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General solutions of irst-order algebraic
ODEs in simple constant extensions

Johann J. Mitteramskogler FranzWinkler

If a first-order algebraic ODE is defined over a certain differential field, then
the most elementary solution class, in which one can hope to find a general
solution, is given by the adjunction of a single arbitrary constant to this field.
Solutions of this type give rise to a particular kind of generic point—a rational
parametrization—of an algebraic curvewhich is associated in a natural way to the
ODE’s defining polynomial. As for the opposite direction, we show that a suitable
rational parametrization of the associated curve can be extended to a general
solution of the ODE if and only if one can find a certain automorphism of the
solution field. These automorphisms are determined by linear rational functions,
i.e. Möbius transformations. Intrinsic properties of rational parametrizations, in
combination with the particular shape of such automorphisms, lead to a number
of necessary conditions on the existence of general solutions in this solution
class. Furthermore, the desired linear rational function can be determined by
solving a simple differential system over the ODE’s field of definition. All results
are derived in a purely algebraic fashion and apply to any differential field of
characteristic zero with arbitrary derivative operator.

1 Introduction and preliminaries
In recent years, a number of algorithms have been published which construct explicit general
solutions of first-order algebraic ODEs from a rational parametrization of an associated
geometric object.1 Most notable among such methods, but non-exhaustive in enumeration,
are the approaches described in Feng and Gao [1], Ngô andWinkler [6] and Vo, Grasegger
andWinkler [11]. Each of these methods starts from a particular rational parametrization of
the associated geometric object, which is modified in a subsequent step such that the result
can be extended to a general solution of the differential equation. All solutions that are found
in this way can be chosen from a simple constant extension of the ODE’s differential field of
definition.2
1In fact, these methods follow a general strategy for solving algebraic differential equations, which is known as
the algebro-geometric solution method [12].

2Cf. Mitteramskogler andWinkler [4] for a proof that the method of Ngô andWinkler [6] cannot find general
solutions beyond this solution class.
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The mentioned algorithms are limited to specific differential fields, i.e. they consider
algebraic ODEs over a differential field of rational functions in the variable �, exclusively,
where the derivative operator is restricted to d/d�. Furthermore, the modification step of the
latter two algorithms requires solving an associated (system of) differential equation(s). This
part relies on additional literature with similar restrictions on the differential field and, in
some cases, analytical methods are required for the proofs. Such constraints make a direct
extension to other fields or derivative operators difficult.
In this paper, we propose a generalization of the algebro-geometric method to arbitrary

differential fields of characteristic zero. First, we establish certain preliminary results on
differential extensions by arbitrary constants in Section 2. With this foundation, we prove
the existence of special general solutions of first-order algebraic ODEs in Section 3, granted
that the differential equation has a general solution in such a constant differential extension
field. One property of these special solutions is that they are deducible, via a particular
automorphism, from a so-called proper rational parametrization of the curve which we
associate to an algebraic ODE. From this link and known properties of proper rational
parametrizations, we obtain a number of necessary conditions when an algebraic ODE has
a general solution of this type. Finally, we conclude the paper in Section 4 with a possible
extension to second-order algebraic ODEs.
We end this section by recalling certain basic notions and results form differential algebra,

field theory, and rational algebraic curves. Definitions of the objects under consideration
and necessary terminology will be introduced along the way.

Basic diferential algebra
We briefly recall a couple of basic notions from differential algebra. Further elaboration
can be found in the books of Ritt [8] or Kolchin [3]. Let ℛ be a ring. An operator � onℛ is called a derivative operator if � is additive and satisfies the Leibniz product rule, i.e.�(� + �) = �� + �� and �(��) = (��)� + ��� for all �, � ∈ ℛ. A ring or field together with
a derivative operator is called a differential ring or differential field, respectively.3 Elements� ∈ ℛ which satisfy �� = 0 are called constants and the set of all constants forms a subring
of ℛ. If ℛ is a field, then the ring of constants is a field as well, called the field of constants.
Note that the prime field of a differential field is always part of the field of constants.
Let ℱ be a differential field with derivative operator �. For convenience, all extensions ofℱ will be contained in a differential superfield �, which is, roughly speaking, large enough

to house an isomorphic copy of any reasonable differential extension of ℱ. More precisely, �
will be a universal differential extension field of ℱ, cf. Kolchin [3, Ch. III, Sec. 7] for details.4
The derivation on ℱ extends to � and, by an abuse of notation, � is also used to denote the
derivative operator on �. At times we require that � contains a certain number of arbitrary
constants. By an arbitrary constant we understand a constant � ∈ � which is transcendental
over ℱ. More generally, a collection of independent arbitrary constants �1, �2,… ∈ � denotes
a collection of constants such that {�1, �2,…} is algebraically independent overℱ. This entails,
3Actually, this describes an ordinary differential ring or field.
4Note that a universal differential extension field is separably closed.
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in particular, that each constant �� is transcendental over ℱ and over every extension of ℱ
generated via the adjunction of finitely many elements of {�1, �2,…} ⧵ {��}.
An algebraic substructure of � is called differential if it is closed under �. For � ⊆ � we

denote by ℱ[�], ℱ(�), ℱ{�}, and ℱ⟨�⟩ the smallest subring, subfield, differential subring, and
differential subfield of � containing ℱ and �, respectively. If the cardinality is finite, we will
frequently replace � by its elements in the previous notations. Finally, �(�) is used throughout
the text to denote ���, the �-th derivative of an element � ∈ �, with �(0) = �.
Interlude from ield theory
Let ℱ be an arbitrary field. If � ⊇ ℱ is a field extension, which we denote by �/ℱ, then the
degree of � over ℱ and the transcendence degree of � over ℱ is denoted by deg �/ℱ andtr.deg �/ℱ, respectively. Recall that an extension �/ℱ is said to be purely transcendental if �
is isomorphic to a field of rational functions over ℱ in finitely or infinitely many variables.
For a polynomial � ∈ ℱ[…, �,…] we write deg� � for its degree in the variable �. The

notion is extended to the quotient field in the usual way: let � ∈ ℱ(…,�,…) be in reduced
form,5 then deg� � is defined to be the maximum of the degrees of numerator and denomin-
ator in �.6 It is well-known that every subfield of a univariate rational function field, properly
containing the base field, is generated by a single rational function. This classical result
is known as Lüroth’s theorem. An elementary proof can be found in van der Waerden [10,
Sec. 73] or Morandi [5, Theorem 22.19].

