally conjectured by Youn-Seo Choi, Byungchan Kim, and
Jeremy Lovejoy in [31].

5.3 The Rogers–Ramanujan Subpartition Function

For the remainder of this chapter, we will describe the arithmetic function studied by Kolitsch in
[64], from which the Choi–Kim–Lovejoy conjecture arises. The function is quite attractive by itself,
as it relates to the beautiful subject of the Rogers–Ramaujan identities. We give the identities
below:

Theorem 5.3.

∞∑
n=0

qn
2

(q; q)n
=

1

(q; q5)∞(q4; q5)∞
,

∞∑
n=0

qn
2+n

(q; q)n
=

1

(q2; q5)∞(q3; q5)∞
.

Corollary 5.4. Let k ∈ {1, 2}. The number of partitions of n with parts distinct, nonconsecutive,
and greater than or equal to k are equal to the number of partitions of n with parts congruent to
±k (mod 5).

The following definition is by Kolitsch [64]:
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Definition 5.5. Let λ be a partition of m. The Rogers–Ramanujan subpartition of λ is the unique
subpartition with a maximal number of parts, in which the parts are nonrepeating, nonconsecutive,
and larger than the remaining parts of λ. More specifically, given the partition λ : λ1 ≥ λ2 ≥
... ≥ λl ≥ λl+1 ≥ ... ≥ λk, then the Rogers–Ramanujan subpartition of λ is the largest possible
subpartition λ1 ≥ λ2 ≥ ... ≥ λl with no repeated or consecutive parts, and with λl > λl+1 (If l = k,
define λl+1 = 0). Here, l is the length of the subpartition.

At times we will denote such a subpartition a R–R subpartition.
For instance, the Rogers–Ramanujan subpartition of

8 + 5 + 3 + 2 + 2 + 1 + 1 + 1

is 8 + 5 + 3, with length 3. On the other hand, the Rogers–Ramanujan subpartition of

8 + 8 + 2 + 2 + 1 + 1 + 1

is simply the length-0 empty partition.
With this, we now define the partition functions Rl(n), A1(n) as follows:

Definition 5.6. Let Rl(n) be the number of partitions of n containing a Rogers–Ramanujan
subpartition of length l, and

A1(n) =
∑
l≥0

l ·Rl(n). (5.2)

For example, we consider A1(5). Here we give the 7 partitions of 5, with the corresponding
R–R subpartitions:

(5) ⊇ (5),

(4, 1) ⊇ (4, 1),

(3, 2) ⊇ (3),

(3, 1, 1) ⊇ (3),

(2, 2, 1),

(2, 1, 1, 1) ⊇ (2),

(1, 1, 1, 1, 1).

So we find that of the seven partitions of 5, four of them contain a R–R subpartition of
length 1, one partition contains a R–R subpartition of length 2, and two partitions contain no
R–R subpartition. We therefore have

A1(5) = 1 ·R1(5) + 2 ·R2(5) = 4 + 2 = 6.
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As shown in [10, Chapter 7], the generating function for the number of partitions into exactly
r parts, in which all parts are nonconsecutive and nonrepeating, is given by

qr
2

(q; q)r
.

However, if we allow the denominator to grow to (q; q)∞, we now generate the number of partitions
of m in which the first r parts are necessarily nonconsecutive and nonrepeating, and larger than
all remaining parts.

Notice, however, that such a partition may indeed have a larger number of large, nonconsec-
utive, nonrepeating parts; that is, all partitions containing a Rogers–Ramanujan subpartition of
length l ≥ r are also accounted for with qr

2
/(q; q)∞. In particular, if we sum from r = 1 to l, i.e.,

l∑
r=1

qr
2

(q; q)∞
=

1

(q; q)∞

l∑
r=1

qr
2

,

the number of partitions ofm containing a Rogers–Ramanujan subpartition of length l is accounted
for a total of l times. Since of course, (q; q)−1

∞
∑∞

r=l+1 q
r2 will only account for subpartitions of length

> l, we have

Theorem 5.7.

1

(q; q)∞

∞∑
r=1

qr
2

=
∞∑
n=1

∑
l≥0

l ·Rl(n)q
n =

∞∑
n=1

A1(n)q
n. (5.3)

However, we can reduce the generating function to a simpler object. We see that

∞∑
n=1

A1(n)q
n =

1

(q; q)∞

(
∞∑
r=1

qr
2

)
(5.4)

=
1

2

1

(q; q)∞

((
∞∑

r=−∞

qr
2

)
− 1

)
. (5.5)

We can multiply both sides of (5.5) by 2:

2
∞∑
n=1

A1(n)q
n =

1

(q; q)∞

(
∞∑

r=−∞

qr
2

)
− 1

(q; q)∞
. (5.6)

Now we bring Jacobi’s triple product identity [61, Chapter 3, Theorem 3] to bear on
∑∞

r=−∞ qr
2
,

and have
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2
∞∑
n=1

A1(n)q
n =

(q2; q2)∞(−q; q2)2∞
(q; q)∞

− 1

(q; q)∞
(5.7)

=
(q2; q2)5∞

(q; q)3∞(q4; q4)2∞
− 1

(q; q)∞
. (5.8)

Finally, we can express 1/(q; q)∞ =
∑∞

n=0 p(n)q
n. If we let a(n) represent the coefficient of qn in

our first term of (5.8), then we have

2 · A1(n) = a(n)− p(n). (5.9)

5.3.1 The Choi–Kim–Lovejoy Conjecture

We see that A1(n) bears a close relationship to the functions a(n) and p(n). Notice that the
generating function for a(n) in (5.8) resembles that of cϕ2(n) in (5.1). Knowing that cϕ2(n)
contains a family of congruences modulo powers of 5, Choi, Kim, and Lovejoy conjectured [31]
a similar family of congruences might exist for a(n). This fact, coupled with the well-known
congruences of p(n) in Theorem 1.8, could imply a family of congruences for A1(n).

Choi, Kim, and Lovejoy conjectured the existence of such a congruence family; but they did
not give it a specific form. We will devote the next three chapters to an examination of this
conjecture. In Chapter 6 we will provide an explicit statement of the existing congruence family,
and give evidence for its validity. In Chapters 7 and 8 we will give a proof of this congruence
family.



CHAPTER 6
AN INFINITE FAMILY OF CONGRUENCES (II)

This chapter is based on a collaboration with Cristian-Silviu Radu in [94]. We took significant
inspiration from Archimedes’ groundbreaking work, “The Method Treating of Mechanical Prob-
lems,” [15] which emphasizes the importance of an experimental approach to mathematics—both
to the solutions to specific problems and (in retrospect) to the development of new theoretical
techniques.

6.1 Introduction

Recall the function A1(n) from the previous chapter. Choi, Kim, and Lovejoy proved in [31,
Proposition 6.4] that

A1(25n+ 9) ≡ A1(25n+ 14) ≡ A1(25n+ 24) ≡ 0 (mod 5). (6.1)

They then suggest: “We remark that it appears from numerical computation that [the congruences
in (6.1)] can be extended to a family of congruences modulo powers of 5.”

As additional evidence, they conjecture the following congruences:

A1(125n+ 74) ≡ A1(125n+ 124) ≡ 0 (mod 25), (6.2)

A1(3125n+ 1849) ≡ A1(3125n+ 3099) ≡ 0 (mod 125). (6.3)

Notice, however, that the exact form of the congruence family is uncertain.
We have proved that Choi, Kim, and Lovejoy were indeed correct. However, it is interesting

to describe the manner in which we arrived at the precise form of the congruence family.
In the first place, it may be checked that A1(5n+ j) has no interesting congruence properties

for 0 ≤ j ≤ 4. On the other hand, we can verify using our software package that

(
∞∑
n=0

a(25n+ 9)qn

)(
∞∑
n=0

a(25n+ 14)qn

)

forms the left-hand side of a Ramanujan–Kolberg identity, while

∞∑
n=0

a(25n+ 24)qn

forms a separate identity.
Let us take M = 4, and r = (−3, 5,−2). We will examine the progressions 5n+ j, 25n+ 24,

25n+ 9, 25n+ 14. For all of these N = 20 is the most convenient.
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In[26] = RK[20, 4, {−3, 5,−2}, 5, 4]
Out[26] =

Pm,r(j): {4}

f1(q):
(q; q)7∞(q4; q4)6∞(q10; q10)6∞
q6(q2; q2)7∞(q20; q20)12∞

t:
(q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

AB: {1, (q4; q4)∞(q5; q5)5∞
q3(q; q)∞(q20; q20)5∞

− (q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

}

{pg(t):g ∈ AB}: {−5− 4t+ 13t3, 5− t}
Common Factor: None

In[27] = RK[20, 4, {−3, 5,−2}, 25, 24]
Out[27] =

Pm,r(j): {24}

f1(q):
(q; q)35∞(q4; q4)18∞(q10; q10)30∞

q26(q2; q2)27∞(q5; q5)8∞(q20; q20)48∞

t:
(q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

AB: {1, (q4; q4)∞(q5; q5)5∞
q3(q; q)∞(q20; q20)5∞

− (q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

}

{pg(t):g ∈ AB}: {126953125 + 74218750t− 174609375t2 + 25390625t3

− 1237031250t4 + 1542084375t5 + 3798876250t6

− 7568402750t7 + 3755535625t8 + 210440100t9

− 754603995t10 + 190492925t11 + 10649860t12 + 5735t13,

− 78125000 + 62500000t− 46093750t2 + 128906250t3

+ 551875000t4 − 1636475000t5 + 430767500t6

+ 1615951500t7 − 1247744000t8 + 145803400t9

+ 72090170t10 + 543930t11}
Common Factor: 5
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In[28] = RK[20, 4, {−3, 5,−2}, 25, 9]
Out[28] =

Pm,r(j): {9, 14}

f1(q):
(q; q)70∞(q4; q4)36∞(q10; q10)60∞

q53(q2; q2)54∞(q5; q5)16∞(q20; q20)96∞

t:
(q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

AB: {1, (q4; q4)∞(q5; q5)5∞
q3(q; q)∞(q20; q20)5∞

− (q4; q4)4∞(q10; q10)2∞
q2(q2; q2)2∞(q20; q20)4∞

}

{pg(t):g ∈ AB}: {10013580322265625 + 59127807617187500t

− 110969543457031250t2 + 96191406250000000t3

+ 109887695312500000t4 + 474152832031250000t5

− 3086817932128906250t6 + 3665353320312500000t7

+ 1541332017822265625t8 − 4928926594726562500t9

− 14728224598437500000t10 + 47015711237500000000t11

− 17360709171796875000t12 − 82244342180750000000t13

+ 128932571518142187500t14 − 66143840853683000000t15

− 13610325677285953125t16 + 34453822277459862500t17

− 17231518535956711250t18 + 2494768997232560000t19

+ 1006244088722719000t20 − 452504722148725200t21

+ 29559754268980350t22 + 9249443740362400t23

+ 193416533337075t24 + 417073480500t25

+ 29806500t26,

− 7629394531250000− 15258789062500000t

+ 47073364257812500t2 − 60295104980468750t3

− 68582153320312500t4 + 34503479003906250t5

+ 1022648315429687500t6 − 2052807238769531250t7

+ 771095063476562500t8 + 1813686313964843750t9

+ 3931945998828125000t10 − 22221316790429687500t11

+ 27127465971796875000t12 + 806447634539062500t13

− 29734587613040625000t14 + 26973339597778937500t15

− 7446887347990125000t16 − 3085042707508612500t17

+ 2788743459851142500t18 − 587342285427863750t19

− 68848607602826500t20 + 29891429537014450t21

+ 1744979012801500t22 + 12418871762550t23

+ 6315230100t24 + 39150t25}
Common Factor: 25
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Here, as in the previous chapter, we have

2 · A1(n) = a(n)− p(n),

with

CR :=
∞∑
n=0

a(n)qn =
(q2; q2)5∞

(q; q)3∞(q4; q4)2∞
.

Because 25n+ 9 ≡ 25n+ 14 ≡ 25n+ 24 ≡ 4 (mod 5), p(5n+ 4) ≡ 0 (mod 5), and because 2 and
5 are coprime, the RK identities above prove (6.1).

Indeed, divisibility by 5α arises in (6.1), (6.2), (6.3) when 24n ≡ 1 (mod 5α) and α = 1, 2.
The congruence properties of p(n) therefore allow us to focus on the properties of a(n).

Choi, Kim, and Lovejoy noted [31, Section 6] that CR bears a similar form to CΦ2 (see the
previous chapter). This suggests a family of congruences for a(n).

However, as we have already pointed out, no satisfying congruence exists for a(5n+ j). This
alone shows that if our congruence family has the form given in Definition 5.1, then the corre-
sponding power function β(5, α) cannot be simple equality. In order to specify the congruence
family, we have to examine multiple cases.

At first sight, the matter of specifying a family of congruences might seem easy enough.
Certainly, one could directly compute a list of the numerical values of a(mn + j) for a fixed
m, j ∈ Z≥0, as n varies over a large number of nonnegative integers. We could program a computer
to check the greatest common divisor of this list.

We could also apply the machinery of Radu’s algorithm from Chapters 3, 4 to a(n) for various
arithmetic progressions. However, for 24λα ≡ 1 (mod 5α), one can quickly show that

λ2α−1 =
19 · 52α−1 + 1

24
,

λ2α =
23 · 52α + 1

24
.

This immediately implies that modest increases in α will drive even the smallest values of n
to increase exponentially. Given that [10, Chapter 6] a(n) already increases subexponentially with
n, it is very clear that even the most powerful computers will not be able to check the explicit RK
identities for

∞∑
n=0

a(52αn+ λ2α)q
n

beyond the very smallest values of α.
This of course serves little concern for a conjecture already proven. However, the methods

developed by Atkin, Paule, Radu, and others to actually prove a conjecture of this sort give
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comparatively little understanding of how these conjectures came to be inferred in the first place.
We are currently proceeding without an exact form for the congruence family conjectured by Choi,
Kim, and Lovejoy, so that we do not yet have an explicit theorem to prove.

This means that we will need to find a more efficient way to verify a family of congruences
for many specific values of α.

In this chapter we will describe one such approach. In particular, we will show how to give
an explicit form to Choi, Kim, and Lovejoy’s congruence family, as in Theorem 6.3 below. We will
prove this theorem in the next two chapters; but first we will show how substantial evidence for
the congruence family may be gathered.

We will use the congruence family conjectured by Choi, Kim, and Lovejoy as our principal
example, but we will also demonstrate that these techniques may be adapted with relatively little
difficulty to many similar conjectures in which an arithmetic sequence has a generating function
that is a q-rising factorial quotient with factors of the form (qm; qm)∞.

We outline the key algorithmic steps to check Theorem 6.3 for a large number of α. We
construct a useful algebra basis for the space of eta quotients over Γ0(20). From here we show how
the basis can be suitably modified to interact more carefully with the U5 operator.

We then discuss how to apply our method in more generalized circumstances. In the sequel
we explain why our approach, so useful in verifying a substantial number of cases of a conjecture,
is not generally capable of providing a complete proof.

Remark 6.1. While our experimental method cannot yield a rigorous proof for a congruence
family, its underlying intuitive approach can be made into a more theoretically sound technique.
See the later chapters discussing the localization technique.

6.2 Gathering Evidence

Our observations in the previous section suggest that a congruence family for a(n) will exist for n
as a solution to 24x ≡ 1 (mod 5α) for some values of α. The case for α = 1 can readily be shown
to have no congruences of interest, while the case α = 2 was already checked in the affirmative by
Choi, Kim, and Lovejoy. With some computational difficulty, it can be verified that a(125n+ 99)
is not divisible by 25, showing that there is no congruence of interest in the case α = 3. Examining
even the very next case, the progression 625n+ 599, will be much more difficult.

But supposing that congruences of interest lie among solutions of 24x ≡ 1 (mod 5α), let us
determine how we might check successive cases. Our opening steps are not unlike the initial steps
to a true proof. We can very quickly define a sequence of functions L = (Lα)α≥0 in which

L0 := 1,

Lα := Φα ·
∑

24n≡1 mod 5α

a(n)q⌊n/5
α⌋,

Φ2α−1 =
q

CR(q5)
, and Φ2α =

q

CR(q)
.
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Writing each Lα more explicitly, we have

L0 = 1, (6.4)

L2α−1 =
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
n=0

a(52α−1n+ λ2α−1)q
n+1, (6.5)

L2α =
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
n=0

a(52αn+ λ2α)q
n+1. (6.6)

Notice that the prefactors for each Lα can be expanded into integer power series in which the
initial term has coefficient 1. This implies that no positive power of 5 can divide any Φα (that is,
no positive power of 5 can divide every term of Φα). Therefore, if a given power of 5 divides Lα,
then that given power of 5 must divide every term a(n).

We define

A := q · CR(q)

CR(q25)
,

and then the set of linear operators

U (0) (f) := U5 (A · f) ,
U (1) (f) := U5 (f) ,

U (α) (f) := U (α mod 2) (f) .

Notice that for two functions f and g, and any α ∈ C,

U (0) (α · f + g)

= U5 (A(q)(α · f + g)) = U5 (α · A(q) · f + A(q) · g) (6.7)

= α · U5 (A(q) · f) + U5 (A(q) · g) = α · U (0)(f) + U (0)(g). (6.8)

Since we already know from Chapter 2 that U (1) = U5 is linear, we have thus established that U (α)

is linear for all α ≥ 0.
Moreover, we can quickly prove that A is an eta quotient for Γ0(100). This gives us the

following important consequence of Theorem : for all f ∈ M (Γ0(20)),

U (α)(f) ∈ M (Γ0(20)) . (6.9)

This now gives us a means of connecting Lα with Lα+1.
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Theorem 6.2. For all n ∈ Z>0,

Lα+1 = U (α) (Lα) . (6.10)

Proof. For a given α ∈ Z>0, we have

U (1) (L2α−1)

= U5

(
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
n=0

a(52α−1n+ λ2α−1)q
n+1

)
(6.11)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞
U5

(∑
n≥0

a(52α−1n+ λ2α−1)q
n+1

)
(6.12)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞
U5

(∑
n≥1

a(52α−1(n− 1) + λ2α−1)q
n

)
(6.13)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∑
5n≥1

a(52α−1(5n− 1) + λ2α−1)q
n (6.14)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
n=0

a(52αn+ 52α − 52α−1 + λ2α−1)q
n+1 (6.15)

=
(q; q)3∞(q4; q4)2∞

(q2; q2)5∞

∞∑
n=0

a(52αn+ λ2α)q
n+1, (6.16)

since

52α − 52α−1 + λ2α−1 = 52α−1(4) +
19 · 52α−1 + 1

24
(6.17)

=
52α−1(5 · 23) + 1

24
=

23 · 52α + 1

24
= λ2α. (6.18)

Furthermore,
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U (0) (L2α)

= U5

(
A · (q; q)

3
∞(q4; q4)2∞

(q2; q2)5∞

∞∑
n=0

a(52αn+ λ2α)q
n+1

)
(6.19)

= U5

(
(q25; q25)3∞(q100; q100)2∞

(q50; q50)5∞

∞∑
n=0

a(52αn+ λ2α)q
n+2

)
(6.20)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞
U5

(
∞∑
n=0

a(52αn+ λ2α)q
n+2

)
(6.21)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞
U5

(∑
n≥2

a(52α(n− 2) + λ2α)q
n

)
(6.22)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∑
5n≥2

a(52α(5n− 2) + λ2α)q
n. (6.23)

Notice that 5n ≥ 2 implies that n ≥ 1 for n ∈ Z, so that

U (0) (L2α)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∑
n≥1

a(52α+1n− 2 · 52α + λ2α)q
n (6.24)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
n=0

a(52α+1(n+ 1)− 2 · 52α + λ2α)q
n+1 (6.25)

=
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
n=0

a(52α+1n+ λ2α+1)q
n+1, (6.26)

since

52α+1 − 2 · 52α + λ2α = 52α(3) +
23 · 52α + 1

24
(6.27)

=
52α(5 · 19) + 1

24
=

19 · 52α+1 + 1

24
= λ2α+1. (6.28)

We suspect that Lα converges 5-adically to 0. We want to know its precise convergence rate.
As an example, let us select L1:
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L1 =
(q5; q5)3∞(q20; q20)2∞

(q10; q10)5∞

∞∑
m=0

a(5m+ 4)qm+1

=
η(5τ)3η(20τ)2

η(10τ)5
· q1−5/24

∞∑
m=0

a(5m+ 4)qm.

In keeping with the notation of Chapter 3, we have M = 4, r̂ = (−3, 5,−2), m = 25, t = 24.
The smallest possible value of N to satisfy the ∆∗ criteria is N = 20.

Now, the vector ŝ = (0, 0, 0, 3,−5, 2) satisfies the conditions of Theorem 3.5, and P5,r̂(4) = {4}
by Lemma 3.4. Finally, we have

α = 1− 5

24
=

19

24
=

4

5
+

1

120
(1(−3) + 2(5) + 4(−2)).

