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Abstract. We describe the principles and the implementation of Al-
Cons (Algorithm Constructor), a system for the automatic proof–based
synthesis of sorting algorithms on lists and on binary trees, in the frame
of the Theorema system. The core of the system is a dedicated prover
based on specific inference rules and strategies for constructive proofs
over the domains of lists and of binary trees, aimed at the automatic
synthesis of sorting algorithms and their auxiliary functions from logi-
cal specifications. The specific distinctive feature of our approach is the
use of multisets for expressing the fact that two lists (trees) have the
same elements. This allows a more natural expression of the properties
related to sorting, compared to the classical approach using the permu-
tation relation (a list is a permutation of another). Moreover, the use of
multisets leads to special inference rules and strategies which make the
proofs more efficient, as for instance: expand/compress multiset terms
and solve meta-variables using multiset equalities. Additionally we use
a Noetherian induction strategy based on the relation induced by the
strict inclusion of multisets, which facilitates the synthesis of arbitrary
recursion structures, without having to indicate the recursion schemes in
advance. The necessary auxiliary algorithms (like, e.g., for insertion and
merging) are generated by the same principles from the synthesis con-
jectures that are automatically produced during the main proof, using
a “cascading” method, which in fact contributes to the automation of
theory exploration. The prover is implemented in the frame of the Theo-
rema system and works in natural style, while the generated algorithms
can be immediately tested in the same system.

Keywords: Deductive synthesis · Sorting · Lists · Binary trees · Multisets ·

Noetherian induction

1 Introduction

Automatic synthesis of algorithms is an interesting and challenging problem in
automated reasoning, because algorithm invention appears to be difficult even
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for the human intellect. Synthesis of sorting algorithms is especially challenging
because the content and structure of the specification appears to be completely
different from the expression of the algorithms. Thus case studies and automation
attempts for synthesis of sorting algorithms have the potential of increasing our
knowledge about possible general methods for algorithm synthesis.

We address the automated synthesis of algorithms which satisfy certain given
specifications3. The specification is transformed into a synthesis conjecture from
whose constructive proof a main algorithm is extracted. Usually this main algo-
rithm needs some auxiliary algorithms, whose synthesis conjectures are produced
during the main proof and then additional synthesis proofs are performed – the
process may repeat as by “cascading” [4]. Our focus is on automating proofs
for such conjectures, on the mechanical generation of the synthesis conjectures
for the necessary auxiliary algorithms, and on the automatic extraction of the
algorithms from the proofs. Cascading also constitutes a contribution to the
automation of theory exploration4 [3].

The implementation of the synthesis methods constitutes the automated
proof–based synthesizer AlCons for sorting algorithms on lists and on binary
trees using multisets, built as a prover in the Theorema system [7, 36] (based
on Mathematica 5). In order to illustrate the principles of the prover we present
in this paper a summary of our experiments on binary trees. (Experiments on
lists are presented in [16]).

The prover uses general inference rules and strategies for predicate logic, as
well as domain-specific rules and strategies, which make the proof search more
efficient.

1.1 Main contribution

The novelty of this work consists of: the use of multisets and the proof techniques
related to them on binary trees, nested use of cover sets, the use of cover sets
on meta-variables, the systematic principle for generating synthesis conjectures
for the auxiliary functions (cascading), and the first description of the technical
implementation in the current version of Theorema .

Multisets allow a very natural expression of the fact that two lists (trees)
have the same objects6. More importantly, the use of multisets triggers some
new proof techniques which make the proof search more efficient. Crucially for
our current approach, we can use the Noetherian ordering on the domains of
lists and of trees induced by the strict inclusion of the corresponding multisets,
which is conveniently reflected at object level by the strict inclusion of multisets

3 This ensures the correctness of algorithms and it is dual to algorithm verification,
where the algorithms are first created and then checked.

4 Theory exploration is the generation of interesting statements following from a cer-
tain set of axioms and/or for the purpose of developing certain proofs or algorithms.

5 https://www.wolfram.com/mathematica
6 In other approaches one uses the permutation notion, which must be expressed by

specific algorithmic definitions, and whose properties are more difficult to infer.
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of constants and variables occurring in the list/tree terms, and this allows a
dynamic creation of concrete induction hypotheses according to the needs of
the proof. Both lists and binary trees are addressed by AlCons with the same
proof techniques7, which demonstrates the possibility of generalization of such
techniques to new domains, and also allows future work on algorithms combining
lists and trees.

Cover sets and dynamic induction. Induction is implicitly realized using
cover sets. A cover set [34] for a certain domain is a set of possibly non-ground
terms whose set of ground instances covers the whole domain. From the algo-
rithmic point of view the cover set represents a recipe for decomposing the input
in order to be processed (technically it is applied to a certain Skolem constant),
thus the synthesis will produce an equality (rewrite rule) for every cover set term
– therefore we use mutually exclusive8 terms. Every term from the cover set is
used to generate an induction conclusion over a certain ground term (the target
object). During the proof of this induction conclusion, the necessary induction
hypotheses are generated dynamically by instantiating the induction conclusion
with terms representing domain objects which are smaller in the Noetherian or-
dering than the current target object. Nested use of cover sets is novel w. r. t.
the simple use of cover sets for realizing induction: while this technique allows to
discover concrete induction principles by generating appropriate induction hy-
potheses during the proof, nested use of cover sets allows the discovery of nested
recursions, which is rarely present in synthesized algorithms.