Theorem 1.1 (Lüroth). Let ℱ(�) be the field of rational functions over ℱ in the variable �.
Every intermediate field ℱ ⊊ � ⊆ ℱ(�) is a purely transcendental extension of the form� = ℱ(�) for some � ∈ ℱ(�) ⧵ ℱ. Furthermore, ℱ(�) is a finite algebraic extension of ℱ(�)
such that deg ℱ(�)/ℱ(�) = deg� �.
Let us briefly touch upon regular field extensions, a concept of considerable interest in

algebraic geometry as these characterize absolutely irreducible varieties. An extension �/ℱ
is said to be regular if � is separable over ℱ and ℱ is algebraically closed in �.7 The following
proposition can be found in Fried and Jarden [2, Corollary 10.2.2(b)].

Proposition 1.2. Consider an irreducible polynomial � ∈ ℱ[�1,…, ��] and let �1,…, �� be
elements in a field extension of ℱ such that �(�1,…, ��) = 0 and tr.deg ℱ(�1,…, ��)/ℱ = � − 1.
The polynomial � is absolutely irreducible if and only if ℱ(�1,…, ��)/ℱ is a regular extension.

In fact, this is a special case of the result that an irreducible ℱ-variety is absolutely irre-
ducible if and only if its quotient field is a regular extension of ℱ. In this text, however, we
shall be contented with the specialized version.

Remark 1.3. Every purely transcendental extension is a regular extension.

5Numerator and denominator are relatively prime.
6In either case, we use the convention that deg� 0 ≔ −∞.
7Alternatively, �/ℱ is regular if � is linearly disjoint from ℱ̃ overℱ, where ℱ̃ is the algebraic closure of ℱ.
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Rational algebraic curves
Our approach towards rational algebraic curves comes from a field theoretic perspective. The
material presented in this section is well-known and can be found inMorandi [5, Ch. V, Sec. 21
and Sec. 22] or Fried and Jarden [2, Ch. 10]. Content specific to rational parametrizations
is taken from Sendra, Winkler and Pérez-Díaz [9], which treats rational algebraic curves in
characteristic zero, exclusively.
Let ℱ be a field of characteristic zero and denote by � an algebraically closed extension

field. Further assume that � contains an element � which is transcendental over ℱ. We limit
our exposition on algebraic curves to the case of affine algebraic plane curves defined by
irreducible polynomials. Letℛ ≔ ℱ[�, �] be the bivariate polynomial algebra over ℱ. For� ⊆ ℛ let �(�) ≔ {(�, �) ∈ �2(�) | �(�, �) = 0 for all � ∈ �}
be the zero locus of �, where �2(�) denotes the two-dimensional affine space over �. In case
of a finite set � = {�1,…, ��} we also write �(�1,…, ��).
Definition 1.4. A subset � ⊆ �2(�) is called an irreducible algebraicℱ-curve, or just ℱ-curve
for the sake of brevity, if � = �(�) for some non-trivial irreducible polynomial � ∈ ℛ. Denote
by �� ≔ �(�) the ℱ-curve defined by the zero locus of the polynomial �.8
Evidently, for any � ∈ ℛ we have �(�) = �((�)), where (�) ⊆ ℛ is the ideal generated

by �. Let � ⊆ �2(�) and denote by�(�) ≔ {� ∈ ℛ | �(�, �) = 0 for all (�, �) ∈ �}
the vanishing ideal of � in ℛ. It applies that �(��) = (�) for any ℱ-curve ��. Under the
precondition that � is irreducible, we see that the vanishing ideal of an ℱ-curve is a principal
prime ideal.

Definition 1.5. Let � be an ℱ-curve. The function field of �, denoted by ℱ(�), is the quotient
field of the integral domain ℛ/�(�). We call � rational if ℱ(�)/ℱ is a purely transcendental
extension.9

Definition 1.6. Denote by ℱ̃ the algebraic closure of ℱ in�. An ℱ-curve � is called absolutely
parametrizable if there exist rational functions ��, �� ∈ ℱ̃(�) such that {(��(�), ��(�)) | � ∈ �}
is a dense subset of � wrt. the Zariski ℱ-topology on �2(�).10 Furthermore, if such ��, �� can
be found in ℱ(�), then � is called parametrizable. In the latter case, the tuple (��, ��) is called
a rational parametrization of �.
Remark 1.7. It is impossible for a rational parametrization (��, ��) of anℱ-curve�� that both��, �� ∈ ℱ. This would parametrize an ℱ-closed set—a point—which is certainly not dense in��. Conversely, any pair of rational functions ��, �� ∈ ℱ(�), not both of them contained in ℱ,
which satisfy �(��, ��) = 0 constitute a rational parametrization of �� [9, Theorem 4.7].
8The defining polynomial of anℱ-curve is unique up to multiplication by units inℛ.
9Anyℱ-curve� satisfies tr.degℱ(�)/ℱ = 1. Consequently, the function field of a rationalℱ-curve is a simple
transcendental extension of ℱ.

10The Zariskiℱ-topology on �2(�) is defined in terms of its closed sets. A subset� ⊆ �2(�) is closed if it is
the zero locus of some set of polynomials overℱ, viz.� = �(�) for some � ⊆ ℛ.
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Remark 1.8. A rational parametrization is a generic point of the curve’s vanishing ideal.
In general, not every absolutely parametrizable ℱ-curve is parametrizable [9, Ch. 5, Sec. 1].

