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Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings
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The ground field (throughout this talk): G = K(x)
» For any element f = § € G with p,q € K[z] where g # 0 and p, q
being coprime we define

0 if (k) =0
7k" = .
ev(/,k) {fl% if q(k) 0.

> We define L(f) to be the minimal value 6 € N such that ¢(k) # 0
holds for all £ > §; further,

Z(f) = max(L(}),L(L)  if £ £0.

q

Example: For

we get
(ev(f, ))n>0 = (_§a9a2a9507 %7 . ) € QN

For n > L(f) = 4 no poles arise;

forn > Z(f) = max(L(%), L(%)) = max(4,5) = 5 no zeroes arise.
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The ground field (throughout this talk): G = K(x)

» For any element f = § € G with p,q € K[z] where g # 0 and p, q
being coprime we define

0 if g(k) =0
ev(f. k) = {M if (qIEk) # 0.

q(k)
> We define L(f) to be the minimal value 6 € N such that ¢(k) # 0
holds for all £ > §; further,

2(f) = max(L(2), L(Y) i f#£0.
> We define

R ={reK\ {1} |ris a root of unity}
with the function ord : R — Z>; where

ord(r) = min{n € Z>1 | " = 1}.
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G — SumProd(G) (nested sums over hypergeometric products)

Let®, ®, ®, Sum, Prod and RPow be operations with the signatures

B : SumProd(G) x Z SumProd(G)
@: SumProd(G) x SumProd(G) SumProd(G
©: SumProd(G) x SumProd(G) SumProd

Sum: N x SumProd(G)
Prod: N x SumProd(G)
RPow: R

SumProd
SumProd

A
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G — SumProd(G) (nested sums over hypergeometric products)

Let®, &, ®, Sum, Prod and RPow be operations with the signatures

D : SumProd(G) x Z —  SumProd(G)
®: SumProd(G) x SumProd(G) — SumProd(G)
©: SumProd(G) x SumProd(G) — SumProd(G)
Sum: N x SumProd(G) —  SumProd(G)
Prod: N x SumProd(G) —  SumProd(G)
RPow: R —  SumProd(G)

Prod™(G)= the smallest set that contains 1 with the following properties:

1. If r € R then RPow(r) € Prod*(G).

If f€G*and ! € Nwith > Z(f) then Prod(l, f) € Prod*(G).
If p,q € Prod*(G) then p ® q € Prod*(G).

If p € Prod*(G) and z € Z\ {0} then 22 € Prod*(G).

Furthermore, we define

I(G) ={RPow(r) | r € R} U {Prod(l, f) | f € G, € N}.

e
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G — SumProd(G) (nested sums over hypergeometric products)

Let®, &, ®, Sum, Prod and RPow be operations with the signatures

D : SumProd(G) x Z —  SumProd(G)
®: SumProd(G) x SumProd(G) — SumProd(G)
©: SumProd(G) x SumProd(G) — SumProd(G)
Sum: N x SumProd(G) —  SumProd(G)
Prod: N x SumProd(G) —  SumProd(G)
RPow: R —  SumProd(G).

Prod™(G)= the smallest set that contains 1 with the following properties:

. If € R then RPow(r) € Prod*(G).

If f€G* and [ € N with [ > Z(f) then Prod(l, f) € Prod*(G).
. If p,q € Prod*(G) then p ® ¢ € Prod*(G).

If p € Prod*(G) and z € Z\ {0} then Pz € Prod*(G).

Example: In G = Q(z) we get
P = (Prod(1,2)%(—2)) ® RPow(—1) € Prod*(G).
SN——— S———
€I(G) 11(G)

A w N =
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G — SumProd(G) (nested sums over hypergeometric products)
SumProd(G) = the smallest set containing G U Prod*(G) with:

1. For all f,g € SumProd(G) we have f @ g € SumProd(G).

2. For all f,g € SumProd(G) we have f ® g € SumProd(G).

3. For all f € SumProd(G) and k € Z>; we have &k € SumProd(G).

4. For all f € SumProd(G) and I € N we have Sum(l, f) € SumProd(G).
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G — SumProd(G) (nested sums over hypergeometric products)

SumProd(G) = the smallest set containing G U Prod*(G) with:

=

. For all f,g € SumProd(G) we have f @ g € SumProd(G).

