Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation

Carsten Schneider

Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz

Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings

For any element $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k) = 0\\ \frac{p(k)}{q(k)} & \text{if } q(k) \neq 0. \end{cases}$$

For any element $f=rac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k) = 0\\ \frac{p(k)}{q(k)} & \text{if } q(k) \neq 0. \end{cases}$$

▶ We define L(f) to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k \geq \delta$; further,

$$Z(f) = \max(L(\frac{1}{p}), L(\frac{1}{q}))$$
 if $f \neq 0$.

being coprime we define

For any element $f = \frac{p}{q} \in \mathbb{G}$ with $p, q \in \mathbb{K}[x]$ where $q \neq 0$ and p, q

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k) = 0\\ \frac{p(k)}{q(k)} & \text{if } q(k) \neq 0. \end{cases}$$

lacktriangle We define L(f) to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k > \delta$; further,

$$Z(f) = \max(L(\frac{1}{n}), L(\frac{1}{n}))$$
 if $f \neq 0$.

Example: For

$$f = \frac{p}{q} = \frac{x-4}{(x-3)(x-1)}$$

we get

$$(\text{ev}(f,n))_{n\geq 0} = (-\frac{4}{3}, \underline{0}, 2, \underline{0}, 0, \frac{1}{8}, \dots) \in \mathbb{Q}^{\mathbb{N}}$$

For $n \ge L(f) = 4$ no poles arise;

for $n \geq Z(f) = \max(L(\frac{1}{n}), L(\frac{1}{n})) = \max(4, 5) = 5$ no zeroes arise.

For any element $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k) = 0\\ \frac{p(k)}{q(k)} & \text{if } q(k) \neq 0. \end{cases}$$

▶ We define L(f) to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k > \delta$; further,

$$Z(f) = \max(L(\frac{1}{p}), L(\frac{1}{q}))$$
 if $f \neq 0$.

▶ We define

$$\mathcal{R} = \{ r \in \mathbb{K} \setminus \{1\} \mid r \text{ is a root of unity} \}$$

with the function $\operatorname{ord}: \mathcal{R} \to \mathbb{Z}_{>1}$ where

$$\operatorname{ord}(r) = \min\{n \in \mathbb{Z}_{\geq 1} \mid r^n = 1\}.$$

 $\mathbb{G} \qquad \longrightarrow \qquad \mathsf{SumProd}(\mathbb{G}) \text{ (nested sums over hypergeometric products)}$

Let \otimes , \oplus , \odot , Sum, Prod and RPow be operations with the signatures

 $\oplus: \qquad \mathsf{SumProd}(\mathbb{G}) \times \mathsf{SumProd}(\mathbb{G}) \rightarrow \quad \mathsf{SumProd}(\mathbb{G})$

 $\mathsf{Prod}: \mathbb{N} \times \mathsf{SumProd}(\mathbb{G}) \rightarrow \mathsf{SumProd}(\mathbb{G})$

 $\begin{array}{cccc} \mathsf{RPow}: & \mathsf{N} \times \mathsf{SumProd}(\mathbb{G}) & \to & \mathsf{SumProd}(\mathbb{G}) \\ & & \to & \mathsf{SumProd}(\mathbb{G}). \end{array}$

NOW. /C

G $SumProd(\mathbb{G})$ (nested sums over hypergeometric products)

Let \bigcirc , \oplus , \bigcirc , Sum, Prod and RPow be operations with the signatures

 \rightarrow SumProd(\mathbb{G})

 \oplus : SumProd(\mathbb{G}) \times SumProd(\mathbb{G}) \rightarrow SumProd(\mathbb{G})

 \odot : SumProd(\mathbb{G}) \times SumProd(\mathbb{G}) \rightarrow SumProd(\mathbb{G}) $ightarrow \, \mathsf{SumProd}(\mathbb{G})$ Sum : $\mathbb{N} \times SumProd(\mathbb{G})$

 $\mathsf{Prod}: \mathbb{N} \times \mathsf{SumProd}(\mathbb{G})$ \rightarrow SumProd(\mathbb{G})

RPow:

 \rightarrow SumProd(\mathbb{G}). \mathcal{R}

 $\mathbf{Prod}^*(\mathbb{G})$ = the smallest set that contains 1 with the following properties:

 $\mathbb{G} \qquad \longrightarrow \qquad \mathsf{SumProd}(\mathbb{G}) \text{ (nested sums over hypergeometric products)}$

Let \bigcirc , \oplus , \bigcirc , Sum, Prod and RPow be operations with the signatures

 $\begin{array}{llll} & & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} & & & \\ & &$

 $\mathsf{RPow}: \ \mathcal{R} \qquad \qquad \rightarrow \ \mathsf{SumProd}(\mathbb{G}).$

 $\mathbf{Prod}^*(\mathbb{G})$ = the smallest set that contains 1 with the following properties:

- 1. If $r \in \mathcal{R}$ then $\mathsf{RPow}(r) \in \mathsf{Prod}^*(\mathbb{G})$.
- 2. If $f \in \mathbb{G}^*$ and $l \in \mathbb{N}$ with $l \geq Z(f)$ then $\operatorname{Prod}(l,f) \in \operatorname{Prod}^*(\mathbb{G})$.
- 3. If $p, q \in \mathsf{Prod}^*(\mathbb{G})$ then $p \odot q \in \mathsf{Prod}^*(\mathbb{G})$.
- 4. If $p \in \text{Prod}^*(\mathbb{G})$ and $z \in \mathbb{Z} \setminus \{0\}$ then $p^{\bigcirc}z \in \text{Prod}^*(\mathbb{G})$.

Furthermore, we define

$$\Pi(\mathbb{G}) = \{ \mathsf{RPow}(r) \mid r \in \mathcal{R} \} \cup \{ \mathsf{Prod}(l, f) \mid f \in \mathbb{G}, l \in \mathbb{N} \}.$$

(T $SumProd(\mathbb{G})$ (nested sums over hypergeometric products)

Let \otimes , \oplus , \odot , Sum, Prod and RPow be operations with the signatures

 \rightarrow SumProd(\mathbb{G}) \oplus : SumProd(\mathbb{G}) \times SumProd(\mathbb{G}) \rightarrow SumProd(\mathbb{G}) \odot : SumProd(\mathbb{G}) \times SumProd(\mathbb{G}) \rightarrow SumProd(\mathbb{G}) \rightarrow SumProd(\mathbb{G}) Sum : $\mathbb{N} \times SumProd(\mathbb{G})$

ightarrow SumProd(\mathbb{G}) $\mathsf{Prod}: \mathbb{N} \times \mathsf{SumProd}(\mathbb{G})$

 \rightarrow SumProd(\mathbb{G}). RPow: \mathcal{R}

 $\mathbf{Prod}^*(\mathbb{G})$ = the smallest set that contains 1 with the following properties:

- 1. If $r \in \mathcal{R}$ then $\mathsf{RPow}(r) \in \mathsf{Prod}^*(\mathbb{G})$.
- 2. If $f \in \mathbb{G}^*$ and $l \in \mathbb{N}$ with $l \geq Z(f)$ then $Prod(l, f) \in Prod^*(\mathbb{G})$.
- 3. If $p, q \in \text{Prod}^*(\mathbb{G})$ then $p \odot q \in \text{Prod}^*(\mathbb{G})$.
- 4. If $p \in \text{Prod}^*(\mathbb{G})$ and $z \in \mathbb{Z} \setminus \{0\}$ then $p^{\bigcirc}z \in \text{Prod}^*(\mathbb{G})$.

Example: In $\mathbb{G} = \mathbb{Q}(x)$ we get

$$P = (\underbrace{\mathsf{Prod}(1,x)}^{\textcircled{\bigcirc}}(-2)) \odot \underbrace{\mathsf{RPow}(-1)}_{\Pi(\mathbb{G})} \in \mathsf{Prod}^*(\mathbb{G}).$$

 $\mathbb{G} \longrightarrow \mathsf{SumProd}(\mathbb{G})$ (nested sums over hypergeometric products)

 $SumProd(\mathbb{G}) = the smallest set containing <math>\mathbb{G} \cup Prod^*(\mathbb{G})$ with:

- 1. For all $f,g \in \mathsf{SumProd}(\mathbb{G})$ we have $f \oplus g \in \mathsf{SumProd}(\mathbb{G})$.
- 2. For all $f,g \in \mathsf{SumProd}(\mathbb{G})$ we have $f \odot g \in \mathsf{SumProd}(\mathbb{G})$.
- 3. For all $f \in \mathsf{SumProd}(\mathbb{G})$ and $k \in \mathbb{Z}_{\geq 1}$ we have $f^{\otimes}k \in \mathsf{SumProd}(\mathbb{G})$.
- 4. For all $f \in \mathsf{SumProd}(\mathbb{G})$ and $l \in \mathbb{N}$ we have $\mathsf{Sum}(l,f) \in \mathsf{SumProd}(\mathbb{G})$.

 $\mathbb{G} \qquad \longrightarrow \qquad \mathsf{SumProd}(\mathbb{G}) \text{ (nested sums over hypergeometric products)}$

 $SumProd(\mathbb{G}) = the smallest set containing <math>\mathbb{G} \cup Prod^*(\mathbb{G})$ with:

- 1. For all $f,g \in \mathsf{SumProd}(\mathbb{G})$ we have $f \oplus g \in \mathsf{SumProd}(\mathbb{G})$.
- 2. For all $f,g \in \mathsf{SumProd}(\mathbb{G})$ we have $f \odot g \in \mathsf{SumProd}(\mathbb{G})$.
- 3. For all $f \in \mathsf{SumProd}(\mathbb{G})$ and $k \in \mathbb{Z}_{\geq 1}$ we have $f^{\bigcirc}k \in \mathsf{SumProd}(\mathbb{G})$.
- 4. For all $f \in \mathsf{SumProd}(\mathbb{G})$ and $l \in \mathbb{N}$ we have $\mathsf{Sum}(l,f) \in \mathsf{SumProd}(\mathbb{G})$.

Furthermore, the **set of nested sums over hypergeometric products** is given by

$$\Sigma(\mathbb{G}) = \{ \mathsf{Sum}(l, f) \mid l \in \mathbb{N} \text{ and } f \in \mathsf{SumProd}(\mathbb{G}) \}$$

and the set of nested sums and hypergeometric products is given by

$$\Sigma\Pi(\mathbb{G}) = \Sigma(\mathbb{G}) \cup \Pi(\mathbb{G}).$$

 $\mathbb{G} \longrightarrow \mathsf{SumProd}(\mathbb{G})$ (nested sums over hypergeometric products)

SumProd(\mathbb{G}) = the smallest set containing $\mathbb{G} \cup \mathsf{Prod}^*(\mathbb{G})$ with:

- 1. For all $f,g \in \mathsf{SumProd}(\mathbb{G})$ we have $f \oplus g \in \mathsf{SumProd}(\mathbb{G})$.
- 2. For all $f,g \in \mathsf{SumProd}(\mathbb{G})$ we have $f \odot g \in \mathsf{SumProd}(\mathbb{G})$.
- 3. For all $f \in \mathsf{SumProd}(\mathbb{G})$ and $k \in \mathbb{Z}_{\geq 1}$ we have $f^{\bigcirc}k \in \mathsf{SumProd}(\mathbb{G})$.
- 4. For all $f \in \mathsf{SumProd}(\mathbb{G})$ and $l \in \mathbb{N}$ we have $\mathsf{Sum}(l,f) \in \mathsf{SumProd}(\mathbb{G})$.