We have therefore shown that L1 ∈ M (Γ0(20)).
Because U (α) (f) ∈ M (Γ0(20)) for all f ∈ M (Γ0(20)) by (6.9), we have that L forms a

sequence of functions in M (Γ0(20)).
However, while L1 ∈ M (Γ0(20)), it is not necessarily in M∞ (Γ0(20)). We need some ω ∈

E∞(20) that will overcome any other poles that L1 has, i.e.,

ω · L1 ∈ M∞ (Γ0(20))Q .

We may take advantage of the fact that

M∞ (Γ0(20))Q = ⟨E∞(20)⟩Q . (6.29)

In that case, ω · L1 ∈ ⟨E∞(20)⟩Q.
Let us define ⟨E∞(20)⟩Q = ⟨1, G1, ..., Gv⟩Q[T ] , in which T,G1, ..., Gv satisfy the conditions of

Theorem 2.44.
We note that ω, T, T−1, Gi ∈ E(20). Let us suppose for the moment that each of these functions

has integer coefficients in its q-expansion. We must therefore have polynomials p0, p1, ..., pv ∈ Z[X]
such that

ω · L1 = p0(T ) + p1(T )G1 + ...+ pv(T )Gv, (6.30)

L1 =
p0(T )

ω
+
p1(T )

ω
G1 + ...+

pv(T )

ω
Gv. (6.31)

If we apply U (1) = U5 to both sides of (6.31), we then have an expression for L2 in terms of
U (1) (T jGk/ω). If we were able to find appropriate expansions of these terms (e.g., expansions in
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terms of T,Gk), then we could apply Uα arbitrarily many times, and find expansions of Lα, no
matter the size of α.

We can simplify matters enormously by imposing an additional condition to the necessary
properties of our algebra basis. We know that L1 has poles at various cusps of Γ0(20). If we
were to choose T to have positive order at the corresponding poles of L1, then we could make the
substitution ω = T l, for l ∈ Z>0 sufficiently large:

T l · L1 = p0(T ) + p1(T )G1 + ...+ pv(T )Gv,

L1 ∈ ⟨1, G1, ..., Gv⟩Z[T,T−1] .

Now we have only to understand how to compute expansions for U (i) (T jGk), with i ∈ {0, 1},
j ∈ Z, and k ∈ {0, 1, ..., v}. Moreover, if we are careful to arrange so that T has positive order at
every possible pole of the functions AiT jGk for all i ∈ {0, 1}, j ∈ Z, and k ∈ {0, 1, ..., v}, then we
will have

U (i)
(
T jGk

)
∈ ⟨1, G1, ..., Gv⟩Z[T,T−1] .

That is, ⟨1, G1, ..., Gv⟩Z[T,T−1] is closed under U (α) for all α ∈ Z≥0.
From this closure theorem, we can construct a relatively efficient algorithm for checking Lα

for divisibility by powers of 5. Supposing we want to check our conjecture that L2α ≡ 0 (mod 5α),
by examining 0 ≤ α ≤ 2B, for some B ∈ Z>0.

Noting that we can define L0 := 1, we can begin by immediately establishing that L0 ∈
⟨1, G1, ..., Gv⟩Z[T,T−1].

From here, we compute

L1 = U (0) (1) =
∑
j∈Z,

0≤k≤v

b1,j,kT
jGk.

However, as we apply U (α) for increasing α, we will find the coefficients b1,j,k become very large.
To resolve this, we reduce each coefficient to the least positive residue modulo 5B:

L
(B)
1 =

∑
j∈Z,

0≤k≤v

c1,j,kT
jGk,

with c1,j,k ≡ b1,j,k (mod 5B). We thus define the following sequence of functions:

L
(B)
0 := 1,

L(B)
α := U

(α−1)
5

(
L
(B)
α−1

)
(mod 5B) =

∑
j∈Z,

0≤k≤v

cα,j,kT
jGk,
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with 0 ≤ cα,j,k < 5B for all α, j, k.
We now give the steps for checking this conjecture:

1. Begin with α = 0, v0 = 0, and V = {v0}.

2. Expand L
(B)
α into ⟨1, G1, ..., Gv⟩Z[T,T−1]: L

(B)
α =

∑
j∈Z,

0≤k≤v

cα,j,kT
jGk.

3. Expand U
(α)
5

(
L
(B)
α

)
=
∑
j∈Z,

0≤k≤v

cα,j,kU
(α)
5

(
T jGk

)
.

4. Reduce U
(α)
5

(
L
(B)
α

)
(mod 5B) to get L

(B)
α+1 =

∑
j∈Z,

0≤k≤v

cα+1,j,kT
jGk.

5. Let vα+1 be the maximal power of 5 (up to B) dividing each nonzero cα+1,j,k.

6. Set V = V ∪ {vα+1}.

7. Set α = α + 1, and return to Step 2. Continue until α = B.

Here, the growth of our coefficients cα,j,k is limited by the size of 5B. This bound grows exponen-
tially with B, but it is far better than the sub-double-exponential coefficient growth that we would
otherwise expect.

For example, setting B = 10 ensures that L
(B)
α will contain terms smaller than 510, of the

order of 107. These numbers are small enough even for a modest laptop to manage, and we can
now examine the divisibility of Lα for 1 ≤ α ≤ 10.

Doing so yields that

L1 ≡ 0 (mod 50),

L2 ≡ 0 (mod 51),

L3 ≡ 0 (mod 51),

L4 ≡ 0 (mod 52),

L5 ≡ 0 (mod 52),

L6 ≡ 0 (mod 53),

L7 ≡ 0 (mod 53),

L8 ≡ 0 (mod 54),

L9 ≡ 0 (mod 54),

L10 ≡ 0 (mod 55).

Now we have some more compelling evidence from which to extract an explicit congruence family,
which we may immediately express in terms of A1:
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Theorem 6.3. If λα is the smallest positive integer such that 24λα ≡ 1 (mod 5α), we have

A1

(
52αn+ λ2α

)
≡ 0 (mod 5α).

Notice that the experimental method above enabled us to formulate a precise conjecture while
investing relatively little time or computation.

Moreover, our method begins with computation of a very precise algebra basis for ⟨E∞(20)⟩Q.
As is demonstrated in [103, Section 4.1], the functions in this basis are essential for actually
completing the proof of the conjecture. This alone establishes that the full algorithm, with its
relative efficiency and economy, may as well be brought to bear before attempting a proof.

We will prove Theorem 6.3 in the next two chapters. However, we will devote the rest of this
chapter to a complete exposition of the method: namely, the procedure by which the functions
T,G1, ..., Gv are computed. Finally, we will finish with a demonstration of why this method fails
to generalize into a complete proof, and the failure of piecewise ℓ-adic convergence.

6.2.1 The Basis

We now discuss computation of the functions T,G1, ..., Gv. The functions Gk may be computed
using the algebra basis algorithm in [91], once the function T is known. However, T must be selected
with care, so that its positive-order zeros correspond with any poles possessed by U5 (A

iT jGk), for
all (i, j, k) ∈ {0, 1} × Z× {0, 1, ..., v}.

To begin with, we assume that T has the form

T =
∏
δ|20

η(δτ)sδ .

Since T is a modular function over Γ0(20), we know that s = (sδ)δ|20 must satisfy the conditions
of Theorem 2.40:

∑
δ|20

sδ = 0,

∑
δ|20

δsδ + 24x1 = 0,

∑
δ|20

20

δ
sδ + 24x2 = 0,

∏
δ|20

δ|sδ| = x23,

with x1, x2, x3 ∈ Z. What additional conditions are necessary for T?
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Recall that

A := q · CR(q)

CR(q25)
= q · (q

2; q2)5∞(q25; q25)3∞(q100; q100)2∞
(q; q)3∞(q4; q4)2∞(q50; q50)5∞

.

Notice thatA ∈ M (Γ0(100)), while T,Gk ∈ M (Γ0(20)). BecauseM (Γ0(20)) ⊆ M (Γ0(100)),
we may take the product AiT jGk ∈ M (Γ0(100)). Then our U5 operator maps AiT jGk ∈
M (Γ0(100)) to

f
(i,j)
k = U5

(
AiT jGk

)
=

1

5

4∑
r=0

Ai
(
τ + r

5

)
T j
(
τ + r

5

)
Gk

(
τ + r

5

)
∈ M (Γ0(20)) .

We need to account for any possible poles of f
(i,j)
k , so that Tmf

(i,j)
k ∈ M∞ (Γ0(20)) for sufficiently

large m ∈ Z>0. Let us begin by considering A alone.
We now give a set of representatives for the cusps of Γ0(20), and for those of Γ0(100). They

may be calculated using Theorems 2.10 and 2.11:

C(20) =
{

1

20
,
1

10
,
1

5
,
1

4
,
1

2
, 1

}
,

C(100) =
{

1

100
,
1

50
,
1

25
,
1

20
,
1

10
,
3

20
,
1

5
,
1

4
,
3

10
,
7

20
,
2

5
,
9

20
,
1

2
,
3

5
,
7

10
,
4

5
,
9

10
, 1

}
.

In the first place, we have an exact form for A, which allows us to compute its zeros and poles
exactly, via Theorem 2.41. Doing so, and accounting for Theorem 2.11, reveals the following:

ord
(100)
1/100(A) = 1,

ord
(100)
1/50 (A) = −5,

ord
(100)
1/25 (A) = 4,

ord
(100)
1/4 (A) = −1,

ord
(100)
1/2 (A) = 5,

ord
(100)
1 (A) = −4.

In particular, A has negative order (i.e., poles) at 1/50, 1/4, 1. Because U5 sends A to
1
5

∑4
r=0A

i ((τ + r)/5), we need to examine the possible rational numbers τ may approach so that
(τ + r)/5 approaches a rational number corresponding to the cusps at 1/50, 1/4, 1.

In Table D.1 we take τ to approach an element of C(20). In the process, (τ + r)/5 will
tend to a rational number for r = 0, 1, 2, 3, 4. We then take the element in C(100) representing
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the same cusp as (τ + r)/5 through use of Theorem 2.11. For example, as τ → 1/10, and for
r = 3, (τ + r)/5 → 31/50. However, if we set a1/c1 = 1/50 ∈ C(100) and a/c = 31/50, and take
m = 31, n = 0, then the congruences of Theorem 2.11 are satisfied, so that for τ → 1/10 and
r = 3, we have the corresponding cusp 1/50.

Notice that just three cusps over Γ0(20) (represented by 1, 1/2, 1/4) correspond to 15 of the
18 cusps of Γ0(100). The remaining three cusps of Γ0(20) (1/5, 1/10, 1/20) correspond bijectively
to the remaining cusps over Γ0(100) (1/25, 1/50, 1/100).

We see that for (τ + r)/5 to approach the cusps 1/50, 1/4, 1, τ must approach 1/10, 1/4, 1,
respectively.

In other words, U5 (A) has possible poles at the cusps 1/10, 1/4, 1. We therefore want our T
to have positive order at these cusps. We therefore have the following system of inequalities that
we know are necessary (but not yet sufficient) for T =

∏
δ|20 η(δτ)

sδ :

1

24

∑
δ|20

gcd(10, δ)2

δ
sδ ≥ 1,

5

24

∑
δ|20

gcd(4, δ)2

δ
sδ ≥ 1,

5

6

∑
δ|20

gcd(1, δ)2

δ
sδ ≥ 1.

Next we consider Gk for 1 ≤ k ≤ v. By our definition, we want Gk ∈ M∞ (Γ0(20)), so that
Gk only has a pole at the cusp at ∞ with respect to Γ0(20). Table D.2 below is analogous to
Table D.1 but only considering the cusps of Γ0(20).

Notice that the cusp at ∞ is represented in Γ0(20) by 1/20, which may be approached as
τ approaches the cusps 1/20, 1/4 over Γ0(20). Because we want T to have a pole at 1/20, we
therefore only need to account for the additional possible pole at 1/4, which we already accounted
for.

Therefore, a function T satisfying these three inequalities, together with the conditions of
Theorem 2.40, will satisfy

TmU5

(
AiT jGk

)
∈ M∞ (Γ0(20))

for i = 0, 1, j ≥ 0, 1 ≤ k ≤ v, with sufficiently large m.
Finally, there is the question of negative powers of T . We know that because T must have

positive order at 1/10, 1/4, 1, therefore T−1 must have negative order at these cusps. This means
of course that T must have positive order at any cusp representative a/c such that

a/c+ r

5
=
a+ cr

5c
∈
{

1

10
,
1

4
, 1

}
.
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Examining our table above, it can quickly be seen that these values are approached as τ approaches
the cusps at 1/10, 1/2, 1/4, 1. This induces another constraint: T must have positive order at 1/2.

We now have the additional inequality

5

24

∑
δ|20

gcd(2, δ)2

δ
sδ ≥ 1.

We now have conditions for the behavior of T at every cusp of Γ0(20) except for 1
5
. Since

A,Gk do not have poles at 1/5, we need only worry about T and T−1. Suppose first that T has
positive order at 1/5. Then of course, T−1 must have negative order at 1/5. Which cusps over
Γ0(20) correspond to a potential pole at 1/5? Examining our table above, we see that the only
possible poles induced would occur at 1/5, 1. Now T already has positive order at 1, as well as at
1/5 by hypothesis.

Therefore, since the cusp at 1/5 causes no problems whether T has positive or zero order
there, we do not need to induce any specific condition at the cusp (besides the nonnegative order
of T ).

1

6

∑
δ|20

gcd(5, δ)2

δ
sδ ≥ 0.

We now have sufficient conditions from which to derive T , but we give one more mild condition
for the sake of efficiency. We clearly want |ord(20)

1/20(T )| to be as small as possible. We therefore
take note of the fact that

ord
(20)
1/20(T ) =

1

24

∑
δ|20

δsδ,

so that in our Newman system, x1 = −ord
(20)
1/20(T ). We therefore add the additional tentative

condition to our system:

x1 = 1,

to search for the possibility that there exists an acceptable T with ord
(20)
1/20(T ) = −1. If our system

contains no solution, then we must reset x1 = 2 and continue.
Our complete system, then, is
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∑
δ|20

sδ = 0,

∑
δ|20

δsδ + 24x1 = 0,

∑
δ|20

20

δ
sδ + 24x2 = 0,

∏
δ|20

δ|sδ| = x23,

1

10

∑
δ|20

gcd(10, δ)2

δ
sδ ≥ 1,

1

6

∑
δ|20

gcd(5, δ)2

δ
sδ ≥ 0,

5

24

∑
δ|20

gcd(4, δ)2

δ
sδ ≥ 1,

5

24

∑
δ|20

gcd(2, δ)2

δ
sδ ≥ 1,

1

6

∑
δ|20

gcd(1, δ)2

δ
sδ ≥ 1,

x1 = −ord
(20)
1/20(T ),

with x1, x2, x3 ∈ Z.
This system allows us to obtain a vector s that is optimal with respect to x1.
We made use of the software package 4ti2 [1] to solve this system, and discovered the solution

vector s = (2, 0, 2,−2, 8,−10), of minimal order x1 = 5. This gives us the function

T =
η(τ)2η(4τ)2η(10τ)8

η(5τ)2η(20τ)10
=

1

q5
(q; q)2∞(q4; q4)2∞(q10; q10)8∞

(q5; q5)2∞(q20; q20)10∞
.

From here we may apply the algorithm AB of Section 3.3.1 to construct the functions Gk.
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Theorem 6.4. Let

T :=
η(τ)2η(4τ)2η(10τ)8

η(5τ)2η(20τ)10
=

1

q5
(q; q)2∞(q4; q4)2∞(q10; q10)8∞

(q5; q5)2∞(q20; q20)10∞
(6.32)

H :=
η(4τ)η(5τ)5

η(τ)η(20τ)5
=

1

q3
(q4; q4)∞(q5; q5)5∞
(q; q)∞(q20; q20)5∞

, (6.33)

G :=
η(4τ)4η(10τ)2

η(2τ)2η(20τ)4
=

1

q2
(q4; q4)4∞(q10; q10)2∞
(q2; q2)2∞(q20; q20)4∞

. (6.34)

Then

M∞ (Γ0(20))Q = ⟨1, G1, G2, G3, G4⟩Q[T ] , (6.35)

with

G1 = G, (6.36)

G2 = H −G, (6.37)

G3 = G2, (6.38)

G4 = (H −G)2. (6.39)

Moreover,

U5

(
AiT jGk

)
∈ ⟨1, G1, G2, G3, G4⟩Z[T,T−1] , (6.40)

for all (i, j, k) ∈ {0, 1} × Z× {0, 1, 2, 3, 4}.

With T derived, the algebra basis may be found with Radu’s basis algorithm. We prove
its validity using the properties of the corresponding modular curve X0(20), together with the
Weierstrass gap theorem.

Notice that we restrict our coefficients to rational numbers, but that our theorem applies
equally if we extend our field to the whole of C.

Proof. Condition (6.40) was verified in the construction of T . We are left to verify (6.35).
The conditions of Theorem 2.40 can be quickly checked with respect to G,H, and T , so that

M∞ (Γ0(20))Q ⊇ ⟨1, G1, G2, G3, G4⟩Q[T ] . (6.41)

Let f ∈ M∞ (Γ0(20))Q. We want to prove that f ∈ ⟨1, G1, G2, G3, G4⟩Q[T ].
With only one pole, f has an expansion
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f =
b(−m0)

qm0
+
b(−m0 + 1)

qm0−1
+ ...+

b(−1)

q
+ b(0) +

∞∑
n=0

b(n)qn,

with b(n) ∈ Q for all n ≥ −m0, and b(−m0) ̸= 0.
We can now apply the MC algorithm given in Section 3.1. If we first assume that m0 ̸= 1,

then there exist a, b ∈ Z≥0 such that m0 = 5a+ b, and
b ∈ {0, 2, 3, 4, 6}. Examining the orders of the functions T,Gk, we find that

−ord(20)
∞ (T ) = 5,

−ord(20)
∞ (G1) = 2,

−ord(20)
∞ (G2) = 3,

−ord(20)
∞ (G3) = 4,

−ord(20)
∞ (G4) = 6.

We therefore have

−ord(20)
∞ (f1) < m0,

for

f1 = f − b(m0)

LC(T aGk1)
· T aGk1 ∈ M∞ (Γ0(20))Q ,

with some k1 ∈ {0, 1, 2, 3, 4} (and taking G0 = 1) such that −ord(20)
∞ (Gk1) = b.

As described in the MC algorithm, we construct a sequence of functions F = {f, f1, f2, ...},
each of which has a pole only at infinity, with mj := |ord(20)

∞ (fj)|, and mj+1 < mj for all j ≥ 0.
Membership is excluded if and only if within this sequence a function is produced with order
exactly −1 at ∞. If we can prove that such a function can never be produced, then our sequence
of functions must ultimately have order 0 at ∞, and membership is guaranteed.

Let us suppose that such a function does exist in our sequence, i.e., for someM ∈ Z≥0, fM ∈ F
has a pole only at ∞ and with order exactly −1. In that case, (fM)n will have order −n for all
n ∈ Z>0. In other words, we can produce a function in M∞ (Γ0(20)) with a pole only at ∞, and
any order at that pole.

However, each of the functions of M∞ (Γ0(20)) give rise to a function of the modular curve
X0(20) with a pole only at [∞]20, as we discussed in Section 2.4. This curve has genus 1, as can be
demonstrated with (2.28), and Theorem 2.27 therefore requires that exactly one order must exist
which cannot be assumed by any function over X0(20) with a pole only at [∞]20.



124

But we just demonstrated that fM taken to positive powers may assume any order at ∞, and
that we can therefore construct functions over X0(20) with a single pole of any order. We have a
contradiction, and must therefore reject the hypothesis that such an fM is ever produced.

Because this is the only possible case in which membership fails, we must conclude that we
can complete our reduction of f , so that

f ∈ ⟨1, G1, G2, G3, G4⟩Q[T ] .

We then have

M∞ (Γ0(20))Q ⊆ ⟨1, G1, G2, G3, G4⟩Q[T ] , (6.42)

which, with (6.41), yields equality.

Corollary 6.5.

M∞ (Γ0(20))Q = ⟨E∞(20)⟩Q

Proof.

M∞ (Γ0(20))Q = ⟨1, G1, G2, G3, G4⟩Q[T ] ⊆ ⟨E∞(20)⟩Q ⊆ M∞ (Γ0(20))Q .

Finally, we give the order of T at its poles and zeros through (2.41):

ord
(20)
1/20(T ) = −5,

ord
(20)
1/10(T ) = 1,

ord
(20)
1/5 (T ) = 0,

ord
(20)
1/4 (T ) = 1,

ord
(20)
1/2 (T ) = 1,

ord
(20)
1 (T ) = 2.

6.2.2 Powers of T

We now give an outline for how to compute the powers m ∈ Z>0 so that

TmU5

(
AiT jGk

)
∈ M∞ (Γ0(20)) .
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It is clear, by our definition of T , that such a power must exist.
To begin, let us suppose that h1, h2 ∈ M (Γ0(100)), and that U5 (h1) , U5 (h2) have poles which

are canceled by the zeros of T . In this case, nonnegative integers m1,m2 must exist such that

T (τ)m1 · U5 (h1) = U5 (T (5τ)
m1h1(τ)) ∈ M∞ (Γ0(20)) ,

T (τ)m2 · U5 (h2) = U5 (T (5τ)
m2h2(τ)) ∈ M∞ (Γ0(20)) .