We extend the use of cover sets to meta–variables9 in a similar way. Cover
sets on meta–variables implement the algorithmic idea of combining intermediate
results according to a certain “recipe” (because meta–variables represent the
output of the computation). This is complementary to the use of cover–sets for
Skolem constants, which implement the algorithmic idea of decomposing the
input in a certain way (because the Skolem constants represent the input). In
this way algorithmic ideas can be represented by proof techniques.

Cascading. Using specific heuristics, the prover decides when the current
goal should be used for the creation of a conjecture for the synthesis of one or
more auxiliary algorithms. This is proven separately and leads to the synthesis
of one or more algorithms in the general context of the theory of lists/trees, thus
it discovers some possibly interesting functions (therefore it contributes to the
automation of theory exploration). The process can repeat in the new proofs,
leading to more new functions. The synthesis conjectures for the auxiliary algo-
rithms are generated by a novel strategy which: detects the need of an auxiliary
function, produces the conjecture itself using the current proof situation, adds
the appropriate property which allows new auxiliary function to be used later

7 However some fine tuning of the implementation has been necessary, since trees have
a more complex structure.

8 Every element of the inductive domain is a ground instance of exactly one term from
the cover set.

9 Meta–variables designate terms (witnesses for existential goals) which are unknown
at the current stage of the proof.
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in the proof, and changes the current goal by inserting the new function calls at
the appropriate places.

Implementation. The prover is implemented in the frame of the Theorema
system, which offers a flexible and intuitive user interface, construction of the-
ories and development of proofs in natural style, as well as direct execution of
the synthesized algorithms, as they are produced in form of a set of (condi-
tional) equalities. The implementation principles in the frame of Theorema 2.0
are in many respects different from the implementation in the previous version
of Theorema and in the same time more powerful both from the point of view of
interface as well as performance and readability. The prover is appropriate for
the synthesis of sorting algorithms both for lists as well as for binary trees, how-
ever in this paper we describe only experiments on binary trees. An extensive
presentation of experiments on lists is presented in [16].

1.2 Related work and originality

The problem of algorithms synthesis, including the synthesis of sorting algo-
rithms is well-studied in the literature, but full automation of synthesis con-
stitutes still a challenge. An overview of the most common approaches used to
tackle the synthesis problem is given in [33]. Most approaches are based on spe-
cial techniques for transformation of expressions (for program instance program
transformation, Hoare-like or tableaux-like calculae). In contrast our approach
emphasizes proving in natural style, and intuitive inference rules. Most synthesis
methods use certain algorithm templates, or explicit induction schemas, while we
use cover sets and dynamic induction instead. No other approaches use multisets,
and only few address a systematic method for generating auxiliary algorithms.

Significant work has been done in the synthesis of sorting algorithms10. Six
versions of sorting algorithms are derived in [10] by applying transformation
rules. An extension of this work is in [1], see also [21]. Some specific transforma-
tion techniques which complement the ones in [10] are used by [19]. [26] classifies
sorting algorithms.

[27] introduces deductive techniques for constructing recursive algorithms.
[35] applies manually the techniques in [27] and derives several sorting algorithms
in the theories of integers and strings. Later implementations using some of these
principles are in [32, 24]. We follow some of the principles from [27, 35].

Systematic methods for generating auxiliary algorithms are also presented
in [29, 27]. We use a different cascading strategy which transforms the failing
goal together with the current assumptions into a new conjecture. [25] applies
deductive tableau techniques [27], uses some heuristics and rippling [8] for the
automated synthesis of several functions in Lisp in the theory of integers and
lists. [25] shows how to prepare induction hypotheses to be used in the rippling
proofs by using deductive rules.

[30] implemented the tool Synquid which is able to automatically synthesize
several recursive algorithms operating on lists (including sorting algorithms)

10 We presented a more detailed survey of the synthesis methods in [11].
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and operations on trees (but not sorting), except the automatic synthesis of
auxiliary functions. This work was extended by [20],using a technique based on
some given templates in order to synthesize algorithms on lists and binary trees
(e.g., converting a binary tree to a list, or a list to a binary search tree) together
with some auxiliary functions. In [22] the authors describe an approach that
combines deductive synthesis with cyclic proofs for automatically synthesizing
recursive algorithms with recursive auxiliary functions and mutual recursion.
They implement the tool Cypress and they synthesize algorithms operating on
lists (including some sorting algorithms), and on trees (e.g., flattening a tree
into a list, insertion, deletion, etc.). Their approach complements the one in [20]
by considering a proof-driven approach instead of template-driven approach for
synthesizing auxiliary functions. However, the synthesis of sorting algorithms on
trees is not approached.

A valuable formalization, in a previous version of Theorema [6], of the syn-
thesis of sorting algorithms is in [5], where an algorithm scheme is given together
with the specification of the desired function. In contrast, AlCons uses cover–set
decomposition and no algorithm scheme.

The theory of multisets (also called bags) is well studied in the literature,
including computational formalizations, see e. g. [28]. The theory of multisets
and a detailed survey of the literature related to multisets and their usage is
presented in [2] and some interesting practical developments are in [31].