Example

With $\mathbb{G} = \mathbb{K}(x)$ we get, e.g., the following expressions:

$$E_1=\operatorname{Sum}(1,\operatorname{Prod}(1,x))\in\Sigma(\mathbb{G})\subset\operatorname{SumProd}(\mathbb{G}),$$

$$E_2 = \operatorname{Sum}(1, \tfrac{1}{x+1} \odot \operatorname{Sum}(1, \tfrac{1}{x^3}) \odot \operatorname{Sum}(1, \tfrac{1}{x})) \in \Sigma(\mathbb{G}) \subset \operatorname{SumProd}(\mathbb{G}),$$

$$E_3 = (E_1 \oplus E_2) \odot E_1 \in \mathsf{SumProd}(\mathbb{G}).$$

1. For $f,g\in \mathsf{SumProd}(\mathbb{G}),\ k\in\mathbb{Z}\setminus\{0\}\ (k>0\ \text{if}\ f\notin\mathsf{Prod}^*(\mathbb{G}))$ we set

$$\begin{split} \operatorname{ev}(f^{\raisebox{-.5ex}{\tiny}}\!\!k,n) &:= \operatorname{ev}(f,n)^k, \\ \operatorname{ev}(f \oplus g,n) &:= \operatorname{ev}(f,n) + \operatorname{ev}(g,n), \\ \operatorname{ev}(f \odot g,n) &:= \operatorname{ev}(f,n) \, \operatorname{ev}(g,n); \end{split}$$

$$\operatorname{ev}: \mathbb{G} \times \mathbb{N} \to \mathbb{K} \longrightarrow \operatorname{ev}: \operatorname{\mathsf{SumProd}}(\mathbb{G}) \times \mathbb{N} \to \mathbb{K}$$

1. For $f,g\in \mathsf{SumProd}(\mathbb{G}),\ k\in\mathbb{Z}\setminus\{0\}\ (k>0\ \text{if}\ f\notin\mathsf{Prod}^*(\mathbb{G}))$ we set

$$\operatorname{ev}(f^{\otimes}k, n) := \operatorname{ev}(f, n)^{k},$$

$$\operatorname{ev}(f \oplus g, n) := \operatorname{ev}(f, n) + \operatorname{ev}(g, n),$$

$$\operatorname{ev}(f \odot g, n) := \operatorname{ev}(f, n) \operatorname{ev}(g, n);$$

2. for $r \in \mathcal{R}$ and $Sum(l, f), Prod(\lambda, g) \in SumProd(\mathbb{G})$ we define

$$\begin{split} &\operatorname{ev}(\mathsf{RPow}(r),n) := \prod_{i=1}^n r = r^n, \\ &\operatorname{ev}(\mathsf{Sum}(l,f),n) := \sum_{i=l}^n \operatorname{ev}(f,i), \\ &\operatorname{ev}(\mathsf{Prod}(\lambda,g),n) := \prod_{i=1}^n \operatorname{ev}(g,i) = \prod_{i=1}^n g(i). \end{split}$$

Part 1: A term algebra for nested sums over hypergeometric products

1. For $f,g\in \mathsf{SumProd}(\mathbb{G}),\ k\in\mathbb{Z}\setminus\{0\}\ (k>0\ \text{if}\ f\notin\mathsf{Prod}^*(\mathbb{G}))$ we set

$$\operatorname{ev}(f^{\bigcirc}k, n) := \operatorname{ev}(f, n)^k,$$

 $\operatorname{ev}(f \oplus g, n) := \operatorname{ev}(f, n) + \operatorname{ev}(g, n),$
 $\operatorname{ev}(f \odot g, n) := \operatorname{ev}(f, n) \operatorname{ev}(g, n);$

2. for $r \in \mathcal{R}$ and $Sum(l, f), Prod(\lambda, g) \in SumProd(\mathbb{G})$ we define

$$\begin{split} &\operatorname{ev}(\mathsf{RPow}(r),n) := \prod_{i=1}^n r = r^n, \\ &\operatorname{ev}(\mathsf{Sum}(l,f),n) := \sum_{i=l}^n \operatorname{ev}(f,i), \\ &\operatorname{ev}(\mathsf{Prod}(\lambda,g),n) := \prod_{i=1}^n \operatorname{ev}(g,i) = \prod_{i=1}^n g(i). \end{split}$$

Note: $\Pi(\mathbb{G})$ defines all hypergeometric products (which evaluate to sequences with non-zero entries).

ev applied to $f \in \mathsf{SumProd}(\mathbb{G})$ represents a sequence. f can be considered as a simple program and $\mathrm{ev}(f,n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \mathsf{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write F(n) := ev(F, n).

ev applied to $f \in \mathsf{SumProd}(\mathbb{G})$ represents a sequence. f can be considered as a simple program and $\mathrm{ev}(f,n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \mathsf{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write F(n) := ev(F, n).

Example

For $E_i \in \mathsf{SumProd}(\mathbb{K}(x))$ with i = 1, 2, 3 we get

$$E_1(n) = \operatorname{ev}(E_1, n) = \operatorname{ev}(\mathsf{Sum}(1, \mathsf{Prod}(1, x)), n) = \sum_{k=1}^n \prod_{i=1}^k i = \sum_{k=1}^n k!,$$

ev applied to $f \in \mathsf{SumProd}(\mathbb{G})$ represents a sequence.

f can be considered as a simple program and $\mathrm{ev}(f,n)$ with $n\in\mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \mathsf{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write F(n) := ev(F, n).

Example

For $E_i \in \mathsf{SumProd}(\mathbb{K}(x))$ with i = 1, 2, 3 we get

$$\begin{split} E_1(n) &= \operatorname{ev}(E_1, n) = \operatorname{ev}(\operatorname{Sum}(1, \operatorname{Prod}(1, x)), n) = \sum_{k=1}^n \prod_{i=1}^k i = \sum_{k=1}^n k!, \\ E_2(n) &= \operatorname{ev}(\operatorname{Sum}(1, \frac{1}{x+1} \odot \operatorname{Sum}(1, \frac{1}{x^3}) \odot \operatorname{Sum}(1, \frac{1}{x})), n) \\ &= \sum_{k=1}^n \frac{1}{1+k} \Big(\sum_{i=1}^k \frac{1}{i^3} \Big) \sum_{i=1}^k \frac{1}{i} \end{split}$$

ev applied to $f \in \mathsf{SumProd}(\mathbb{G})$ represents a sequence. f can be considered as a simple program and $\mathrm{ev}(f,n)$ with $n \in \mathbb{N}$ executes it (like an interpreter/compiler) yielding the nth entry of the represented sequence.

Definition

For $F \in \mathsf{SumProd}(\mathbb{G})$ and $n \in \mathbb{N}$ we write $F(n) := \mathrm{ev}(F, n)$.

Example

For $E_i \in \mathsf{SumProd}(\mathbb{K}(x))$ with i = 1, 2, 3 we get

$$\begin{split} E_1(n) &= \operatorname{ev}(E_1, n) = \operatorname{ev}(\operatorname{Sum}(1, \operatorname{Prod}(1, x)), n) = \sum_{k=1}^n \prod_{i=1}^k i = \sum_{k=1}^n k!, \\ E_2(n) &= \operatorname{ev}(\operatorname{Sum}(1, \frac{1}{x+1} \odot \operatorname{Sum}(1, \frac{1}{x^3}) \odot \operatorname{Sum}(1, \frac{1}{x})), n) \\ &= \sum_{k=1}^n \frac{1}{1+k} \Big(\sum_{i=1}^k \frac{1}{i^3} \Big) \sum_{i=1}^k \frac{1}{i} \\ E_3(n) &= (E_1(n) + E_2(n)) E_1(n) \end{split}$$

 \bullet An expression $A \in \mathsf{SumProd}(\mathbb{G})$ is in $\mathbf{reduced}$ representation if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$ and

$$P_i = (a_{i,1} \stackrel{\bigcirc}{\otimes} z_{i,1}) \odot (a_{i,2} \stackrel{\bigcirc}{\otimes} z_{i,2}) \odot \cdots \odot (a_{i,n_i} \stackrel{\bigcirc}{\otimes} z_{i,n_i})$$

 \bullet An expression $A \in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$ and

$$P_i = (a_{i,1} \circ z_{i,1}) \odot (a_{i,2} \circ z_{i,2}) \odot \cdots \odot (a_{i,n_i} \circ z_{i,n_i})$$

for $1 \le i \le r$ where

- $lackbox{ } a_{i,j} = \mathsf{Sum}(l_{i,j}, f_{i,j}) \text{ with } l_{i,j} \in \mathbb{N}, \ f_{i,j} \in \mathsf{SumProd}(\mathbb{G}) \text{ and } z_{i,j} \in \mathbb{Z}_{\geq 1},$
- ▶ $a_{i,j} = \mathsf{Prod}(l_{i,j}, f_{i,j})$ with $l_{i,j} \in \mathbb{N}$, $f_{i,j} \in \mathsf{Prod}^*(\mathbb{G})$ and $z_{i,j} \in \mathbb{Z} \setminus \{0\}$,
- ▶ $a_{i,j} = \mathsf{RPow}(f_{i,j})$ with $f_{i,j} \in \mathcal{R}$ and $1 \leq z_{i,j} < \operatorname{ord}(r_{i,j})$

such that the following properties hold:

- 1. for each $1 \le i \le r$ and $1 \le j < j' < n_i$ we have $a_{i,j} \ne a_{i,j'}$;
- 2. for each $1 \leq i < i' \leq r$ with $n_i = n_j$ there does not exist a $\sigma \in S_{n_i}$ with $P_{i'} = (a_{i,\sigma(1)} {}^{\bigcirc} z_{i,\sigma(1)}) \odot (a_{i,\sigma(2)} {}^{\bigcirc} z_{i,\sigma(2)}) \odot \cdots \odot (a_{i,\sigma(n_i)} {}^{\bigcirc} z_{i,\sigma(n_i)}).$

 \bullet An expression $A \in \mathsf{SumProd}(\mathbb{G})$ is in reduced representation if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

H ∈ SumProd(G) is in sum-product reduced representation if
 it is in reduced representation;

 \bullet An expression $A \in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- \bullet $H \in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each Sum(l, A) and Prod(l, A) in H the following holds:
 - ightharpoonup A is in reduced representation as given in (1);