Given i ∈ {1, 2}, one way of ensuring that U5 (T (5τ)
mihi(τ)) has no poles over Γ0(20) other

than at 1/20 is by ensuring that T (5τ)mihi(τ) has no poles over Γ0(100) other than those which
will manifest in Γ0(20) at 1/20. That is, we need to ensure that T (5τ)ξihi(τ) ∈ M∞ (Γ0(100)).
Any cusp of Γ0(100) other than 1/100 can be approached by (τ + r)/5 as τ approaches a cusp not
represented by 1/20 (see Table D.1).

In this case, if we wish to examine U5 (h1 · h2), we may note that

T (τ)m1+m2 · U5 (h1 · h2) = U5

(
T (5τ)m1+m2h1(τ) · h2(τ)

)
= U5 (T (5τ)

m1h1(τ) · T (5τ)m2h2(τ)) .

Therefore, if T (5τ)m1h1(τ) and T (5τ)m2h2(τ) are both members of M∞ (Γ0(100)), then their
product must be as well. But this means that

T (τ)m1+m2 · U5 (h1 · h2) ∈ M∞ (Γ0(20)) .

Therefore, if we have sufficient powers of T to push two functions U5(h1), U5(h2) intoM∞ (Γ0(20)),
then we need only add the powers together to have a sufficient power of T to push U5(h1 · h2) into
M∞ (Γ0(20)).

So in order to work out sufficient powers of T to push U5 (A
iT jGk) into M∞ (Γ0(20)), it is

necessary only to know the sufficient powers of T for

U5 (A) , U5 (T ) , U5

(
T−1

)
, U5 (Gk) , 1 ≤ k ≤ 4.

Let us suppose that the most optimal powers of T for this purpose are

mA, m+t, m−t, mk, 1 ≤ k ≤ 4,

respectively. In that case, each of these powers will correspond to the highest-order pole of the
corresponding function over Γ0(100) (excluding the cusp at ∞, of course).

Notice that G3 = G2, G4 = G2
2, and G2 = H − G. Therefore, the orders for U5(G3), U5(G4),

respectively, will simply be double the orders of U5(G), U5(G2), respectively. So we need only
examine the orders of G,G2. Also, we know that G2 = H − G, so that we need to examine the
orders of G and H. That is, we can compute m2,m3,m4 using only the necessary powers for
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U5 (G) , U5 (H) .

Let us refer to the necessary power for U5 (H) as mH . Then we have
m2 = max{m1,mH}, m3 = 2m1, m4 = 2m2.

Finally, supposing that mt = msign(j)t, then for U5 (A
iT jGk), we have

m(i, j, k) = i ·mA + j ·mt +mk. (6.43)

Powers for A, T , T−1, G, H

We begin with mA as our principal example. We know that for mA sufficiently large, we have

T (τ)mA · U5 (A(τ)) ∈ M∞ (Γ0(20)) .

But notice that we can rewrite

T (τ)mA · U5 (A(τ)) = U5 (T (5τ)
mAA(τ)) .

As covered in the beginning of the section, we need to ensure that T (5τ)mAA(τ) only has a pole
at the cusp represented by 1/100.

Of course,

ord
(100)
a/c (T (5τ)mA) = mA · ord(100)

a/c (T (5τ)) .

With this in mind, in Table D.3 we examine the order of

T (5τ)mAA(τ), T (5τ)m+tT (τ), T (5τ)m−tT (τ)−1

at the cusps over Γ0(100) using Theorem 2.41 once more. In Table D.4 we examine the orders of

T (5τ)m1G(τ), T (5τ)mHH(τ).

As before, we find possible poles at 1/100, 1/50, 1/4, 1. We of course do not worry about the
pole at 1/100. For the cusps at 1/50, 1/4, we only need mA ≥ 1. Finally, for the cusp at 1, we
need mA ≥ 2. This gives us our best possible value: mA = 2.

Similarly, we have m+t = 5, m−t = 5, and therefore mt = 5.
We also have m1 = 2, mH = 3. Acknowledging that m2 = max{m1,mH} = 3, we finally have

m2 = 3, m3 = 4, m4 = 6.
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Complete Formula

Putting everything together, we now have the following formula:

Theorem 6.6. For any (i, j, k) ∈ {0, 1} × Z× {0, 1, 2, 3, 4}, we have

Tm(i,j,k)U5

(
AiT jGk

)
∈ M∞ (Γ0(20)) ,

with

m(i, j, k) = 2 · i+ 5 · |j|+mk.

and m1 = 2, m2 = 3, m3 = 4, m4 = 6.

6.2.3 The Andrews–Sellers Congruences

We briefly note that a similar technique may be brought to bear on the Andrews–Sellers congruence
family [82]. Substantial direct evidence for its validity was not gathered before 2001, when Eichhorn
and Sellers proved the first four cases. Their approach relied on recurrences given by a modular
equation, and the total necessary calculations took place in 147 hours with a 600 MHz Pentium
III Processor [37, Section 3]. Our approach allows us to check the first five cases with a 2.6 GHz
Intel Processor in 1 hour, 45 minutes.

In this case we also work over Γ0(20) with an identical algebra basis to that constructed above.

6.3 A More General Algorithm

With these examples, we can now formulate a more general approach to our problems. This is
by no means comprehensive, but serves rather as a guide for how families of congruences can be
studied from a large class of generating functions.

We now fix an integer M ∈ Z>0, and an integer-valued vector r = (rδ)δ|M indexed over the
divisors of M . From this, we can define an arithmetic sequence with the generating function

G(q) :=
∏
δ|M

(qδ; qδ)rδ∞ =
∞∑
n=0

a(n)qn. (6.44)

Let us take a prime ℓ > 3. For simplicity, we will also take the assumption that

0 ≤ −
∑
δ|M

δrδ ≤
24

ℓ+ 1
.

From here, define
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A(q) :=q(1−ℓ
2)

∑
δ|M δrδ/24

G(q)
G(qℓ2)

.

Let us set N = ℓ ·M . In this case, A(q) satisfies the conditions of Theorem 2.40, and

A(q) ∈ M
(
Γ0(ℓ

2 ·M)
)
⊇ M (Γ0(ℓ ·M)) .

Next, we make the assumption that the Newman–Radu condition applies:

M (Γ0(N))Q = ⟨E(N)⟩Q . (6.45)

Very likely, our method may be extended to include modular curves in which some of the assump-
tions above fail. For the time being, we will take them as true.

From here, we define the operators

U (α) : M (Γ0(ℓ ·M)) → M (Γ0(N)) , α ∈ Z≥0

by

U (0) (f) := Uℓ (A · f) ,
U (1) (f) := Uℓ (f) ,

U (α) (f) := U (α mod 2) (f) ,

for α ≥ 2. If we also define

Φ2α−1 :=
q

G(qℓ)
, and Φ2α :=

q

G(q)
,

and set

L0 := 1,

then we define a sequence of functions L = (Lα)α≥0 in which

Lα+1 = U (α) (Lα) , and
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Lα = Φα ·
∑
n∈Cℓ,α

a(n)q⌊n/ℓ
α⌋,

with Cℓ,α a set of arithmetic progressions, with bases of the form ℓα. In particular, for α = 1, we
have

Cℓ,1 =

ℓ · n+ ℓ+
(ℓ2 − 1)

24

∑
δ|M

δrδ : n ∈ Z≥0

 .

Suppose we suspect a family of congruences for Cℓ,α. That is, we believe that L is ℓ-adically
convergent to 0, and that we have a suspected pattern to the convergence.

From here, we define C(N) as a complete set of representatives for the cusps of Γ0(N), and
similarly for C(ℓ ·N). We now must construct an appropriate algebra basis,

⟨E∞(N)⟩Q = ⟨1, g1, g2, ..., gv⟩Q[t] ,

such that

Uℓ
(
Aitjgk

)
∈ ⟨1, g1, g2, ..., gv⟩Q[t,t−1] ,

for all (i, j, k) ∈ {0, 1} × Z× {0, 1, ..., v}.
We begin with the derivation of t. As in the case of Γ0(20), we can give a system of equations

and inequalities by which such a t can be derived. Let

t =
∏
δ|N

η(δτ)wδ ,

with w := (wδ)δ|N an integer-valued vector. We begin again with Theorem 2.40:

∑
δ|N

wδ = 0,

∑
δ|N

δwδ + 24x1 = 0,

∑
δ|N

N

δ
wδ + 24x2 = 0,

∏
δ|N

δ|wδ| = x23,
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with x1, x2, x3 ∈ Z.
We now consider the poles of A. Define Pℓ·N(A) as a set of representatives of cusps in C(ℓ ·N)

for which A possesses a pole. Then define P(A) as

P(A) :=

{
a

c
∈ C(N) :

a+ cr

c · ℓ
∈ Γ0(N)

a′

c′
, for some

a′

c′
∈ Pℓ·N(A), r ∈ {0, 1, ..., ℓ− 1}

}
.

We add to our system the inequalities

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ > 0, for all a/c ∈ P(A).

Now we consider the poles of t, gk, 1 ≤ k ≤ v. Over Γ0(N), they only have a pole at 1
N
. Over

Γ0(ℓ ·N), however, t, gk will have possible poles for any cusp represented by a′

N
, gcd(a,N) = 1.

Let P(g) be defined as

P(g) :=

{
a

c
∈ C(N) :

a+ cr

c · ℓ
=
a′

N
, gcd(a′, N) = 1, for some r ∈ {0, 1, ..., ℓ− 1}

}
.

We now have the additional set of inequalities

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ > 0, for all

a

c
∈ P(g).

Finally, we examine t−1. Let

P ′ = C(N)\(P(A) ∪ P(g)),

and let a
c
∈ P ′. Consider

Pa,c :=
{
a′

c′
∈ C(N) :

a+ cr

c · ℓ
∈ Γ0(N)

a′

c′
for some r ∈ {0, 1, ..., ℓ− 1}

}
,

and define

P ′
0 :=

{a
c
∈ P ′ : Pa,c ⊆ P(A) ∪ P(g) ∪

{a
c

}}
,

P ′
1 := P ′\P ′

0.
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If a
c
∈ P ′

0, then we need establish no condition beyond

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ ≥ 0.

If a
c
∈ P ′

1, then it is not easy to determine at which cusps the order should be set to be 0 in order
to give an optimal solution. Alternatively, we may simply set

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ = 0.

This is not perfectly optimal, but gives us a complete set of equations and inequalities:
To summarize, we let C(N) be a complete set of representatives for the cusps of Γ0(N), and

likewise for C(ℓ · N). Let Pℓ·N(A) ⊆ C(ℓ · N) be the set of representatives of cusps for which A
possesses a pole. Let

P(A) =

{
a

c
∈ C(N) :

a+ cr

c · ℓ
∈ Γ0(N)

a′

c′
, for some

a′

c′
∈ Pℓ·N(A), r ∈ {0, 1, ..., ℓ− 1}

}
,

P(g) =

{
a

c
∈ C(N) :

a+ cr

c · ℓ
=
a′

N
, gcd(a′, N) = 1, for some r ∈ {0, 1, ..., ℓ− 1}

}
,

P ′ = C(N)\(P(A) ∪ P(g)),

P ′
0 =

{a
c
∈ P ′ : Pa,c ⊆ P(A) ∪ P(g) ∪

{a
c

}}
,

P ′
1 = P ′\P ′

0.

For some n0 ∈ Z>0, define the system W (n0) by:
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W (n0) :∑
δ|N

wδ = 0,

∑
δ|N

δwδ + 24x1 = 0,

∑
δ|N

N

δ
wδ + 24x2 = 0,

∏
δ|N

δ|wδ| = x23,

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ > 0 for all

a

c
∈ P(A),

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ > 0 for all

a

c
∈ P(g),

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ ≥ 0 for all

a

c
∈ P ′

0,

N

24gcd(c2, N)

∑
δ|N

gcd(c, δ)2

δ
wδ = 0 for all

a

c
∈ P ′

1,

x1 = n0.

We first attempt to solve W (1), i.e., to find a satisfactory t such that ord
(20)
1/20{t} = −1. If no

solution exists, we take n0 = n0+1 and repeat, until a solution is found. This minimizes the order
of t at ∞ with respect to our system.

With t defined, we use the basis algorithm of [91, Section 2, Algorithm AB] to produce the
complete basis for ⟨E∞(N)⟩Q, which finally yields

M∞ (Γ0(N)) = ⟨E∞(N)⟩Q = ⟨1, g1, ..., gv⟩Q[t] .

We now use Theorem 2.41 to compute

ord
(ℓ·N)
a/c (t (ℓ · τ)mf (f(τ))) = mf · ord(ℓ·N)

a/c (t (ℓ · τ)) + ord
(ℓ·N)
a/c ((f(τ))) ,

with

f ∈
{
A, t, t−1, g1, ..., gv

}
.
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We now compute the minimal mf such that

mf · ord(ℓ·N)
a/c (t (ℓ · τ)) + ord

(ℓ·N)
a/c ((f(τ))) ≥ 0.

Finally, we define

m0 := m0(j) =

{
mt, j > 0

−mt−1 , j < 0
,

mk := mgk , 1 ≤ k ≤ v.

This gives us the following:

tm(i,j,k) · Uℓ
(
Aitjgk

)
∈ ⟨E∞(N)⟩Z ,

with

m(i, j, k) := i ·mA + j ·m0(j) +mk.

Now for any B ∈ Z>0, define

L
(B)
0 := 1,

L
(B)
1 :=

∑
j∈Z,

0≤k≤v

c1,j,kt
jgk,

L(B)
α := U (α−1)

(
L
(B)
α−1

)
=
∑
j∈Z,

0≤k≤v

cα,j,kt
jgk,

where cα,j,k is the coefficient of tjgk, reduced modulo ℓB.
We now give the steps for examining Lα for 0 ≤ α ≤ B for possible divisibility by powers of

ℓ (up to ℓB):

1. Begin with α = 0, v0 = 0, and V = {v0}.

2. Expand L
(B)
α into ⟨1, g1, ..., gv⟩Z[t,t−1]: L

(B)
α =

∑
j∈Z,

0≤k≤v

cα,j,kt
jgk.

3. Compute U (α)
(
L
(B)
α

)
=
∑
j∈Z,

0≤k≤v

cα,j,kU
(α){tjgk}.
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4. Reduce U (α)
(
L
(B)
α

)
(mod ℓB) to get L

(B)
α+1 =

∑
j∈Z,

0≤k≤v

cα+1,j,kt
jgk.

5. Let vα+1 be the maximal power of ℓ that divides each cα+1,j,k.

6. Set V = V ∪ {vα+1}.

7. Set α = α + 1, and repeat.

8. Continue until α = B.

9. The vα will give the largest possible power of ℓ that divides Lα. We may either formulate a
possible pattern, or check one already conjectured, for 0 ≤ α ≤ B.



CHAPTER 7
AN INFINITE FAMILY OF CONGRUENCES (III)

The first section of this chapter is based on a collaboration with Cristian-Silviu Radu in [94]. The
remainder is based on work published in [103].

7.1 Failure of Piecewise Convergence

The previous chapter described a method by which we can examine a large variety of possible
congruences for a class of arithmetic functions. In particular, it gave us enough to give a precise
statement of the congruence family that was suggested to exist by Choi, Kim, and Lovejoy for
A1(n). This method may of course be used to check as many specific cases of our congruence
family as we please.

It is very tempting to believe that, given a conjectured family of congruences, a complete
proof should be possible using the same techniques. As we will show in the final three chapters,
the intuition behind this approach can be used to formulate complete proofs of a large variety of
congruence families. However, with respect to the congruence family of Theorem 6.3, the situation
is more complicated.

The traditional means of actually proving the existence of a given infinite family of partition
congruences, with respect to powers of a prime ℓ, is the notion of ℓ-adic convergence for a sequence
of generating functions for each given case. In our case, we have

L0 = 1,

Lα = Φα ·
∑

24n≡1 mod 5α

a(n)q⌊n/5
α⌋.

To prove that a(n) ≡ 0 (mod 5α) whenever 24n ≡ 1 (mod 52α), we need to prove the following:

Theorem 7.1. The sequence (Lα)α≥0 is 5-adically convergent to 0: For every M ∈ Z>0 there
exists an A ∈ Z>0 such that for all α ≥ A,

Lα ≡ 0 (mod 5M).

In particular, A = ⌊M/2⌋ will suffice.

This is done by very carefully constructing subspaces Sα of modular functions over Γ0(20),
so that Lα ∈ Sα for all α ≥ 1. Moreover, we need to construct the generators of Sα so that
U (α) (pα) ∈ Sα+1 for any pα ∈ Sα.

For this to work, the generators of Sα must be very carefully selected, so that successive
application of U (α) will generate functions divisible by increasing powers of 5. While the algebra
basis that we have used in the previous chapter is very powerful, it does not necessarily select
functions t with the property that the sequence
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(
t, U (1) (t) , U (0)

(
U (1) (t)

)
, ...
)

converges 5-adically to 0. Were we working with M (Γ0(N)) with, say, N = 5, 7, 10, 11, this would
not be a problem. However, we find that we may not be so careless for N = 20.

As an example, we take T as in the previous chapter:

T =
η(τ)2η(4τ)2η(10τ)8

η(5τ)2η(20τ)10
=

1

q5
(q; q)2∞(q4; q4)2∞(q10; q10)8∞

(q5; q5)2∞(q20; q20)10∞
.

Suppose we define T1 = U (1) (T ) , Tα = U (α) (Tα−1), for α ≥ 1.

T1 ≡ 4
1

T
+ 2G1

1

T
+G3

1

T
+G2

1

T
(mod 5),

T2 ≡ 3G1
1

T
+ 2G3

1

T
(mod 5),

T3 ≡ 3G1
1

T
+ 2G3

1

T
(mod 5),

T4 ≡ 3
1

T
+ 4G1

1

T
+ 2G2

1

T
(mod 5),

T5 ≡ 4G1
1

T
+G3

1

T
(mod 5),

T6 ≡ 4
1

T
+ 2G1

1

T
+G2

1

T
(mod 5), ...

Continuing this through to T14, we eventually have

T11 ≡ 3G1
1

T
+ 2G3

1

T
(mod 5),

T12 ≡ 3
1

T
+ 4G1

1

T
+ 2G2

1

T
(mod 5),

T13 ≡ 4G1
1

T
+G3

1

T
(mod 5),

T14 ≡ 4
1

T
+ 2G1

1

T
+G2

1

T
(mod 5), ...

Notice the repetition: T11 ≡ T3 (mod 5), T12 ≡ T4 (mod 5), T13 ≡ T5 (mod 5), and so on. This
sequence settles into a repeated pattern modulo 5, so it can never become 0 (mod 5), no matter
how often we apply U (α). In other words, the sequence (Tα)α≥1 will not converge to 0 in the 5-adic
sense.

This is the problem of the failure of piecewise ℓ-adic convergence discussed in Chapter 5. It
is this complication which made the the Andrews–Sellers congruence family so resistant to proof,
and it complicates the proof of Theorem 6.3 in a similar manner.
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A good analogy can be found with the question of convergence in the standard topology.
Suppose we have a sequence of functions

(Lα)α≥0,

and we suspect that

lim
α→∞

Lα = 0.

One way of proving this convergence is to find other sequences of functions, e.g. (Fα)α≥0, (Gα)α≥0

which can be put together in a given way to produce each Lα, e.g.,

Lα = Fα +Gα.

Now, to prove that limα→∞ Lα = 0, it is certainly sufficient to prove that

lim
α→∞

Fα = lim
α→∞

Gα = 0.

However, it is not necessary at all—for instance, we might have

lim
α→∞

Fα = 1, lim
α→∞

Gα = −1.

If we want to prove convergence of Lα term-wise, it is clear that we need to carefully select our
summands. A similar principle holds, if we replace the notion of convergence in the standard
topology with that of 5-adic topology, with our sequences of modular functions (Lα)α≥0.

7.2 Proof Setup

To overcome this problem, we need to build up the spaces Sα very carefully indeed. At present,
much of the proof method depends on educated guesses as to the precise structures necessary. We
know that g (X0(20)) = 1, so that we may count on manipulation of some free rank-2 Z[X]-module.

Recall that M (Γ0(5)) = C[t] for t = η(5τ)6/η(τ)6. Given that proving Ramanujan’s classic
congruences for powers of 5 takes place in this space, we know that t is 5-adically convergent under
repeated applications of the U5 operator. Moreover, of course, t ∈ M (Γ0(20)). So we elect to
attempt a representation for each Lα in terms of t to as large an extent as possible.
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7.2.1 X(j)

We will now construct the spaces of modular functions in M (Γ0(20)) that are necessary for our
purposes.