A systematic formalization of the theory of lists using multisets the correct-
ness proofs of various sorting algorithms is mechanized in Isabelle/HOL11, but
it does not address algorithm synthesis. The use of multisets and of the special
techniques related to them, as well as the systematic approach to the generation
of synthesis conjectures for the auxiliary algorithms and the use of cover set
induction constitute also significant improvements w. r. t. our previous work on
this problem [11, 17].

Most related to this paper are our recent case studies on sorting algorithms
for lists [13, 16, 14, 15], and some of the auxiliary algorithms on binary trees [12,
18]. The current paper presents the main principles and techniques resulting
from these case studies, integrating all methods and improving them in order
to realize a comprehensive tool, which works for both lists and binary trees.
Also [12, 18] complement the current presentation with illustrative fragments of
synthesis proofs of the auxiliary algorithms on binary trees. [12] applies explicit
induction in order to derive some auxiliary algorithms, [18] extends [12] by ap-
plying cover sets and dynamic induction instead of explicit induction, and some
different proof techniques for deriving several more auxiliary algorithms on bi-
nary trees. Complementary, the current paper presents the synthesis of several
versions of sorting algorithms on binary trees and the synthesis of two more
auxiliary algorithms (SmallerEq,Bigger), including Insert by using cover sets
instead of explicit induction, and refines the proof techniques.

A prover for algorithm synthesis on lists [11] and another one for binary
trees [17] was implemented in a previous version of Theorema [6]. There we

11 https://isabelle.in.tum.de/library/HOL/HOL-Library/Sorting Algorithms.html
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use different synthesis methods and we do not use multisets. The novel system
AlCons works both on lists and on binary trees.

Except for the previous work using the Theorema system, a distinctive feature
of our approach is the use of natural style proving, and except for our own
previous work, there is no approach in the literature to the direct sorting of
binary trees.

2 Algorithm synthesis

2.1 Context and notation

Terms and formulae. Brackets are used for function and predicate application
(like f [x], P [a]). Quantifiers are denoted like ∀

X
and ∃

Y
. Metavariables are starred

(e.g., T ∗, T ∗1 , Z
∗) and Skolem constants have integer indices (e.g., X0, X1, a0).

Objects and theories. We consider three types: simple objects (elements) and
composite objects (finite binary trees and finite multisets). Both in this presen-
tation and in the prover typing is implicit, based on the notation conventions
specified below.

Elements (denoted by a, b, c) are objects from a total ordered domain. The
ordering on elements (notation ≤ and <) is extended to orderings between an
element and a composite object and between composite objects, by requiring
that all elements of the composite object observe the ordering relation12.

Binary trees (denoted by L,R, S, T ) are objects from an inductive domain:
either ε (empty) or a triplet 〈L, a,R〉, where L and R are the left and right
subtrees, and a is the root element.

Multisets (denoted by A,B,C) are objects whose elements can occur repeat-
edly. ∅ is the empty multiset, {{a}} denotes the multiset containing the element
a with multiplicity 1, and M[T ] denotes the multiset of elements of a binary
tree T . The union of multisets is additive ] like in [23]. Some inference rules use
implicitly the properties of union (commutativity, associativity, and unit ∅).

Knowledge. This contains the main properties of union of multisets, the def-
inition of multisets of a tree, etc. For illustration the definition of sorted trees
is:

∀
a,L,R

(
IsSorted[ε]

IsSorted[〈L, a,R〉]⇐⇒ (IsSorted[L] ∧ IsSorted[R] ∧ L ≤ a ≤ R)

)

2.2 Approach

The specification consists in an input condition I[X,X ′, . . .] applied to the
inputs and an output condition O[Y,X,X ′, . . .] applied to the output Y and
the same inputs. For the sorting problem the input condition is True (thus it
is missing), but it may be present in the specification of some auxiliary algo-
rithms. The output condition for sorting is: M[Y ] = M[X] ∧ IsSorted[Y ], and

12 Note that this introduces certain exceptions to antisymmetry and transitivity when
the empty composite object is involved.
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for the auxiliary functions is similar, but it typically contains some additional
requirements. The conjecture corresponding to the specification is

∀
X,X′,...

(I[X,X ′, . . .] =⇒ ∃
Y
O[Y,X,X ′, . . .]).

In some experiments we use a conjecture of the form:

∀
X,X′,...

(I[X,X ′, . . .] =⇒ O[F [X,X ′, . . .], X,X ′, . . .]),

where F is the name of the function to be synthesized.

The proof is developed by applying the techniques (inference rules and
strategies) described in the sequel, and it generates one or more algorithms
and possibly some conjectures for further synthesis (cascading).

The algorithm for a function F [X,X ′, . . .] is presented as a set of conditional
equalities of the form:

Q[Y, Y ′, . . .]⇒ F [P [Y, Y ′, . . .], P ′[Y, Y ′, . . .], . . .] = T [Y, Y ′, . . .],

where P [Y, Y ′, . . .], P ′[Y, Y ′, . . .], . . . are patterns13, Q is a formula, and T is a
term. These conditional equalities can be applied as rewrite rules in order to
compute F.

The theoretical basis and the correctness of this proof based synthesis scheme
is well–known, see [27, 9] and was used in some recent publications by [11, 17],
see also [13, 12, 16].