However, for certain fields these two notions are equivalent, e.g. this is trivially the case
when ℱ is algebraically closed. Furthermore, every simple transcendental extension of an
algebraically closed field of characteristic zero has this property [11, Theorem 4.3].
Definition 1.9. The field ℱ is called an optimal parametrization field if every absolutely
parametrizable ℱ-curve is parametrizable.
Theorem 1.10. Let �� be an ℱ-curve and consider the subsequent statements. We have that
(i) is equivalent to (ii) and each imply (iii). All statements are equivalent if ℱ is an optimal
parametrization field.
(i) The curve � is rational.
(ii) The curve � is parametrizable.
(iii) The polynomial � is absolutely irreducible and � has genus zero.11
Proof. The equivalence of (i) and (ii) is shown inMorandi [5, Proposition 22.18]. Any rational
parametrization satisfies the conditions of Proposition 1.2, which implies that � is absolutely
irreducible. It is well-known that only absolutely irreducible curves can be parametrized by
rational functions and this is the case precisely when the curve has genus zero [9, Theorem 4.4
and Theorem 4.63]. The rest follows from the definitions.

Finally, we come to the concept of proper rational parametrizations. Lüroth’s theorem
implies that the field ℱ(��, ��) generated by the rational parametrization (��, ��) is anℱ-isomorphic subfield of ℱ(�). Properness is attained when the fields are actually equal.
Geometrically, this means that a point on the curve is obtained at most once under the
parametrization. Any non-proper parametrization can be converted into a proper one.
Definition 1.11. A rational parametrization (��, ��) is called proper if ℱ(��, ��) = ℱ(�).
Theorem 1.12 (Sendra, Winkler and Pérez-Díaz [9, Theorem 4.21]). A proper rational
parametrization (��, ��) of the ℱ-curve �� satisfies the following conditions on the degrees:deg� �� = deg� � and deg� �� = deg� �.
Proper rational parametrizations are far from being unique. However, any two proper

parametrizations can be obtained through a linear rational function, also called aMöbius
transformation. These are precisely the ℱ-automorphisms of ℱ(�).
Proposition 1.13 (Sendra, Winkler and Pérez-Díaz [9, Lemma 4.17]). Let (��, ��) and(��, ��) be two proper rational parametrizations of the same ℱ-curve. There exists a rational
function of the form

� = �� + ��� + � , where �, �, �, � ∈ ℱ such that |||� �� �||| ≠ 0,
with the property that ��(�) = �� and ��(�) = ��. Equivalently, there exists an ℱ-automor-
phism� of ℱ(�) such that (�(��), �(��)) = (��, ��). Any application of such an automorphism
on a proper rational parametrization produces another proper rational parametrization.
11Consult Sendra, Winkler and Pérez-Díaz [9, Ch. 3] for details on the genus of an algebraic curve.
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2 Constant diferential extensions
Throughout this section, let ℱ be an arbitrary differential field with derivation operator � and
field of constants�. Denote by� a fixed universal differential extension field of ℱ containing
an infinite number of independent arbitrary constants. All subsequent (differential) fields
are subfields of �. Finally, the quantities �1,…, �� and � denote distinct independent arbitrary
constants.
Extending a differential field by constants behaves like an ordinary field extension, in

other words, ℱ⟨�1,…, ��⟩ is identical to ℱ(�1,…, ��) as a field. Such an extension is purely
transcendental since �1,…, �� are algebraically independent over ℱ. Notice that ℱ⟨�1,…, ��⟩
is the quotient field of the differential integral domain ℱ{�1,…, ��} and, therefore, satisfies
the classical quotient rule of differentiation. The following lemma shows that the differ-
ential extension ℱ⟨�1,…, ��⟩ does not introduce extra constants, viz. constants beyond the
adjunction of �1,…, �� to the constant field�.
Lemma 2.1. �(�1,…, ��) is the field of constants of the differential field ℱ⟨�1,…, ��⟩.
Proof. Obviously,�(�1,…, ��) is contained in the field of constants of ℱ⟨�1,…, ��⟩ and it is
enough to show that no additional constants arise. Furthermore, it suffices to show that�(�1) is the field of constants of ℱ⟨�1⟩, in which case the lemma follows immediately from
the fact that ℱ⟨�1,…, ��⟩ = (ℱ⟨�1⟩)⟨�2,…, ��⟩.
At first, consider an element � ∈ ℱ[�1] of the form � = ∑� ����1 for some �� ∈ ℱ. If � is a

constant, then we have 0 = �� = ∑� (���)��1,
which forces each ��� to be zero by the transcendentality of �1 over ℱ. In other words, �� ∈ �
for all � and, consequently, � ∈ �[�1]. Now let � ∈ ℱ(�1) be a constant. The case � = 0 is
trivial and will be neglected in the following reasoning. We may write � = ��/�� for some��, �� ∈ ℱ[�1] ⧵ {0} such that gcd(��, ��) = 1 and �� is monic.12 By the quotient rule

0 = �� = (���)�� − ������2� ,
which implies that (���)�� = �����. Both sides of this equation must be zero, for otherwise�� | ����� cannot be satisfied since �� is relatively prime to �� and deg�1 �� > deg�1 ���. Asℱ[�1] is an integral domain and �� ≠ 0 ≠ �� per assumption, we conclude that ��� = ��� = 0.
But this implies that ��, �� ∈ �[�1] by the previous result, whereby � ∈ �(�1) as required.
Linear disjointness of algebras over a field is an important concept in field theory for

studying arbitrary extensions. In the differential setting, any subset of a differential field
which is linearly independent over the field of constants remains linearly independent over
the field of constants of any differential extension field [3, Ch. II, Sec. 1, Corollary 1]. This
property lies at the basis of the subsequent lemma.