 \bullet An expression $A \in \mathsf{SumProd}(\mathbb{G})$ is in reduced representation if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- \bullet $H \in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each Sum(l, A) and Prod(l, A) in H the following holds:
 - ightharpoonup A is in reduced representation as given in (1);
 - $ightharpoonup l \geq \max(L(f_1),\ldots,L(f_r))$ (i.e., no poles occur);

For any element $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k) = 0\\ \frac{p(k)}{q(k)} & \text{if } q(k) \neq 0. \end{cases}$$

▶ We define L(f) to be the minimal value $\delta \in \mathbb{N}$ such that $q(k) \neq 0$ holds for all $k \geq \delta$; further,

$$Z(f) = \max(L(\frac{1}{p}), L(\frac{1}{q}))$$
 if $f \neq 0$.

ullet An expression $A\in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- ullet $H\in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each Sum(l, A) and Prod(l, A) in H the following holds:
 - ightharpoonup A is in reduced representation as given in (1);
 - $l \ge \max(L(f_1), \ldots, L(f_r))$ (i.e., no poles occur);
 - ▶ the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

ullet An expression $A\in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- ullet $H\in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each Sum(l, A) and Prod(l, A) in H the following holds:
 - ightharpoonup A is in reduced representation as given in (1);

 - ▶ the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Example

 $E_3 = (E_1 \oplus E_2) \odot E_1$ is not in reduced representation

ullet An expression $A\in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- ullet $H\in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each Sum(l, A) and Prod(l, A) in H the following holds:
 - ightharpoonup A is in reduced representation as given in (1);

 - ▶ the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Example

 $E_3 = (E_1 \oplus E_2) \odot E_1$ is not in reduced representation

 $\operatorname{\mathsf{Sum}}(0,\frac{1}{x})$ is not in sum-product reduced representation

ullet An expression $A\in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- ullet $H\in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each $\mathsf{Sum}(l,A)$ and $\mathsf{Prod}(l,A)$ in H the following holds:
 - ightharpoonup A is in reduced representation as given in (1);
 - \blacktriangleright $l \ge \max(L(f_1), \dots, L(f_r))$ (i.e., no poles occur);
 - ightharpoonup the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Example

 $E_3 = (E_1 \oplus E_2) \odot E_1$ is not in reduced representation

 $\operatorname{Sum}(0,\frac{1}{x})$ is not in sum-product reduced representation $\operatorname{Sum}(1,\operatorname{Sum}(2,\frac{1}{x}))$ is not in sum-product reduced representation

 \bullet An expression $A \in \mathsf{SumProd}(\mathbb{G})$ is in **reduced representation** if

$$A = (f_1 \odot P_1) \oplus (f_2 \odot P_2) \oplus \cdots \oplus (f_r \odot P_r)$$
 (1)

with $f_i \in \mathbb{G}^*$

- ullet $H\in \mathsf{SumProd}(\mathbb{G})$ is in sum-product reduced representation if
 - it is in reduced representation;
 - ▶ for each Sum(l, A) and Prod(l, A) in H the following holds:
 - \triangleright A is in reduced representation as given in (1);
 - \blacktriangleright $l \ge \max(L(f_1), \dots, L(f_r))$ (i.e., no poles occur);
 - ightharpoonup the lower bound l is greater than or equal to the lower bounds of the sums and products inside of A.

Lemma

For any $A\in SumProd(\mathbb{G})$, there is a $B\in SumProd(\mathbb{G})$ in sum-product reduced representation and $\lambda\in\mathbb{N}$ such that

$$A(n) = B(n) \quad \forall n > \lambda.$$

 $\begin{array}{c} \mathbf{SumProd}(W,\mathbb{G}) = & \text{the set of elements from SumProd}(\mathbb{G}) \text{ which} \\ & \text{are in reduced representation and the arising} \\ & \text{sums/products are taken from } W. \end{array}$

 $\begin{array}{c} \mathbf{SumProd}(W,\mathbb{G}) = & \text{the set of elements from SumProd}(\mathbb{G}) \text{ which} \\ & \text{are in reduced representation and the arising} \\ & \text{sums/products are taken from } W. \end{array}$

▶ W is called **shift-closed over** $\mathbb G$ if for any $A \in \mathsf{SumProd}(W,\mathbb G)$, $s \in \mathbb Z$ there are $B \in \mathsf{SumProd}(W,\mathbb G)$ and $\delta \in \mathbb N$ such that

$$A(n+s) = B(n) \quad \forall n \ge \delta.$$

- $\begin{aligned} \mathbf{SumProd}(W,\mathbb{G}) = &\text{the set of elements from SumProd}(\mathbb{G}) \text{ which} \\ &\text{are in reduced representation and the arising} \\ &\text{sums/products are taken from } W. \end{aligned}$
 - ▶ W is called **shift-closed over** $\mathbb G$ if for any $A \in \mathsf{SumProd}(W,\mathbb G)$, $s \in \mathbb Z$ there are $B \in \mathsf{SumProd}(W,\mathbb G)$ and $\delta \in \mathbb N$ such that

$$A(n+s) = B(n) \quad \forall n \ge \delta.$$

 $lackbox{$W$}$ is called **shift-stable over** $\Bbb G$ if for any product or sum in W the multiplicand or summand is built by sums and products from W.

- $\begin{aligned} \mathbf{SumProd}(W,\mathbb{G}) = &\text{the set of elements from SumProd}(\mathbb{G}) \text{ which} \\ &\text{are in reduced representation and the arising} \\ &\text{sums/products are taken from } W. \end{aligned}$
 - ▶ W is called **shift-closed over** $\mathbb G$ if for any $A \in \mathsf{SumProd}(W,\mathbb G)$, $s \in \mathbb Z$ there are $B \in \mathsf{SumProd}(W,\mathbb G)$ and $\delta \in \mathbb N$ such that

$$A(n+s) = B(n) \quad \forall n \ge \delta.$$

 $lackbox{$W$}$ is called **shift-stable over** $\Bbb G$ if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Example

 $W = \{\mathsf{Sum}(1,\mathsf{Sum}(1,\frac{1}{x}),\frac{1}{x})\}$ is neither shift-closed nor shift-stable;

- $\begin{array}{lll} \mathbf{SumProd}(W,\mathbb{G}) = & \text{the set of elements from SumProd}(\mathbb{G}) & \text{which} \\ & \text{are in reduced representation and the arising} \\ & \text{sums/products are taken from } W. \end{array}$
 - ▶ W is called **shift-closed over** $\mathbb G$ if for any $A \in \mathsf{SumProd}(W,\mathbb G)$, $s \in \mathbb Z$ there are $B \in \mathsf{SumProd}(W,\mathbb G)$ and $\delta \in \mathbb N$ such that

$$A(n+s) = B(n) \quad \forall n \ge \delta.$$

ightharpoonup W is called **shift-stable over** $\mathbb G$ if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Example

 $W = \{ Sum(1, Sum(1, \frac{1}{x}), \frac{1}{x}) \}$ is neither shift-closed nor shift-stable;

 $W = \{\mathsf{Sum}(1,\frac{1}{x}),\mathsf{Sum}(1,\mathsf{Sum}(1,\frac{1}{x}),\frac{1}{x})\}$ is shift-closed and shift-stable;

- $\begin{array}{c} \mathbf{SumProd}(W,\mathbb{G}) = & \text{the set of elements from SumProd}(\mathbb{G}) \text{ which} \\ & \text{are in reduced representation and the arising} \\ & \text{sums/products are taken from } W. \end{array}$
 - ▶ W is called **shift-closed over** $\mathbb G$ if for any $A \in \mathsf{SumProd}(W,\mathbb G)$, $s \in \mathbb Z$ there are $B \in \mathsf{SumProd}(W,\mathbb G)$ and $\delta \in \mathbb N$ such that

$$A(n+s) = B(n) \quad \forall n \ge \delta.$$

 $lackbox{$W$}$ is called **shift-stable over** $\Bbb G$ if for any product or sum in W the multiplicand or summand is built by sums and products from W.

Example

 $W = \{ \mathsf{Sum}(1,\mathsf{Sum}(1,\frac{1}{x}),\frac{1}{x}) \}$ is neither shift-closed nor shift-stable;

 $W = \{\mathsf{Sum}(1,\frac{1}{x}),\mathsf{Sum}(1,\mathsf{Sum}(1,\frac{1}{x}),\frac{1}{x})\}$ is shift-closed and shift-stable;

$$W$$
 is shift-stable $\stackrel{\Rightarrow}{\not=}$ W is shift-closed

- $\begin{array}{c} \mathbf{SumProd}(W,\mathbb{G}) = & \text{the set of elements from SumProd}(\mathbb{G}) \text{ which} \\ & \text{are in reduced representation and the arising} \\ & \text{sums/products are taken from } W. \end{array}$
 - ▶ W is called **shift-closed over** $\mathbb G$ if for any $A \in \mathsf{SumProd}(W,\mathbb G)$, $s \in \mathbb Z$ there are $B \in \mathsf{SumProd}(W,\mathbb G)$ and $\delta \in \mathbb N$ such that

$$A(n+s) = B(n) \quad \forall n \ge \delta.$$

- $lackbox{$W$}$ is called **shift-stable over** $\Bbb G$ if for any product or sum in W the multiplicand or summand is built by sums and products from W.
- ▶ W is called **canonical reduced over** \mathbb{G} if for any $A, B \in \mathsf{SumProd}(W, \mathbb{G})$ with

$$A(n) = B(n) \quad \forall n \ge \delta$$

for some $\delta \in \mathbb{N}$ the following holds: A and B are the same up to permutations of the operands in \oplus and \odot .

Definition

 $W \subseteq \Sigma\Pi(\mathbb{G})$ is called σ -reduced over \mathbb{G} if

- 1. the elements in W are in sum-product reduced form,
- 2. W is shift-stable (and thus shift-closed) and
- 3. W is canonical reduced.

In particular, $A \in \mathsf{SumProd}(W, \mathbb{G})$ is called σ -reduced (w.r.t. W) if W is σ -reduced over \mathbb{G} .

Definition

 $W \subseteq \Sigma\Pi(\mathbb{G})$ is called σ -reduced over \mathbb{G} if

- 1. the elements in W are in sum-product reduced form,
- 2. W is shift-stable (and thus shift-closed) and
- 3. W is canonical reduced.

In particular, $A \in \mathsf{SumProd}(W, \mathbb{G})$ is called σ -reduced (w.r.t. W) if W is σ -reduced over \mathbb{G} .