2. For all f,g € SumProd(G) we have f ® g € SumProd(G).

3. For all f € SumProd(G) and k € Zs; we have f&k € SumProd(G).

4. For all f € SumProd(G) and I € N we have Sum(l, f) € SumProd(G).

Furthermore, the set of nested sums over hypergeometric products is
given by

Y(G) ={Sum(l, f) |l € N and f € SumProd(G)}
and the set of nested sums and hypergeometric products is given by
YII(G) = ¥(G) UII(G).
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G — SumProd(G) (nested sums over hypergeometric products)
SumProd(G) = the smallest set containing G U Prod*(G) with:

1. For all f,g € SumProd(G) we have f @ g € SumProd(G).

2. For all f,g € SumProd(G) we have f ® g € SumProd(G).

3. For all f € SumProd(G) and k € Z>; we have &k € SumProd(G).

4. For all f € SumProd(G) and I € N we have Sum(l, f) € SumProd(G).

Example
With G = K(z) we get, e.g., the following expressions:

E; = Sum(1,Prod(1,z)) € ¥(G) C SumProd(G),

Ey = Sum(1, xl? ® Sum(1, ;1;) ® Sum(1, 1)) € B(G) C SumProd(G),
Fs = (B ® Ey) ® By € SumProd(G).
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ev: GxN—-K — ev : SumProd(G) x N — K
1. For f,g € SumProd(G), k € Z\ {0} (k > 0 if f ¢ Prod*(G)) we set
ev(f®k,n) = ev(f,n)",

ev(f @ g,n) :=ev(f,n)+ev(g,n),
ev(f ®g,n) :=ev(f,n) ev(g,n);
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ev: G xN—-K — ev : SumProd(G) x N — K
1. For f,g € SumProd(G), k € Z\ {0} (k > 0 if f ¢ Prod*(G)) we set

ev(f@k, n) == ev(f,n)k,
ev(f®g,n) :=ev(f,n)+ev(g,n),
ev(f ©g,n) = ev(f,n) ev(g,n);
2. for r € R and Sum(l, f),Prod(}\, g) € SumProd(G) we define

ev(RPow(r) Hr =r"

ev(Sum(l, f),n Zev (f,7)

ev(Prod(}, g9), Hev g,1) H (7).
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ev: G xN—-K — ev : SumProd(G) x N — K

1. For f,g € SumProd(G), k € Z \ {O} (k> 0if f ¢ Prod*(G)) we set
ev(fPk,n) = ev(f,n)*,
ev(f © g.m) i= v <f, n) + ev(g,n),
ev(f ©g,n) = ev(f,n) ev(g,n);
2. for r € R and Sum(l, f),Prod(}\, g) € SumProd(G) we define

n

ev(RPow(r),n) := Hr =r",

ev(Sum(l, f),n Zev (f,7)

n

ev(Prod(}, g9), Hev g,1) H (7).

=X

Note: II(G) defines all hypergeometric products (which
evaluate to sequences with non-zero entries).
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ev applied to f € SumProd(G) represents a sequence.

f can be considered as a simple program and ev(f,n) with n € N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition
For F' € SumProd(G) and n € N we write F'(n) := ev(F,n).
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Definition
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ev applied to f € SumProd(G) represents a sequence.

f can be considered as a simple program and ev(f,n) with n € N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition

For F' € SumProd(G) and n € N we write F'(n) := ev(F,n).
Example

For E; € SumProd(K(x)) with i = 1,2,3 we get

3

n k
Ei(n) =ev(Eq,n) = ev(Sum(1, Prod(1,z)),n) = Z Hz =Y kIl

1 i=1

k=1i=1 k=1
Es(n) = ev(Sum(1, ﬁ ® Sum(1, m%) ® Sum(1,1)),n)
n k k
=Y ()t
P -

1 =
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Definition

e An expression A € SumProd(G) is in reduced representation if

A=(hoP)o(LoR)® & (fiOF) (1)
with f; € G* and

P = (a;1%%1) © (a5 2%22) © -+ © (ain 2in,)

for 1 <7 <7 where

> a;; =Sum(ly;, fij) with [; ; € N, f; i € SumProd(G) and z; ; € Z>1,
> Qi = Prod(li,j,fi,j) with liyj €N, fi,j S PI’Od*(G) and Zij € Z \ {O},
> Qi = RPOW(fi’j) with fi,j €Rand 1< 25 < ord(rm)
such that the following properties hold:
1. foreach 1 <i<rand1<j<j <n;wehave a;; # a;;;
2. for each 1 <i < i’ <r with n; = n; there does not exist a 0 € Sy,
with Py = (ai,o(1)®zi,o(1)) ©] (ai,o(2)®zi,a(2)) -0 (ai,a(ni)®zi,a(ni))'
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Definition
e An expression A € SumProd(G) is in reduced representation if