Let q = e2πiτ , with τ ∈ H, and define

t =
η(5τ)6

η(τ)6
= q

(q5; q5)6∞
(q; q)6∞

, (7.1)

ρ =
η(τ)2η(4τ)2η(10τ)8

η(5τ)2η(20τ)10
=

1

q5
(q; q)2∞(q4; q4)2∞(q10; q10)8∞

(q5; q5)2∞(q20; q20)10∞
(7.2)

σ =
η(4τ)4η(10τ)2

η(2τ)2η(20τ)4
=

1

q2
(q4; q4)4∞(q10; q10)2∞
(q2; q2)2∞(q20; q20)4∞

, (7.3)

µ =
η(4τ)η(5τ)5

η(τ)η(20τ)5
=

1

q3
(q4; q4)∞(q5; q5)5∞
(q; q)∞(q20; q20)5∞

. (7.4)

One can verify that L1 ̸∈ Z[t]. Indeed, we have the following:

L1 =261ρ−1 + 126σρ−1 + 13σ2ρ−1 − 960ρ−2 − 5120σρ−2 − 320σ2ρ−2

+ 64ρ−1µ+ 320ρ−2µ− 1280σρ−2µ+ 640ρ−2µ2.

In the sequel we will prove the interesting result that

L2α−1 ∈ Z[t]⊕ L1 · Z[t]

for all α ≥ 1. This rank 2 Z[t]-module is therefore of interest to us.
However, L2α is not a member of this module. To account for L2α we will construct a second

rank 2 Z[t]-module, Z[t] ⊕ p0Z[t]. The exact form of p0 was determined by experiment, based on
studies of U (1)(L1). It was determined (as is shown in Group IV of Appendix B) that U (1)(L1/t)−
52t− 13 yields a function which can nearly be used to represent U (1)(L1t

n) for all n ∈ Z. Indeed,
we define p0 as the function which satisfies

U (1)(L1/t) = 13 + 52t+ 5p0.

This function can be given an explicit form. We define

p0 =31ρ−1 − 22σρ−1 − 9σ2ρ−1 − 208ρ−2 − 96σρ−2 + 304σ2ρ−2

− 32ρ−1µ+ 416ρ−2µ+ 416σρ−2µ− 208ρ−2µ2, (7.5)

p1 =261ρ−1 + 126σρ−1 + 13σ2ρ−1 − 960ρ−2 − 5120σρ−2 − 320σ2ρ−2

+ 64ρ−1µ+ 320ρ−2µ− 1280σρ−2µ+ 640ρ−2µ2. (7.6)
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Of course, p1 = L1. We also define

S0 = Z[t]⊕ p0Z[t], (7.7)

S1 = Z[t]⊕ p1Z[t]. (7.8)

That is, for j = 0, 1, Sj is the free rank 2 Z[t]-module generated by 1 and pj.
As the relations in Groups II and IV in the Appendix demonstrate,

L2 = U (1)(L1) = U (1)(p1) ∈ S0, and U
(0)(p0) ∈ S1.

This, with the linearity of U (j), ensures that that for α ≥ 0,

L2α ∈ S0, (7.9)

L2α−1 ∈ S1. (7.10)

We will work with specific subspaces of S0, S1.

Definition 7.2. A function f : Z → Z is discrete if it is nonzero for only finitely many in-
tegers. A function h : Zk → Z is a discrete array if for any fixed (m1,m2, ...,mk−1) ∈ Zk−1,
h(m1,m2, ...,mk−1, n) is discrete with respect to n.

We now define our relevant subspaces:

X(0) =

{
∞∑
n=0

r(n)5⌊
5n
2 ⌋p0tn +

∞∑
n=1

s(n)5⌊
5n−3

2 ⌋tn : r, s discrete functions

}
, (7.11)

X(1) =

{
∞∑
n=0

r(n)5⌊
5n
2 ⌋p1tn +

∞∑
n=1

s(n)5⌊
5n−1

2 ⌋tn : r, s discrete functions

}
. (7.12)

Notice that for j = 0, 1, we have X(j) ⊆ Sj. In particular, L1 = p1 ∈ X(1).

7.3 The Modular Equation

We have very carefully chosen the spaces X(j). Rather than working directly with Ln, we will show
that Ln ∈ X(r), with r the residue of n (mod 2). We then study how U (j) changes the structure
of an arbitrary f ∈ X(j).

To do this, we will need to know the effects of U (j) on pjt
n, tn. Our choice of t = η(5τ)6/η(τ)6

is especially convenient, as we have a powerful modular equation that can be brought to bear on
the problem.
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Theorem 7.3. Let

a0(τ) = −t,
a1(τ) = −53t2 − 6 · 5t,
a2(τ) = −56t3 − 6 · 54t2 − 63 · 5t,
a3(τ) = −59t4 − 6 · 57t3 − 63 · 54t2 − 52 · 52t,
a4(τ) = −512t5 − 6 · 510t4 − 63 · 57t3 − 52 · 55t2 − 63 · 52t.

Then

t(τ)5 +
4∑
j=0

aj(5τ)t(τ)
j = 0. (7.13)

A proof of this can be found in [82, Section 3].
The value of this equation becomes immediate when we consider the following theorem:

Lemma 7.4. For any function g : H → C, and any n ∈ Z, we have

U5(g · tn) = −
4∑
j=0

aj(τ)U5(g · tn+j−5). (7.14)

Proof. With equation (7.13), we have

g(τ) · t(τ)n = −
4∑
j=0

aj(5τ) · g(τ) · t(τ)n+j−5. (7.15)

Taking the U5 operator, and remembering that

U5(aj(5τ) · g(τ) · t(τ)n+j−5) = aj(τ) · U5(g(τ) · t(τ)n+j−5),

by Part 3 of Lemma 1, we find that

U5(g · t(τ)n) = −
4∑
j=0

U5(aj(5τ) · g · t(τ)n+j−5) (7.16)

= −
4∑
j=0

aj(τ) · U5(g · t(τ)n+j−5). (7.17)
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7.3.1 Lemmas

We now state and prove a key application of the modular equation for t. This lemma is given in
the form of two lemmas in [82, Section 4], but we give the proof for the sake of completeness.

Lemma 7.5. For any functions g, y0, y1 : H → C, if there exist u0, u1, v0, v1 ∈ Z, and discrete
arrays h0(m,n), h1(m,n) such that

U5(gt
n) =

∑
m≥⌈n+u0

5 ⌉
h0(m,n)5

⌊ 5m−n+v0
2 ⌋y0tm +

∑
m≥⌈n+u1

5 ⌉
h1(m,n)5

⌊ 5m−n+v1
2 ⌋y1tm (7.18)

for five consecutive integers n, then such a relation holds for every larger integer.

Proof. Suppose that for specific functions g, y0, y1, discrete arrays h0, h1, and integers u0, u1, v0, v1,
the given relation holds for five consecutive integers:

n0, n0 + 1, n0 + 2, n0 + 3, n0 + 4.

We prove the lemma by induction.
Let k ≥ n0 + 5, and assume that the relation holds for all j ∈ Z such that n0 ≤ j ≤ k − 1. In

particular, the relation holds for j = k − 5, k − 4, ..., k − 1. We want to prove that the relation
must hold for k. It can be quickly verified from the previous lemma that

aj(τ) =
5∑
l=1

s(j, l)5⌊
5l+j−4

2 ⌋tl, (7.19)

for some unique function s : {0, ..., 4} × {1, ..., 5} → Z. With this in mind, we have

U5(gt
k) = −

4∑
j=0

aj(τ)U5(g · t(τ)k+j−5) (7.20)

= −
4∑
j=0

aj(τ)
∑
i=0,1

∑
m≥⌈ k+j−5+ui

5 ⌉
hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
yit

m (7.21)

= −
∑
i=0,1

4∑
j=0

aj(τ)
∑

m≥⌈ k+ui
5

− 5−j
5 ⌉

hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
yit

m. (7.22)

Taking mi,j =
⌈
k+ui
5

− 5−j
5

⌉
, we have
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U5(gt
k) = −

∑
i=0,1,
0≤j≤4,
1≤l≤5

s(j, l)5⌊
5l+j−4

2 ⌋tl
∑

m≥mi,j

hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
yit

m (7.23)

= −
∑
i=0,1,
0≤j≤4,
1≤l≤5

∑
m≥mi,j

s(j, l)hi(m, k + j − 5)5

⌊
5m−(k+j−5)+vi

2

⌋
+⌊ 5l+j−4

2 ⌋yitm+l. (7.24)

Now, we note that for any M1,M2 ∈ Z, we have
⌊
M1

2

⌋
+
⌊
M2

2

⌋
≥
⌊
M1+M2

2
− 1

2

⌋
. Therefore,

⌊
5m− (k + j − 5) + vi

2

⌋
+

⌊
5l + j − 4

2

⌋
≥
⌊
5m− (k + j − 5) + vi

2
+

5l + j − 4

2
− 1

2

⌋
=

⌊
5(m+ l)− k + vi

2

⌋
. (7.25)

Now since mi,j =
⌈
k+ui
5

− 5−j
5

⌉
≥
⌈
k+ui
5

⌉
− 1, and since l ≥ 1, we relabel our powers of t so that

U5(gt
k) = −

∑
i=0,1,
0≤j≤4,
1≤l≤5

∑
m≥⌈ k+ui

5 ⌉−1+l

s(j, l)hi(m− l, k + j − 5)5⌊
5m−k+vi

2 ⌋yitm. (7.26)

Finally, defining the discrete function Hi(m, k) by

Hi(m, k) =

{
−
∑4

j=0

∑5
l=1 s(j, l)hi(m− l, k + j − 5), m ≥ l,

0, otherwise,

we have

U5(gt
k) =

∑
m≥⌈ k+u0

5 ⌉
H0(m, k)5

⌊ 5m−k+v0
2 ⌋y0tm +

∑
m≥⌈ k+u1

5 ⌉
H1(m, k)5

⌊ 5m−k+v1
2 ⌋y1tm. (7.27)

By induction, we have established the given relation for all n ≥ n0.

We can use this lemma to define a very useful “skeletal” structure for U (j)(pjt
n), U (j)(tn) as

follows:
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Lemma 7.6. There exist discrete arrays aj(m,n), bj(m,n), c(m,n), dj(m,n), with j ∈ {0, 1}, such
that for all nonnegative n ∈ Z,

U (0)(tn) =
∑

m≥⌈n+1
5 ⌉

a0(m,n)5
⌊ 5m−n−1

2 ⌋tm +
∑

m≥⌈n
5 ⌉
a1(m,n)5

⌊ 5m−n
2 ⌋p1tm, (7.28)

U (0)(p0t
n) =

∑
m≥⌈n+2

5 ⌉
b0(m,n)5

⌊ 5m−n−1
2 ⌋tm +

∑
m≥⌈n

5 ⌉
b1(m,n)5

⌊ 5m−n
2 ⌋p1tm, (7.29)

U (1)(tn) =
∑

m≥⌈n
5 ⌉
c(m,n)5⌊

5m−n−1
2 ⌋tm, (7.30)

U (1)(p1t
n) =

∑
m≥⌈n+1

5 ⌉
d0(m,n)5

⌊ 5m−n−1
2 ⌋tm +

∑
m≥⌈n−1

5 ⌉
d1(m,n)5

⌊ 5m−n+2
2 ⌋p0tm, (7.31)

Notice that we can set a0(m,n) = 0 whenever m < ⌈(n+ 1)/5⌉. More generally, for j = 0, 1,
we can define

aj(m,n) = bj(m,n) = c(m,n) = dj(m,n) = 0 (7.32)

if the corresponding inequalities for m,n in (7.28), (7.29), (7.30), (7.31) do not hold.

Proof. The previous lemma establishes that if these relations hold for k−5, k−4, ...k−1, then they
will hold for all n ≥ k. We therefore need twenty initial relations—relations for five consecutive
values, in four categories.

The most obvious choices would be for 0 ≤ n ≤ 4. However, these cases are relatively
cumbersome to explicitly prove using the modular cusp analysis. For example, the expression for
U (0)(t4) has degree 20, in which the largest coefficient is on the order of 1033. Instead, we take the
relations for −4 ≤ n ≤ 0. These are smaller, and easier to prove. We can then use the modular
equation to compute the relations for 1 ≤ n ≤ 4 and examine the coefficients of each term using a
computer to establish that (7.28)-(7.31) apply.

In the following section, we discuss how to apply the modular cusp analysis to actually prove
the cases for −4 ≤ n ≤ 0.

7.4 On the Initial Cases

The experimental work in the previous chapter is now enormously useful for us. Indeed, comparing
(7.2)-(7.4) to Theorem 6.4, we have

T = ρ,

H = µ,

G = σ.
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As such, we have already established through Theorem 6.4 that ρ, µ, σ ∈ M∞ (Γ0(20)). We also
established that for i = 0, 1 and j ∈ Z,

ρ2i+5|j|+2U (i)
(
ρjσ
)
, ρ2i+5|j|+3U (i)

(
ρjµ
)
∈ M∞ (Γ0(20)) .

Recall the definitions of p0, p1, in (7.5) and (7.6):

p0 =31ρ−1 − 22σρ−1 − 9σ2ρ−1 − 208ρ−2 − 96σρ−2 + 304σ2ρ−2

− 32ρ−1µ+ 416ρ−2µ+ 416σρ−2µ− 208ρ−2µ2,

p1 =261ρ−1 + 126σρ−1 + 13σ2ρ−1 − 960ρ−2 − 5120σρ−2 − 320σ2ρ−2

+ 64ρ−1µ+ 320ρ−2µ− 1280σρ−2µ+ 640ρ−2µ2.

We can also show that ρ2t ∈ M∞ (Γ0(20)); indeed,

ρ2t =1− 5σ + 9σ2 − 7σ3 + 2σ4 + µ(−1 + 3σ − 3σ2 + σ3),

t =ρ−2 − 5ρ−2σ + 9ρ−2σ2 − 7ρ−2σ3 + 2ρ−2σ4 + ρ−2µ(−1 + 3σ − 3σ2 + σ3).

Using the approach from Chapter 6, we can show that

ρ15U (0) (p0t
n) , ρ15U (1) (p1t

n) ∈ M∞ (Γ0(20))

for −4 ≤ n ≤ 0,

ρ15U (1) (p1t
n) ∈ M∞ (Γ0(20))

for −3 ≤ n ≤ 0, and

tρ15U (1)
(
p1t

−4
)
∈ M∞ (Γ0(20)) .

Because both sides of each of the twenty relations in Appendix B are members of M (Γ0(20)),
and a sufficiently large power of ρ can put both sides intoM∞ (Γ0(20)), verification of each relation
is merely a matter of comparing the principal parts at infinity of each side—a finite task that can
easily be done by computer.

As an example, we choose the second relation of Group I. We have

ρ2U (0)(t−1) ∈ M∞ (Γ0(20)) . (7.33)

Since ρ2t ∈ M∞ (Γ0(20)),
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ρ2(1 + 52t− 5p1) ∈ M∞ (Γ0(20)) , (7.34)

we need only compare the principal parts and the constants of (7.33) and (7.34). We find that
both expressions have the identical principal part and constant

1

q10
− 44

q9
− 138

q8
− 372

q7
− 989

q6
− 1584

q5

− 2814

q4
− 4356

q3
− 5897

q2
− 9508

q
− 12696. (7.35)

As a result, both expressions must be equal:

ρ2U (0)(t−1) = ρ2(1 + 52t− 5p1), (7.36)

U (0)(t−1) = 1 + 52t− 5p1. (7.37)



CHAPTER 8
AN INFINITE FAMILY OF CONGRUENCES (IV)

This chapter is based on work published in [103].
The “skeletal structure” in the last chapter enables us to conduct a careful study of the

behavior of the functions in X0, X1 in (7.11)-(7.12) under the application of their respective U
operators. The following lemma gives us the critical relationships that reveal the desirable 5-adic
convergence which we need to finish the proof of Theorem 7.1.

8.1 The Main Lemma

Theorem 8.1. If f ∈ X(0), then U (0)(f) ∈ X(1). If f ∈ X(1), then 5−1U (1)(f) ∈ X(0).

Proof. Let f ∈ X(0). Then there exist discrete functions r, s such that

f =
∞∑
n=0

r(n)5⌊
5n
2 ⌋p0tn +

∞∑
n=1

s(n)5⌊
5n−3

2 ⌋tn. (8.1)

We take U (0)(f). Using Lemma 7.6, with condition (7.32), we find that

U (0)(f) =
∞∑
n=0

r(n)5⌊
5n
2 ⌋U (0)(p0t

n) +
∞∑
n=1

s(n)5⌊
5n−3

2 ⌋U (0)(tn) (8.2)

=
∞∑
n=0

r(n)5⌊
5n
2 ⌋
( ∑

m≥⌈n+2
5 ⌉

b0(m,n)5
⌊ 5m−n−1

2 ⌋tm

+
∑

m≥⌈n
5 ⌉
b1(m,n)5

⌊ 5m−n
2 ⌋p1tm

)

+
∞∑
n=1

s(n)5⌊
5n−3

2 ⌋
( ∑

m≥⌈n+1
5 ⌉

a0(m,n)5
⌊ 5m−n−1

2 ⌋tm

+
∑

m≥⌈n
5 ⌉
a1(m,n)5

⌊ 5m−n
2 ⌋p1tm

)
. (8.3)

Because aj(m,n), bj(m,n), c(m,n), dj(m,n) satisfy (7.32), we may rearrange our summands such
that
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U (0)(f) = p1
∑
m≥0

∑
n≥0

r(n)b1(m,n)5
⌊ 5n

2 ⌋+⌊ 5m−n
2 ⌋tm (8.4)

+ p1
∑
m≥1

∑
n≥1

s(n)a1(m,n)5
⌊ 5n−3

2 ⌋+⌊ 5m−n
2 ⌋tm (8.5)

+
∑
m≥1

∑
n≥0

r(n)b0(m,n)5
⌊ 5n

2 ⌋+⌊ 5m−n−1
2 ⌋tm (8.6)

+
∑
m≥1

∑
n≥1

s(n)a0(m,n)5
⌊ 5n−3

2 ⌋+⌊ 5m−n−1
2 ⌋tm. (8.7)

Now, we simplify the powers of 5 in each double sum. For line (8.4), with m,n ≥ 0, we have

⌊
5n

2

⌋
+

⌊
5m− n

2

⌋
=

⌊
3n

2

⌋
+

⌊
5m+ n

2

⌋
≥
⌊
5m

2

⌋
. (8.8)

For (8.5), notice that m,n ≥ 1. So we have⌊
5n− 3

2

⌋
+

⌊
5m− n

2

⌋
=

⌊
3n− 3

2

⌋
+

⌊
5m+ n

2

⌋
≥
⌊
5m

2

⌋
. (8.9)

Notice that
⌊
5m
2

⌋
is the necessary power of 5 in the coefficient of p1t

m for X(1) in (7.12).
For (8.6), with m ≥ 1, n ≥ 0, we have

⌊
5n

2

⌋
+

⌊
5m− n− 1

2

⌋
≥
⌊
5m+ n− 1

2

⌋
≥
⌊
5m− 1

2

⌋
. (8.10)

Finally, in (8.7), with m,n ≥ 1, we have

⌊
5n− 3

2

⌋
+

⌊
5m− n− 1

2

⌋
≥
⌊
5m+ n− 1

2

⌋
≥
⌊
5m− 1

2

⌋
. (8.11)

Since
⌊
5m−1

2

⌋
is the 5-adic valuation of the coefficient of tm for X(1), we have U (0)(f) ∈ X(1).

To prove the second statement of our theorem, we let f ∈ X(1). We want U (1)(f) ∈ 5 ·X(0).
By hypothesis, we have

f =
∞∑
n=0

r(n)5⌊
5n
2 ⌋p1tn +

∞∑
n=1

s(n)5⌊
5n−1

2 ⌋tn. (8.12)

We have
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U (1)(f) =
∞∑
n=0

r(n)5⌊
5n
2 ⌋U (1)(p1t

n) +
∞∑
n=1

s(n)5⌊
5n−1

2 ⌋U (1)(tn) (8.13)

=
∞∑
n=0

r(n)5⌊
5n
2 ⌋
( ∑

m≥⌈n+1
5 ⌉

d0(m,n)5
⌊ 5m−n−1

2 ⌋tm

+
∑

m≥⌈n−1
5 ⌉

d1(m,n)5
⌊ 5m−n+2

2 ⌋p0tm
)

+
∞∑
n=1

s(n)5⌊
5n−1

2 ⌋
( ∑

m≥⌈n
5 ⌉
c(m,n)5⌊

5m−n−1
2 ⌋tm

)
(8.14)

= p0
∑
m≥0

∑
n≥0

r(n)d1(m,n)5
⌊ 5n

2 ⌋+⌊ 5m−n+2
2 ⌋tm (8.15)

+
∑
m≥1

∑
n≥0

r(n)d0(m,n)5
⌊ 5n

2 ⌋+⌊ 5m−n−1
2 ⌋tm (8.16)

+
∑
m≥1

∑
n≥1

s(n)c(m,n)5⌊
5n−1

2 ⌋+⌊ 5m−n−1
2 ⌋tm. (8.17)

Examining the power of 5 in line (8.15), noting that m,n ≥ 0, we find that

⌊
5n

2

⌋
+

⌊
5m− n+ 2

2

⌋
=

⌊
3n

2

⌋
+

⌊
5m+ n+ 2

2

⌋
≥
⌊
5m+ 2

2

⌋
=

⌊
5m

2

⌋
+ 1. (8.18)

Similarly, we consider line (8.16), with m ≥ 1, n ≥ 0:

⌊
5n

2

⌋
+

⌊
5m− n− 1

2

⌋
≥
⌊
5m+ n− 1

2

⌋
≥
⌊
5m− 1

2

⌋
=

⌊
5m− 3

2

⌋
+ 1. (8.19)

Finally, for line (8.17), with m,n ≥ 1:

⌊
5n− 1

2

⌋
+

⌊
5m− n− 1

2

⌋
=

⌊
3n− 1

2

⌋
+

⌊
5m+ n− 1

2

⌋
≥ 1 +

⌊
5m− 3

2

⌋
. (8.20)

We therefore have U (1)(f) = 5 · g, for some g ∈ X(0).