3 Proof Techniques

By proof techniques we understand inference rules, which describe one step of
the proof, and strategies, which describe how to group several inference rules.

AlCons uses some of the common natural style inference rules, which are
already implemented in Theorema : split assumed conjunction, Skolemization
of the universal goal (but not of the existential assumptions), meta–variable for
the existential goal (but not of the universal assumptions), rewriting by equality,
matching and instantiation for forward and backward inferences, etc.

Some of the inference rules and strategies were first introduced in [13, 12,
16], and there we illustrate them on concrete examples on sorting and auxiliary
algorithms on lists and on auxiliary algorithms on binary trees, however here
they are first comprehensively integrated in one system and applied to synthesize
sorting algorithms on binary trees.

We describe in the sequel only those techniques which are specific to AlCons
and are very important for synthesis on binary trees.

13 In our context, a pattern is a term possibly containing variables, whose ground
instantiations define an injective function into the domain.
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3.1 Inference Rules

IR-1: Reduce composite argument. Transform an atom of a goal (which is typi-
cally a conjunction of atoms) or an assumption (when it is an atom) into simpler
atoms whose arguments do not contain function symbols. For the goal generate
possibly few atoms, for the assumptions possibly many, because then some of
the assumed atoms will match and cancel some of the goal atoms.

Example 1: a ≤ Concat[L0, R0] becomes a ≤ L0 ∧ a ≤ R0.

Example 2: IsSorted[〈T1, a, T2〉] becomes IsSorted[T1] ∧ T1 ≤ a ∧ a ≤ T2 ∧
IsSorted[T2].

IR-2: Simple goal as condition. When the target metavariable already has a
solution and the goal (after all possible reductions) is ground and contains only
constant time functions and predicates14, then this goal is taken as a condition
and with the current solution to the metavariable it becomes a clause of the
synthesized algorithm (see the partial proof in Fig. 2).

IR-3: Use equivalence. The equivalence relation between composite objects
induced by the equality of the corresponding multisets is used to rewrite parts
of the goal (or of the assumptions) by replacing composite objects with equivalent
ones, when they occur in equality atoms or in ordering atoms.

Example 1: The goalM[〈Sort[T ∗1 ], a∗,Sort[T ∗2 ]〉] =M[T ∗]∧Sort[T ∗1 ] ≤ a∗∧a∗ ≤
Sort[T ∗2 ] becomes M[〈T ∗1 , a∗, T ∗2 〉] =M[T ∗] ∧ T ∗1 ≤ a∗ ∧ a∗ ≤ T ∗2 .

Example 2: The goal is b ≤ S1 is transformed into b ≤ L0 ∧ b ≤ a∧ b ≤ R0 using
the assumption: M[S1] =M[L0] ] {{a}} ]M[R0].

IR-4: Expand multiset. This rule expands a multiset term in the goal into several
multiset terms. This is useful because then different groupings can be performed.
Example: The goalM[T ∗] =M[〈L0, a, R0〉]]M[S0], becomesM[T ∗] =M[L0]]
{{a}} ]M[R0] ]M[S0].

IR-5: Compress multiset. This rule is the dual of the previous one, and it typ-
ically applies when the arguments contain terms which correspond to the re-
cursive calls of the desired function. Example: if a part of the goal is M[T ∗] =
M[T1]]{{a}}]M[T2]] . . . , then on one alternative branch15 this part becomes
M[T ∗] =M[〈T1, a, T2〉] ] . . . . By repeated application this rule one reaches the
situation of IR-6, as described in ST-4.

IR-6: Solve metavariable. When a part of the goal is M[X∗] = M[T ] for a
ground term T , obtain the substitution {X∗ → T } and continue the proof with
the remaining goal. In order to ensure the soundness, the prover keeps track of
the order in which Skolem constants and metavariables have been introduced,
and allows the use in a solution for a metavariable only the Skolem constants
which have been generated before that metavariable.

IR-7: Forward inference. This rule is applied in order to produce new assump-
tions. If a ground atomic assumption matches a part of another (typically uni-
versal) assumption, instantiate the later and replace in it the resulting copy of

14 This is just a matter of efficiency, the goal could contain anything as long as the
currently synthesized function is not involved.

15 The rule generates proof alternatives for different groupings of the multiset terms.
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the ground assumption by the constant True, then simplify truth constants to
produce a new assumption.
IR-8: Backward inference. Transform the goal using some assumption or a spe-
cific logical principle. If a ground atomic assumption matches a part of a ground
or existential goal, instantiate the goal and replace in it the resulting copy of
the ground assumption by the constant True, then simplify truth constants to
produce a new goal.

3.2 Strategies

ST-1: Cover set. This strategy organizes the structure of each synthesis conjec-
ture proof and the extraction of the synthesized algorithm, as in fact implements
the Noetherian induction based on the ordering between objects induced by strict
inclusion of multisets.

Each conjecture for the synthesis of a target function is a quantified statement
over some main universal variable. A cover set is a set of universal terms16 which
represent the domain of the main universal variable, as described in [17].