Problem SigmaReduce: Compute a σ -reduced representation

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \dots, T_e\} \subset \Sigma\Pi(\mathbb{G})$,

 $B_1 \dots, B_u \in \mathsf{SumProd}(W, \mathbb{G}) \text{ and } \delta_1, \dots, \delta_u \in \mathbb{N}$

such that for all $1 \le i \le r$ we get

$$A_i(n) = B_i(n) \quad n \ge \delta_i.$$

 A_1 in $\mathsf{SumProd}(\mathbb{G})$

$$\operatorname{ev}(A_1,n)$$

 $\operatorname{ev}(A_2,n) \quad \text{ in } \operatorname{\mathsf{SumProd}}(\mathbb{G})$

$$\forall n \in \mathbb{N} \ \operatorname{ev}(A_1, n) = \operatorname{ev}(B_1, n) \qquad \qquad \operatorname{ev}(B_2, n) = \operatorname{ev}(A_2, n)$$

Outline of the talk:

Outline of the talk:

Outline of the talk:

Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

1. a formal ring $\mathbb{A} = \underbrace{\mathbb{Q}(x)}_{\text{rat. fu. field}} [s]$

$$H(n) = H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function

$$H(n) = H_n = \sum_{k=1}^n \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function

$$\operatorname{ev}: \quad \mathbb{Q}(x)[s] \times \mathbb{N} \qquad \to \quad \mathbb{Q}$$

 $ev(s, n) = H_n$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

Definition: (\mathbb{A}, ev) is called an eval-ring

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

Consider the map

$$\tau: \ \mathbb{A} \ \to \ \mathbb{Q}^{\mathbb{N}}$$
$$f \ \mapsto \ \langle \operatorname{ev}(f,n) \rangle_{n \geq 0}$$

It is almost a ring homomorphism:

$$\tau(x)\tau(\frac{1}{x}) \qquad = \quad \langle 0, 1, 2, 3, \dots \rangle \langle 0, 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

Consider the map

$$\tau: \mathbb{A} \to \mathbb{Q}^{\mathbb{N}}$$
 $f \mapsto \langle \operatorname{ev}(f, n) \rangle_{n \geq 0}$

It is almost a ring homomorphism:

$$\tau(x)\tau(\frac{1}{x}) = \langle 0, 1, 2, 3, \dots \rangle \langle 0, 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$$

$$\mid \mid \qquad \qquad \langle 0, 1, 1, 1, \dots \rangle$$

$$H(n) = H_n = \sum_{i=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $\operatorname{ev}: \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

Consider the map

$$\tau: \ \mathbb{A} \ \to \ \mathbb{Q}^{\mathbb{N}}$$
$$f \ \mapsto \ \langle \operatorname{ev}(f,n) \rangle_{n \geq 0}$$

It is almost a ring homomorphism:

$$\tau(x)\tau(\frac{1}{x}) = \langle 0, 1, 2, 3, \dots \rangle \langle 0, 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$$

$$\downarrow | | \langle 0, 1, 1, 1, \dots \rangle$$

$$\tau(x\frac{1}{x}) = \tau(1) = \langle 1, 1, 1, 1, \dots \rangle$$

$$H(n) = H_n = \sum_{i=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

Consider the map

$$au: \ \mathbb{A} \ o \ \mathbb{Q}^{\mathbb{N}}/\sim \qquad (a_n) \sim (b_n) \ \text{iff} \ a_n = b_n \ f \ \mapsto \ \langle \operatorname{ev}(f,n) \rangle_{n \geq 0} \qquad \text{from a certain point on}$$

It is a ring homomorphism:

$$\tau(x)\tau(\frac{1}{x}) = \langle 0, 1, 2, 3, \dots \rangle \langle 0, 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$$

$$|| \langle 0, 1, 1, 1, \dots \rangle$$

$$|| \tau(x\frac{1}{x}) = \tau(1) = \langle 1, 1, 1, 1, \dots \rangle$$

$$H(n) = H_n = \sum_{i=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

Consider the map

$$\begin{array}{cccc} \tau: & \mathbb{A} & \to & \mathbb{Q}^{\mathbb{N}}/\sim & (a_n) \sim (b_n) \text{ iff } a_n = b_n \\ f & \mapsto & \langle \operatorname{ev}(f,n) \rangle_{n \geq 0} & \text{from a certain point on} \end{array}$$

It is an injective ring homomorphism (ring embedding):

$$\tau(x)\tau(\frac{1}{x}) = \langle 0, 1, 2, 3, \dots \rangle \langle 0, 1, \frac{1}{2}, \frac{1}{3}, \dots \rangle$$

$$| | \langle 0, 1, 1, 1, \dots \rangle$$

$$| | \tau(x\frac{1}{x}) = \tau(1) = \langle 1, 1, 1, 1, \dots \rangle$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $\operatorname{ev}:\mathbb{A}\times\mathbb{N}\to\mathbb{Q}$
- 3. a ring automorphism

$$\begin{array}{cccc} \sigma': & \mathbb{Q}(x) & & \to & \mathbb{Q}(x) \\ & r(x) & & \mapsto & r(x+1) \end{array}$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $\operatorname{ev}: \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$
- 3. a ring automorphism

$$\sigma': \quad \mathbb{Q}(x) \qquad \to \quad \mathbb{Q}(x)$$

$$r(x) \qquad \mapsto \quad r(x+1)$$

$$\sigma: \quad \mathbb{Q}(x)[s] \quad \to \quad \mathbb{Q}(x)[s]$$

$$s \mapsto s + \frac{1}{x+1}$$

$$H_{n+1} = H_n + \frac{1}{n+1}$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$

 $\sigma': \mathbb{Q}(x) \longrightarrow \mathbb{Q}(x)$ $r(x) \mapsto r(x+1)$

3. a ring automorphism

$$\sigma: \quad \mathbb{Q}(x)[s] \quad \to \quad \mathbb{Q}(x)[s] \qquad \qquad s \mapsto s + \frac{1}{x+1}$$

$$\sum_{i=0}^{d} f_i s^i \quad \mapsto \quad \sum_{i=0}^{d} \sigma'(f_i) \left(s + \frac{1}{x+1}\right)^i \qquad H_{n+1} = H_n + \frac{1}{n+1}$$

Definition: (\mathbb{A}, σ) with a ring \mathbb{A} and automorphism σ is called a difference ring; the set of constants is

$$const_{\sigma} \mathbb{A} = \{ c \in \mathbb{A} \mid \sigma(c) = c \}$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $\operatorname{ev}: \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$
- 3. a ring automorphism $\sigma: \mathbb{A} \to \mathbb{A}$

ev and σ interact:

$$\operatorname{ev}(\sigma(s), n) = \operatorname{ev}(s + \frac{1}{x+1}, n) = H_n + \frac{1}{n+1} = \operatorname{ev}(s, n+1)$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $\operatorname{ev}: \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$
- 3. a ring automorphism $\sigma: \mathbb{A} \to \mathbb{A}$

ev and σ interact:

$$\operatorname{ev}(\sigma(s), n) = \operatorname{ev}(s + \frac{1}{x+1}, n) = H_n + \frac{1}{n+1} = \operatorname{ev}(s, n+1)$$

$$\updownarrow$$

$$\tau(\sigma(s)) = \langle 1, 1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}, \dots \rangle = S(\langle 0, 1, 1 + \frac{1}{2}, \dots \rangle) = S(\tau(s))$$

shift operator

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$
- 3. a ring automorphism $\sigma: \mathbb{A} \to \mathbb{A}$

ev and σ interact:

$$\operatorname{ev}(\sigma(s), n) = \operatorname{ev}(s + \frac{1}{x+1}, n) = H_n + \frac{1}{n+1} = \operatorname{ev}(s, n+1)$$

$$\updownarrow$$

$$\tau(\sigma(s)) = \langle 1, 1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}, \dots \rangle = S(\langle 0, 1, 1 + \frac{1}{2}, \dots \rangle) = S(\tau(s))$$

au is an injective difference ring homomorphism:

$$\mathbb{K}(x)[s] \xrightarrow{\sigma} \mathbb{K}(x)[s]$$

$$\downarrow^{\tau} = \qquad \qquad \downarrow^{\tau}$$

$$\mathbb{K}^{\mathbb{N}}/\sim \xrightarrow{S} \mathbb{K}^{\mathbb{N}}/\sim$$

$$H(n) = H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

- 1. a formal ring $\mathbb{A} = \mathbb{Q}(x)[s]$
- 2. an evaluation function $\operatorname{ev}: \mathbb{A} \times \mathbb{N} \to \mathbb{Q}$
- 3. a ring automorphism $\sigma: \mathbb{A} \to \mathbb{A}$

ev and σ interact:

$$\operatorname{ev}(\sigma(s), n) = \operatorname{ev}(s + \frac{1}{x+1}, n) = H_n + \frac{1}{n+1} = \operatorname{ev}(s, n+1)$$

$$\updownarrow$$

$$\tau(\sigma(s)) = \langle 1, 1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}, \dots \rangle = S(\langle 0, 1, 1 + \frac{1}{2}, \dots \rangle) = S(\tau(s))$$

au is an injective difference ring homomorphism:

$$\boxed{ (\mathbb{K}(x)[s], \sigma) } \overset{\tau}{\simeq} \boxed{ \underbrace{ (\tau(\mathbb{Q}(x))[\langle H_n \rangle_{n \geq 0}], S) }_{\text{rat. seq.}} \leq (\mathbb{K}^{\mathbb{N}}/\sim, S)$$

General construction

$$H \in \mathsf{SumProd}(\mathbb{G})$$

- an evaluation function $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{K}$ with H(n) = ev(h, n);
- a ring automorphism $\sigma: \mathbb{A} \to \mathbb{A}$ with H(n+1) with $\sigma(h)$.