8.2 Completing the Proof

We have the following:
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Theorem 8.2. For every n ∈ Z≥1, there exist functions g2n−1 ∈ X(1) and g2n ∈ X(0) such that

L2n−1 = 5n−1g2n−1,

L2n = 5ng2n.

Proof. Since L1 = p1 ∈ X(1), we have

L2 = U (1)(L1) = U (1)(p1) = 5g1, (8.21)

with g1 ∈ X(0). Suppose that for some k ∈ Z>0, we have L2k = 5kg2k, with g2k ∈ X(0). Then

L2k+1 = U (0)(L2k) = U (0)(5kg2k) = 5kU (0)(g2k) = 5kg2k+1, (8.22)

with g2k+1 ∈ X(1). Finally, we have

L2k+2 = U (1)(5kg2k+1) = 5kU (1)(g2k+1) = 5k · 5 · g2k+2 = 5k+1g2k+2, (8.23)

with g2k+2 ∈ X(0).
By induction, for every n ∈ Z>0, there must exist a g2n ∈ X(0) such that L2n = 5ng2n.
Since for every n ∈ Z≥1, we have

L2n+1 = U (0)(5ng2n) = 5nU (0)(g2n), (8.24)

and since L1 = 50p1, we immediately see that there must exist some g2n−1 ∈ X(1) such that

L2n−1 = 5n−1g2n−1. (8.25)

Corollary 8.3. For every n ∈ Z>0, L2n ≡ 0 (mod 5n).

Proof. For every n ∈ Z>0, L2n = 5ng2n for some g2n ∈ X(0). And the elements of X(0) have integer
coefficients.

With this, we have proven Theorem 7.1 and Theorem 6.3.



CHAPTER 9
CONGRUENCES AND GENUS (I)

The results of the previous four chapters indicate the methods developed by Paule and Radu which
are useful to establish congruence families in which piecewise ℓ-adic convergence fails.

Notice that the Paule–Radu method shares much in common with the classical methods of
proving congruence families. Notably, in all cases, the focus is on the manipulation of a free Z[X]-
module of a given rank. In particular, when the genus of the underlying modular curve is 0, this
module is simply Z[X]. As we have stated, this method was originally developed by Ramanujan
and Watson.

For over a century, most proofs of congruence families made use of this method. The discovery
that this approach is in fact insufficient for all congruence families over modular curves of genus 0
is extremely recent. The technique to overcome a striking exception to this classical approach has
been developed only within the last 12 months.

This discovery is so remarkable, and this new technique so potentially prolific in its con-
sequences, that we have chosen to present the background and the techniques involved in our
final two chapters. We will first introduce the original problem as studied by Liuquan Wang and
Yifan Yang, together with an outline of their “two-variable” approach. We will then give our
central theorem which gives a representation of our relevant generating functions in terms of a
“single-variable.” We prove this result in the following chapter.

The results in these two chapters have been submitted for publication, in the manuscript
available at https://arxiv.org/abs/2004.03944.

The intuition underlying this approach (based on the localization of Z[X] by powers of an
appropriate polynomial in a given Hauptmodul) was developed largely from the experimental
techniques already exposited in Chapter 6. If the reader is not already convinced, we emphasize:
In this area of mathematics, experiment and theory are closely connected.

9.1 On the Relationship Between ℓ-adic Convergence and Genus

Let us recall the classical method for proving partition congruence families when the underlying
modular curve has genus 0. Suppose that a(n) is some integer sequence generated by a well-known
function (usually a modular form up to an exponential factor), and that one wants to prove the
congruence family

a (ℓαn+ δℓ,α) ≡ 0 (mod ℓα),

for all n ∈ Z≥0, α ∈ Z≥1, in which δℓ,α is the minimal positive solution to

C · δℓ,α ≡ 1 (mod ℓα),

for some fixed C ∈ Z. For simplicity we take the function β(ℓ, α) from Definition 5.1 to be equal
to α.

The way that this is generally done is that a sequence of functions
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L := (Lα)α≥1

is constructed, in which Lα has the form

Lα = Φα ·
∑

C·n≡1 mod ℓα

a(n)q⌊n/ℓ
α⌋+1, (9.1)

and Φα is a suitable prefactor (usually of the form given to Ramanujan–Kolberg identities in
Chapters 3-4). With the right choice of Φα, we can usually select an N ∈ Z≥1 such that Lα ∈
M (Γ0(N)) for all α ∈ Z≥1.

Of course, the underlying Riemann surface of Γ0(N) is the classical modular curve X0(N) that
we discussed in Chapter 2. For the moment, we assume that g (X0(N)) = 0.

In the case that our functions Lα are modular over Γ0(ℓ) with ℓ a prime number, we find a
curious simplification. The number of cusps can be computed by Lemma 2.10:

ϵ∞ (Γ0(ℓ)) = 2ϕ (gcd(1, ℓ)) = 2ϕ(1) = 2.

Given that ord(N)
∞ (Lα) ≥ 1 by (9.1), we must have

L ⊆ M0 (Γ0(ℓ)) .

Finally, because g (X0(N)) = 0 by hypothesis, we should have

M0 (Γ0(ℓ)) = Z[x],

for some x ∈ M0 (Γ0(ℓ)). If we can construct such an x with the additional property that its
coefficients αI(n) ∈ Q for all n ≥ 0, then we will have

Lα ∈ Q[x].

Indeed, with the right choice of x, we may have

Lα ∈ Z[x].

As with the Ramanujan–Kolberg identities we have already explored, one need only examine the
coefficients of xn to determine divisibility properties of Lα.

However, in the case that N is composite, this is no longer necessarily true. It is possible
that the functions Lα may have multiple poles and zeros at multiple cusps. This complicates the
matter of representing Lα.
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A very natural approach to this problem would be similar to our approach in Chapter 6: to
find a function T such that Tm · Lα ∈ M0 (Γ0(N)) = C[x]. However, as our work in Chapter 6
showed, such functions T are not always easy to work with; indeed, they often inflate the rank
of the relevant Z[X]-module that we end up working over. Our interest here is to keep the rank
equal to 1.

Another possibility presents itself: Theorem 2.45 allows us to construct an eta quotient with
positive order at every cusp except [∞]N . Of course, there is nothing special about [∞]N ; Newman
allows us to construct an eta quotient µ with positive order everywhere except [0]N .

We know that µ ∈ M0 (Γ0(N)), so that µ must be equal to some polynomial f ∈ Z[x], and
therefore

f(x)ψ(α) · Lα ∈ Z[x]

for an appropriate positive integer sequence (ψ(α))α≥1. If we can also arrange so that ℓ ∤ f , then
we can demonstrate that Lα ≡ 0 (mod ℓα) by showing that the coefficients in the polynomial
expansion of f(x)ψ(α) · Lα are each divisible by ℓα.

What makes this a rather intimidating approach to the theory of partition congruences is
that, in order to study Lα, one must work over the localized polynomial ring Z[X]S , in which S
is the multiplicatively closed set of positive multiples of f(X). This can complicate the steps in
proving a given congruence family.

The advantage of this approach is that it can potentially give a representation of the Lα in
terms of an algebraic structure of minimal complexity, imposed by the topology of the underlying
Riemann surface. In particular, we can often express Lα in terms of a Hauptmodul if the genus of
the surface is 0.

To illustrate these ideas, we will give an example of this method of utilizing localized polyno-
mial rings as applied to an infinite family of congruences originally studied and proved by Wang
and Yang [113].

9.2 The ω Smallest Parts Function

The smallest parts function spt(n) was first studied by Andrews in [9].

Definition 9.1. The smallest parts function spt(n) gives the number of smallest parts in the
partitions of n.

For example, let us list the partitions of 5:
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5,

4 + 1,

3 + 2,

3 + 1 + 1,

2 + 2 + 1,

2 + 1 + 1 + 1,

1 + 1 + 1 + 1 + 1,

The partitions 5, 4 + 1, 3 + 2, 2 + 2 + 1 each have a single smallest part (5, 1, 2, 1, respectively),
and therefore each partition contributes 1. On the other hand, the partition 3 + 1 + 1 has the
smallest part 1 occurring twice, and thus contributes 2. Similarly, 2 + 1+ 1+ 1 contributes 3, and
1 + 1 + 1 + 1 + 1 contributes 5. Thus

spt(5) = 1 + 1 + 1 + 1 + 2 + 3 + 5 = 14.

Andrews discovered that spt(n) satisfied congruences similar to those of p(n), e.g. [9]

spt(5n+ 4) ≡ 0 (mod 5).

Garvan later discovered and proved [41] multiple congruence families for spt(n), e.g.,

spt (5αn+ λα) ≡ 0 (mod 5⌊(α+1)/2⌋).

Analogues of spt(n) exist for various more restrictive partition functions. As an example,
consider Ramanujan’s order 3 mock theta function ω, defined by

ω(q) :=
∞∑
n=0

q2n
2+2n

(q; q2)2n+1

. (9.2)

The coefficient of qn in the expansion of ω has a simple partition interpretation. We define the
function pω(n) as follows:

Definition 9.2. The number of partitions of n in which the odd parts are less than twice the
smallest part is denoted pω(n).

The following theorem is due to Andrews, Dixit, and Yee [12]:

Theorem 9.3. We have
∞∑
n=1

pω(n)q
n = qω(q).
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Finally, we can define the spt-analogue of interest to us:

Definition 9.4. Define sptω(n) as the function which counts repetitions of the smallest parts in
the partitions counted by pω(n).

9.3 Motivation

The theorem of interest to us was originally cojectured by Liuquan Wang [110] in 2017. It was
proved the following year by Wang, together with Yifan Yang [113].

Theorem 9.5. Let λα ∈ Z be the minimal positive solution to 12x ≡ 1 (mod 5α). Then

sptω (2 · 5αn+ λα) ≡ 0 (mod 5α). (9.3)

Wang and Yang prove this theorem [113] by relating sptω to the spt functions for certain
Bailey pairs C1, C5 studied by Garvan and Jennings–Shaffer [43], as well as the function c(n),
defined in terms of the normalized weight 2 Eisenstein series (disregarding the nonholomorphic
term). We will recall some basic facts about Eisenstein series which can be found in [34, Section
1.1], [88, Chapter 8], [99, Chapter III]. Define the weight 2k Eisenstein series:

G2k(τ) :=
∑

(m,n)∈Z2\{(0,0)}

1

(mτ + n)2k
. (9.4)

This is a holomorphic weight 2k modular form for k > 1, and can be written in the form

G2k(τ) = 2ζ(2k) + (−1)k · 2 (2π)2k

(2k − 1)!

∞∑
m=1

m2k−1 xm

1− xm
. (9.5)

For k = 1, the series (9.4) is not absolutely convergent, and is not a holomorphic function. If we
attempt to expand G2(τ) by analytic continuation [34, Section 1.2], [88, Chapter 8, Section 63],
[99, Chapter III.2], we compute

G2(τ) =
π2

3
− 8π2

∞∑
m=1

m
xm

1− xm
− π

ℑ(τ)
. (9.6)

Notice that (9.6) matches (9.5) for k = 1, except for the nonholomorphic term π
ℑ(τ)

.

If we disregard the holomorphic part and divide by π2/3, then we have the normalized holo-
morphic part of G2, denoted as E2:

E2(τ) := 1− 24
∞∑
n=1

nqn

1− qn
.
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Notably, while G2(τ) is not holomorphic, the nonholomorphic parts of 2G2(2τ)−G2(τ) cancel, so
that 2G2(2τ) − G2(τ) (and therefore, 2E2(2τ) − E2(τ)) is a weight 2 holomorphic modular form
[34, Section 1.2].

We define c(n) in the following manner:

∞∑
n=0

c(n)qn :=
2E2(2τ)− E2(τ)

(q2; q2)∞
, (9.7)

Wang and Yang then show that Theorem 9.5 is a consequence of the following:

Theorem 9.6. Let 12n ≡ 1 (mod 5α). Then c(n) ≡ 0 (mod 5α).

Wang and Yang employ a method similar in form to that used in Chapters 7-8. In particular,
they develop a sequence of weakly holomorphic weight 2 modular forms (Lα)α≥1 such that

Lα = Φα ·
∞∑
n=0

c (5αn+ λα) q
n+1,

with Φα a certain integer power series which we will define in the next chapter, and λα the minimum
positive solution to 12x ≡ 1 (mod 5α) (see Section 2). They show that

Lα
5α · F

= f0,α(t) + ρ · f1,α(t), (9.8)

in which fi,α ∈ Z[X],

F := F (τ) =
1

24
(50E2(10τ)− 25E2(5τ)− 2E2(2τ) + E2(τ))

is a weight 2 holomorphic modular form, and t, ρ are modular functions in Γ0(10) which take the
form of eta quotients with integer expansions in the Fourier variable q.

This is standard to Paule and Radu’s approach. Note the free rank 2 Z[X]-module structure
of (9.8), which is characteristic of the method.

However, Paule and Radu developed their method in order to overcome the complications
which arise from a congruence family in which the associated modular curve has nonzero genus.
The genus of X0(10) is 0.

It is this extremely important and telling fact that drove us to attempt a more classical proof
of Wang and Yang’s theorem.

As an example, we take the first case of Theorem 9.6. Define

L1 = (q10; q10)∞

∞∑
n=0

c (5n+ 3) qn+1, (9.9)
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in a manner standard to the theory (see Section 2). Wang and Yang prove that L1 ≡ 0 (mod 5)
by showing that

L1 = F ·
((
245t+ 3750t2 + 15625t3

)
− ρ ·

(
125t+ 3125t2

))
, (9.10)

with t and ρ defined as in (9.8). However, we were able to find a function x ∈ M (Γ0(10)) with
the following:

L1 =
F

(1 + 5x)3
·
(
120x+ 1805x2 + 12050x3 + 39500x4 + 50000x5

)
. (9.11)

If we note that x and F both expand into integer power series in the variable q with 5 ∤ F , then we
need only examine the remaining portion of the expression—a single-variable polynomial in x—in
which divisibility by 5 very easily emerges.

An interesting complication emerges in the factor (1 + 5x)−3. One might correctly guess that
our relevant space of modular functions for all α ≥ 1 is isomorphic to a localization of Z[X], rather
than to Z[X] itself. Indeed, we have the following remarkable result, which we consider to be the
climax of our dissertation:

Theorem 9.7. Let

x = x(τ) :=q
∞∏
m=1

(1− q2m)(1− q10m)3

(1− qm)3(1− q5m)
, (9.12)

and

ψ(α) :=

⌊
5α+1

12

⌋
+ 1. (9.13)

For all α ≥ 1, we have

(1 + 5x)ψ(α)

5α · F
· Lα ∈ Z[x]. (9.14)

We are not aware of any other congruence families in which the proof necessitates such a ring
structure, and it would be interesting to know whether any additional examples exist. We strongly
believe that localized rings may yet prove to be an enormously productive environment in which
to examine new arithmetic properties in partition theory, especially for situations in which more
traditional methods fail.

Another interesting difficulty arises in the somewhat irregular 5-adic growth of each term of
Lα under repeated application of the corresponding U5 operators. In particular, in mapping L2α−1
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to L2α, the individual components of the linear coefficient do not increase piecewise with respect
to their 5-adic value—rather, the components must be shown to sum to the necessary multiple of
5 (see Definition 10.11 and Theorem 10.12).

Such a strange complication necessitates a very precise manipulation of the 5-adic convergence
of our critical functions, together with a careful examination of the coefficients in our auxiliary
functions modulo 5. As in the matter of localization, we are unaware of any other examples of
congruence families which demand such a constructive method of verifying divisibility by 5.

A final complication emerges in the base cases of our key lemmas. We require the verification
of 50 initial relations. However, we can show that these 50 are algebraically dependent, and that
a total of only 10 initial relations need be directly established. This stands in contrast to the 20
that Wang and Yang require for their proof. From these 10 relations, the 50 relations necessary
for our induction may be assembled and verified with relative ease through a computer algebra
system. The computational complexity is striking; nevertheless, the reliance (in principle, at least)
upon so few relations, together with the single-variable approach, is to be expected, given that the
underlying genus is 0.

In total, these complications seem overwhelming, and it is understandable that a single-
variable proof has not been found before now. It seems that the genus of the underlying modular
curve alone is sufficient to compel a single-variable proof, in spite of the many considerable diffi-
culties.

9.4 First Attempt at a Single-Variable Proof

Our initial attempt to describe Lα in terms of a certain Hauptmodul z failed almost immediately:
one can verify that the function

z = z(τ) :=
∞∏
m=1

(1− q2m)5(1− q5m)

(1− qm)5(1− q10m)
, (9.15)

has zeros of positive order at all of the poles of L1 except for a pole of order−1 at [0]10. We therefore
labored to produce a representation of L1 in terms of z. Doing so results in the expression

L1

F
=− 624

625z3
− 2487

625z2
+

801

625z
− 422

125
− 3148z

125

+
19904z2

625
+

512z3

625
− 256z4

625
. (9.16)

This clearly does not work.
However, at the advice of Silviu Radu, we attempted to adjust our function x. We discovered

the appropriate substitution in the form of z = 1 + 5x. Substituting into (9.16) and simplifying,
we derive (9.11).

The critical point is that we would prefer the function needed to annihilate the poles of Lα
to be equal to (or a power of) the function used to describe the right-hand side of the witness
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identity. This is of course the intuition which underlies the techniques described in Chapter 6.
It is far more probable that these functions are not equal. Nevertheless, if the function used on
the right-hand side, e.g., x, is a hauptmodul, then we could still use this function to describe our
prefactor function (e.g., z = 1 + 5x). This necessarily induces a localized ring.

In the following chapter we will give a proof of Theorem 9.7.



CHAPTER 10
CONGRUENCES AND GENUS (II)

In this chapter we will give a proof of Theorem 9.7. The complications which emerge in this
problem ensure that many steps are quite tedious. However, much of it resembles the techniques
described in Chapters 5-8.

We will begin by constructing our generating function sequence (Lα)α≥0. We will then intro-
duce the eta quotients z and x, show their relationship with one another, and give each function
a useful modular equation.

In the following section we will define our necessary localized ring, together with our linear
operators U (i). We then give the critical recurrence relation for elements of our localized ring,
together with some very precise conditions on the associated auxiliary functions hi(m,n, r). The
recurrence relation can be proved with an induction argument, of which the initial cases will be
handled later.

We then begin to prove the 5-adic convergence of elements in our localized ring upon applica-
tion of the U (i) operators. The case for U (0) can be done with relative ease; however, the case for
U (1) is more difficult, and requires the previously established arithmetic properties of hi(m,n, r).

In the final section we prove the initial relations of our recurrence relation. The form of
our induction argument requires 50 initial relations. However, these relations are algebraically
dependent. We show that only 10 relations need actually be proved using the modular cusp
analysis from Chapter 2; the 50 initial relations may be computed algebraically from these 10
relations. We finally prove the modular equations for z and x, as well as the representation for L1

given in (9.11).
The results in this chapter have been submitted for publication (along with the results in the

previous chapter), in the manuscript available at https://arxiv.org/abs/2004.03944.

10.1 Proof Setup

We begin by defining an important auxiliary function:

Z := Z(τ) =
η(50τ)

η(2τ)
. (10.1)

Here Z(τ) is a modular function over Γ0(10) (See the final section of this chapter).
We will now define our key generating functions, and their behavior under U5.
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10.1.1 Generating Functions

Our main generating functions Lα for each case of Theorem 9.6 are defined as follows:

L0 := 2E2(2τ)− E2(τ), (10.2)

L2α−1 := (q10; q10)∞

∞∑
n=0

c
(
52α−1n+ λ2α−1

)
qn+1, (10.3)

L2α := (q2; q2)∞

∞∑
n=0

c
(
52αn+ λ2α

)
qn+1, (10.4)

with the λα defined as

λ2α−1 :=
1 + 7 · 52α−1

12
, (10.5)

λ2α :=
1 + 11 · 52α

12
. (10.6)

In either case, λα ∈ Z are the minimal positive solutions to

12x ≡ 1 (mod 5α).