We project this concept on Skolem constants: first the main universal va-
riable is Skolemized (“arbitrary but fixed”) — we call this the target constant,
and we call the corresponding Skolemized goal the target goal – and then the
corresponding cover–set terms are also grounded by Skolemization, we call these
the cover-set terms and the corresponding constants the cover-set constants. The
proof starts with a certain cover set (typically the one suggested by the recur-
sive definition of the domain), and starts a proof branch for each ground term
(“proof by cases”). On each proof branch the input conditions of the function
are assumed, and then the existential variable corresponding to the output value
of the function is transformed into a metavariable whose value (the “witness”)
will be found on the respective branch of the proof. Finally the algorithm will be
generated as a set of [conditional] equalities: the terms of the cover set become
arguments (“patterns”) on the LHS of the equalities, and the corresponding wit-
nesses become the RHS of these, after replacing back the Skolem constants by
variables. The strategy can be applied in a nested way, by choosing a new target
constant among the Skolem constants of the goal. Using this nesting scheme one
can synthesize algorithms with nested recursion (see, e. g., Algorithm 9) as well
as with recursion on several arguments, as for instance in the case of merging of
lists in the merge-sort algorithm for lists (see [16], Algorithm 15).

Furthermore we use cover sets in a novel way also on meta–variables: this
generates a certain structure for the synthesized algorithm by imposing on the
result the structure of the corresponding term of the cover set (see for instance
Algorithm 5 for sorting).
ST-2: Dynamic Induction. (described in more detail in [13]) is used to dyna-
mically generate induction hypotheses during the proof. When a ground term t
represents an object which is smaller than the target constant X0 of the target

16 Terms containing universally quantified variables, such that for every element of the
domain there exists exactly one term in the set which instantiates to that element.
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goal P [X0], then P [t] is added as a new assumption, but modified by inserting
the corresponding call of the target function instead of the existential variable.

This strategy is applied in a similar manner to metavariables, when they
occur in the goal. When a metavariable Y ∗ represents an object which is smaller
than the target constant X0, then P [Y ∗] may be added as new assumption.
ST-3: Cascading. This strategy consists in proving separately a conjecture for
synthesizing the algorithm for some auxiliary functions needed in the current
proof. The Skolem constants from the current goal become universal variables
x, x′, . . . , the metavariables from the current goal become existential variables
y, y′, . . . , and the conjecture has the structure17:

∀
x
∀
x′
. . . (P [x, x′, . . .] =⇒ ∃

y
∃
y′
. . . Q[x, x′, . . . , y, y′, . . .]) (1)

P [x, x′, . . .] is composed from the assumptions which contain only the Skolem
constants present in the goal, and Q[x, x′, . . . , y, y′, . . .] is composed from the
goal. A successful proof of the conjecture generates the functions f [x, x′, . . .],
f ′[x, x′, . . .], . . . , which have the property:

∀
x
∀
x′
. . . (P [x, x′, . . .] =⇒ Q[x, x′, . . . , f [x, x′, . . .], f ′[x, x′, . . .], . . .]) (2)

The current proof continues after adding this property to the assumptions18,
thus if some of the generated functions are necessary later in the proof, they
can be used without a new cascading step. The new assumption will trigger the
simplification of the current goal by inserting the auxiliary function.
ST-4: Group multisets. This strategy uses IR-5 and applies when the goal
contains an equality of the form: M[Y ∗] = M[t1] ]M[t2] ] . . . , where Y ∗ is
the metavariable we need to solve, and t1, t2, . . . are ground terms. The flow of
the proof consists in transforming the union on the RHS of the equality into a
single M[t], because this gives the solution Y ∗ → t. The prover groups pairs
or triplets of operands of ] together (no matter whether they are contingent or
not, because commutativity) and creates an alternative for each group. On each
alternative the multiset term which equals the union of the group is constructed
by application of the appropriate function in one of the following ways:

1. the auxiliary function is already known, the proof works by predicate logic;
2. induction can be applied (if the target function has the same structure);
3. a separate synthesis proof of the function is necessary by ST-3 (cascading).

3.3 Implementation

In the Theorema system, the proof develops as a tree of proof situations, each
consisting of a set of assumptions and a goal, and also other various information

17 By local convention, here x, x′, y, y′ represent any kind of objects.
18 Note that these kind of new assumptions are global: they can be used on any branch

of the current proof.



AlCons : Synthesis of Sorting Algorithms 11

which may be prover specific. Every proof situation is transformed into one or
more proof situations by applying an inference rule, which creates or modifies
the goal and/or one or more assumptions, and thus extends the proof tree.
When several proof situations are created, there are two types of proof tree
nodes: the AND nodes (all subproofs must succeed), and the OR nodes (at least
one subproof must succeed – these are “proof alternatives”). Many inference
rules produce alternatives (e. g. compress multiset, backward chaining), from
which some may be unsuccessful. Each successful alternative has typically several
AND branches, each of them corresponding to a clause in the definition of the
synthesized algorithm. Since the cover set strategy is applied in a nested way,
the proof tree is theoretically infinite, and may produce an arbitrary number of
algorithms. The concrete proofs are however finite because we limit the depth
of the proof tree.

As it is usual in the Theorema system, our prover consists of a collection of
rewrite rules which correspond to the intended inferences. Each rule rewrites the
proof situation into new one, and produces additionally a proof information (a list
of elements necessary for the presentation of the proof). The proof information
is language independent and is aggregated in a tree wich represents finally the
whole proof: the proof object. Using a set of language-dependent rewrite rules
corresponding to the proof steps, the proof object is finally transformed in a
Mathematica notebook explaining the proof.