A:(fl@Pl)@(fQQPQ)@"'@(fTQPr) (1)

with f; € G*

e H € SumProd(G) is in sum-product reduced representation if
> it is in reduced representation;
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Definition

e An expression A € SumProd(G) is in reduced representation if
A=(HhioP)o(LoR) o & (froh) (1)

with f; € G*

e H € SumProd(G) is in sum-product reduced representation if
> it is in reduced representation;

> for each Sum(l, A) and Prod(l, A) in H the following holds:
> Ais in reduced representation as given in (1);
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Definition
e An expression A € SumProd(G) is in reduced representation if

A:(fl@Pl)@(fQQPQ)@"'@(fr@Pr) (1)
with f; € G*

e H € SumProd(G) is in sum-product reduced representation if
> it is in reduced representation;
> for each Sum(l, A) and Prod(l, A) in H the following holds:

> Ais in reduced representation as given in (1);
» [ >max(L(f1),...,L(f)) (i.e., no poles occur);
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Definition
e An expression A € SumProd(G) is in reduced representation if

A:(fl@Pl)@(f2®P2)@"'@(fr®Pr) (1)

with f; € G*

e H € SumProd(G) is in sum-product reduced representation if
> it is in reduced representation;
> for each Sum(l, A) and Prod(l, A) in H the following holds:

> Ais in reduced representation as given in (1);

» [ >max(L(f1),...,L(f)) (i.e., no poles occur);

> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.
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Es = (E; @ E2) ® Ey is not in reduced representation
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Definition
e An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)
with f; € G*

e H € SumProd(G) is in sum-product reduced representation if
> it is in reduced representation;
> for each Sum(l, A) and Prod(l, A) in H the following holds:

> Ais in reduced representation as given in (1);

» [ >max(L(f1),...,L(f)) (i.e., no poles occur);

> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.

Example
Es = (E; @ E2) ® Ey is not in reduced representation

Sum(0, %) is not in sum-product reduced represenation
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Definition
e An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)
with f; € G*

e H € SumProd(G) is in sum-product reduced representation if

> it is in reduced representation;
> for each Sum(l, A) and Prod(l, A) in H the following holds:
> Ais in reduced representation as given in (1);
» [ >max(L(f1),...,L(f)) (i.e., no poles occur);
> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.

Example
Es = (Ey @ F2) © Ey is not in reduced representation

Sum(0, %) is not in sum-product reduced represenation

Sum(1,Sum(2, 1)) is not in sum-product reduced represenation
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Definition
e An expression A € SumProd(G) is in reduced representation if

A=(fioP)d(LoR)a - a(f0P) (1)
with f; € G*

e H € SumProd(G) is in sum-product reduced representation if
> it is in reduced representation;
> for each Sum(l, A) and Prod(l, A) in H the following holds:

> Ais in reduced representation as given in (1);
» [ >max(L(f1),...,L(f)) (i.e., no poles occur);
> the lower bound [ is greater than or equal to the lower bounds of the
sums and products inside of A.
Lemma

For any A € SumProd(G), there is a B € SumProd(G) in sum-product
reduced representation and A € N such that

A(n) =B(n) VYn >\
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Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.
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there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.
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» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.



Part 1: A term algebra for nested sums over hypergeometric products
Key-Definitions: Let W C XII(G).
SumProd(W,G) =the set of elements from SumProd(G) which

are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.
> W is called shift-stable over G if for any product or sum in W the

multiplicand or summand is built by sums and products from W.

Example
W = {Sum(1,Sum(1, 1), 1)} is neither shift-closed nor shift-stable;

z



Part 1: A term algebra for nested sums over hypergeometric products
Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.

Example
W = {Sum(1,Sum(1, 1), 1)} is neither shift-closed nor shift-stable;

W = {Sum(1, 1), Sum(1,Sum(1, 1), 1)} is shift-closed and shift-stable;



Part 1: A term algebra for nested sums over hypergeometric products
Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.

Example
W = {Sum(1,Sum(1, 1), 1)} is neither shift-closed nor shift-stable;

W = {Sum(1, 1), Sum(1,Sum(1, 1), 1)} is shift-closed and shift-stable;

W is shift-stable W is shift-closed

=
<+



Part 1: A term algebra for nested sums over hypergeometric products
Key-Definitions: Let W C XII(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W.