12Since� contains the prime field of ℱ, for any non-zero monic polynomial � ∈ ℱ[�1] we see that deg�1 � is
strictly greater than deg�1 �� (recall that deg�1 0 = −∞).
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Lemma 2.2 (Kolchin [3, Ch. II, Sec. 1, Corollary 2]). Letℳ be the field of constants of a
differential extension field of ℱ. Consider the mapping � that associates to each intermediate
differential field ℱ ⊆ � ⊆ ℱ(ℳ) the constant field � ∩ℳ, and the mapping � which associates
to an intermediate constant field� ⊆ ℒ ⊆ ℳ the differential field ℱ(ℒ). The mappings � and� are bijective and inverse to each other.
Equipped with this lemma, we are in the position to state the main result of this section.

Namely, every differential subfield of a simple differential extension by an arbitrary constant
is generated by a constant.

Theorem 2.3. Let � ⊋ ℱ be a differential subfield of the simple constant differential extensionℱ⟨�⟩. In this case, � = ℱ⟨�⟩ for some � ∈ �(�) ⧵ �.
Proof. From Lemma 2.1 we know that the field of constants of ℱ⟨�⟩ is�(�). Obviously, the
differential composite field ℱ⟨�(�)⟩ is precisely ℱ⟨�⟩. Now we are in the position to use the
one-to-one correspondence of differential subfields and intermediate constant fields from
the antecedent lemma. The subsequent diagram follows directly from Lemma 2.2.

ℱ � ℱ⟨ℒ⟩ ℱ⟨�(�)⟩ ℱ⟨�⟩

� � ∩�(�) ℒ �(�)

← ←⊊←

←

=←

→�

←←⊆ =

←←⊊ ≕ ← ←⊆←
→

� ←

←
Since ℒ is a subfield of a simple transcendental extension of �, properly containing the latter,ℒ = �(�) for some � ∈ �(�) ⧵ � by Theorem 1.1. Considering that � is the composite of ℱ
and ℒ, it follows that � = ℱ⟨�(�)⟩ = ℱ⟨�⟩.
Notice that, since � is contained in a simple transcendental extension of ℱ, Lüroth’s

theorem alone would have been enough to predict that � is generated over ℱ by a single
element � ∈ ℱ(�) ⧵ℱ. Theorem 2.3 sharpens this result by stating that � can be selected from
the constant field.

Corollary 2.4. For every intermediate differential field ℱ ⊊ � ⊆ ℱ⟨�⟩ it applies that � andℱ⟨�⟩ are differentially isomorphic over ℱ.
Proof. By Theorem 2.3, � = ℱ⟨�⟩ for some constant � ∈ �(�) ⧵ � which is transcendental
overℱ. The map � ∶ � = ℱ⟨�⟩ → ℱ⟨�⟩ defined by �|ℱ = idℱ and �(�) = � is an isomorphism
of ℱ-algebras which leaves elements of ℱ invariant and satisfies �(��) = 0 = ��(�). Hence,�(��) = ��(�) for all � ∈ �, which makes � a differential isomorphism over ℱ.
Remark 2.5. If we require that the constant field� is algebraically closed, then Theorem 2.3
and Corollary 2.4 can be generalized to the case ℱ⟨�1, �2⟩. From Lemma 2.1 we know that
the constant field of ℱ⟨�1, �2⟩ is �(�1, �2) and, by Castelnuovo’s theorem, every intermediate
constant field� ⊊ ℒ ⊆ �(�1, �2) is a purely transcendental extension of �. The remaining
steps of the proofs are analogous.

7



We conclude the section by a handy result on differential fields generated by linear frac-
tional elements. Consider a not necessarily constant element � ∈ ℱ⟨�⟩ such that deg� � = 1.
Since ℱ⟨�⟩ contains a subfield generated by an element of degree one,13 ℱ⟨�⟩ = ℱ(�) = ℱ⟨�⟩
by Theorem 1.1. As a consequence, ��must be contained in the field ℱ(�). The following
proposition shows how �� can be constructed in terms of the generator �.
Proposition 2.6. Consider an element � ∈ ℱ⟨�⟩ of the form

� = �� + ��� + � ,
where �, �, �, � ∈ ℱ. The derivative of � has the representation|||� �� �||| �� = |||� ��� ��||| + (|||� ��� ��||| − |||� ��� �� |||)� + |||� ��� ��||| �2. (1)

Proof. The validity of Equation (1) follows from a suitable expansion of the left-hand side.
Let �Δ ≔ ��−�� and denote by �� ≔ ��+� and �� ≔ ��+ � the numerator and denominator
of �, respectively. By the quotient rule

�Δ�� = �Δ�2� ((���)�� − �����) = 1�2� (�Δ(�(1)� + �(1))�� + ��(−�Δ)(�(1)� + �(1))).
Now, �Δ(�(1)�+�(1)) = ���(1)�−���(1)�+���(1)−���(1) = (��(1)−�(1)�)��+(�(1)�−�(1)�)��
and, by symmetry, (−�Δ)(�(1)� + �(1)) = (��(1) − �(1)�)�� + (�(1)� − �(1)�)��. These identities
can be used to rewrite the antecedent equation in the following way

�Δ�� = 1�2� ((��(1) − �(1)�)�2� + (�(1)� − �(1)�)���� + (��(1) − �(1)�)�2� + (�(1)� − �(1)�)����)
= (��(1) − �(1)�) + (�(1)� − �(1)� + �(1)� − �(1)�)���� + (��(1) − �(1)�)�2��2� ,

which is precisely the right-hand side of Equation (1).