In our case the proof object also contains the information relevant for the
synthesized algorithm, which is extracted automatically at the end of the proof.

Contextual Information. Besides the current goal and the list of the current
assumptions, which are the core elements of the proof situation, the prover uses
certain contextual information for guiding the realization of the inference rules
and strategies. The contextual information is split into global and local.

The global context consists of constants which are available to the prover
on all branches of the proof. This contains among other: the table with the
names of the variables assigned to the different types, the table with the cover
sets corresponding to lists and to trees, and the list of rewrite rules for the
simplification of truth constants.

The local context consists of information which is specific to every branch
of the proof, and it is dynamically updated. This contains: the type table, which
indicates the type of each item; the target goal, the target Skolem constant and
the target meta-variable used for the realization of the strategy ST-1 (cover
set); the table of the Noetherian relation between Skolem constants, used for in-
duction; and the table of rewrite rules corresponding to the current assumptions
(see below), etc.

In order to ease the use of the current assumptions, they are reflected in
certain rewrite rules in a special table of the local context. When new goals
[assumptions] are produced, the prover tries to simplify them using these rules,
depending on the situation in the proof.

The tables composing the local context are implemented as associative me-
mory structures: each element or group of elements is associated with a textual
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keyword. This makes it easy to access an element by using the rewrite mecha-
nism provided by Mathematica, and also to write inference rules based on pattern
matching.

Both the global and the local contexts are implemented in a generic way,
both the structures and the manipulating functions are type independent, thus
any relevant information (like, e. g., cover set information) can be added to the
context and maintained by the functions provided, without having to change the
implementation.

The Theorema system19 and an example of the prover usage20 are available
online.

4 Experiments on binary trees

In order to illustrate the proof techniques of AlCons we summarize in this
section our experiments on binary trees. (The experiments on lists are detailed
in [16].) The synthesized algorithms relevant to binary trees are:

(i) sorting algorithms (not yet presented in our papers): Algorithm 1 (which
uses Insert, Concat), Algorithm 2, Algorithm 3, Algorithm 4 (which
use Insert, Merge), Algorithm 5 (which uses Concat, SmallerEq, Bigger),
Algorithm 6 (which uses Merge, SmallerEq, Bigger), as well as some similar
versions of them;

(ii) auxiliary algorithms: Insert (Algorithm 7) [12], derived here by different
techniques; numerous versions of Concat : the synthesis of Algorithm 8
and first three similar versions of it are presented in [12], and other twenty
versions in [18]; four versions of Merge: the synthesis of the first two (Al-
gorithm 9, Algorithm 10) is presented in [12], and the other two in [18];
novel: SmallerEq (Algorithm 11) and Bigger (Algorithm 12).

The algorithms presented also in [12] are generated using explicit induction (thus
the user has to anticipate the structure of the algorithm), and the algorithms
1 to 4 can also be derived in this way. In contrast, by using cover sets and
dynamic induction, all algorithms mentioned above are synthesized without any
prior anticipation of the algorithm structure. Moreover, algorithms 5 and 6 (and
their similar versions), as well as the selection auxiliary functions SmallerEq and
Bigger are consequent to the use of the novel paradigm of applying cover sets
to meta-variables.

The following subsections illustrate the process of synthesis by describing
some parts of the proofs.

4.1 Sorting algorithms.

The synthesis conjecture is:

19 https://www.risc.jku.at/research/theorema/software/
20 https://www.risc.jku.at/people/tjebelea/AlCons.html
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Conjecture 1. ∀
X
∃
T

(M[T ] =M[X] ∧ IsSorted[T ]).

The goal after Skolemization and introduction of the meta–variable is:

M[T ∗] =M[X0] ∧ IsSorted[T ∗]. (3)

Strategy ST-1 (cover set) starts two branches: on the Skolem constant and on
the meta-variable.
Branch 1. Strategy ST-1 applies to X0 using the cover set {ε, 〈L0, a0, R0〉} and
generates two cases:
Case 1.1 : X0 = ε is trivial and the solution is {T ∗ → ε}.
Case 1.2 : X0 = 〈L0, a0, R0〉. The goal becomes:

M[T ∗] =M[〈L0, a0, R0〉] ∧ IsSorted[T ∗]. (4)

This is expanded by IR-4 (expand multiset) into:

M[T ∗] =M[L0] ] {{a0}} ]M[R0] ∧ IsSorted[T ∗]. (5)

Strategy ST-4 (pair multisets) applies on goal (5) and then strategy ST-3 (cas-
cading) generates the conjectures corresponding to the synthesis of Concat, and
Merge (see details in [12]) on two different cases, adds the assumptions express-
ing the properties of these auxiliary functions, and rewrites the goal in each case
by using Concat and Merge, respectively.
Case 1.2.1 Goal (5) becomes:

M[T ∗] = {{a0}} ]M[Concat[L0, R0]] ∧ IsSorted[T ∗]. (6)

Strategy ST-2 (induction) uses Concat[L0, R0], which is smaller in the Noethe-
rian ordering than 〈L0, a0, R0〉, to produce the assumption:

M[Sort[Concat[L0, R0]]] =M[Concat[L0, R0]] ∧
IsSorted[Sort[Concat[L0, R0]]].