» W is called shift-closed over G if for any A € SumProd(W,G), s € Z
there are B € SumProd(WW,G) and 6 € N such that

A(n+s)=B(n) Vn>o.

> W is called shift-stable over G if for any product or sum in W the
multiplicand or summand is built by sums and products from W.

> W is called canonical reduced over G if for any
A, B € SumProd(W, G) with

A(n)=B(n) Vn>94

for some & € N the following holds: A and B are the same up to
permutations of the operands in @ and ©.



Part 1: A term algebra for nested sums over hypergeometric products

Definition

W C XII(G) is called o-reduced over G if
1. the elements in W are in sum-product reduced form,
2. W is shift-stable (and thus shift-closed) and
3. W is canonical reduced.

In particular, A € SumProd(W,G) is called o-reduced (w.r.t. W) if W is
o-reduced over G.
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Definition

W C ¥II(G) is called o-reduced over G if
1. the elements in W are in sum-product reduced form,
2. W is shift-stable (and thus shift-closed) and
3. W is canonical reduced.

In particular, A € SumProd(W,G) is called o-reduced (w.r.t. W) if W is
o-reduced over G.

Problem SigmaReduce: Compute a o-reduced representation

Given: Ajp,..., A, € SumProd(G) with G = K(z).

Find: a o-reduced set W = {T1,...,T.} C XII(G),
B;...,By € SumProd(W,G) and d1,...,0, € N
such that for all 1 < i <7 we get
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Application: Canonical representations in term algebras

Ay Az in SumProd(G)
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Application: Canonical representations in term algebras

ev(Ay,n) = ev(A2,m)  in SumProd(G)
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Application: Canonical representations in term algebras

Ay Ay in SumProd(G)

o-reduced
wrt.aW

By By

Vn € N ev(A41,n) = ev(By,n) ev(Ba,n) = ev(Az,n)
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Application: Canonical representations in term algebras

ev(Ai,n) ev(A2,m)  in SumProd(G)

ev(Bg,n) = ev(Az,n)

canonical simplifier

By = DBy



Part 1: A term algebra for nested sums over hypergeometric products

Outline of the talk:

user-level

term algebra
SumProd(G)

| .
user interface ...................................... evl .............................................. (rlng Of sequences)

ev

Y
(formal difference rings)

computer algebra-level



Part 1: A term algebra for nested sums over hypergeometric products

Outline of the talk:

user-level

term algebra
SumProd(G)

| .
user interface ...................................... evl .............................................. (rlng Of sequences)

ev

¥
(formal difference rings)

computer algebra-level



Part 1: A term algebra for nested sums over hypergeometric products

Outline of the talk:

Part 1: A term algebra for nested sums over hypergeometric products
Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings
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Represent H = Sum(1, 1) € SumProd(G) with
n
1
H(n)=H, =) .
(n) 25,
1. aformal ring A= Q(x) [s]
——

rat. fu. field

polynomial ring
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Represent H = Sum(1, 1) € SumProd(G) with
n

n) = H, :Z%
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function

ev': Q(z)xN — Q
a(=)’ otherW|se
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Represent H = Sum(1, 1) € SumProd(G) with
n

n) = Hy, :Z%
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function

USNS

@
if g(n) #0
otherwise
ev: Q(z)[s]xN — Q

ev(s,n)

:Hn
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Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

ev': Q(z)xN - Q
(n)
(M n) = % if g(n) # 0
a(z)’ 0 otherwise
Q

ev’(fi, n)H,ZZ ev(s,n) = H,

N
M a
)
m@.
E
N————
1
M=~

s
Il
=)

Definition: (A, ev) is called an eval-ring
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Represent H = Sum(1, 1) € SumProd(G) with
n
1
Hn)=H,=Y -
(n) ; -

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map
7 A - QV
f = <ev(f, n)>n20

It is almost a ring homomorphism :

m(2)7(2) = (0,1,2,3,...)(0,1, 3,

x

1
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Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map
7 A - QV
f = <ev(f, n)>n20

It is almost a ring homomorphism :

r@)r(l) = (0,1,2,3,...)(0,1, 1, ..0)
I
0,1,1,1,...)
Y

rzdl)y=7(1) = (1,1,1,1,...)