- A hypergeometric APS-extension of $(\mathbb{K}(x), \sigma)$ is
 - ▶ a ring

$$A := \mathbb{K}(x)$$

 \blacktriangleright with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

$$\sigma(x) = x + 1$$

A hypergeometric APS-extension of $(\mathbb{K}(x), \sigma)$ is

▶ a ring

$$\mathbb{A} := \mathbb{K}(x)$$

lacktriangle with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

$$\sigma(x) = x + 1$$

$$Sk!=(k+1)k!$$

► a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}]$$

$$\sigma(x) = x+1$$

$$\mathsf{Sk!} = (\mathsf{k+1})\mathsf{k!} \quad \leftrightarrow \quad \sigma(p_1) = (x+1)p_1$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}]$$

lacktriangle with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

$$\sigma(x) = x + 1$$

hypergeometric \leftrightarrow $\sigma(p_1)=a_1\,p_1$ $a_1\in\mathbb{K}(x)^*$ products

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}]$$

lacktriangle with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

hypergeometric
$$\leftrightarrow$$
 $\sigma(p_1) = a_1 \, p_1$ $a_1 \in \mathbb{K}(x)^*$ products $\sigma(p_2) = a_2 p_2$ $a_2 \in \mathbb{K}(x)^*$

 $\sigma(x) = x + 1$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}]$$

$$\sigma(x) = x+1$$
 hypergeometric \leftrightarrow $\sigma(p_1) = a_1 \, p_1$ $a_1 \in \mathbb{K}(x)^*$
$$\sigma(p_2) = a_2 p_2 \qquad a_2 \in \mathbb{K}(x)^*$$

$$\vdots$$

$$\sigma(p_e) = a_e p_e \qquad a_e \in \mathbb{K}(x)^*$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z]$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z]$$

$$\begin{split} \sigma(x) &= x + 1 \\ \text{hypergeometric} & \leftrightarrow & \sigma(p_1) = a_1 \, p_1 & a_1 \in \mathbb{K}(x)^* \\ \text{products} & & \sigma(p_2) = a_2 p_2 & a_2 \in \mathbb{K}(x)^* \\ & & \vdots & & & & \\ & & \sigma(p_e) = a_e p_e & a_e \in \mathbb{K}(x)^* \\ \\ \gamma \text{ is a primitive λth } & \gamma^\mathbf{k} & \leftrightarrow & \sigma(\mathbf{z}) = \gamma \, \mathbf{z} & \mathbf{z}^\lambda = \mathbf{1} \end{split}$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1]$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1]$$

$$\sigma(x) = x + 1$$
 hypergeometric $\leftrightarrow \sigma(p_1) = a_1 \, p_1 \qquad a_1 \in \mathbb{K}(x)^*$ products
$$\sigma(p_2) = a_2 p_2 \qquad a_2 \in \mathbb{K}(x)^*$$

$$\vdots$$

$$\sigma(p_e) = a_e p_e \qquad a_e \in \mathbb{K}(x)^*$$

$$\gamma^{\text{is a primitive λth } \gamma^{\textbf{k}}} \leftrightarrow \sigma(\textbf{z}) = \gamma \, \textbf{z} \qquad \textbf{z}^{\lambda} = \textbf{1}$$
 (nested) sum
$$\leftrightarrow \sigma(s_1) = s_1 + f_1 \quad f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z]$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2]$$

$$\sigma(x) = x + 1$$
 hypergeometric $\leftrightarrow \sigma(p_1) = a_1 \, p_1$ $a_1 \in \mathbb{K}(x)^*$ $\sigma(p_2) = a_2 p_2$ $a_2 \in \mathbb{K}(x)^*$ \vdots $\sigma(p_e) = a_e p_e$ $a_e \in \mathbb{K}(x)^*$
$$\gamma^{\text{is a primitive λth }} \gamma^{\textbf{k}} \leftrightarrow \sigma(\textbf{z}) = \gamma \, \textbf{z} \qquad \textbf{z}^{\lambda} = \textbf{1}$$
 (nested) sum $\leftrightarrow \sigma(s_1) = s_1 + f_1$ $f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z]$ $\sigma(s_2) = s_2 + f_2$ $f_2 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1]$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2][s_3] \dots$$

$$\sigma(x) = x+1$$
 hypergeometric \leftrightarrow $\sigma(p_1) = a_1 \, p_1$ $a_1 \in \mathbb{K}(x)^*$ $\sigma(p_2) = a_2 p_2$ $a_2 \in \mathbb{K}(x)^*$ \vdots
$$\sigma(p_e) = a_e p_e \qquad a_e \in \mathbb{K}(x)^*$$

$$\gamma^{\text{is a primitive λth }} \gamma^{\mathbf{k}} \qquad \leftrightarrow \qquad \sigma(\mathbf{z}) = \gamma \, \mathbf{z} \qquad \mathbf{z}^{\lambda} = \mathbf{1}$$
 (nested) sum \leftrightarrow $\sigma(s_1) = s_1 + f_1$ $f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z]$
$$\sigma(s_2) = s_2 + f_2 \qquad f_2 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1]$$

$$\sigma(s_3) = s_3 + f_3 \qquad f_3 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2]$$

Definition (Evaluation function)

Take (\mathbb{A}, σ) with a subfield \mathbb{K} of \mathbb{A} with $\sigma|_{\mathbb{K}} = \mathrm{id}$.

1. $ev : \mathbb{A} \times \mathbb{N} \to \mathbb{K}$ is called **evaluation function** for (\mathbb{A}, σ) if for all $f, g \in \mathbb{A}, c \in \mathbb{K}$ and $l \in \mathbb{Z}$ there exists a $\lambda \in \mathbb{N}$ with

$$\forall n \ge \lambda : \operatorname{ev}(c, n) = c, \tag{2}$$

$$\forall n \ge \lambda : \operatorname{ev}(f+g,n) = \operatorname{ev}(f,n) + \operatorname{ev}(g,n),$$

$$\forall n \ge \lambda : \operatorname{ev}(fg,n) = \operatorname{ev}(f,n) \operatorname{ev}(g,n),$$
(4)

$$\forall n$$

$$\forall n \geq 1 \text{ ov}(\sigma^l(f), n) = \text{ov}(f, n + 1)$$

$$\forall n \ge \lambda : \operatorname{ev}(\sigma^l(f), n) = \operatorname{ev}(f, n+l).$$
 (5)

Definition (Evaluation function)

Take (\mathbb{A}, σ) with a subfield \mathbb{K} of \mathbb{A} with $\sigma|_{\mathbb{K}} = \mathrm{id}$.

1. ev : $\mathbb{A} \times \mathbb{N} \to \mathbb{K}$ is called **evaluation function** for (\mathbb{A}, σ) if for all $f, g \in \mathbb{A}$, $c \in \mathbb{K}$ and $l \in \mathbb{Z}$ there exists a $\lambda \in \mathbb{N}$ with

$$\forall n \ge \lambda : \operatorname{ev}(c, n) = c,$$
 (2)

$$\forall n \ge \lambda : \operatorname{ev}(f + g, n) = \operatorname{ev}(f, n) + \operatorname{ev}(g, n), \tag{3}$$

$$\forall n \ge \lambda : \operatorname{ev}(f g, n) = \operatorname{ev}(f, n) \operatorname{ev}(g, n), \tag{4}$$

$$\forall n \ge \lambda : \operatorname{ev}(\sigma^l(f), n) = \operatorname{ev}(f, n+l).$$
 (5)

2. $L: \mathbb{A} \to \mathbb{N}$ is called o-function if for any $f,g \in \mathbb{A}$ with $\lambda = \max(L(f),L(g))$ the properties (3) and (4) hold and for any $f \in \mathbb{A}$ and $l \in \mathbb{Z}$ with $\lambda = L(f) + \max(0,-l)$ property (5) holds.

Connection between $\mathsf{SumProd}(\mathbb{G})$ and hypergeometric APS-extension

$$\begin{array}{|c|c|} \hline (\mathbb{E},\sigma) \text{ with } \mathbb{E} = \mathbb{G}\langle t_1 \rangle \ldots \langle t_e \rangle \text{ a hypergeometric } APS\text{-extension of } (\mathbb{G},\sigma) \\ \text{ev}: \mathbb{E} \times \mathbb{N} \to \mathbb{K}, \ L: \mathbb{E} \to \mathbb{N} \\ \end{array}$$

$$\forall n \ge L(t_i) :$$

 $\operatorname{ev}(t_i, n) = T_i(n) \in \Sigma\Pi(\mathbb{G})$

$$\begin{array}{|c|c|}\hline (\mathbb{E},\sigma) \text{ with } \mathbb{E} = \mathbb{G}\langle t_1\rangle \ldots \langle t_e\rangle \text{ a hypergeometric } APS\text{-extension of } (\mathbb{G},\sigma)\\ \text{ev}: \mathbb{E}\times\mathbb{N}\to\mathbb{K}, \ L:\mathbb{E}\to\mathbb{N} \end{array}$$

$$\forall n \geq L(t_i) :$$

 $\operatorname{ev}(t_i, n) = T_i(n) \in \Sigma\Pi(\mathbb{G})$

$$W = \{T_1, \dots, T_e\} \subseteq \Sigma \Pi(\mathbb{G})$$
 is sum-product reduced and shift stable: sums/products in T_i are from $\{T_1, \dots, T_{i-1}\}$.

$$\forall n \ge L(t_i) :$$

 $\operatorname{ev}(t_i, n) = T_i(n) \in \Sigma\Pi(\mathbb{G})$

$$W = \{T_1, \dots, T_e\} \subseteq \Sigma \Pi(\mathbb{G})$$
 is sum-product reduced and shift stable: sums/products in T_i are from $\{T_1, \dots, T_{i-1}\}$.

In particular, if $f \in \mathbb{E} \setminus \{0\}$, then we can take the "unique" $0 \neq F \in \mathsf{SumProd}(\{T_1, \dots, T_e\}, \mathbb{G})$ with $F(n) = \mathrm{ev}(f, n)$ for all $n \geq L(f)$.

$$(\mathbb{E},\sigma)$$
 with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ a hypergeometric APS -extension of (\mathbb{G},σ) $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$, $L:\mathbb{E}\to\mathbb{N}$

$$\forall n \geq L(t_i) :$$

 $\operatorname{ev}(t_i, n) = T_i(n) \in \Sigma \Pi(\mathbb{G})$

$$W = \{T_1, \dots, T_e\} \subseteq \Sigma\Pi(\mathbb{G})$$
 is sum-product reduced and shift stable: sums/products in T_i are from $\{T_1, \dots, T_{i-1}\}$.

In particular, if $f \in \mathbb{E} \setminus \{0\}$, then we can take the "unique" $0 \neq F \in \mathsf{SumProd}(\{T_1, \dots, T_e\}, \mathbb{G})$ with $F(n) = \mathrm{ev}(f, n)$ for all $n \geq L(f)$.

Definition

For $f \in \mathbb{E}$ we also write $\exp(f) = F$ for this particular F.

$$(\mathbb{E},\sigma)$$
 with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ a hypergeometric APS -extension of (\mathbb{G},σ) $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K},\ L:\mathbb{E}\to\mathbb{N}$

$$\forall n \ge L(t_i) :$$

$$\operatorname{ev}(t_i, n) = T_i(n) \in \Sigma\Pi(\mathbb{G})$$

$$W = \{T_1, \dots, T_e\} \subseteq \Sigma\Pi(\mathbb{G})$$
 is sum-product reduced and shift stable: sums/products in T_i are from $\{T_1, \dots, T_{i-1}\}$.

Example

For
$$f=x+\frac{x+1}{x}s^4\in\mathbb{Q}(x)[s]$$
 we obtain
$$\exp(f)=F=x\oplus(\frac{x+1}{x}\odot(\operatorname{Sum}(1,\frac{1}{x})^{\textcircled{O}}4)\in\operatorname{Sum}(\mathbb{Q}(x)))$$

with
$$F(n) = \operatorname{ev}(f, n)$$
 for all $n \ge 1$.

$$\forall n \geq L(t_i) :$$
 $\operatorname{ev}(t_i, n) = T_i(n) \in \Sigma\Pi(\mathbb{G})$

$$W = \{T_1, \dots, T_e\} \subseteq \Sigma\Pi(\mathbb{G})$$
 is sum-product reduced and shift stable: sums/products in T_i are from $\{T_1, \dots, T_{i-1}\}$.