(7)

Goal (5) is rewritten using (7) into:

M[T ∗] = {{a0}} ]M[Sort[Concat[L0, R0]]] ∧ IsSorted[T ∗]. (8)

ST-4 applied to {{a0}} andM[Sort[Concat[L0, R0]]] uses ST-3 to produce Con-
jecture 2 for the synthesis of Insert. By s ST-3 the generated assumption is:

∀
X

(
IsSorted[X] =⇒

∀
a

(
M[Insert[a,X]] = {{a}} ]M[X] ∧ IsSorted[Insert[a,X]]

))
.

(9)

and goal (5) becomes

M[T ∗] =M[Insert[a0,Sort[Concat[L0, R0]]]] ∧ IsSorted[T ∗]. (10)

The solution for T ∗ is Insert[a0,Sort[Concat[L0, R0]]]. The proof succeeds on this
branch and the extracted algorithm is:
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Algorithm 1 Sorting trees, version 1.

∀
a,L,R

(
Sort[ε] = ε

Sort[〈L, a,R〉] = Insert[a,Sort[Concat[L,R]]]

)
Case 1.2.2 Goal (5) becomes:

M[T ∗] = {{a0}} ]M[Merge[L0, R0]] ∧ IsSorted[T ∗]. (11)

Strategy ST-2 uses Merge[L0, R0] (which is smaller than 〈L0, a0, R0〉) to produce
the assumption:

M[Merge[Sort[L0],Sort[R0]]] =M[Merge[L0, R0]] ∧
IsSorted[Merge[Sort[L0],Sort[R0]]].

(12)

Goal (5) is rewritten using (12) into:

M[T ∗] = {{a0}} ]M[Merge[Sort[L0],Sort[R0]]] ∧ IsSorted[T ∗]. (13)

Strategy ST-4 applied to {{a0}} andM[Merge[Sort[L0],Sort[R0]]] uses now the
already known function Insert to update the goal into:

M[T ∗] = Insert[a0,Merge[Sort[L0],Sort[R0]]] ∧ IsSorted[T ∗]. (14)

This gives a solution for T ∗ and the algorithm:

Algorithm 2 Sorting trees, version 2. Insert[a,Merge[Sort[L],Sort[R]]]

∀
a,L,R

(
Sort[ε] = ε

Sort[〈L, a,R〉] = Insert[a,Merge[Sort[L],Sort[R]]]

)
Remark: Since for all sorting algorithms the base case is the same, as well as the
LHS of the recursive equality, we to state only its RHS for the other algorithms.

The proof is similar for two other cases produced by ST-4 from goal (5) by
grouping first the unit multiset with another, and generates:

Algorithm 3 Sorting trees, version 3. Merge[Sort[L], Insert[a,Sort[R]]]

Algorithm 4 Sorting trees, version 4. Merge[Insert[a,Sort[L]],Sort[R]]

Branch 2. ST-1 applies to T ∗ using the cover set {ε, 〈L∗, a∗, R∗〉} and two cases
are generated:
Case 2.1 : T ∗ = ε is trivial.
Case 2.2 : T ∗ = 〈L∗, a∗, R∗〉. The goal becomes:

M[〈L∗, a∗, R∗〉] =M[〈L0, a0, R0〉] ∧ IsSorted[T ∗]. (15)

This is transformed by IR-4 (expand multiset) and IR-1 (reduce composite
argument on IsSorted) into:

M[L∗] ] {{a∗}} ]M[R∗] =M[L0] ] {{a0}} ]M[R0] ∧
IsSorted[L∗] ∧ IsSorted[R∗] ∧ L∗ ≤ a∗ < R∗.

(16)
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Using the equality the prover computes the partial solution a∗ = a0 and reduces
the goal correspondingly, and then ST-4 starts two alternatives:
Case 2.2.1 By pairing M[L0],M[R0] using Concat the goal becomes:

M[L∗] ]M[R∗] =M[Concat[L0, R0]] ∧
IsSorted[L∗] ∧ IsSorted[R∗] ∧ L∗ ≤ a0 < R∗.

(17)

By ST-2 (dynamic induction) Concat[L0, R0] is replaced by Sort[Concat[L0, R0]],
and then ST-3 generates Conjecture 6 for the synthesis of SmallerEq and Big-
ger, adds the corresponding properties of them to the global assumptions, and
updates the goal to:

M[L∗] ]M[R∗] =

M[SmallerEq[a0,Sort[Concat[L0, R0]]]] ]M[Bigger[a0,Sort[Concat[L0, R0]]]] ∧
IsSorted[L∗] ∧ IsSorted[R∗] ∧ L∗ ≤ a0 < R∗.

(18)
This gives the obvious solutions to L∗, R∗ and the algorithm:

Algorithm 5 Sorting trees, version 5.

∀
a,L,R

(
Sort[〈L, a,R〉] =

〈SmallerEq[a,Sort[Concat[L,R]]], a,Bigger[a,Sort[Concat[L,R]]]〉

)

(In an efficient implementation Sort[Concat[L,R]] must be computed only once.)
Case 2.2.1 In a similar way but with different pairing of multiset terms, and
using the already known selection functions, one obtains the algorithm:

Algorithm 6 Sorting trees, version 6.