Part 2: A canonical simplifier (based on DR theory)
Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map

T A - QY/~ (an) ~ (by) iff a, = by,
f o= (ev(f,n))n>o0 from a certain point on

It is a ring homomorphism :
T(@)r(3) = (0,1,23,..)(0.1,33,...)
I
0,1,1,1,...)
|

rzdl)y=7(1) = (1,1,1,1,...)
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Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q

Consider the map

T A - QY/~ (an) ~ (by) iff a, = by,
f o= (ev(f,n))n>o0 from a certain point on

It is an injective ring homomorphism (ring embedding):
r@)r(l) = (0,1,2,3,...)(0,1,3,1,...)
I
0,1,1,1,...)
|

rzd)=1(1) = (1,1,1,1,...)
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Represent H = Sum(1, 1) € SumProd(G) with

"1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism

o Q((w) - Q(z)
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Represent H = Sum(1, 1) € SumProd(G) with

"1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism

o' Q(x) - Qz)
r(z = r(z+1)
o: Q@)s] — Q)[s] S s+

Hn+1 =H, +

_1
n+1
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Represent H = Sum(1, 1) € SumProd(G) with

1
H(n)=Hn,=)_ =
k=
1. a formal ring A = Q(z)[s] 1

2. an evaluation functionev: A x N — Q
3. a ring automorphism

o Q(x) - Q)
r(z) = or(z+1)

7 QW] ~ Q@ srr s+
Zfi s' = U/(fi)<3+ x—_1H>Z Hygr = Hy + 37
i= i=0

Definition: (A, o) with a ring A and automorphism o is called a
difference ring; the set of constants is

consteA = {c € A|o(c) =c}
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Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) =ev(s+ %H,n) =H, + n+r1 =ev(s,n+1)

0

T(O‘(S)):(1,1+%,1+%+%,...>:S(<0,1,1+%,...>):S(T(S))

shiftdoperator
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Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) =ev(s+ %H,n) =H, + n+r1 =ev(s,n+1)

0

T(o(s)) = (1,1—1—%,1%—%4—%,...) = S((O,l,l—{—%,...)) = S(7(s))
7 is an injective difference ring homomorphism:

K(z)[s] - K(z)[s]

T = T

KN/N KN/N




Part 2: A canonical simplifier (based on DR theory)

Represent H = Sum(1, 1) € SumProd(G) with

n
1
H(n)=Hn,=)_ =
k=1

1. a formal ring A = Q(z)[s]
2. an evaluation function ev: A x N — Q
3. a ring automorphism o : A — A

ev and o interact:

ev(o(s),n) =ev(s+ %H,n) =H, + n+r1 =ev(s,n+1)

0

T(O‘(S)):(1,1+%,1+%+%,...>:S(<0,1,1+%,...>):S(T(S))

7 is an injective difference ring homomorphism:

12

(7(Q@)) [(Hn)nz0l, S) | < (KY/ ~, )
N——
rat. seq.

(K(z)[s], 0)
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General construction

H € SumProd(G)

l

> a formal ring A D G O K with h € A;
> an evaluation function ev : A x N — K with H(n) = ev(h,n);
> a ring automorphism o : A — A with H(n + 1) with o(h).



Part 2: A canonical simplifier (based on DR theory)

A hypergeometric AP S-extension of (K(x),0) is
> aring

A :=K(z)

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=xz+1
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A hypergeometric AP S-extension of (K(x),0) is
> aring

A :=K(z)

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
Skl=(k+1)k!
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A hypergeometric AP S-extension of (K(x),0) is
> aring

A =K(@)[p1,p7 ]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olz)=z+1
Skl=(k+1)k! <+ o(p1)=(z+1)p1
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A hypergeometric AP S-extension of (K(x),0) is
> aring

A =K(@)[p1,p7 ]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products
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A hypergeometric AP S-extension of (K(x),0) is
> aring

A = K(z)[p1, p1 P2, Py Y]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*
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A hypergeometric AP S-extension of (K(x),0) is
> aring

A= K(@)[p1,p1 1p2, 03] - - - [pespe ']

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

U(pe) = QePe Qe € K(l’>*
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A hypergeometric AP S-extension of (K(x),0) is
P> aring

A = K(@)[p1,py 2031 - - - Pes 021 [2]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)y=xz+1
hypergeometric + o(p1) = a1 py ay € K(z)*
products o(p2) = azps as € K(z)*

0(Pe) = GePe a. € K(x)*

(D% & o(z)=-z z2=1
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A hypergeometric AP S-extension of (K(x),0) is
> aring

A = K(@)[p1,p7 2, p7 1 - - - [pes 02 (2]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olzy=xz+1
hypergeometric +  o(p1) = a1 py ay € K(z)*
products o(p2) = agpe az € K(z)*