Outline of the talk:

Difference ring theory in action

Let (\mathbb{E},σ) be a hypergeometric APS-extension of (\mathbb{G},σ) with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ and let $\tau:\mathbb{E}\to\mathbb{K}^\mathbb{N}/\sim$ be the \mathbb{K} -homomorphism given by

$$\tau(f) = (\operatorname{ev}(f, n))_{n \ge 0}.$$

Difference ring theory in action

Let (\mathbb{E},σ) be a hypergeometric APS-extension of (\mathbb{G},σ) with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ and let $\tau:\mathbb{E}\to\mathbb{K}^\mathbb{N}/\sim$ be the \mathbb{K} -homomorphism given by

$$\tau(f) = (\operatorname{ev}(f, n))_{n \ge 0}.$$

Lemma

Let $W = \{T_1, \dots, T_e\} \in \Sigma\Pi(\mathbb{G})$ with $T_i = expr(t_i)$. Then:

W is canonical reduced \Leftrightarrow τ is injective.

Difference ring theory in action

Let (\mathbb{E},σ) be a hypergeometric APS-extension of (\mathbb{G},σ) with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ and let $\tau:\mathbb{E}\to\mathbb{K}^\mathbb{N}/\sim$ be the \mathbb{K} -homomorphism given by

$$\tau(f) = (\operatorname{ev}(f, n))_{n \ge 0}.$$

Lemma

Let $W = \{T_1, \dots, T_e\} \in \Sigma\Pi(\mathbb{G})$ with $T_i = \mathsf{expr}(t_i)$. Then:

W is canonical reduced \Leftrightarrow τ is injective.

Using difference ring theory we get the following crucial property:

Theorem

 τ is injective \Leftrightarrow $\operatorname{const}_{\sigma}\mathbb{E} = \mathbb{K}$.

Example

For our difference field $\mathbb{G} = \mathbb{K}(x)$ with $\sigma(x) = x + 1$ and $\mathrm{const}_{\sigma}\mathbb{K} = \mathbb{K}$ we have $\mathrm{const}_{\sigma}\mathbb{K}(x) = \mathbb{K}$.

Example

For our difference field $\mathbb{G}=\mathbb{K}(x)$ with $\sigma(x)=x+1$ and $\mathrm{const}_\sigma\mathbb{K}=\mathbb{K}$ we have $\mathrm{const}_\sigma\mathbb{K}(x)=\mathbb{K}$.

Definition

A hypergeometric APS-extension (\mathbb{E},σ) of (\mathbb{G},σ) is called **hypergeometric** $R\Pi\Sigma$ -extension if

$$\operatorname{const}_{\sigma}\mathbb{E} = \mathbb{K}.$$

Example

For our difference field $\mathbb{G} = \mathbb{K}(x)$ with $\sigma(x) = x + 1$ and $\mathrm{const}_{\sigma}\mathbb{K} = \mathbb{K}$ we have $\mathrm{const}_{\sigma}\mathbb{K}(x) = \mathbb{K}$.

Definition

A hypergeometric APS-extension (\mathbb{E}, σ) of (\mathbb{G}, σ) is called **hypergeometric** $R\Pi\Sigma$ -extension if

$$\operatorname{const}_{\sigma}\mathbb{E} = \mathbb{K}.$$

Theorem

Let $W = \{T_1, \dots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ be in sum-product reduced representation and shift-stable, i.e., for each $1 \leq i \leq e$ the arising sums and products in T_i are contained in $\{T_1, \dots, T_{i-1}\}$. Then the following is equivalent:

- 1. There is a hypergeometric $R\Pi\Sigma$ -extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with $\mathbb{E} = \mathbb{G}\langle t_1 \rangle \dots \langle t_e \rangle$ equipped with an evaluation function ev with $T_i = \exp(t_i) \in \Sigma\Pi(\mathbb{G})$ for $1 \leq i \leq e$.
- 2. W is σ -reduced over \mathbb{G} .

A strategy to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \dots, T_e\} \subset \Sigma \Pi(\mathbb{G})$ with $B_1, \dots, B_u \in \mathbb{G}$

 $\mathsf{SumProd}(W,\mathbb{G})$ and $\delta_1,\dots,\delta_u\in\mathbb{N}$ such that $A_i(n)=B_i(n)$

holds for all $n \geq \delta_i$ and $1 \leq i \leq r$.

A strategy to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \dots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ with $B_1 \dots, B_u \in \operatorname{SumProd}(W,\mathbb{G})$ and $\delta_1, \dots, \delta_u \in \mathbb{N}$ such that $A_i(n) = B_i(n)$ holds for all $n > \delta_i$ and 1 < i < r.

1. Construct $R\Pi\Sigma$ -extension (\mathbb{E}, σ) of (\mathbb{G}, σ) with $\mathbb{E} = \mathbb{G}\langle t_1 \rangle \ldots \langle t_e \rangle$ equipped with $\mathrm{ev} : \mathbb{E} \times \mathbb{N} \to \mathbb{K}$ such that we get $a_1, \ldots, a_u \in \mathbb{E}$ and $\delta_1, \ldots, \delta_u \in \mathbb{N}$ with

$$A_i(n) = \operatorname{ev}(a_i, n) \quad \forall n > \delta_i.$$
 (9)

A strategy to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \ldots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ with $B_1, \ldots, B_u \in \mathrm{SumProd}(W, \mathbb{G})$ and $\delta_1, \ldots, \delta_u \in \mathbb{N}$ such that $A_i(n) = B_i(n)$ holds for all $n \geq \delta_i$ and $1 \leq i \leq r$.

1. Construct $R\Pi\Sigma$ -extension (\mathbb{E},σ) of (\mathbb{G},σ) with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ equipped with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ such that we get $a_1,\ldots,a_u\in\mathbb{E}$ and $\delta_1,\ldots,\delta_u\in\mathbb{N}$ with

$$A_i(n) = \operatorname{ev}(a_i, n) \quad \forall n \ge \delta_i.$$
 (9)

2. Set $W = \{T_1, \dots, T_e\}$ with $T_i := \exp(t_i) \in \Sigma\Pi(\mathbb{G})$ for $1 \le i \le e$.

A strategy to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \ldots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ with $B_1, \ldots, B_u \in \operatorname{SumProd}(W,\mathbb{G})$ and $\delta_1, \ldots, \delta_u \in \mathbb{N}$ such that $A_i(n) = B_i(n)$ holds for all $n \geq \delta_i$ and $1 \leq i \leq r$.

1. Construct $R\Pi\Sigma$ -extension (\mathbb{E},σ) of (\mathbb{G},σ) with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ equipped with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ such that we get $a_1,\ldots,a_u\in\mathbb{E}$ and $\delta_1,\ldots,\delta_u\in\mathbb{N}$ with

$$A_i(n) = \operatorname{ev}(a_i, n) \quad \forall n \ge \delta_i.$$
 (9)

- 2. Set $W = \{T_1, \dots, T_e\}$ with $T_i := \exp(t_i) \in \Sigma\Pi(\mathbb{G})$ for $1 \le i \le e$.
- 3. Set $B_i := \exp(a_i) \in \mathsf{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.

A strategy to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \dots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ with $B_1 \dots, B_u \in \mathrm{SumProd}(W,\mathbb{G})$ and $\delta_1, \dots, \delta_u \in \mathbb{N}$ such that $A_i(n) = B_i(n)$ holds for all $n \geq \delta_i$ and $1 \leq i \leq r$.

1. Construct $R\Pi\Sigma$ -extension (\mathbb{E},σ) of (\mathbb{G},σ) with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ equipped with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ such that we get $a_1,\ldots,a_u\in\mathbb{E}$ and $\delta_1,\ldots,\delta_u\in\mathbb{N}$ with

$$A_i(n) = \operatorname{ev}(a_i, n) \quad \forall n \ge \delta_i.$$
 (9)

- 2. Set $W = \{T_1, \dots, T_e\}$ with $T_i := \exp(t_i) \in \Sigma\Pi(\mathbb{G})$ for $1 \le i \le e$.
- 3. Set $B_i := \exp(a_i) \in \mathsf{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.
- 4. Return W, (B_1, \ldots, B_n) and $(\delta_1, \ldots, \delta_n)$.

Outline of the talk:

Outline of the talk:

Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2][s_3] \dots$$

$$\sigma(x) = x+1$$
 hypergeometric \leftrightarrow $\sigma(p_1) = a_1 \, p_1$ $a_1 \in \mathbb{K}(x)^*$ $\sigma(p_2) = a_2 p_2$ $a_2 \in \mathbb{K}(x)^*$ \vdots
$$\sigma(p_e) = a_e p_e \qquad a_e \in \mathbb{K}(x)^*$$

$$\gamma^{\text{is a primitive λth }} \gamma^{\textbf{k}} \leftrightarrow \sigma(\textbf{z}) = \gamma \, \textbf{z} \qquad \textbf{z}^{\lambda} = \textbf{1}$$
 (nested) sum \leftrightarrow $\sigma(s_1) = s_1 + f_1$ $f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z]$
$$\sigma(s_2) = s_2 + f_2 \qquad f_2 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1]$$

$$\sigma(s_3) = s_3 + f_3 \qquad f_3 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2]$$

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2][s_3] \dots$$

lacktriangle with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

$$\begin{split} \sigma(x) &= x + 1 \\ \text{hypergeometric} & \leftrightarrow & \sigma(p_1) = a_1 \, p_1 & a_1 \in \mathbb{K}(x)^* \\ \text{products} & & \sigma(p_2) = a_2 p_2 & a_2 \in \mathbb{K}(x)^* \\ & & \vdots & \\ & & \sigma(p_e) = a_e p_e & a_e \in \mathbb{K}(x)^* \\ \\ \gamma \text{ is a primitive } \lambda \text{th} & \gamma^\mathbf{k} & \leftrightarrow & \sigma(\mathbf{z}) = \gamma \, \mathbf{z} & \mathbf{z}^\lambda = \mathbf{1} \end{split}$$

 $\begin{array}{lll} \text{(nested) sum} & \leftrightarrow & \sigma(s_1) = s_1 + f_1 & f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z] \\ & \sigma(s_2) = s_2 + f_2 & f_2 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1] \\ & \sigma(s_3) = s_3 + f_3 & f_3 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2] \end{array}$

such that $\mathrm{const}_{\sigma}\mathbb{E}=\mathbb{K}$

Represent sums (extension of Karr's result, 1981)

Let (\mathbb{A}, σ) be a difference ring with constant set

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

Note 1: $const_{\sigma}\mathbb{A}$ is a ring that contains \mathbb{Q}

Note 2: We always take care that $const_{\sigma}\mathbb{A}$ is a field

Let (\mathbb{A}, σ) be a difference ring with constant field

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).