Remark 2.7. Under the assumption that � is in reduced form,14 which is the case precisely
when || � �� � || ≠ 0, then both sides of Equation (1) can be divided through that quantity and�� ∈ ℱ[�] ⊆ ℱ(�).
3 First-order algebraic ODEs and general solutions
In this section we restrict ourselves to fields of characteristic zero, exclusively. That being
said, ℱ denotes a fixed differential field of characteristic zero with derivative operator � and
field of constants�. Unless specified otherwise, all (differential) field extensions of ℱ are
contained in a predetermined universal differential extension field�which, in turn, includes
the arbitrary constant �.
13Namely, the subfieldℱ(�).
14Numerator and denominator have no common factor or, in the present case, � ∉ ℱ.
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Let � be a differential variable and consider the differential polynomial algebra ℱ{�}. As
an ℱ-algebra, ℱ{�} corresponds to the polynomial algebra ℱ[�(0), �(1), �(2),…] in infinitely
many variables, where the derivation on ℱ extends to ℱ{�} by setting ��(�) = �(�+1) for all� ∈ ℕ. Let � ∈ ℱ{�} be a non-trivial differential polynomial. The order of �, denoted by ord �,
is the smallest non-negative number � such that � ∈ ℱ[�(0), �(1),…, �(�)] or, equivalently,
the highest derivative of � which effectively occurs in �. Furthermore, � is called irreducible
if it is irreducible as a polynomial over ℱ.
As a differential ring, ℱ{�} satisfies the ascending chain condition on radical differential

ideals.15 Every proper radical differential ideal is the intersection of a finite number of prime
differential ideals and, up to reordering and the usual elimination, such a decomposition is
unique. The irredundant prime ideals of such a decomposition are called the essential prime
divisors.16 Let � ∈ ℱ{�} be a non-trivial irreducible differential polynomial of order �. One
can show that the radical differential ideal generated by �, most commonly denoted by {�},
can be decomposed as {�} = ({�} ∶ ��) ∩ {�, ��},
where �� ≔ ��/��(�) is the separant of �. As � is irreducible, the component {�} ∶ �� is a
prime differential ideal and, in fact, an essential prime divisor of {�}. The radical {�, ��}
might further decompose into (possibly zero) primes, all of which contain the separant ��.17
These are the so-called singular components and are of no further interest in this text. The
component {�} ∶ ��, on the other hand, is characterized by the fact that it is the unique
essential prime divisor which does not contain the separant. [8, Ch. 1 (Decomposition of
perfect ideals) and Ch. 2 (General solutions)]

Definition 3.1. Let � ∈ ℱ{�} be a non-trivial irreducible differential polynomial. The essential
prime divisor {�} ∶ �� of the radical differential ideal {�} is called the general component of �.
Let � ∈ � and consider the map �� ∶ ℱ{�} → ℱ⟨�⟩, �(�) ↦ �(�) which evaluates differ-

ential polynomials � at the differential point �. This map is a differential homomorphism
of ℱ-algebras whose kernel is a differential prime ideal. We call � a generic point of a prime
differential ideal � ⊆ ℱ{�} if ker �� = �. Note that every prime differential ideal has a
generic zero in some differential extension field and we shall use such objects to characterize
the general solution of an algebraic ODE.

Definition 3.2. An algebraic ODE or AODE is an equation of the form � = 0 given by a
non-trivial differential polynomial � ∈ ℱ{�}. The order of an AODE is defined as the order of
its defining differential polynomial. Under the assumption that � is irreducible, we call ̂� ∈ � a
general solution of the AODE � = 0 if ̂� is a generic point of the general component of �.
In particular, a general solution annihilates the defining differential polynomial of an

AODE and serves as test point for the membership problem of the general component.
Henceforth, we tacitly assume that the defining differential polynomial of any AODE is
15Authors like Ritt [8] and Kolchin [3] use the term perfect (differential) ideal in place of radical differential ideal.
16In general, a (differential) ideal � is said to be a divisor of a (differential) ideal � if � ⊆ �.
17Each essential prime divisor of {�, ��} is again of the form {�} ∶ �� for some non-trivial irreducible differential
polynomial� ∈ ℱ{�} with ord � < ord � [3, Ch. IV, Sec. 14, Corollary of Theorem 5].
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irreducible. In the contrary case, one may factor the differential polynomial first and collect
the solutions of the individual factors. The subsequent proposition gives another very useful
description of the general component of a differential polynomial in terms of differential
pseudo-remainders, cf. Ritt [8, Ch. 1 (Reduction)] for details on differential reduction.

Proposition 3.3 (Ritt [8, Ch. 2 (General solutions)]). For a non-trivial irreducible differential
polynomial � ∈ ℱ{�} we have � ∈ ({�} ∶ ��) ⇔ prem(�, �) = 0, where prem(�, �) denotes
the differential pseudo-remainder of � wrt. �.
Remark 3.4. Proposition 3.3 confirms the preconception that we must extend the base field in
order to find a general solution of an AODE of positive order. If � = 0 is an AODE of positive
order, by the proposition, the general component of � cannot contain a non-zero element of
order less than ord �. Therefore, ̂� ∈ ℱ cannot be a general solution of the AODE for this implies
that �(0) − ̂� ∈ ker � ̂� = ({�} ∶ ��), which is impossible since ord �(0) − ̂� = 0.
Before we turn our attention to first-order AODEs and their general solutions in constant

differential extension fields, the following elementary lemma characterizes simple differen-
tial extensions of finite transcendence degree in terms of ordinary (non-differential) field
extensions.

Lemma 3.5. If the simple differential extension ℱ⟨�⟩ has finite transcendence degree over ℱ,
say tr.deg ℱ⟨�⟩/ℱ = �, then ℱ⟨�⟩ = ℱ(�, ��,…, ���).18
Proof. Under the assumption that ℱ⟨�⟩/ℱ has finite transcendence degree, the derivatives of� are algebraically dependent over ℱ. Let� be the smallest non-negative number such that
there exists a non-zero polynomial � ∈ ℱ[�0,…, ��] with �(�(0),…, �(�)) = 0. From among
those polynomials, choose � such that it is of minimal degree in ��. Let � ≔ deg�� �.
We proceed by showing that �(�+1) ∈ ℱ(�(0),…, �(�)), in which case all higher derivatives

of � are contained inℱ(�(0),…, �(�)) aswell. Let� = ∑��=0�� � ��, where�� ∈ ℱ[�0,…, ��−1],
and let �� ≔ ��(�(0),…, �(�−1)). Since ���(�) = ���−1(�) �(�+1) for all � > 0, differentiation of�(�(0),…, �(�)) = 0 yields