U(pe) = GePe Qe € K(x>*

~ is a primitive Ath ’}’k o O'(Z) =z ZA -1

root of unity
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A hypergeometric AP S-extension of (K(x),0) is
P> aring

A =K()[p1,py P2, 05 '] - - - [pes v ] [2][51]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
hypergeometric <+ o(p1) =a1p1 a; € K(x)*
products o(p2) = aspe as € K(z)*
0(pe) = GePe a. € K(x)*
7 is a primitive Ath ,yk o O'(Z) =~z ZA -1

root of unity

Hipi=Hi+ 57 < o(s1)=s1+ 03
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A hypergeometric AP S-extension of (K(x),0) is
P> aring

A =K()[p1,py P2, 05 '] - - - [pes v ] [2][51]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

olx)=z+1
hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

U(pe) = QePe Qe € K(ZE)*

~ is a primitive Ath k PN

_ A
root of unity vy U(Z) =7z zh =1

(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
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A hypergeometric AP S-extension of (K(x),0) is
P> aring

A :=K(x) [pl,pfl][pmp;l] e [peape_l][z] [s1][s2]

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

J(pe = QePe e € K({E)*

~ is a primitive Ath k
root of unity v A

)
)
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
o(s2) =sa+ fo  fo € K(@)[p1,p7 '] [pes v '[2][51]

o(z) =7z 2 =1
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A hypergeometric AP S-extension of (K(x),0) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

= QePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

o(z) =7z 2 =1
= 2+f2 f2EK(x)[plapl_l]"‘[peape_l][z][sl]

)
)
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
0(53). =s3+f3 fs € K(@)[pr,pr '] [pes v '][2][51][52]
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Definition (Evaluation function)
Take (A, o) with a subfield K of A with o|g = id

1. ev: A x N — K is called evaluation function for (A, o) if for all
frg€ A ceKand !l € Z there exists a A € N with

Yn > A:ev(e,n) = (2)
Vn > A:ev(f+g,n ) =ev(f,n) +ev(g,n), (3)
Vn = A:ev(fg,n)=ev(f,n)ev(gn), (4)
V> A:ev(a(f),n) =ev(f,n+1). (5)
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Definition (Evaluation function)
Take (A, o) with a subfield K of A with o|g = id

1. ev: A x N — K is called evaluation function for (A, ¢) if for all
frg€ A ceKand !l € Z there exists a A € N with

Yn > A:ev(e,n) = (2)
Vn > A:ev(f+g,n ) =ev(f,n) +ev(g,n), (3)
Vn = A:ev(fg,n)=ev(f,n)ev(gn), (4)
V> A:ev(a(f),n) =ev(f,n+1). (5)

2. L: A — N is called o-function if for any f, g € A with
A =max(L(f),L(g)) the properties (3) and (4) hold and for any
fe€Aandl €Zwith A\ = L(f) + max(0, —I) property (5) holds.
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Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: ExXN—K, L:E—N




Part 2: A canonical simplifier (based on DR theory)

Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: ExXN—K, L:E—N

Vn Z L(tz) :
ev(ti,n) = T;(n) € XII(G)



Part 2: A canonical simplifier (based on DR theory)

Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
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Vn Z L(tz) :
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W ={Ty,...,T.} C ¥1I(G) is sum-product reduced and
shift stable: sums/products in T; are from {T4,...,T;_1}.
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Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: ExXN—K, L:E—N

Vn Z L(tl) .
ev(t;,n) =T;(n) € XII(G)

W ={Ty,...,T.} C ¥1I(G) is sum-product reduced and
shift stable: sums/products in T; are from {T4,...,T;_1}.

In particular, if f € E\ {0}, then we can take the "unique”
0 # F € SumProd({T1,...,T.},G) with F(n) = ev(f,n) for all n > L(f).
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Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: ExXN—K, L:E—N

Vn Z L(tl) .
ev(t;,n) =T;(n) € XII(G)

W ={Ty,...,T.} C ¥1I(G) is sum-product reduced and
shift stable: sums/products in T; are from {T4,...,T;_1}.

In particular, if f € E\ {0}, then we can take the "unique”

0 # F € SumProd({T1,...,T.},G) with F(n) = ev(f,n) for all n > L(f).
Definition

For f € IE we also write expr(f) = F for this particular F'.
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Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: ExXN—K, L:E—N

Vn Z L(tz) :
ev(t;,n) =T;(n) € XII(G)

W ={Ty,...,T.} C ¥1I(G) is sum-product reduced and
shift stable: sums/products in T; are from {T4,...,T;_1}.