▶ Let (A, σ) be a difference ring with constant field

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$\sigma(t) = t + f$$
 for some $f \in \mathbb{A}$.

Let (\mathbb{A}, σ) be a difference ring with constant field

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$\sigma(t) = t + f$$
 for some $f \in \mathbb{A}$.

Then $const_{\sigma}\mathbb{A}[t] = const_{\sigma}\mathbb{A}$ iff

$$\nexists g \in \mathbb{A}: \quad \sigma(g) = g + f$$

Let (\mathbb{A}, σ) be a difference ring with constant field

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$\sigma(t)=t+f \qquad \text{ for some } f\in\mathbb{A}.$$

Then $const_{\sigma} \mathbb{A}[t] = const_{\sigma} \mathbb{A}$ iff

$$\nexists g \in \mathbb{A}: \quad \boxed{\sigma(g) = g + f}$$

Such a difference ring extension $(\mathbb{A}[t], \sigma)$ of (\mathbb{A}, σ) is called Σ^* -extension

Let (\mathbb{A}, σ) be a difference ring with constant field

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$\sigma(t)=t+f \qquad \text{ for some } f\in\mathbb{A}.$$

Then $const_{\sigma}\mathbb{A}[t] = const_{\sigma}\mathbb{A}$ iff

$$\nexists g \in \mathbb{A}: \quad \sigma(g) = g + f$$

There are 2 cases:

1.
$$\not\exists g \in \mathbb{A}: \ \sigma(g) = g+f$$
: $(\mathbb{A}[t],\sigma)$ is a Σ^* -extension of (\mathbb{A},σ)

▶ Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- Adjoin a new variable t to \mathbb{A} (i.e., $\mathbb{A}[t]$ is a polynomial ring).
- Extend the shift operator s.t.

$$\sigma(t) = t + f$$
 for some $f \in \mathbb{A}$.

Then
$$const_{\sigma}\mathbb{A}[t] = const_{\sigma}\mathbb{A}$$
 iff

$$\nexists g \in \mathbb{A}: \quad \sigma(g) = g + f$$

There are 2 cases:

- 1. $\not\exists g \in \mathbb{A}: \ \sigma(g) = g+f$: $(\mathbb{A}[t],\sigma)$ is a Σ^* -extension of (\mathbb{A},σ)
- 2. $\exists g \in \mathbb{A} : \sigma(g) = g + f$: No need for a Σ^* -extension!

A hypergeometric $R\Pi\Sigma$ -extension of $(\mathbb{K}(x), \sigma)$ is

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2][s_3] \dots$$

lacktriangle with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

$$\begin{split} \sigma(x) &= x + 1 \\ \text{hypergeometric} & \leftrightarrow & \sigma(p_1) = a_1 \, p_1 & a_1 \in \mathbb{K}(x)^* \\ \text{products} & \sigma(p_2) = a_2 p_2 & a_2 \in \mathbb{K}(x)^* \\ & \vdots & & & & \\ \sigma(p_e) &= a_e p_e & a_e \in \mathbb{K}(x)^* \\ \\ \gamma \text{ is a primitive λth } \gamma^\mathbf{k} & \leftrightarrow & \sigma(\mathbf{z}) = \gamma \, \mathbf{z} & \mathbf{z}^\lambda = \mathbf{1} \end{split}$$

(nested) sum
$$\leftrightarrow \sigma(s_1) = s_1 + f_1 \quad f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z]$$

$$\sigma(s_2) = s_2 + f_2 \quad f_2 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1]$$

$$\sigma(s_3) = s_3 + f_3 \quad f_3 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2]$$

such that $\mathrm{const}_{\sigma}\mathbb{E}=\mathbb{K}$

 \blacktriangleright Let (\mathbb{A},σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- Let (\mathbb{A}, σ) be a difference ring with constant field $\mathrm{const}_{\sigma}\mathbb{A} := \{k \in \mathbb{A} \mid \sigma(k) = k\}.$
- ▶ Take the ring of Laurent polynomials $\mathbb{A}[t, \frac{1}{t}]$.

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- lacktriangle Take the ring of Laurent polynomials $\mathbb{A}[t, rac{1}{t}]$.
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- ▶ Take the ring of Laurent polynomials $\mathbb{A}[t, \frac{1}{t}]$.
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $const_{\sigma}\mathbb{A}[t,t^{-1}] = const_{\sigma}\mathbb{A}$ iff

$$\nexists g \in \mathbb{A} \setminus \{0\}$$
:

$$\sigma(g) = a g$$

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- ▶ Take the ring of Laurent polynomials $\mathbb{A}[t, \frac{1}{t}]$.
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $const_{\sigma} \mathbb{A}[t, t^{-1}] = const_{\sigma} \mathbb{A}$ iff

$$\nexists g \in \mathbb{A} \setminus \{0\} :$$

$$\sigma(g) = a g$$

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- ▶ Take the ring of Laurent polynomials $\mathbb{A}[t, \frac{1}{t}]$.
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $const_{\sigma}\mathbb{A}[t,t^{-1}] = const_{\sigma}\mathbb{A}$ iff

$$\nexists g \in \mathbb{A} \setminus \{0\} \not\exists n \in \mathbb{Z} \setminus \{0\} : \quad \sigma(g) = a^n g$$

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- lacktriangle Take the ring of Laurent polynomials $\mathbb{A}[t,rac{1}{t}].$
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $\mathrm{const}_{\sigma}\mathbb{A}[t,t^{-1}]=\mathrm{const}_{\sigma}\mathbb{A}$ iff

Such a difference ring extension $(\mathbb{A}[t,\frac{1}{t}],\sigma)$ of (\mathbb{A},σ) is called Π -extension

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- lacktriangle Take the ring of Laurent polynomials $\mathbb{A}[t,rac{1}{t}].$
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $const_{\sigma}\mathbb{A}[t, t^{-1}] = const_{\sigma}\mathbb{A}$ iff

There are 3 cases:

1.
$$\exists g \in \mathbb{A} \setminus \{0\} \not\exists n \in \mathbb{Z} \setminus \{0\} : \sigma(g) = a^n g$$
: $(\mathbb{A}[t, \frac{1}{t}]), \sigma)$ is a Π -ext. of (\mathbb{A}, σ)

Let (\mathbb{A}, σ) be a difference ring with constant field

$$\operatorname{const}_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- ► Take the ring of Laurent polynomials $\mathbb{A}[t, \frac{1}{t}]$.
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $const_{\sigma} \mathbb{A}[t, t^{-1}] = const_{\sigma} \mathbb{A}$ iff

$$\nexists g \in \mathbb{A} \setminus \{0\} \nexists n \in \mathbb{Z} \setminus \{0\} : \quad \sigma(g) = a^n g$$

There are 3 cases:

- 1. $\exists g \in \mathbb{A} \setminus \{0\} \not\exists n \in \mathbb{Z} \setminus \{0\} : \sigma(g) = a^n g$: $(\mathbb{A}[t, \frac{1}{t}]), \sigma)$ is a Π -ext. of (\mathbb{A}, σ)
- 2. $\exists g \in \mathbb{A} \setminus \{0\} : \sigma(g) = ag$: No need for a Π -extension!

 \blacktriangleright Let (\mathbb{A}, σ) be a difference ring with constant field

$$const_{\sigma} \mathbb{A} := \{ k \in \mathbb{A} \mid \sigma(k) = k \}.$$

- ▶ Take the ring of Laurent polynomials $A[t, \frac{1}{t}]$.
- Extend the shift operator s.t.

$$\sigma(t) = a t$$
 for some $a \in \mathbb{A}^*$.

Then $const_{\sigma} \mathbb{A}[t, t^{-1}] = const_{\sigma} \mathbb{A}$ iff

$$\nexists g \in \mathbb{A} \setminus \{0\} \not\exists n \in \mathbb{Z} \setminus \{0\} : \quad \boxed{\sigma(g) = a^n g}$$

There are 3 cases:

- 1. $\exists g \in \mathbb{A} \setminus \{0\} \not\exists n \in \mathbb{Z} \setminus \{0\} : \sigma(g) = a^n g$: $(\mathbb{A}[t, \frac{1}{t}]), \sigma)$ is a Π -ext. of (\mathbb{A}, σ)
- 2. $\exists g \in \mathbb{A} \setminus \{0\} : \sigma(g) = ag$: No need for a Π -extension!
- 3. $\exists g \in \mathbb{A} \setminus \{0\} : \sigma(g) = a^n g \text{ only for } n \in \mathbb{Z} \setminus \{0,1\} : \bigcirc$

- ▶ Take the difference field $(\mathbb{K}(x), \sigma)$ with $\sigma|_{\mathbb{K}} = \mathrm{id}$ and $\sigma(x) = x + 1$.
- ▶ Let $\alpha_1, \ldots, \alpha_r \in \mathbb{K}(x)^*$

- ▶ Take the difference field $(\mathbb{K}(x), \sigma)$ with $\sigma|_{\mathbb{K}} = \mathrm{id}$ and $\sigma(x) = x + 1$.
- ightharpoonup Let $\alpha_1,\ldots,\alpha_r\in\mathbb{K}(x)^*$
- ► Then there is a difference ring

 \mathbb{E}

such that for $1 \leq i \leq r$ there are $g_i \in \mathbb{E}^*$ with $\sigma(g_i) = \alpha_i g_i$

- ▶ Take the difference field $(\mathbb{K}(x), \sigma)$ with $\sigma|_{\mathbb{K}} = \text{id}$ and $\sigma(x) = x + 1$.
- ightharpoonup Let $\alpha_1,\ldots,\alpha_r\in\mathbb{K}(x)^*$
- ► Then there is a difference ring

$$\mathbb{E} = \mathbb{K}(x)\underbrace{[t_1,t_1^{-1}]\dots[t_e,t_e^{-1}]}_{\text{tower of Π-ext.}}\underbrace{[z]}_{(-1)^k \text{ or } \gamma^k}$$

with

- $ightharpoonup \frac{\sigma(t_i)}{t_i} \in \mathbb{K}(x)^* \text{ for } 1 \leq i \leq e$
- $lackbox{} \sigma(z) = \gamma \, z \ {
 m and} \ z^{\lambda} = 1 \ {
 m for some primitive} \ \lambda {
 m th root of unity} \ \gamma \in \mathbb{K}^*$
- $ightharpoonup \operatorname{const}_{\sigma} \mathbb{E} = \mathbb{K}$

such that for $1 \leq i \leq r$ there are $g_i \in \mathbb{E}^*$ with

$$\sigma(g_i) = \alpha_i \, g_i$$

- ▶ Take the difference field $(\mathbb{K}(x), \sigma)$ with $\sigma|_{\mathbb{K}} = \text{id}$ and $\sigma(x) = x + 1$.
- ightharpoonup Let $\alpha_1, \ldots, \alpha_r \in \mathbb{K}(x)^*$
- ► Then there is a difference ring

$$\mathbb{E} = \mathbb{K}(x) \underbrace{[t_1, t_1^{-1}] \dots [t_e, t_e^{-1}]}_{\text{tower of }\Pi\text{-ext.}} \underbrace{[z]}_{(-1)^k \text{ or } \gamma^k}$$

with

- $ightharpoonup \frac{\sigma(t_i)}{t_i} \in \mathbb{K}(x)^* \text{ for } 1 \leq i \leq e$
- $ightharpoonup \sigma(z) = \gamma z$ and $z^{\lambda} = 1$ for some primitive λ th root of unity $\gamma \in \mathbb{K}^*$
- $ightharpoonup \operatorname{const}_{\sigma} \mathbb{E} = \mathbb{K}$

such that for $1 \leq i \leq r$ there are $g_i \in \mathbb{E}^*$ with

$$\sigma(g_i) = \alpha_i g_i$$

Note: There are similar results for the q-rational, multi-basic and mixed case

Part 3: Construction of appropriate difference rings

A hypergeometric $R\Pi\Sigma$ -extension of $(\mathbb{K}(x), \sigma)$ is

a ring

$$\mathbb{A} := \mathbb{K}(x)[p_1, p_1^{-1}][p_2, p_2^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2][s_3] \dots$$