Therefore, one can write Lα in the form

Lα = Φα(q) ·
∑

12n≡1 mod 5α

c(n)q⌊
n
5α ⌋,

with

Φ2α−1 = q(q10; q10)∞,

Φ2α = q(q2; q2)∞.

The U5 operator provides us with a convenient means of accessing Lα+1 from Lα, as the
following lemma shows:

Lemma 10.1. For all α ≥ 0, we have

L2α = U5 (L2α−1) , (10.7)

L2α+1 = U5 (Z · L2α) . (10.8)
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Proof. For any α ≥ 1, we have

U5 (L2α−1) = U5

(
(q10; q10)∞

∑
n≥0

c
(
52α−1n+ λ2α−1

)
qn+1

)

= (q2; q2)∞ · U5

(∑
n≥1

c
(
52α−1(n− 1) + λ2α−1

)
qn

)
= (q2; q2)∞ ·

∑
5n≥1

c
(
52α−1(5n− 1) + λ2α−1

)
qn

= (q2; q2)∞ ·
∑
n≥1

c
(
52αn− 52α−1 + λ2α−1

)
qn

= (q2; q2)∞ ·
∑
n≥0

c
(
52αn+ 52α − 52α−1 + λ2α−1

)
qn+1

= (q2; q2)∞ ·
∑
n≥0

c
(
52αn+ λ2α

)
qn+1.

Similarly,

U5 (Z · L2α) = U5

(
q2
(q50; q50)∞
(q2; q2)∞

(q2; q2)∞
∑
n≥0

c
(
52αn+ λ2α

)
qn+1

)

= (q10; q10)∞ · U5

(∑
n≥3

c
(
52α(n− 3) + λ2α

)
qn

)
= (q10; q10)∞ ·

∑
5n≥3

c
(
52α(5n− 3) + λ2α

)
qn

= (q10; q10)∞ ·
∑
n≥1

c
(
52α+1n− 3 · 52α + λ2α

)
qn

= (q10; q10)∞ ·
∑
n≥0

c
(
52α+1(n+ 1)− 3 · 52α + λ2α

)
qn+1

= (q10; q10)∞ ·
∑
n≥0

c
(
52α+1n+ λ2α+1

)
qn+1.

10.2 The Modular Equation

We recall the functions x, y ∈ M(0) (Γ0(10)) that we introduced in the previous chapter:
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z = z(τ) :=
∞∏
m=1

(1− q2m)5(1− q5m)

(1− qm)5(1− q10m)
,

x = x(τ) :=q
∞∏
m=1

(1− q2m)(1− q10m)3

(1− qm)3(1− q5m)
.

Notice that, by the Freshman’s Dream [55, Chapter III.1, Exercise 11],

(1− qm)5 ≡ 1− q5m (mod 5),

(1− q2m)5 ≡ 1− q10m (mod 5).

This yields

∞∏
m=1

(1− q2m)5(1− q5m)

(1− qm)5(1− q10m)
≡ 1 (mod 5). (10.9)

It is not difficult to verify that

z − 1

5
= q

∞∏
m=1

(1− q2m)(1− q10m)3

(1− qm)3(1− q5m)
, (10.10)

from which we obtain

z = 1 + 5x. (10.11)

Theorem 10.2. Define

a0(τ) = −x− 5 · 4 · x2 − 52 · 6 · x3 − 53 · 4 · x4 − 54 · x5

a1(τ) = −5 · 3x− 5 · 61 · x2 − 52 · 93 · x3 − 53 · 63 · x4 − 54 · 16 · x5

a2(τ) = −5 · 17 · x− 53 · 14 · x2 − 52 · 541 · x3 − 53 · 372 · x4 − 54 · 96 · x5

a3(τ) = −5 · 43 · x− 52 · 179 · x2 − 54 · 56 · x3 − 53 · 976 · x4 − 54 · 256 · x5

a4(τ) = −5 · 41 · x− 52 · 172 · x2 − 53 · 272 · x3 − 54 · 192x4 − 54 · 256 · x5.

Then we have

x5 +
4∑
j=0

aj(5τ)x
j = 0. (10.12)
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Proof. Because x(5τ)−1 ∈ M∞ (Γ0(50)) is a modular function with only one pole, we can prove
this equation using cusp analysis. See the end of the chapter.

Theorem 10.3. Define

b0(τ) = −z5

b1(τ) = 1 + 5z + 5z2 + 5z3 + 5z4 − 16z5

b2(τ) = −4− 5 · 3 · z + 5 · 2 · z2 + 5 · 7 · z3 + 5 · 12 · z4 − 96z5

b3(τ) = 6 + 5 · 3 · z − 5 · 7z2 + 5 · 8z3 + 5 · 48 · z4 − 256z5

b4(τ) = −4− 5z + 5 · 4 · z2 − 5 · 16 · z3 + 5 · 64 · z4 − 256z5.

Then we have

z5 +
4∑

k=0

bk(5τ)z
k = 0. (10.13)

Proof. Simply substitute x = (z − 1)/5 into (10.12), and simplify.

For convenience of notation, in later sections we will define b5(τ) := 1.

10.3 Algebraic Structure

10.3.1 Localized Ring

We will begin to construct the algebra structure needed for our proof, beginning with the peculiar
localization property. Define the multiplicatively closed set

S := {(1 + 5x)n : n ∈ Zn≥0} . (10.14)

We will prove that for every α ≥ 1, Lα is a member of the localization of Z[x] at S, which we
will denote by Z[x]S . Notice that because 1/zn = 1/(1 + 5x)n is an eta quotient with an integer
power series expansion in q = e2πiτ for every n ≥ 1, we can expand every element of the localization
into an integer power series in q, i.e., Z[x]S ⊆ Z[[q]].

We need to define two general classes of subsets of Z[s]S to contain our Lα. Due to a somewhat
irregular pattern of 5-adic convergence, we must build our 5-adic valuation function very carefully.
We define the functions θ0 and θ1 by

θ0(m) :=

{⌊
5m−5

6

⌋
, 1 ≤ m ≤ 2,⌊

5m−5
6

⌋
− 1, m ≥ 3,

θ1(m) :=

{⌊
5m−5

6

⌋
, 1 ≤ m ≤ 3,⌊

5m−5
6

⌋
− 1, m ≥ 4.



164

Now we take an arbitrary n ≥ 1, and define the following:

V(0)
n :=

{
1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm : s is discrete

}
, (10.15)

V(1)
n :=

{
1

(1 + 5x)n

∑
m≥1

s(m) · 5θ1(m) · xm : s is discrete

}
. (10.16)

10.3.2 Recurrence Relation

We now define the following maps:

U (1−i) (f) :=
U5 (F · Zi · f)

F
(10.17)

for i = 0, 1.
We are ready to utilize our modular equations, together with our U (i) operators to build

certain helpful recurrence relations.

Lemma 10.4. For all m,n ∈ Z, and i ∈ {0, 1}, we have

U (i)

(
xm

(1 + 5x)n

)
= − 1

(1 + 5x)5

4∑
j=0

5∑
k=1

aj(τ)bk(τ) · U (i)

(
xm+j−5

(1 + 5x)n−k

)
. (10.18)

Proof. We can write

b0(5τ) = −
5∑

k=1

bk(5τ)z
k,

1 = − 1

b0(5τ)

5∑
k=1

bk(5τ)z
k,

z−n = − 1

b0(5τ)

5∑
k=1

bk(5τ)z
−(n−k), (10.19)

for n ≥ 1. Writing z in terms of x, we have

(1 + 5x)−n = − 1

b0(5τ)

5∑
k=1

bk(5τ)(1 + 5x)−(n−k). (10.20)

If we multiply both sides by xm for some m ≥ 1, then
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xm

(1 + 5x)n
= − 1

b0(5τ)

5∑
k=1

bk(5τ) ·
xm

(1 + 5x)n−k

= − 1

(1 + 5x(5τ))5

5∑
k=1

bk(5τ) ·
xm

(1 + 5x)n−k
. (10.21)

We expand each power of x with its modular equation, and rearrange:

xm

(1 + 5x)n
= − 1

b0(5τ)

5∑
k=1

bk(5τ) ·
4∑
j=0

aj(5τ)
xm+j−5

(1 + 5x)n−k

= − 1

(1 + 5x(5τ))5

4∑
j=0

5∑
k=1

aj(5τ)bk(5τ) ·
xm+j−5

(1 + 5x)n−k
. (10.22)

Now multiply both sides by F · Z1−i:

F · Z1−i · xm

(1 + 5x)n
= − 1

b0(5τ)

5∑
k=1

bk(5τ) ·
4∑
j=0

aj(5τ)
xm+j−5

(1 + 5x)n−k

= − 1

(1 + 5x(5τ))5

4∑
j=0

5∑
k=1

aj(5τ)bk(5τ) · F · Z1−i · xm+j−5

(1 + 5x)n−k
. (10.23)

Recall that by Section 2.7, for any functions f(τ), g(τ), we have

U5(f(5τ) · g(τ)) = f(τ) · U5(g(τ)).

This gives us

U5

(
F · Z1−i · xm

(1 + 5x)n

)
=− 1

(1 + 5x)5

4∑
j=0

5∑
k=1

aj(τ)bk(τ) · U5

(
F · Z1−i · xm+j−5

(1 + 5x)n−k

)
. (10.24)

Dividing both sides by F , we achieve our formula.
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10.3.3 General Relations

We need to provide certain general relations for U (i)
(

xm

(1+5x)n

)
. For this we will define the following:

π1(m, r) :=



0, 1 ≤ m ≤ 2, and r = 1,

3, 1 ≤ m ≤ 2, and r = 3,⌊
5r+1
6

⌋
, 1 ≤ m ≤ 2, and r ≥ 2, and r ̸= 3,

2, m = 3, and r = 2,⌊
5r−2
6

⌋
, m = 3, and r ̸= 2,⌊

5r−m+1
6

⌋
, m ≥ 4;

π0(m, r) :=


⌊
5r+1
6

⌋
, m = 1,⌊

5r+1
6

⌋
, m = 2, and r ̸= 3, 4, 5,⌊

5r−5
6

⌋
, m = 2, and 3 ≤ r ≤ 5,⌊

5r−m−2
6

⌋
, m ≥ 3.

Theorem 10.5. There exist discrete arrays h1, h0 : Z3 → Z such that

U (1)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n−4

∑
r≥⌈m/5⌉

h1(m,n, r) · 5π1(m,r) · xr, (10.25)

U (0)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n−2

∑
r≥⌈(m+2)/5⌉

h0(m,n, r) · 5π0(m,r) · xr. (10.26)

Notice that

π1(m, r) ≥
⌊
5r −m+ 1

6

⌋
, (10.27)

π0(m, r) ≥
⌊
5r −m− 2

6

⌋
. (10.28)

We will therefore begin by proving the following lemmas, which resemble Lemma 7.5 in form:

Lemma 10.6. Let κ, δ, µ ∈ Z≥0 be fixed, and fix i ∈ {0, 1}. If there exists a discrete array hi such
that

U (i)

(
xm

(1 + 5x)n

)
=

1

(1 + 5x)5n−κ

∑
r≥⌈m+δ

5 ⌉
hi(m,n, r) · 5⌊

5r−m+µ
6 ⌋ · xr (10.29)

for 1 ≤ m ≤ 5, 1 ≤ n ≤ 5, then such a relation can be made to hold for all m ≥ 1, n ≥ 1.
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Lemma 10.7. Let κ, δ ∈ Z≥0 and m0 ∈ Z≥1 be fixed, and fix i ∈ {0, 1}. If there exists a discrete
array hi such that

U (i)

(
xm0

(1 + 5x)n

)
=

1

(1 + 5x)5n−κ

∑
r≥⌈m+δ

5 ⌉
hi(m,n, r) · 5πi(m0,r) · xr (10.30)

for 1 ≤ n ≤ 5, then such a relation can be made to hold for all n ≥ 1.

For m ≥ 5, (10.27), (10.28) yield equality, and we may replace the floor functions of the
powers of 5 in Lemma 10.6 with πi(m, r). However, for 1 ≤ m ≤ 4, the functions πi(m,n) are
more irregular. We therefore need Lemma 10.7 for 1 ≤ m ≤ 4. If both lemmas are satisfied, and
we can provide the initial relations for 1 ≤ m ≤ 5, 1 ≤ n ≤ 5, then we can construct the discrete
arrays hi such that Theorem 10.5 follows.

Proof of Lemma 10.6. We will use induction. Suppose that the relation holds for all positive
integers strictly less than some m0, n0 ∈ Z≥6. We want to show that the relation can be made to
hold for m0 and n0. We have

U (i)

(
xm0

(1 + 5x)n0

)
= − 1

(1 + 5x)5

4∑
j=0

5∑
k=1

aj(τ)bk(τ) · U (i)

(
xm0+j−5

(1 + 5x)n0−k

)
(10.31)

= − 1

(1 + 5x)5

4∑
j=0

5∑
k=1

aj(τ)bk(τ)

(1 + 5x)5(n0−k)−κ

×
∑

r≥⌈(m0+j−5+δ)/5⌉

hi(m0 + j − 5, n0 − k, r) · 5
⌊
5r−(m0+j−5)+µ

6

⌋
· xr (10.32)

=
1

(1 + 5x)5n0−κ

4∑
j=0

5∑
k=1

w(j, k)

×
∑

r≥⌈(m0+j−5+δ)/5⌉

hi(m0 + j − 5, n0 − k, r) · 5
⌊
5r−(m0+j−5)+µ

6

⌋
· xr, (10.33)

with

w(j, k) :=− aj(τ)bk(τ)(1 + 5x)5(k−1)

=
25∑
l=1

v(j, k, l) · 5⌊
5l+j
6 ⌋ · xl. (10.34)

Relation (10.34) can be demonstrated by expanding of aj(τ)bk(τ)(1+5x)5(k−1). Expanding w(j, k),
we have
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U (i)

(
xm0

(1 + 5x)n0

)
=

1

(1 + 5x)5n0−κ

4∑
j=0

5∑
k=1

25∑
l=1

∑
r≥⌈(m0+j−5+δ)/5⌉

v(j, k) · hi(m0 + j − 5, n0 − k, r) · 5
⌊
5r−(m0+j−5)+µ

6

⌋
+⌊ 5l+j

6 ⌋ · xr+l. (10.35)

Notice that for any M,N ∈ Z, we have

⌊
M

6

⌋
+

⌊
N

6

⌋
≥
⌊
M +N − 5

6

⌋
.

Because of this,

⌊
5r − (m0 + j − 5) + µ

6

⌋
+

⌊
5l + j

6

⌋
≥
⌊
5(r + l)−m0 + µ

6

⌋
. (10.36)

And because

r + l ≥
⌈
m0 + j − 5 + δ

5

⌉
+ l

≥
⌈
m0 + δ

5
− 5− j

5

⌉
+ l

≥
⌈
m0 + δ

5

⌉
− 1 + l

≥
⌈
m0 + δ

5

⌉
,

we can relabel our powers of x so that

U (i)

(
xm0

(1 + 5x)n0

)
=

1

(1 + 5x)5n0−κ

∑
0≤j≤4,
1≤k≤5,
1≤l≤25

∑
r≥⌈m0+δ

5 ⌉

v(j, k) · hi(m0 + j − 5, n0 − k, r − l) · 5
⌊
5r−(m0+j−5)+µ

6

⌋
+⌊ 5l+j

6 ⌋ · xr. (10.37)

If we define the discrete array Hi by
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Hi(m,n, r) :=


∑

0≤j≤4,
1≤k≤5,
1≤l≤25

∑
r≥⌈m+δ

5 ⌉−1+l Ĥ(i, j, k, l, r), r ≥ l

0, r < l

(10.38)

with

Ĥ(i, j, k, l, r) := v(j, k) · hi(m+ j − 5, n− k, r − l) · 5ϵ(i,j,l,m,r),

ϵ(i, j, l,m, r) :=

⌊
5(r − l)− (m+ j − 5) + µ

6

⌋
+

⌊
5l + j

6

⌋
−
⌊
5r −m0 + µ

6

⌋
,

then

U (i)

(
xm0

(1 + 5x)n0

)
=

1

(1 + 5x)5n0−κ
×

∑
r≥⌈m0+δ

5 ⌉
Hi(m0, n0, r) · 5⌊

5r−m0+µ
6 ⌋ · xr. (10.39)

This lemma nearly gives us the necessary relations for Theorem 10.5. However, we need to be
more precise for 1 ≤ m ≤ 4. We therefore give the following lemma to provide for these cases.

Proof of Lemma 10.7.

U (i)

(
xm0

(1 + 5x)n

)
=− 1

(1 + 5x)5

5∑
k=1

bk(τ) · U (i)

(
xm0

(1 + 5x)n−k

)
(10.40)

=− 1

(1 + 5x)5

5∑
k=1

bk(τ)

(1 + 5x)5(n−k)−κ

∑
r≥1

hi(m0, n− k, r) · 5πi(m0,r) · xr (10.41)

=
1

(1 + 5x)5n−κ

5∑
k=1

ŵ(k)
∑
r≥1

hi(m0, n− k, r) · 5πi(m0,r) · xr, (10.42)

with
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ŵ(k) : = −bk(τ)(1 + 5x)5(k−1)

=


20∑
l=0

v̂(k, l) · 5⌊
5l+10

6 ⌋ · xl, k < 5

1 +
20∑
l=1

v̂(5, l) · 5⌊
5l+10

6 ⌋ · xl, k = 5.

(10.43)

This can be demonstrated with a simple expansion of ŵ(k). Expanding, we have

U (i)

(
xm0

(1 + 5x)n

)
=

1

(1 + 5x)5n−κ

×

( ∑
1≤k≤4,
0≤l≤20,

r≥⌈m0+δ
5 ⌉

v̂(k, l) · hi(m0, n− k, r) · 5πi(m0,r)+⌊ 5l+10
6 ⌋ · xr+l (10.44)

+
∑

1≤l≤20,

r≥⌈m0+δ
5 ⌉

v̂(5, l) · hi(m0, n− 5, r) · 5πi(m0,r)+⌊ 5l+10
6 ⌋ · xr+l (10.45)

+
∑

r≥⌈m0+δ
5 ⌉

hi(m0, n− 5, r) · 5πi(m0,r) · xr
)
. (10.46)

With a change of index, we have

U (i)

(
xm0

(1 + 5x)n

)
=

1

(1 + 5x)5n−κ
(10.47)

×

( ∑
1≤k≤4,
0≤l≤20,

r≥l+⌈m0+δ
5 ⌉

v̂(k, l) · hi(m0, n− k, r − l) · 5πi(m0,r−l)+⌊ 5l+10
6 ⌋ · xr (10.48)

+
∑

1≤l≤20,

r≥l+⌈m0+δ
5 ⌉

v̂(5, l) · hi(m0, n− 5, r − l) · 5πi(m0,r−l)+⌊ 5l+10
6 ⌋ · xr (10.49)

+
∑

r≥⌈m0+δ
5 ⌉

hi(m0, n− 5, r) · 5πi(m0,r) · xr
)
. (10.50)

Now,
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πi(m0, r − l) +

⌊
5l + 10

6

⌋
≥ πi(m0, r). (10.51)

This ensures that the 5-adic valuation of the terms in (10.48)-(10.49) is sufficient for us. We only
need to examine the 5-adic valuation of (10.50):

1

(1 + 5x)5n−κ

∑
r≥⌈m0+δ

5 ⌉
hi(m0, n− 5, r) · 5πi(m0,r) · xr

= U (i)

(
xm0

(1 + 5x)n−5

)
. (10.52)

Therefore, if our relation in Lemma 10.7 is established for 1 ≤ n ≤ 5, then it must be true for
all n ≥ 6 as well.

We may now rearrange the expression in (10.47)-(10.50) and define a new discrete array in a
manner similar to (10.38) to finish the proof.

Proof of Theorem 10.5. These relations arise as consequences of Lemmas 10.6, 10.7 above, pro-
vided that the cases for 1 ≤ m ≤ 5, 1 ≤ n ≤ 5 are established. The computations needed to
verify these relations are given at the end of the chapter. See our Mathematica supplement for the
detailed computation.

As an additional consequence of Lemmas 10.6, 10.7, we have the following important result
on the behavior of the coefficients in these expansions:

Corollary 10.8. For all n ∈ Z≥1 we have:

h0(1, n, 1) ≡ 1 (mod 5), (10.53)

h0(2, 5n− 4, 1) ≡ 0 (mod 5), (10.54)

h0(3, n, 1) ≡ 1 (mod 5), (10.55)

h0(1, n, 2) ≡ 4 (mod 5), (10.56)

h0(2, 5n− 4, 2) ≡ 4 (mod 5), (10.57)

h0(3, n, 2) ≡ 4 (mod 5), (10.58)

h0(2, 5n− 4, 3) ≡ 1 (mod 5). (10.59)

For all n ∈ Z≥1 and 1 ≤ m ≤ 3 we have:

h1(m,n, 1) ≡ 1 (mod 5). (10.60)
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Proof. We will first prove (10.53)–(10.55). Let us reexamine (10.44), (10.45), (10.46). Notice that
whenever (10.51) is strict, i.e.,

πi(m0, r − l) +

⌊
5l + 10

6

⌋
> πi(m0, r), (10.61)

we must have hi(m0, n, r) ≡ hi(m0, n−5, r) (mod 5). We therefore need only establish that (10.61)
is true in all relevant cases. Thereafter, we can simply compute the relevant coefficients for five
consecutive values of n.