Example
For f =z + £t 5% € Q(z)[s] we obtain

expr(f) = F =2 ® (2L © (Sum(1, 2%4) € Sum(Q(2)))
with F'(n) = ev(f,n) for all n > 1.
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Connection between SumProd(G) and hypergeometric AP S-extension

(E,o) with E = G(t1) ... (t.) a hypergeometric AP S-extension of (G, o)
ev: ExXN—K, L:E—N

Vn Z L(tz) :
ev(t;,n) = T;(n) € XII(G)

W ={Ty,...,T.} C ¥1I(G) is sum-product reduced and
shift stable: sums/products in T; are from {T4,...,T;_1}.
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Difference ring theory in action

Let (E, o) be a hypergeometric AP S-extension of (G, o) with
ev:ExN—Kandlet 7:E — KN/ ~ be the K-homomorphism given by

7(f) = (ev(f,n))n>0-
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Let (E, o) be a hypergeometric AP S-extension of (G, o) with
ev:ExN—Kandlet 7:E — KN/ ~ be the K-homomorphism given by

7(f) = (ev(f,n))n>0-

Lemma
Let W ={T1,...,T.} € XII(G) with T; = expr(t;). Then:

W is canonical reduced < T is injective.
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Difference ring theory in action

Let (E, o) be a hypergeometric AP S-extension of (G, o) with
ev:ExN—Kandlet 7:E — KN/ ~ be the K-homomorphism given by

7(f) = (ev(f,n))n>0-

Lemma
Let W ={T1,...,T.} € XII(G) with T; = expr(t;). Then:

W is canonical reduced < T is injective.

Using difference ring theory we get the following crucial property:

Theorem

T is injective < const,E =K.
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Example

For our difference field G = K(x) with o(z) = x + 1 and const,K = K we
have const,K(z) = K.
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Example

For our difference field G = K(z) with o(z) = 2 + 1 and const,K = K we
have const,K(z) = K.

Definition

A hypergeometric APS-extension (E, o) of (G, o) is called
hypergeometric RI[Y-extension if

const,E = K.
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Example

For our difference field G = K(z) with o(z) = 2 + 1 and const,K = K we
have const,K(z) = K.

Definition

A hypergeometric APS-extension (E, o) of (G, o) is called
hypergeometric RI[Y-extension if

const,E = K.

Theorem

Let W ={T1,...,T.} C ¥II(G) be in sum-product reduced representation
and shift-stable, i.e., for each 1 < i < e the arising sums and products in T;
are contained in {T1,...,T;_1}. Then the following is equivalent:

1. There is a hypergeometric RI1Y-extension (E, o) of (G, o) with
E =G(t1) ... (t.) equipped with an evaluation function ev with
T; = expr(t;) € X1II(G) for1 <i<e.

2. W is o-reduced over G.
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This yields a strategy (actually the only strategy for shift-stable sets).

A strategy to solve Problem SigmaReduce

Given: Aj,..., A, € SumProd(G) with G = K(z).

Find: a o-reduced set W = {T1,...,T.} C XII(G) with By ..., B, €
SumProd(W,G) and 61,...,d, € N such that A;(n) = B;(n)
holds for all n > 6§; and 1 < i < r.
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This yields a strategy (actually the only strategy for shift-stable sets).

A strategy to solve Problem SigmaReduce

Given: Aj,..., A, € SumProd(G) with G = K(z).
Find: a o-reduced set W = {T1,...,T.} C XII(G) with By ..., B, €
SumProd(W,G) and 61,...,d, € N such that A;(n) = B;(n)
holds for all n > 6§; and 1 < i < r.
1. Construct RIIY-extension (E, o) of (G,0) with E = G(t1) ... (t.)
equipped with ev : E x N — K such that we get a1,...,a, € E and
01,...,04 € N with

Ai(n) =ev(a;,n) VYn > 9. (9)



Part 2: A canonical simplifier (based on DR theory)

This yields a strategy (actually the only strategy for shift-stable sets).