0 = ��(�(0),…, �(�)) = �∑�=0(���)��(�) + �∑�=1 �����−1(�)�(�+1).
Notice that each �� contains derivatives of � of order at most�−1, thus ��� ∈ ℱ[�(0),…, �(�)].
Rearranging the terms of the antecedent equation yields

− �∑�=0(���)��(�) = �(�+1) �−1∑�=0(� + 1)��+1��(�)⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟≕�
. (2)

Since not all�� for � > 0 can be zero, the quantity � corresponds to the evaluation of a non-zero
polynomial � ∈ ℱ[�0,…, ��]with deg�� � < �. By the choice of �, � = �(�(0),…, �(�)) ≠ 0.
Dividing both sides of Equation (2) by � shows that �(�+1) ∈ ℱ(�(0),…, �(�)).
18The basic strategy for proving the lemma is borrowed from Pogudin [7, Lemma 1]. However, we do not require
thatℱ is a constant field.
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To conclude the proof, it remains to show that � = tr.deg ℱ⟨�⟩/ℱ ≕ �. It is clear that
the set {�(0),…, �(�−1)} cannot be algebraically dependent over ℱ, for otherwise ℱ⟨�⟩ =ℱ(�(0),…, �(�−1)) by the previous results and the transcendence degree of ℱ⟨�⟩/ℱ would
be strictly smaller than �. Thus, {�(0),…, �(�−1)} is an algebraically independent set of cardin-
ality equal to the transcendence degree, viz. a maximal algebraically independent set. But
this implies that {�(0),…, �(�)} is algebraically dependent over ℱ, forcing� = � to be, indeed,
the least choice for�.
For the remainder of the section we restrict our investigations to first-order AODEs. Per

assumption, any such differential equation is given by an irreducible differential polynomial� ∈ ℱ[�(0), �(1)] such that deg�(1) � > 0. If we forget about the differential aspect for the
moment and view � simply as a bivariate polynomial in the (non-differential) subalgebraℛ = ℱ[�(0), �(1)] ⊆ ℱ{�}, the vanishing locus of � in the affine space �2(�) constitutes anℱ-curve. Recall that the universal differential extension � is separably closed, which implies
in characteristic zero that � is algebraically closed.

Definition 3.6. Let � = 0 be a first-order AODE and view � as a bivariate polynomial over ℱ.
The ℱ-curve �� ⊆ �2(�) is called the associated curve (of the AODE).
Theorem 3.7. Let � = 0 be a first-order AODE. The existence of a general solution ̂� ∈ ℱ⟨�⟩
entails the following consequences:
(i) The differential polynomial � is absolutely irreducible.
(ii) The associated curve �� is rational and ( ̂�(0), ̂�(1)) is a rational parametrization.
(iii) There exists a general solution ̂� ∈ ℱ⟨�⟩ of the AODE such that ( ̂�(0), ̂�(1)) is a proper

rational parametrization of ��.
Proof. (i): Since � is transcendental overℱ andℱ⟨�⟩ = ℱ(�), we may view ̂� and its derivative
as rational functions in the variable �. Remark 3.4 implies that ̂� ∉ ℱ, in which case The-
orem 1.1 (Lüroth’s theorem) yields that ℱ( ̂�(0), ̂�(1))/ℱ is a simple transcendental extension,
hence regular. Now, absolute irreducibility of � follows from Proposition 1.2.
(ii): Since ̂� ∉ ℱ and �( ̂�(0), ̂�(1)) = 0, Remark 1.7 asserts that ( ̂�(0), ̂�(1)) is a rational

parametrization of ��. In this case, �� must be rational by Theorem 1.10.
(iii): Recall that ̂� is a general solution of the AODE if the kernel of the differential evalu-

ation homomorphism � ̂� ∶ ℱ{�} → ℱ⟨ ̂�⟩, �(�) ↦ �( ̂�) is precisely the general component
of �. By Corollary 2.4, there exists a differential ℱ-isomorphism � ∶ ℱ⟨ ̂�⟩ → ℱ⟨�⟩ and it is
clear that ker � ̂� = ker (� ∘ � ̂�). Consider the image of ̂� under the isomorphism and denote
it by ̂� ≔ �( ̂�). Per construction, ℱ⟨ ̂�⟩ = ℱ⟨�⟩ and ̂�, ̂� are generic points of the very same
prime differential ideal. Therefore, ̂� is a general solution of the AODE as well and yields
another rational parametrization of ��. From Lemma 3.5 we obtain that ℱ⟨ ̂�⟩ = ℱ( ̂�(0), ̂�(1)).
But this means that ℱ( ̂�(0), ̂�(1)) = ℱ(�), in other words, ( ̂�(0), ̂�(1)) satisfies the definition of
a proper rational parametrization.

Corollary 3.8. If � = 0 is a first-order AODE such that deg�(0) � > 2 deg�(1) �, then there
cannot exist a general solution in ℱ⟨�⟩.