∀
a,L,R


Sort[〈L, a,R〉] =

〈Merge[SmallerEq[a,Sort[L]],SmallerEq[a,Sort[R]]]],

a,

Merge[Bigger[a,Sort[L]],Bigger[a,Sort[R]]]]〉


Several similar versions of the latest two algorithms are generated by ST-4 per-
muting the multiset terms corresponding to L and R.

4.2 Auxiliary algorithms.

Insert. Inserts an element in a sorted tree such that the result remains sorted.

Conjecture 2. ∀
a
∀
X

(
IsSorted[X] =⇒ ∃

S

(
M[S] = {{a}} ]M[X] ∧ IsSorted[S]

))
is used in the practical experiment as:

Conjecture 3.

∀
X

(
IsSorted[X] =⇒ ∀

a

(
M[Insert[a,X]] = {{a}} ]M[X] ∧ IsSorted[Insert[a,X]]

))
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Fig. 1. Setup for proving Conjecture 3.

Fig. 1 shows the formalization of the conjecture in Theorema and the graph-
ical user interface of the prover.

The proof uses the cover set {ε, 〈L0, b0, R0〉} for the Skolem constant X0 and
generates the algorithm:

Algorithm 7 Insertion in a sorted tree.

∀
a,b,L,R

 Insert[a, ε] = 〈ε, a, ε〉

Insert[a, 〈L, b,R〉] =

{
〈Insert[a, L], b, R〉, if a ≤ b

〈L, b, Insert[a,R]〉, if b < a


Figure 2 shows a part of the proof of the conjecture, with the successful

generation of the first clause of the algorithm.
This algorithm was derived with different methods in [17] and by explicit

induction in [12] instead of using cover sets.

Concat. Combine two [unsorted] trees into an [unsorted] tree.

Conjecture 4. ∀
X
∀
Y
∃
Z

(
M[Z] =M[X] ]M[Y ]

)
From the proof of this conjecture 24 versions of Concat algorithm are extracted.
The first 4 versions are also derived in [12] and the other 20 are in [18].

Algorithm 8 Concatenation of trees, version 1.

∀
a,L,R,S

(
Concat[ε, S] = S

Concat[〈L, a,R〉, S] = 〈L, a,Concat[R,S]〉

)
The other generated versions are essentially the same but permute L,R, S

and the two main branches of the resulting tree.
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Fig. 2. Part of the generated proof of Conjecture 3 and the proof tree.

Merge. Combine two sorted trees into a sorted tree.

Conjecture 5.

∀
X
∀
Y

(
(IsSorted[X] ∧ IsSorted[Y ]) =⇒ ∃

Z

(
M[Z] =M[X] ]M[Y ] ∧ IsSorted[Z]

))
From the proof of this the following two versions of Merge are extracted [12]:

Algorithm 9 Merge sorted trees, version 1.

∀
a,L,R,S

(
Merge[ε, S] = S

Merge[〈L, a,R〉, S] = Merge[L,Merge[R, Insert[a, S]]]

)

Algorithm 10 Merge sorted trees, version 2 (the inductive step).
∀

a,L,R,S

(
Merge[〈L, a,R〉, S] = Merge[Concat[L,R], Insert[a, S]]]

)
as well as (by applying cover sets to meta-variables), the following two versions
described in [18], which have in the second equality:
〈SmallerEq[a,Merge[L, S]], a,Bigger[a,Merge[R,S]]〉,
〈Merge[L,SmallerEq[a, S]], a,Merge[R,Bigger[a, S]]〉.

SmallerEq and Bigger. Select from a sorted tree the elements that are
smaller, respectively bigger than a given element.

Conjecture 6. ∀
X

(
IsSorted[X] =⇒ ∀

a
∃
T1

∃
T2

(
M[X] =M[T1] ]M[T2] ∧

T1 ≤ a ∧ a < T2 ∧ IsSorted[T1] ∧ IsSorted[T2]
))

.
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Algorithm 11

∀
a,b,L,R


SmallerEq[a, ε] = ε

SmallerEq[a, 〈L, b,R〉]=


〈SmallerEq[a, L], a,SmallerEq[a,R]〉 if a = b

SmallerEq[a, L], if a < b

〈L, b,SmallerEq[a,R]〉, if b < a


Algorithm 12

∀
a,b,L,R

 Bigger[a, ε] = ε

Bigger[a, 〈L, b,R〉] =

{
〈Bigger[a, L], b, R〉, if a < b

Bigger[a,R], if b ≤ a



5 Conclusions and further work

This paper gives the description of AlCons , a powerful system for proof–based
algorithm synthesis on lists and binary trees using multisets. The proofs genera-
ted by AlCons are easy to understand (similar to human proofs) and they are
generated in a few seconds.

The most important proof strategies are: use cover sets together with multiset
based Noetherian induction, pairing of multisets, and cascading. By using cover
sets, no algorithm scheme and no concrete induction principles are needed in
advance, as they are dynamically produced during the proof, and even nested
induction algorithms can be generated automatically.

As future work one can extend AlCons to generate algorithms which com-
bine operations on both lists and trees (e.g., algorithms for transforming a tree in
a sorted list, transforming a non–sorted list into a balanced binary search tree),
as well as more complex algorithms for sorting and searching – for instance on
balanced trees. Moreover one can extend the prover with capabilities for auto-
matic analysis of time and space complexity of the synthesized algorithms.
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