A strategy to solve Problem SigmaReduce

Given: Aj,..., A, € SumProd(G) with G = K(z).
Find: a o-reduced set W = {T1,...,T.} C XII(G) with By ..., B, €
SumProd(W,G) and 61,...,d, € N such that A;(n) = B;(n)
holds for all n > 6§; and 1 < i < r.
1. Construct RIIY-extension (E, o) of (G,0) with E = G(t1) ... (t.)
equipped with ev : E x N — K such that we get a1,...,a, € E and
01,...,04 € N with

Ai(n) =ev(a;,n) VYn > 9. (9)
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Part 3: Construction of appropriate difference rings

A hypergeometric AP S-extension of (K(x),0) is
P> aring

A = K(@)lp1, p1 Nlp2,p3 ' - - [pe, vz 'N[2][s1][s2] s3] - -

> with an automorphism where o(c) = ¢ for all ¢ € K and where

hypergeometric < o(p1) =a1p1 a1 € K(z)*
products o(p2) = asps as € K(z)*

0(Pe) = GePe a. € K(x)*

~ is a primitive Ath k
root of unity v A

)
o(z) =7z 2 =1
(nested) sum < o(s1)=s1+fi fi € K@)[p1,p7'] ... [pe,p2 '][2]
)
)

=s2+fr f2 € K(@)lp1,p1']- . [pepe ' [e][s1]
o(ss) =sa+fs fo € K@)lpr,pr']- - [pe,pe ' ][2][su]ls2]
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such that const,E = K



Part 3: Construction of appropriate difference rings

Represent sums (extension of Karr's result, 1981)

> Let (A, o) be a difference ring with constant set
const,A :={k € A |o(k) =k}.

Note 1: const,A is a ring that contains Q

Note 2: We always take care that const,A is a field
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Represent products (extension of Karr's result, 1981)

> Let (A, o) be a difference ring with constant field

const,A :={k € A |o(k) =k}.

> Take the ring of Laurent polynomials A[¢, %]
> Extend the shift operator s.t.

o(t)=at for some a € A™.

Then const,A[t,t~!] = const, A iff

Bg € AN{0}In € Z\{0}: |o(g)=a

n

9

There are 3 cases:
1. |§ﬂg € A\{0}n € Z\{0} : 0(g) = a" g |: (Alt, 1]),0) is a M-ext. of (A, 0)

2.

3.

t

dg € A\{0} : 0(9) = ag| No need for a Il-extensi

dg € A\{0} : 0(g) =a" g only forn € Z\ {0,1} |

on!
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The hypergeometric case

> Take the difference field (K(z), o) with o|x =id and o(z) = = + 1.
> Let ay,...,a, € K(z)*
> Then there is a difference ring

E=K(z)[tr,t7].. [t t'] - [2]

~ AN
tower of TT-ext. (=1)k or v

with
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» 0(z) =~z and z* = 1 for some primitive Ath root of unity v € K*
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such that for 1 < i < r there are g; € E* with

U(Qi) =05 9;

Note: There are similar results for the g-rational, multi-basic and mixed case
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Conclusion. All results can be generalized to the following setting:

> the mixed multibasic hypergeometric case:
G:=K(z,x1,...,2,) with K= K(q1,...,q,) For f = p € G with
p,q € K[z, 21,...,2,] where ¢ # 0 and p, ¢ being coprlme we define

if q(k,qt,....¢¥) =0

ev(f,k): p(k,q17 L i L
dodbgty Fatk,ar,. . q) # 0.
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» simple products: Prod*(G) is the smallest set that contains 1 with:

1. If r € R then RPow(r) € Prod™(G).

2. If f€G*, 1 eNwith [ > Z(f) then Prod(l,f ) € Prod™(G).
3. If p,q € Prod™(G) then p ® q € Prod*(G).

4. 1f p € Prod*(G) and z € Z\ {0} then 122 € Prod*(G).
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Conclusion

Conclusion. All results can be generalized to the following setting:

> the mixed multibasic hypergeometric case:

G :=K(z,z1,...,z,) with K= K(q,...,qy) For f = e G with
p,q € K[z, 21,...,2,] where ¢ # 0 and p, ¢ being coprlme we define

ev(f, k) = < plkgh,at) . .
by Talkdr,... q) #0.

nested products: Prod*(G) is the smallest set that contains 1 with:

>
1. If r € R then RPow(r) € Prod*(G).
2.
3
4

If p € Prod™(G), f € G*, 1 € Nwith [ > Z(f) then Prod(l,f®p) € Prod*(G).

. If p,q € Prod"(G) then p ® q € Prod*(G).
If p € Prod*(G) and z € Z \ {0} then &z € Prod*(G).

For further details see

Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in:
Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Bliimlein and C. Schneider (ed.),

Texts and Monographs in Symbolic Computuation, 2021. Springer, arXiv:2102.01471 [cs.SC]