11



Proof. Theorem 3.7 implies that any first-order AODE with a general solution in ℱ⟨�⟩ pos-
sesses a general solution ̂� ∈ ℱ⟨�⟩ which yields a proper rational parametrization of ��. By
the degree conditions on proper parametrizations from Theorem 1.12, deg� ̂�(0) = deg�(1) �
and deg� ̂�(1) = deg�(0) �. In addition, the degree of the derivative of ̂� is bounded by the
quotient rule, viz. deg� ̂�(1) ≤ 2deg� ̂�(0). Consequently, any AODE with a general solution
in ℱ⟨�⟩must satisfy deg�(0) � ≤ 2 deg�(1) �.
Remark 3.9 (Quasi-linear AODEs). A first-order AODE of the form ��(1) + � = 0, where�,� ∈ ℱ[�(0)], is called quasi-linear. According to Corollary 3.8, quasi-linear AODEs cannot
possess a general solution in ℱ⟨�⟩ if their degree in �(0) exceeds two. Furthermore, if a quasi-
linear AODE has a general solution ̂� ∈ ℱ⟨�⟩, then we can choose

̂� = �� + ��� + � , where �, �, �, � ∈ ℱ such that |||� �� �||| ≠ 0.
So far we have established that particular general solutions of first-order AODEs give rise

to (proper) rational parametrizations of the associated curve. It is natural to ask whether
this process is reversible, i.e. if one can derive a general solution from a proper rational
parametrization. From a field theoretic perspective, rational parametrizations are merely a
particular kind of generic point of the AODE’s associated curve. So, alternatively, me might
ask which of these generic curve points can be extended to generic differential points of the
general component.

Lemma 3.10. Let � = 0 be a first-order AODE. If there exists an element ̂� ∈ ℱ⟨�⟩ ⧵ ℱ such
that ( ̂�(0), ̂�(1)) is a generic point of ��, then ̂� constitutes a general solution of the AODE.
Proof. Consider the (non-differential) subalgebraℛ = ℱ[�(0), �(1)] ⊆ ℱ{�} and let

�ℛ̂� ∶ ℛ → ℱ( ̂�(0), ̂�(1)) = ℱ⟨ ̂�⟩, �(�(0), �(1)) ↦ �( ̂�(0), ̂�(1))
be the evaluation homomorphism at the point ( ̂�(0), ̂�(1)). The identity ℱ( ̂�(0), ̂�(1)) = ℱ⟨ ̂�⟩ is
due to Lemma 3.5. If ( ̂�(0), ̂�(1)) is a generic point of the associated curve ��, then ker �ℛ̂� =�(��) = (�) ⊆ ℛ. Clearly, �ℛ̂� can be extended to the differential evaluation homomorphism� ̂� ∶ ℱ{�} → ℱ⟨ ̂�⟩, in which case we see that � ̂�||ℛ = �ℛ̂� and ker � ̂�∩ℛ = ker �ℛ̂� . It remains
to show that the prime differential ideal � ≔ ker � ̂� is equal to the general component of �.
By definition, this would make ̂� a general solution of the AODE.
Since � is prime, � contains the radical differential ideal generated by any of its elements.

Consequently, � ∈ � implies that {�} ⊆ � and �must divide an essential prime divisor of {�}.
Recall that {�} = ({�} ∶ ��) ∩ {�, ��}, where �� = ��/��(1) ∈ ℛ. Now, � ∤ ��, which implies
that � cannot be a divisor of {�, ��} or of any singular component. Therefore, � must be
divisor (a superset) of the general component {�} ∶ ��.
For the other direction—� ⊆ ({�} ∶ ��)—we make use of Proposition 3.3. Let � ∈ � and

denote by � ≔ prem(�, �) the differential pseudo-remainder of � wrt. �. By the proposition,
we have to show that � = 0. Aiming for a contradiction, assume that � ≠ 0. By construction,� can be either trivial or of order at most ord � = 1. In addition, if ord � = ord �, then
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deg�(1) � < deg�(1) �. We find that � ∈ ℛ such that � ∤ �. According to Ritt [8, Ch. 1
(Reduction)] there exists a differential polynomial � ∈ ℱ{�} such that �� ≡ � mod [�].19
Consequently, �� − � ∈ {�} ⊆ �, in other words, �� − � ∈ ker ��. It is clear that�� ∈ ker ��, whereby � ∈ ker �� as well. But such a thing is impossible since � ∈ ℛ andker �� ∩ℛ = ker �ℛ� cannot contain an element which is not divisible by �. This forces � = 0
which concludes the proof.

Theorem 3.11. Let � = 0 be a first-order AODE such that �� is rational and let (��(0), ��(1))
be a proper rational parametrization, where ��(0), ��(1) ∈ ℱ(�). There exists a general solution̂� ∈ ℱ⟨�⟩ if and only if one can find anℱ-automorphism� of the fieldℱ(�) such that ��(��(0)) =�(��(1)). In the affirmative case, ̂� = �(��(0)) is such a general solution of the AODE.
Proof. The first direction follows readily from Theorem 3.7. Assume that the AODE has a
general solution in ℱ⟨�⟩. Item (iii) of the theorem asserts the existence of a general solution̂� ∈ ℱ⟨�⟩ with the property that ( ̂�(0), ̂�(1)) is a proper rational parametrization of ��. By
Proposition 1.13, there exists an ℱ-automorphism � ∶ ℱ(�) → ℱ(�) such that �(��(0)) = ̂�(0)
and �(��(1)) = ̂�(1). Obviously, ��(��(0)) = �(��(1)) in such a case.
For the other direction, assumewe can find an automorphism � satisfying the requirements

of the theorem. Recall that the transformation (�(��(0)), �(��(1))) produces another proper
rational parametrization of ��. Therefore, deg� �(��(0)) = deg�(1) � > 0 by the degree
conditions from Theorem 1.12 and, consequently, �(��(0)) ∉ ℱ. Since ��(��(0)) = �(��(1)),
Lemma 3.10 asserts that �(��(0)) is a general solution of the AODE.
We find that the task of computing a general solution of a first-order AODE can be reduced

to the search for a particular automorphism of a univariate rational function field, granted we
are in possession of a proper rational parametrization of the associated curve. The objectives
of deciding whether an algebraic curve is rational and the deduction of a proper rational
parametrization are well-studied in the literature.20 For the remainder of the section we
analyze how the problem of finding the elusive automorphism can be turned into solving a
system of differential equations over ℱ. To do so, we use the fact that these automorphisms
are determined by linear rational functions.
As a preliminary step, recall how the derivative of an element in ℱ(�) behaves when each

occurrence of � is replaced by an element � ∈ �. Initially, let � ∈ ℱ[�]. The derivative of �
after substitution of � for the constant � is of the form