 $\sigma(s_3) = s_3 + f_3$ $f_3 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1][s_2]$

lacktriangle with an automorphism where $\sigma(c)=c$ for all $c\in\mathbb{K}$ and where

$$\begin{split} \sigma(x) &= x + 1 \\ \text{hypergeometric} & \leftrightarrow & \sigma(p_1) = a_1 \, p_1 & a_1 \in \mathbb{K}(x)^* \\ \text{products} & & \sigma(p_2) = a_2 p_2 & a_2 \in \mathbb{K}(x)^* \\ & & \vdots & \\ & & \sigma(p_e) = a_e p_e & a_e \in \mathbb{K}(x)^* \\ \\ \gamma \text{ is a primitive } \lambda \text{th} & \gamma^\mathbf{k} & \leftrightarrow & \sigma(\mathbf{z}) = \gamma \, \mathbf{z} & \mathbf{z}^\lambda = \mathbf{1} \end{split}$$

$$\begin{array}{lll} \text{(nested) sum} & \leftrightarrow & \sigma(s_1) = s_1 + f_1 & f_1 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z] \\ & \sigma(s_2) = s_2 + f_2 & f_2 \in \mathbb{K}(x)[p_1, p_1^{-1}] \dots [p_e, p_e^{-1}][z][s_1] \end{array}$$

such that $const_{\sigma}\mathbb{E} = \mathbb{K}$

This yields a strategy (actually the only strategy for shift-stable sets).

A strategy to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \dots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ with $B_1 \dots, B_u \in \mathrm{SumProd}(W, \mathbb{G})$ and $\delta_1, \dots, \delta_u \in \mathbb{N}$ such that $A_i(n) = B_i(n)$ holds for all $n \geq \delta_i$ and $1 \leq i \leq r$.

1. Construct $R\Pi\Sigma$ -extension (\mathbb{E},σ) of (\mathbb{G},σ) with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ equipped with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ such that we get $a_1,\ldots,a_u\in\mathbb{E}$ and $\delta_1,\ldots,\delta_u\in\mathbb{N}$ with

$$A_i(n) = \operatorname{ev}(a_i, n) \quad \forall n \ge \delta_i.$$
 (9)

- 2. Set $W = \{T_1, \dots, T_e\}$ with $T_i := \exp(t_i) \in \Sigma\Pi(\mathbb{G})$ for $1 \le i \le e$.
- 3. Set $B_i := \exp(a_i) \in \mathsf{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.
- 4. Return W, (B_1, \ldots, B_n) and $(\delta_1, \ldots, \delta_n)$.

This yields a strategy (actually the only strategy for shift-stable sets).

An algorithm to solve Problem SigmaReduce

Given: $A_1, \ldots, A_u \in \mathsf{SumProd}(\mathbb{G})$ with $\mathbb{G} = \mathbb{K}(x)$.

Find: a σ -reduced set $W = \{T_1, \dots, T_e\} \subset \Sigma\Pi(\mathbb{G})$ with $B_1 \dots, B_u \in \operatorname{SumProd}(W,\mathbb{G})$ and $\delta_1, \dots, \delta_u \in \mathbb{N}$ such that $A_i(n) = B_i(n)$ holds for all $n \geq \delta_i$ and $1 \leq i \leq r$.

1. Construct $R\Pi\Sigma$ -extension (\mathbb{E},σ) of (\mathbb{G},σ) with $\mathbb{E}=\mathbb{G}\langle t_1\rangle\ldots\langle t_e\rangle$ equipped with $\mathrm{ev}:\mathbb{E}\times\mathbb{N}\to\mathbb{K}$ such that we get $a_1,\ldots,a_u\in\mathbb{E}$ and $\delta_1,\ldots,\delta_u\in\mathbb{N}$ with

$$A_i(n) = \operatorname{ev}(a_i, n) \quad \forall n \ge \delta_i.$$
 (9)

- 2. Set $W = \{T_1, \dots, T_e\}$ with $T_i := \exp(t_i) \in \Sigma\Pi(\mathbb{G})$ for $1 \le i \le e$.
- 3. Set $B_i := \exp(a_i) \in \mathsf{SumProd}(W, \mathbb{G})$ for $1 \leq i \leq u$.
- 4. Return W, (B_1, \ldots, B_n) and $(\delta_1, \ldots, \delta_n)$.

▶ the mixed multibasic hypergeometric case: $\mathbb{G}:=\mathbb{K}(x,x_1,\ldots,x_v)$ with $\mathbb{K}=K(q_1,\ldots,q_v)$ For $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x,x_1,\ldots,x_v]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k, q_1^k, \dots, q_v^k) = 0\\ \frac{p(k, q_1^k, \dots, q_v^k)}{q(k, q_1^k, \dots, q_v^k)} & \text{if } q(k, q_1^k, \dots, q_v^k) \neq 0. \end{cases}$$

▶ the mixed multibasic hypergeometric case:

 $\mathbb{G}:=\mathbb{K}(x,x_1,\ldots,x_v)$ with $\mathbb{K}=K(q_1,\ldots,q_v)$ For $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x,x_1,\ldots,x_v]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k,q_1^k,\dots,q_v^k) = 0\\ \frac{p(k,q_1^k,\dots,q_v^k)}{q(k,q_1^k,\dots,q_v^k)} & \text{if } q(k,q_1^k,\dots,q_v^k) \neq 0. \end{cases}$$

- ▶ simple products: $\operatorname{Prod}^*(\mathbb{G})$ is the smallest set that contains 1 with:
- 1. If $r \in \mathcal{R}$ then $\mathsf{RPow}(r) \in \mathsf{Prod}^*(\mathbb{G})$.
- $2. \ \ \text{If} \qquad \qquad f\in \mathbb{G}^* \text{, } l\in \mathbb{N} \text{ with } l\geq Z(f) \text{ then } \operatorname{Prod}(l,f \quad)\in \operatorname{Prod}^*(\mathbb{G}).$
- 3. If $p, q \in \mathsf{Prod}^*(\mathbb{G})$ then $p \odot q \in \mathsf{Prod}^*(\mathbb{G})$.
- 4. If $p \in \text{Prod}^*(\mathbb{G})$ and $z \in \mathbb{Z} \setminus \{0\}$ then $p^{\bigcirc}z \in \text{Prod}^*(\mathbb{G})$.

► the mixed multibasic hypergeometric case:

 $\mathbb{G}:=\mathbb{K}(x,x_1,\ldots,x_v)$ with $\mathbb{K}=K(q_1,\ldots,q_v)$ For $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x,x_1,\ldots,x_v]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k, q_1^k, \dots, q_v^k) = 0\\ \frac{p(k, q_1^k, \dots, q_v^k)}{q(k, q_1^k, \dots, q_v^k)} & \text{if } q(k, q_1^k, \dots, q_v^k) \neq 0. \end{cases}$$

- **nested** products: $\operatorname{Prod}^*(\mathbb{G})$ is the smallest set that contains 1 with:
- 1. If $r \in \mathcal{R}$ then $\mathsf{RPow}(r) \in \mathsf{Prod}^*(\mathbb{G})$.
- 2. If $p \in \mathsf{Prod}^*(\mathbb{G})$, $f \in \mathbb{G}^*$, $l \in \mathbb{N}$ with $l \geq Z(f)$ then $\mathsf{Prod}(l, f \odot p) \in \mathsf{Prod}^*(\mathbb{G})$.
- 3. If $p, q \in \text{Prod}^*(\mathbb{G})$ then $p \odot q \in \text{Prod}^*(\mathbb{G})$.
- 4. If $p \in \text{Prod}^*(\mathbb{G})$ and $z \in \mathbb{Z} \setminus \{0\}$ then $p^{\bigcirc}z \in \text{Prod}^*(\mathbb{G})$.

▶ the mixed multibasic hypergeometric case:

 $\mathbb{G}:=\mathbb{K}(x,x_1,\ldots,x_v)$ with $\mathbb{K}=K(q_1,\ldots,q_v)$ For $f=\frac{p}{q}\in\mathbb{G}$ with $p,q\in\mathbb{K}[x,x_1,\ldots,x_v]$ where $q\neq 0$ and p,q being coprime we define

$$\operatorname{ev}(f,k) = \begin{cases} 0 & \text{if } q(k,q_1^k,\dots,q_v^k) = 0\\ \frac{p(k,q_1^k,\dots,q_v^k)}{q(k,q_1^k,\dots,q_v^k)} & \text{if } q(k,q_1^k,\dots,q_v^k) \neq 0. \end{cases}$$

- **nested** products: $Prod^*(\mathbb{G})$ is the smallest set that contains 1 with:
- 1. If $r \in \mathcal{R}$ then $\mathsf{RPow}(r) \in \mathsf{Prod}^*(\mathbb{G})$.
- 2. If $p \in \mathsf{Prod}^*(\mathbb{G})$, $f \in \mathbb{G}^*$, $l \in \mathbb{N}$ with $l \geq Z(f)$ then $\mathsf{Prod}(l, f \odot p) \in \mathsf{Prod}^*(\mathbb{G})$.
- 3. If $p, q \in \mathsf{Prod}^*(\mathbb{G})$ then $p \odot q \in \mathsf{Prod}^*(\mathbb{G})$.
- 4. If $p \in \text{Prod}^*(\mathbb{G})$ and $z \in \mathbb{Z} \setminus \{0\}$ then $p^{\bigcirc}z \in \text{Prod}^*(\mathbb{G})$.

For further details see

Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in: Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Blümlein and C. Schneider (ed.), Texts and Monographs in Symbolic Computuation, 2021. Springer, arXiv:2102.01471 [cs.SC]