We note that in (10.45), r ≥ 1 and l ≥ 1. Because of this, r+l ≥ 2, and (10.45) will contribute
nothing to the linear coefficient. On the other hand, in (10.44), the only possibility is for l = 0

and r = 1. Because
⌊
5(0)+10

6

⌋
> 1, we easily get (10.61).

Therefore, we must have

h0(1, n, 1) ≡ h0(1, n− 5, 1) (mod 5),

h0(2, n, 1) ≡ h0(2, n− 5, 1) (mod 5),

h0(3, n, 1) ≡ h0(3, n− 5, 1) (mod 5).

These computations are too extensive to place here. We refer the reader to the online Mathematica
supplement to the manuscript that this chapter is based on, at https://www3.risc.jku.at/

people/nsmoot/online7.nb.
Our calculations find that h0(1, n, 1) ≡ h0(3, n, 1) ≡ 1 (mod 5) for 1 ≤ n ≤ 5. Therefore,

(10.53)–(10.54) must be true for all n. On the other hand, h0(2, n, 1) does not have a constant
residue class modulo 5, and h0(2, n, 1) ≡ 0 (mod 5) for n ≡ 1 (mod 5).

To prove (10.56), (10.57), (10.58), we note that we may directly compute π0(m, r). Notice
that the only way for r + l = 2 to be true is for r = l = 1 or r = 2 and l = 0. For the first case,
we have

π0(1, 2− 1) +

⌊
5(1) + 10

6

⌋
= 1 + 2 = 3 > 1 = π0(1, 1), (10.62)

π0(2, 2− 1) +

⌊
5(1) + 10

6

⌋
= 1 + 2 = 3 > 1 = π0(2, 1), (10.63)

π0(3, 2− 1) +

⌊
5(1) + 10

6

⌋
= 1 + 2 = 3 > 0 = π0(3, 1). (10.64)

Here, (10.51) is strict; for the second case, i.e., for r = 2 and l = 0, (10.51) follows immediately.
We need only examine each case for five consecutive values of n.

To prove (10.59), we take into account that there are three different ways for r + l = 3 to be
true. Either r = 1 and l = 2, or r = 2 and l = 1, or r = 3 and l = 0. We therefore have
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π0(2, 3− 2) +

⌊
5(2) + 10

6

⌋
= 1 + 3 = 4 > 1 = π0(2, 1), (10.65)

π0(2, 3− 1) +

⌊
5(1) + 10

6

⌋
= 1 + 2 = 3 > 1 = π0(2, 2), (10.66)

and the inequality is again trivially true in the case that l = 0. Because the inequality holds in
both cases, we can again simply examine each case for five consecutive values of n.

Finally, to prove (10.60), we first note that for m fixed, we may use the same reasoning as
was used to prove (10.54)–(10.55). To see how h1(m,n, 1) (mod 5) varies with m, let us reexamine

(10.35). Notice that for m0 ≥ 6, U (i)
(

xm0

(1+5x)n0

)
only depends on U (i)

(
xr+l

(1+5x)n0−5

)
, in which

r ≥ 1 and l ≥ 1. In particular, for m ≥ 6, the coefficient of U (i)
(

x1

(1+5x)n

)
cannot depend on

U (i)
(

xm0

(1+5x)n0

)
.

As only five values of m will contribute to the coefficient of U (i)
(

x1

(1+5x)n

)
, we therefore only

need to check (10.60) for 1 ≤ m ≤ 5, and for 1 ≤ n ≤ 5.

10.4 5-adic Irregularities

10.4.1 Main Theorem

With the necessary relations established for U (i)
(

xm

(1+5x)n

)
, we can now work towards the main

theorem. We begin with the following theorem:

Theorem 10.9.

For every f ∈ V(0)
n , we have

1

5
· U (0) (f) ∈ V(1)

5n−2. (10.67)

Proof. Let f ∈ V(0)
n . Then we can express f as

f =
1

(1 + 5x)n

∑
m≥1

s(m) · 5θ1(m) · xm.

We write

U (0) (f) =
∑
m≥1

s(m) · 5θ1(m) · U (0)

(
xm

(1 + 5x)n

)
(10.68)

=
1

(1 + 5x)5n−2

∑
m≥1

∑
r≥⌈(m+2)/5⌉

s(m) · h0(m,n, r)5θ1(m)+π0(m,r) · xr (10.69)

=
1

(1 + 5x)5n−2

∑
r≥1

∑
m≥1

s(m) · h0(m,n, r)5θ1(m)+π0(m,r) · xr. (10.70)



174

We examine θ1(m) + π0(m, r):
For m = 1:

θ1(1) + π0(1, r) = 0 +

⌊
5r + 1

6

⌋
≥ θ0(r) + 1.

For m = 2:

θ1(2) + π0(2, r) =

{
0 +

⌊
5r+1
6

⌋
, 1 ≤ r ≤ 2 or r ≥ 6,

0 +
⌊
5r−5
6

⌋
, 3 ≤ r ≤ 5.

In both cases, θ1(2) + π0(2, r) ≥ θ0(r) + 1.
For m = 3:

θ1(3) + π0(3, r) = 1 +

⌊
5r − 5

6

⌋
≥ θ0(r) + 1.

For m = 4:

θ1(4) + π0(4, r) = 1 +

⌊
5r − 6

6

⌋
=

⌊
5r

6

⌋
≥ θ0(r) + 1

(recall that m ≥ 4 cannot contribute to the coefficient of U (0)
(

x1

(1+5x)n

)
since ⌈(4 + 2)/5⌉ = 2).

For m ≥ 5:

θ1(m) + π0(m, r) =

⌊
5m− 5

6

⌋
− 1 +

⌊
5r −m− 2

6

⌋
≥
⌊
5r −m− 12

6

⌋
− 1

≥
⌊
5r − 5

6

⌋
+

⌊
4m− 7

6

⌋
− 1

≥
⌊
5r − 5

6

⌋
+ 2− 1

≥
⌊
5r − 5

6

⌋
+ 1

≥ θ0(r) + 1.

Notice that, in all cases,

θ1(m) + π0(m, r) ≥ θ0(r) + 1,

so that U (0) (f) ∈ 5 · V(1)
n
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Theorem 10.10. Let f ∈ V(1)
n and write

U (1) (f) =
∑
r≥1

s̃(r)
xr

(1 + 5x)5n−4
. (10.71)

Then

1

5

(
U (1) (f)− s̃(1)

y

(1 + 5x)5n−4

)
∈ V(0)

5n−4. (10.72)

Proof. Let f ∈ V(1)
n . Then we can express f as

f =
1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm.

We write

U (1) (f) =
∑
m≥1

s(m) · 5θ0(m) · U (1)

(
xm

(1 + 5x)n

)
(10.73)

=
1

(1 + 5x)5n−4

∑
m≥1

∑
r≥⌈m/5⌉

s(m) · h1(m,n, r)5θ0(m)+π1(m,r) · xr (10.74)

=
1

(1 + 5x)5n−4

∑
r≥1

∑
m≥1

s(m) · h1(m,n, r)5θ0(m)+π1(m,r) · xr. (10.75)

Let us denote the coefficient of xr

(1+5x)5n−4 by s̃(r). Now we examine the 5-adic valuation of each
component

In the cases 1 ≤ m ≤ 2, we have

θ0(1) + π1(1, r) =


0, r = 1

3, r = 3⌊
5r+1
6

⌋
, r = 2 or r ≥ 4.

(10.76)

With m = 3, we have

θ0(3) + π1(3, r) =


0, r = 1

2, r = 2⌊
5r−2
6

⌋
, r = 3 or r ≥ 4.

(10.77)

Notice that if 1 ≤ m ≤ 3, then θ0(m) + π1(m, r) ≥ θ1(r) + 1 except when r = 1.
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Finally, for m ≥ 4, we have

θ0(m) + π1(m, r) =

⌊
5m− 5

6

⌋
− 1 +

⌊
5r −m+ 1

6

⌋
(10.78)

≥
⌊
5r + 4m− 9

6

⌋
− 1 (10.79)

≥
⌊
5r − 5

6

⌋
+

⌊
4m− 4

6

⌋
− 1 (10.80)

≥
⌊
5r − 5

6

⌋
+ 1 (10.81)

≥ θ1(r) + 1. (10.82)

We therefore have a 5-adic increase in the valuation of each component of U (1) (f) except for

the coefficient of
y

(1 + 5x)5n−4
. If we remove this component from U (1) (f) and then divide by 5,

what remains is indeed a member of V(0)
5n−4.

10.5 Resolution

Our last two theorems are very nearly sufficient to give us the 5-adic convergence that we need,

with the notable exception of the components which contribute to the coefficient of
y

(1 + 5x)5n−4
.

Indeed, the individual components need not be divisible by 5 at all. We therefore need to define
a set under slightly more restrictive conditions than V(1)

n for our purposes.

Definition 10.11.

W(1)
n :=

{
1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm ∈ V(1)
n :

3∑
m=1

s(m) ≡ 0 mod 5

}
. (10.83)

This small additional condition is at last sufficient for our purposes.

Theorem 10.12. Suppose that f ∈ W(1)
n . Then

1

5

(
U (1) (f)

)
∈ V(0)

5n−4, (10.84)

1

52
(
U (0) ◦ U (1) (f)

)
∈ W(1)

25n−22. (10.85)

Proof. Let f ∈ W(1)
n be written as

f =
1

(1 + 5x)n

∑
m≥1

s(m) · 5θ0(m) · xm.
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We then have

U (1) (f) =
1

(1 + 5x)5n−4

∑
m≥1

∑
r≥⌈m/5⌉

s(m) · h1(m,n, r) · 5θ0(m)+π1(m,r) · xr

=
1

(1 + 5x)5n−4
t(1) · 5θ1(1) · y + 1

(1 + 5x)5n−4

∑
r≥2

t(r) · 5θ1(r)+1 · xr,

with

t(r) =


∑

1≤m≤5

s(m) · h1(m,n, 1) · 5θ0(m)+π1(m,1)−θ1(r), r = 1∑
1≤m≤5r

s(m) · h1(m,n, r) · 5θ0(m)+π1(m,r)−θ1(r)−1, r ≥ 2.

We first prove (10.84). Notice that

t(1) =
5∑

m=1

s(m) · h1(m,n, 1) · 5θ0(m)+π1(m,1),

since θ1(1) = 0. Moreover, θ0(4), θ0(5) ≥ 1, and θ0(m) + π1(m, 1) = 0 for 1 ≤ m ≤ 3, so that

t(1) ≡
3∑

m=1

s(m) · h1(m,n, 1) (mod 5).

Taking advantage of (10.60), we have

t(1) ≡
3∑

m=1

s(m) ≡ 0 (mod 5).

Writing

t̃(r) :=

{
1
5
· t(1) ∈ Z, r = 1

t(r), r ̸= 1,

we have

U (1) (f) =
1

(1 + 5x)5n−4

∑
r≥1

t̃(r) · 5θ1(r)+1 · xr,
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so that

1

5

(
U (1) (f)

)
∈ V(0)

5n−4.

We now prove (10.85). Dividing by 52, we find that

1

52
·
(
U (0) ◦ U (1) (f)

)
=

5−2

(1 + 5x)25n−22

×
∑
r≥1

∑
w≥⌈(r+2)/5⌉

t̃(r) · h0(r, 5n− 4, w) · 5π0(r,w)+θ1(r) · xw

=
1

(1 + 5x)25n−22

∑
w≥1

q(r) · 5θ0(w)xw,

with

q(w) =
5w−2∑
r=1

t̃(r) · h0(r, 5n− 4, w) · 5π0(r,w)−θ0(w)−2

=
5w−2∑
r=1

5r∑
m=1

s(m) · h1(m,n, r) · h0(r, 5n− 4, w) · 5θ0(m)+π1(m,r)+π0(r,w)−θ0(w)−2.

In particular, since θ0(w) = 0 for 1 ≤ w ≤ 3, we have

q(1) =
3∑
r=1

5r∑
m=1

s(m) · h1(m,n, r) · h0(r, 5n− 4, 1) · 5θ0(m)+π1(m,r)+π0(r,1)−2,

q(2) =
8∑
r=1

5r∑
m=1

s(m) · h1(m,n, r) · h0(r, 5n− 4, 2) · 5θ0(m)+π1(m,r)+π0(r,2)−2,

q(3) =
13∑
r=1

5r∑
m=1

s(m) · h1(m,n, r) · h0(r, 5n− 4, 3) · 5θ0(m)+π1(m,r)+π0(r,3)−2.

We want to show that q(1) + q(2) + q(3) ≡ 0 (mod 5). First, we may remove all cases in which
θ0(m) + π1(m, r) + π0(r, w)− 2 ≥ 1. A quick estimate shows that for 1 ≤ w ≤ 3, we have
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θ0(m) + π1(m, r) + π0(r, w)− 2

≥
⌊
5m− 5

6

⌋
− 1 +

⌊
5r −m+ 1

6

⌋
+

⌊
5r − w − 2

6

⌋
− 2

≥
⌊
5r + 4m− 9

6

⌋
+

⌊
5r − w − 2

6

⌋
− 3

≥ 2

⌊
5r − 5

6

⌋
+

⌊
4m− 4

6

⌋
− 3

≥ 1,

for m ≥ 7 or r ≥ 4. We therefore need to examine the cases when 1 ≤ m ≤ 6, 1 ≤ r ≤ 3, and
1 ≤ w ≤ 3. We provide three tables in Appendix D which show θ0(m) + π1(m, r) + π0(r, w) − 2
over this range.

Examining Table D.5, we see that we get a value of 0 for

(r,m) = (1, 4), (2, 1), (2, 2), (3, 3).

Moreover, we get a value of −1 for

(r,m) = (1, 1), (1, 2), (1, 3).

Examining Table D.6, we see that we get a value of 0 for

(r,m) = (1, 4), (2, 1), (2, 2), (3, 3),

and a value of −1 for

(r,m) = (1, 1), (1, 2), (1, 3).

Finally, examining Table D.7, we see that we get a value of 0 for

(r,m) = (1, 1), (1, 2), (1, 3), (2, 1), (2, 2),

and no negative values.
We therefore have
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q(1) + q(2) + q(3)

≡1

5
·

3∑
m=1

s(m) · h1(m,n, 1) · h0(1, 5n− 4, 1) + s(4) · h1(4, n, 1) · h0(1, 5n+ 4, 1)

+
2∑

m=1

s(m) · h1(m,n, 2) · h0(2, 5n− 4, 1) + s(3) · h1(3, n, 3) · h0(3, 5n− 4, 1)

+
1

5
·

3∑
m=1

s(m) · h1(m,n, 1) · h0(1, 5n− 4, 2) + s(4) · h1(4, n, 1) · h0(1, 5n+ 4, 2)

+
2∑

m=1

s(m) · h1(m,n, 2) · h0(2, 5n− 4, 2) + s(3) · h1(3, n, 3) · h0(3, 5n− 4, 2)

+
3∑

m=1

s(m) · h1(m,n, 1) · h0(1, 5n− 4, 3) +
2∑

m=1

s(m) · h1(m,n, 2) · h0(2, 5n− 4, 3) (mod 5).

We want to prove that the right-hand side is integral, and divisible by 5. Rearranging, we have

q(1) + q(2) + q(3)

≡1

5
·

(
2∑
j=1

h0(1, 5n− 4, j)

)
·

(
3∑

m=1

s(m) · h1(m,n, 1)

)
(10.86)

+h0(1, 5n− 4, 3) ·

(
3∑

m=1

s(m) · h1(m,n, 1)

)
(10.87)

+

(
2∑
j=1

h0(1, 5n− 4, j)

)
· s(4) · h1(4, n, 1) (10.88)

+

(
3∑
j=1

h0(2, 5n− 4, j)

)
·

2∑
m=1

s(m) · h1(m,n, 2) (10.89)

+

(
2∑
j=1

h0(3, 5n− 4, j)

)
· s(3) · h1(3, n, 3) (mod 5). (10.90)

It now remains to demonstrate that this expression is 0 (mod 5).
We are going to show that each sum within parentheses is divisible by 5. In the first place,

h1(m,n, 1) ≡ 1 (mod 5) by (10.60). Therefore,

3∑
m=1

s(m) · h1(m,n, 1) ≡
3∑

m=1

s(m) ≡ 0 (mod 5),
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since f ∈ W(1)
n . Moreover,

2∑
j=1

h0(1, 5n− 4, j) ≡ 0 (mod 5)

by (10.53), (10.56). Therefore, (10.86) is 0 (mod 5).
In like manner, we have the parenthesized sums in (10.87) congruent to 0 (mod 5) by (10.60);

(10.88) congruent to 0 (mod 5) by (10.53) and (10.56); (10.89) congruent to 0 (mod 5) by (10.54),
(10.57), and (10.59); (10.90) congruent to 0 (mod 5) by (10.55) and (10.58).

We then have

1

52
·
(
U (0) ◦ U (1) (f)

)
=

1

(1 + 5x)25n−22

∑
w≥1

q(r) · 5θ0(w)xw ∈ V(1)
25n−22,

with q(1) + q(2) + q(3) ≡ 0 (mod 5), i.e.,

1

52
·
(
U (0) ◦ U (1) (f)

)
∈ W(1)

25n−22. (10.91)

10.6 Completion of the Proof

At last, we have enough to prove Theorem 9.7:

Proof of Theorem 9.7. In the next section we will demonstrate that

L1 =
F

(1 + 5y)3
·
(
120y + 1805x2 + 12050x3 + 39500x4 + 50000x5

)
=

5 · F
(1 + 5y)3

·
(
24y + 361x2 + 2410x3 + 7900x4 + 10000x5

)
.

Notice that

1

5 · F
· L1 = f1 ∈ W(1)

3 .

Suppose that for some α ∈ Z≥1 and n ∈ Z≥1, we have

1

52α−1 · F
· L2α−1 ∈ W(1)

n .
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Then

L2α−1 = F · 52α−1 · f2α−1, (10.92)

with f2α−1 ∈ W(1)
n . Now,

L2α = U5 (L2α−1) = U5

(
F · 52α−1 · f2α−1

)
= F · 52α−1 · U (1) (f2α−1) . (10.93)

By (10.84) of Theorem 10.12, we know that there exists some f2α ∈ V(0)
5n−4 such that

U (1) (f2α−1) = 5 · f2α. (10.94)

Therefore

L2α = F · 52α · f2α. (10.95)

Moreover,

L2α+1 = U5 (Z · L2α) = U5

(
F · 52α · Z · f2α

)
= F · 52α · U (0) (f2α) . (10.96)

By (10.85) of Theorem 10.12, we know that there exists some f2α+1 ∈ W(1)
5n−2 such that

U (0) (f2α) = 5 · f2α+1. (10.97)

Therefore,

L2α+1 = F · 52α+1 · f2α+1. (10.98)

We briefly show that the power of our localizing factor for Lα matches with ψ(α) from (9.13),
i.e., that

L2α−1

52α−1 · F
∈ W(1)

ψ(2α−1),

L2α

52α · F
∈ V(0)

ψ(2α).

It is a fact of elementary number theory that for all α ≥ 1,
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52α−1 ≡ 5 (mod 12),

52α ≡ 1 (mod 12),

and therefore that

⌊
52α−1

12

⌋
=

52α−1

12
− 5

12
,⌊

52α

12

⌋
=

52α

12
− 1

12
.

With this, we have

5 · ψ(2α− 1)− 4 = 5 ·
(⌊

52α

12

⌋
+ 1

)
− 4

= 5 ·
(
52α

12
− 1

12
+ 1

)
− 4

=
52α+1

12
− 5

12
+ 1

=

⌊
52α+1

12

⌋
+ 1

= ψ(2α).

In similar fashion, it can be proved that

5 · ψ(2α)− 2 = ψ(2α + 1).

This is compatible with the increase in the localizing powers in Theorem 10.5. Finally, ψ(1) = 3
is the localizing power for L1.

10.7 Initial Relations

For i fixed, our theorem for expanding U (i)
(

xm

(1+5x)n

)
requires 25 initial relations to be justified.

However, these relations are ultimately dependent on far fewer relations, since one can very quickly
verify that
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U (i)

(
xm

(1 + 5x)n

)
=

1

5m
· U (i)

(
(z − 1)m

zn

)
(10.99)

=
1

5m

m∑
r=0

(−1)m−r
(
m

r

)
· U (i)

(
zr−n

)
(10.100)

=
1

5m

m∑
r=0

(−1)m−r
(
m

r

)
· U (i)

(
(1 + 5x)r−n

)
. (10.101)

We can very quickly compute any value of U (i)
(

xm

(1+5x)n

)
, provided we have exact expressions for

U (i) ((1 + 5x)r) for −n ≤ r ≤ m− n.