��(�) = (��)(�) + (��) ⋅ (���� )(�).
It is not difficult to see that the identity can be extended to the quotient field ℱ(�) if � does
not annihilate the denominator.21 For our purpose, � will be transcendental over ℱ, so this
condition is always met.
19More precisely,� consists of non-negative powers of the separant and the so-called initial of �. The object[�] ⊆ ℱ{�} denotes the differential ideal generated by �.
20Cf. Sendra, Winkler and Pérez-Díaz [9, Ch. 4] and the references therein for further information.
21Basically, this is just the usual chain rule from calculus.
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Proposition 3.12. Using the objects and notation from Theorem 3.11, a necessary condition
for the existence of the automorphism � is that

(��(1) − ���(0))/ ���(0)�� = � + �� + ��2 (3)

for some �, �, � ∈ ℱ. Should Equation (3) be satisfiable, then � can be deduced by solving either
of the following differential systems for �, � (, �) ∈ ℱ:

{ �� = ��, �� = �� + �, � = 0, � ≠ 0 }��{ �� = ��2 + �� + �, �� = ��� + �� + ��, �� = ��� − ��, �� ≠ � }. (4)

If soluble, let � = �� + � or � = (�� + �)/(� + �), respectively. The desired ℱ-automorphism is given
by � ∶ ℱ(�) → ℱ(�), �(�) ↦ �(�).
Proof. Recall that the ℱ-automorphisms of ℱ(�) are determined by Möbius transformations,
i.e. they are given by linear rational functions � ∈ ℱ(�) of the form

� = �� + ��� + � , where �, �, �, � ∈ ℱ such that |||� �� �||| ≠ 0.
To find an ℱ-automorphism � satisfying ��(��(0)) = �(��(1)) is equivalent to deducing a
linear rational function of the antecedent form such that ���(0)(�) = ��(1)(�). Differentiation
of the left-hand side of the latter equation, utilizing the aforementioned chain rule, shows
that �� = (��(1)(�) − (���(0))(�))/(���(0)�� )(�) (5)

after rearranging terms. Notice that the partial derivative of ��(0) cannot vanish; according
to the degree conditions on proper rational parametrizations, deg� ��(0) > 0 and ���(0)/�� ≠ 0,
thus. Furthermore, Proposition 2.6 shows that the derivative of a linear rational function
satisfies �� = || � ��� �� |||| � �� � || + (|| � ��� �� || − || � ��� �� ||)|| � �� � || � + || � ��� �� |||| � �� � || �2 (6)

since || � �� � || ≠ 0. Comparing these two identities for ��, the left-hand side of Equation (3)
must simplify to a polynomial in � of degree at most two, should � exist. Stated differently,
Equation (5) must reduce to either a linear differential equation or a Riccati equation. The
differential systems (4) follow from simple pattern matching. Notice that we can eliminate
the unknown � by splitting � into the cases � = 0 and � = 1. In the former case, we can
assume � = 1, w.l.o.g. Matching the coefficients on the right-hand side of Equation (6) against�, �, � yields the differential systems

{ �� = || � ��� �� ||, �� = ��, �� = 0, � ≠ 0 }���{ �(�� − �) = || � ��� �� ||, �(� − ��) = �� + || � ��� �� ||, �(�� − �) = ��, �� ≠ � } (7)
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for the cases � = 0, � = 1 and � = 1, respectively. These systems can be further simplified by
substituting the derivatives of the unknowns into the other equations.22 After rearranging
terms, one obtains the differential systems (4).

At last we see how to deduce a general solution of a first-order AODE from a special generic
point—a proper rational parametrization—of the associated curve. For a better overview,
the different steps and conditions of this procedure are summarized in Algorithm 1.

Algorithm 1: General solution of a first-order AODE in a simple constant extension
Input : First-order AODE � = 0 such that � ∈ ℱ[�(0), �(1)] is irreducible
Output : General solution ̂� ∈ ℱ⟨�⟩ or string message

1 if � is absolutely irreducible and deg�(0) � ≤ 2 deg�(1) � and genus �� = 0 then
2 Compute (��(0), ��(1)) ∈ ℱ(�) × ℱ(�), a proper rational parametrization of ��.
3 if such a parametrization does not exist then

// Reached only if ℱ is not an optimal parametrization field
4 goto Step 10
5 Construct � ≔ (��(1) − ���(0))/ ���(0)�� .
6 if � = � + �� + ��2 for some �, �, � ∈ ℱ then

// Find � either directly or by solving any of the
// differential systems (4) from Proposition 3.12

7 Determine � = ��+���+� , where �, �, �, � ∈ ℱ and || � �� � || ≠ 0, satisfying
�� = � + �� + ��2.

8 if such a linear rational function exists then
9 return ̂� = ��(0)(�)

10 return “AODE does not possess a general solution in ℱ⟨�⟩”
4 Conclusion and outlook
It has been shown that, for first-order AODEs, the problem of finding a general solution
in a simple constant differential extension reduces to the computation of a proper rational
parametrization of the associated curve, followed by the deduction of a suitable linear rational
function. The coefficients of this linear rational function can found by solving a system of
(quasi-)linear differential equations over the AODE’s differential field of definition.
A key step in this derivation was to prove the existence of special general solutions, which

give rise to proper rational parametrizations of the associated curve. From this point onward,
we could use the knowledge that any two proper rational parametrizations are related via

22Alternatively, fix an orderly ranking of the differential variables �, �, � and compute characteristic sets from
the systems (7), cf. Kolchin [3, Ch. I, Sec. 10] for details.
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Möbius transformations. Remark 2.5 suggests that we can also find these special solutions in
differential extensions generated by the adjunction of two arbitrary constants, granted that
the field of constants is algebraically closed. This would be a natural setting for the search for
general solutions of second-order AODEs. In this case, Möbius transformations are replaced
by birational transformations of the plane, i.e. Cremona transformations.
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