To compute U (i)
(

xm

(1+5x)n

)
for 1 ≤ m,n ≤ 5, we need to have expressions for U (i) ((1 + 5x)r)

for −5 ≤ r ≤ 4. However, we have the degree 5 modular equation for z = 1 + 5x, which yields

U (i) ((1 + 5x)n) = −
4∑

k=0

bk(τ) · U (i)
(
(1 + 5x)k+n−5

)
. (10.102)

Moreover, for n ≥ 0 we obviously have

U (i) ((1 + 5x)n) =
n∑
k=0

(
n

k

)
· 5k · U (i)

(
xk
)
, (10.103)

and x is the solution to a degree 5 modular equation, (10.12).

Therefore, in order to determine U (i)
(

xm

(1+5x)n

)
for any m,n ∈ Z and i ∈ {0, 1} fixed, we only

need to determine relations for U (i)
(
xk
)
for five consecutive values of k. With two values of i, this

gives us 10 relations to establish. Once these relations are established, verification of the 50 initial
relations follows as a relatively simple, if somewhat tedious, computational exercise.

Theorem 10.13. The relations from Theorem 10.5, together with the congruence conditions of
Corollary 10.8, hold for 1 ≤ m ≤ 5, and 1 ≤ n ≤ 5.

The calculation is straightforward, but we detail it in a Mathematica supplement which can
be found online at https://www3.risc.jku.at/people/nsmoot/online7.nb.

10.7.1 Computing the Initial Cases

Here we compute the relations which can be found in Appendix C, together with the modular
equations (10.12), (10.13), and our representation for L1, (9.11).

Our initial relations consist of
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U (i)
(
xl
)
= pi,l(y) ∈ Z[y], (10.104)

for 1 ≤ l ≤ 4, and

(1 + 5x) · U (i) (1) = pi,0(y) ∈ Z[y] (10.105)

(in both cases, 0 ≤ i ≤ 1).
We can use Theorem 2.40 to verify that x ∈ M(Γ0(10)), and Theorem 2.41 to show that

ord(10)
∞ (x−1) = −1,

ord
(10)
1/5 (x

−1) = 0,

ord
(10)
1/2 (x

−1) = 0,

ord
(10)
0 (x−1) = 1.

This proves that 1/y ∈ M∞(Γ0(10)). Therefore, if we denote m as the degree of pi,l, then multi-
plying both sides of the proposed relations above by 1/xm, our relations take on the form

1

xm
· U (i)

(
xl
)
∈ Z[x−1] ⊆ M∞(Γ0(10)), (10.106)

1

xm
· (1 + 5x) · U (i) (1) ∈ Z[x−1] ⊆ M∞(Γ0(10)). (10.107)

Here all that remains is to verify that the left-hand sides of each prospective relation are elements
of M∞(Γ0(10)). Then we may compare the principal parts and constants of both sides: equality
of these parts implies equality overall.

We will begin with the relations of the form (10.106). If we recall the definition of U (i), then
our left-hand side takes the form

1

x(τ)m
· 1

F (τ)
· U5

(
F (τ) · Z(τ)1−i · x(τ)l

)
= U5

(
F (τ)

F (5τ)
· Z(τ)

1−i · x(τ)l

x(5τ)m

)
.

Now, it is well-known (e.g., [41, Corollary 2.3]) that

F (τ) ∈ M2(Γ0(2)) ⊆ M2(Γ0(10)) ⊆ M2(Γ0(50)).
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Moreover,

F (5τ) ∈ M2 (Γ0(50)) .

This implies that

F (τ)

F (5τ)
∈ M (Γ0(50)) .

One can directly compute that

ord(50)
∞ (F (τ)) = 1, ord(50)

∞ (F (5τ)) = 5,

ord
(50)
1/25 (F (τ)) = 0, ord

(50)
1/25 (F (5τ)) = 0,

ord
(50)
1/2 (F (τ)) = 5, ord

(50)
1/2 (F (5τ)) = 1,

ord
(50)
0 (F (τ)) = 5, ord

(50)
0 (F (5τ)) = 1,

ord
(50)
k/5 (F (τ)) = 1, ord

(50)
k/5 (F (5τ)) = 1 (k = 1, 2, 3, 4),

ord
(50)
k/10 (F (τ)) = 1, ord

(50)
k/10 (F (5τ)) = 1 (k = 1, 3, 7, 9).

From this, we have

ord(50)
∞

(
F (τ)

F (5τ)

)
= −4,

ord
(50)
1/25

(
F (τ)

F (5τ)

)
= 0,

ord
(50)
1/2

(
F (τ)

F (5τ)

)
= 4,

ord
(50)
0

(
F (τ)

F (5τ)

)
= 4,

ord
(50)
k/5

(
F (τ)

F (5τ)

)
= 0, (k = 1, 2, 3, 4),

ord
(50)
k/10

(
F (τ)

F (5τ)

)
= 0, (k = 1, 3, 7, 9).

Therefore, we have

F (τ)

F (5τ)
∈ M∞(Γ0(50)),
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with a zero of order 4 at the cusp [1/2]50. On the other hand, if we take

Wi,l,m(τ) :=
Z(τ)1−i · x(τ)l

x(5τ)m
,

we can use Theorem 2.41 to show that

ord
(50)
0 (Wi,l,m(τ)) = −(1− i)− 5l +m,

ord
(50)
1/2 (Wi,l,m(τ)) = −2(1− i),

ord
(50)
k/5 (Wi,l,m(τ)) = m (k = 1, 2, 3, 4),

ord
(50)
k/10 (Wi,l,m(τ)) = l (k = 1, 3, 7, 9).

Therefore, if we let

Gi,l,m(τ) :=
F (τ)Wi,l,m(τ)

F (5τ)
,

then we have

ord
(50)
0 (Gi,l,m(τ)) = 4− (1− i)− 5l +m,

ord
(50)
1/2 (Gi,l,m(τ)) = 4− 2(1− i),

ord
(50)
k/5 (Gi,l,m(τ)) = m (k = 1, 2, 3, 4),

ord
(50)
k/10 (Gi,l,m(τ)) = l (k = 1, 3, 7, 9).

Inspection of the relations in Appendix C quickly reveals that 4 − (1 − i) − 5l +m = 0 for each
relation of the form (10.106). Moreover, 4− 2(1− i) is clearly positive for i = 0, 1. The final two
orders are positive, as m, l > 0.

For relations of the form (10.107), our right-hand side has the form

1

x(τ)2
· z(τ) · 1

F (τ)
· U5

(
F (τ) · Z(τ)1−i

)
= U5

(
F (τ)

F (5τ)
· Z(τ)

1−i · z(5τ)
x(5τ)2

)
.

If we take

Wi(τ) :=
Z(τ)1−i · z(5τ)

x(5τ)2
,
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we can use Theorem 2.41 theorem to show that

ord
(50)
0 (Wi(τ)) = 1− i,

ord
(50)
1/2 (Wi(τ)) = 1− 2i,

ord
(50)
k/5 (Wi(τ)) = 1 (k = 1, 2, 3, 4),

ord
(50)
k/10 (Wi(τ)) = 1 (k = 1, 3, 7, 9).

Therefore, if we let

Gi(τ) :=
F (τ)Wi,l,m(τ)

F (5τ)
,

then we have

ord
(50)
0 (Gi(τ)) = 5− i,

ord
(50)
1/2 (Gi(τ)) = 5− 2i,

ord
(50)
k/5 (Gi(τ)) = 1 (k = 1, 2, 3, 4),

ord
(50)
k/10 (Gi(τ)) = 1 (k = 1, 3, 7, 9).

These orders are all nonnegative.
The functions inside the U5 operators on the right hand sides of each of our prospective

relations are each elements of M∞(Γ0(50)). Therefore, By Theorem 6.2, the U5 operator pushes
each to an element of M∞(Γ0(50/5)) = M∞(Γ0(10)).

We have verified that the left hand side of each of our relation can be be put into a relation of
the form (10.106) or (10.107), in which either side is an element of M∞(Γ0(10)). All that remains
is to examine the principal parts and constants of each of these relations.

This approach can also be used to prove (9.11). In this case, we want to prove that

U5

(
L0(τ)

F (5τ)
· Z(τ) · z(5τ)

3

x(5τ)5

)
=
(
120x−4 + 1805x−3 + 12050x−2 + 39500x−1 + 50000

)
. (10.108)

If we define

Wy :=
Z(τ) · z(5τ)3

x(5τ)5
,

then
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ord
(50)
0 (Wy(τ)) = 1,

ord
(50)
1/2 (Wy(τ)) = 1,

ord
(50)
k/5 (Wy(τ)) = 2 (k = 1, 2, 3, 4),

ord
(50)
k/10 (Wy(τ)) = 3 (k = 1, 3, 7, 9).

If we let

Gy(τ) :=
Wy(τ)

F (5τ)
,

then

ord
(50)
0 (Gy(τ)) ≥ −1 + 1,

ord
(50)
1/2 (Gy(τ)) ≥ −1 + 1,

ord
(50)
k/5 (Gy(τ)) ≥ −1 + 2 (k = 1, 2, 3, 4),

ord
(50)
k/10 (Gy(τ)) ≥ −1 + 2 (k = 1, 3, 7, 9).

These orders are again all nonnegative. Because L0 ∈ M2(Γ0(10)), it will contribute no poles, and
we need not examine it. In this case, the principal part on either side of (10.108) takes the form

120

q4
+

365

q3
+

2765

q2
+

5030

q
+ 9375.

As a final application, we consider the proof of (10.12). We can use Theorem 2.41 to determine
that x(5τ)−1 ∈ M∞ (Γ0(50)), and that x(5τ)−5 · x(τ) ∈ M∞ (Γ0(50)). As such, the principal part
and constant of

x(5τ)−25 ·

(
x5 +

4∑
j=0

aj(5τ)x
j

)
(10.109)

can quickly be verified to be 0, thus giving us (10.12).
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Appendix A
IMPLEMENTATION OF RADU’S ALGORITHM

A.1 Accessibility

Our software package is freely available as RaduRK.m via https://www3.risc.jku.at/people/

nsmoot/RKAlg/RaduRK.m. The implementation uses Mathematica, and requires installation of a
Diophantine software package called 4ti2 [1]. In particular, we used the interface math4ti2.m

developed by Ralf Hemmecke and Silviu Radu. We will also make our software available on
the Computer Algebra for Combinatorics section of the RISC webpage https://risc.jku.at/

research_topic/computer-algebra-for-combinatorics/.
A demonstration of the software can be found at https://www3.risc.jku.at/people/nsmoot/

RKAlg/RKSupplement1.nb, in which most of the examples in Chapter 4 are computed; and https:

//www3.risc.jku.at/people/nsmoot/RKAlg/RKSupplement2.nb, in which the overpartitions ex-
amples in Chapter 4 are computed.

Because 4ti2 is a Linux program, some additional steps are necessary in order to properly
install our software onto an Apple or Windows operating system. We provide the necessary steps
for installation onto Apple and Windows at https://www3.risc.jku.at/people/nsmoot/RKAlg/
4ti2installationinstructions.rtf. All difficulties in installation should be communicated
immediately to the author’s email nicolas.smoot@risc.jku.at.



Appendix B
INITIAL RELATIONS (I)

The initial relations for our proof of the Choi–Kim–Lovejoy congruence family are as follows:

B.1 Group I

U (0)(1) = p1, (B.1)

U (0)(t−1) = 1 + 52t− 5p1, (B.2)

U (0)(t−2) = −9 + 55t2 + 9 · 5p1, (B.3)

U (0)(t−3) = 17 · 5 + 58t3 − 17 · 52p1, (B.4)

U (0)(t−4) = −161 · 5 + 511t4 + 161 · 52p1. (B.5)

B.2 Group II

U (0)(p0) =− 63 · 52t− 104 · 55t2 − 189 · 57t3 − 24 · 510t4 − 513t5

+ p1
(
1− 63 · 52t− 104 · 55t2 − 189 · 57t3 − 24 · 510t4

− 513t5
)
, (B.6)

U (0)(p0t
−1) =52t− 6p1, (B.7)

U (0)(p0t
−2) =− 9− 53t+ 55t2 + p1(9 · 5− 53t), (B.8)

U (0)(p0t
−3) =17 · 5− 56t2 + 58t3 − p1(17 · 52 − 56t2), (B.9)

U (0)(p0t
−4) =− 161 · 5− 59t3 + 511t4 + p1(161 · 52 − 59t3). (B.10)

B.3 Group III

U (1)(1) = 1, (B.11)

U (1)(t−1) = −6− 52t, (B.12)

U (1)(t−2) = 54− 55t2, (B.13)

U (1)(t−3) = −102 · 5− 58t3, (B.14)

U (1)(t−4) = 966 · 5− 511t4. (B.15)
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B.4 Group IV

U (1)(p1) =233 · 52t+ 1188 · 54t2 + 317 · 57t3 + 31 · 510t4 + 513t5

+ p0(2 · 5 + 44 · 53t+ 14 · 56t2 + 59t3), (B.16)

U (1)(p1t
−1) =13 + 52t+ 5p0, (B.17)

U (1)(p1t
−2) =− 66− 54t+ 55t2 + 54tp0, (B.18)

U (1)(p1t
−3) =114 · 5− 57t2 + 58t3 + 57t2p0, (B.19)

U (1)(p1t
−4) =− 1037 · 5 + 82 · 54t+ 112 · 56t2 − 7 · 59t3 − 4 · 511t4

+ p0
(
t−1 − 2 · 53 − 44 · 55t− 14 · 58t2 − 4 · 510t3

)
. (B.20)



Appendix C
INITIAL RELATIONS (II)

Below we list the ten fundamental relations that are justified using our cusp analysis in Chapter
10. For the complete derivation of the 50 relations, see our Mathematica supplement online at
https://www3.risc.jku.at/people/nsmoot/online3.nb.

C.1 Group I

U (1) (1) =
1

1 + 5y

(
1 + 52y + 16 · 5 · y2

)
(C.1)

U (1) (y) = y (C.2)

U (1)
(
y2
)
= 51y + 471 · 5 · y2 + 1364 · 52 · y3 + 1776 · 53 · y4

+ 1088 · 54 · y5 + 256 · 55 · y6 (C.3)

U (1)
(
y3
)
= 41y + 2474 · 5 · y2 + 29193 · 52 · y3 + 152248 · 53 · y4

+ 2231024 · 53 · y5 + 814336 · 55 · y6 + 4833536 · 55 · y7

+ 3753984 · 56 · y8 + 1847296 · 57 · y9 + 524288 · 58 · y10

+ 65536 · 59 · y11 (C.4)

U (1)
(
y4
)
= 11y + 3981 · 5 · y2 + 138181 · 52 · y3 + 8956203 · 52 · y4

+ 62033852 · 53 · y5 + 53739872 · 55 · y6 + 791357952 · 55 · y7

+ 1662808832 · 56 · y8 + 2561985536 · 57 · y9

+ 14663327744 · 57 · y10 + 2496888832 · 59 · y11

+ 7817854976 · 59 · y12 + 3503816704 · 510 · y13

+ 1065353216 · 511 · y14 + 197132288 · 512 · y15

+ 16777216 · 513y16 (C.5)
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C.2 Group II

U (0) (1) =
1

1 + 5y

(
−5y − 4 · 5 · y2

)
(C.6)

U (0) (y) = 5y + 4 · 5 · y2 (C.7)

U (0)
(
y2
)
= 5y + 153 · 5 · y2 + 3956 · 5 · y3 + 8528 · 52 · y4 + 9152 · 53 · y5

+ 4864 · 54 · y6 + 1024 · 55 · y7 (C.8)

U (0)
(
y3
)
= y + 1874y2 + 40101 · 5 · y3 + 309864 · 52 · y4

+ 1252624 · 53 · y5 + 3071232 · 54 · y6 + 4892928 · 55 · y7

+ 26039296 · 55 · y8 + 18464768 · 56 · y9 + 8404992 · 57 · y10

+ 2228224 · 58 · y11 + 262144 · 59 · y12 (C.9)

U (0)
(
y4
)
= 329 · 5 · y2 + 116926 · 5 · y3 + 2285653 · 52 · y4

+ 21410212 · 53 · y5 + 119101984 · 54 · y6 + 438497152 · 55 · y7

+ 45458688 · 58 · y8 + 2150618112 · 57 · y9 + 3033554944 · 58 · y10

+ 3217784832 · 59 · y11 + 12811829248 · 59 · y12

+ 37793038336 · 59 · y13 + 16051601408 · 510 · y14

+ 4647288832 · 511 · y15 + 822083584 · 512 · y16

+ 67108864 · 513 · y17 (C.10)



Appendix D
MISCELLANEOUS

D.1 Tables From Chapter 6

r

Elements a/c of C(20) Approached by τ 0 1 2 3 4

1
20

1
100

1
100

1
100

1
100

1
100

1
10

1
50

1
50

1
50

1
50

1
50

1
5

1
25

1
25

1
25

1
25

1
25

1
4

1
20

1
4

9
20

3
20

7
20

1
2

1
10

3
10

1
2

7
10

9
10

1 1
5

2
5

3
5

4
5

1

Table D.1: Elements of C(100) Approached by τ+r
5

r

Elements a/c of C(20) Approached by τ 0 1 2 3 4

1
20

1
20

1
20

1
20

1
20

1
20

1
10

1
10

1
10

1
10

1
10

1
10

1
5

1
5

1
5

1
5

1
5

1
5

1
4

1
20

1
4

1
20

1
20

1
20

1
2

1
10

1
10

1
2

1
10

1
10

1 1
5

1
5

1
5

1
5

1

Table D.2: Elements of C(20) Approached by τ+r
5
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f

a
c
∈ C(100) T (5τ)mAA(τ) T (5τ)m+tT (τ) T (5τ)m−tT (τ)−1

1
100

1− 25mA −5− 25m+t 5− 25m−t

1
50

−5 + 5mA 1 + 5m+t −1 + 5m−t

1
25

4 0 0

1
20

mA −5 +m+t 5 +m−t

1
10

mA 1 +m+t −1 +m−t

3
20

mA −5 +m+t 5 +m−t

1
5

2mA 2m+t 2m−t

1
4

−1 +mA 5 +m+t −5 +m−t

3
10

mA 1 +m+t −1 +m−t

7
20

mA −5 +m+t 5 +m−t

2
5

2mA 2m+t 2m−t

9
20

mA −5 +m+t 5 +m−t

1
2

5 +mA 5 +m+t −5 +m−t

3
5

2mA 2m+t 2m−t

7
10

mA 1 +m+t −1 +m−t

4
5

2mA 2m+t 2m−t

9
10

mA 1 +m+t −1 +m−t

1 −4 + 2mA 10 + 2m+t −10 + 2m−t

Table D.3: ord
(100)
a/c (f) for a/c ∈ C(100)
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ord
(100)
a/c (f) f

a
c
∈ C(100) T (5τ)m1G(τ) T (5τ)mHH(τ)

1
100

−2− 25m1 −3− 25m2

1
50

5m1 5m2

1
25

0 3

1
20

−2 +m1 −3 +m2

1
10

m1 m2

3
20

−2 +m1 −3 +m2

1
5

2m1 3 + 2m2

1
4

10 +m1 m2

3
10

m1 m2

7
20

−2 +m1 −3 +m2

2
5

2m1 3 + 2m2

9
20

−2 +m1 −3 +m2

1
2

m1 m2

3
5

2m1 3 + 2m2

7
10

m1 m2

4
5

2m1 3 + 2m2

9
10

m1 m2

1 2m1 2m2

Table D.4: ord
(100)
a/c (f) for a/c ∈ C(100)
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D.2 Tables From Chapter 10

We provide the tables used in Chapter 10. These can easily be constructed by hand. We provide
additional details on this and other computations in our Mathematica supplement at https:

//www3.risc.jku.at/people/nsmoot/online3.nb.

m r = 1 r = 2 r = 3
1 -1 0 1
2 -1 0 1
3 -1 1 0
4 0 1 1
5 1 2 1
6 2 2

Table D.5: Value of θ(m) + π1(m, r) + π0(r, 1)− 2 with 1 ≤ m ≤ 6, 1 ≤ r ≤ 3

m r = 1 r = 2 r = 3
1 -1 0 1
2 -1 0 1
3 -1 1 0
4 0 1 1
5 1 2 1
6 2 2

Table D.6: Value of θ(m) + π1(m, r) + π0(r, 2)− 2 with 1 ≤ m ≤ 6, 1 ≤ r ≤ 3

m r = 1 r = 2 r = 3
1 0 0 2
2 0 0 2
3 0 1 1
4 1 1 2
5 2 2 2
6 2 3

Table D.7: Value of θ(m) + π1(m, r) + π0(r, 3)− 2 with 1 ≤ m ≤ 6, 1 ≤ r ≤ 3


