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Outline of the talk:

Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings



Part 1: A term algebra for nested sums over hypergeometric products 4

The ground field (throughout this talk): G = K(x)

I For any element f = p
q ∈ G with p, q ∈ K[x] where q 6= 0 and p, q

being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) 6= 0.

I We define L(f) to be the minimal value δ ∈ N such that q(k) 6= 0
holds for all k ≥ δ; further,

Z(f) = max(L(1
p), L(1

q )) if f 6= 0.
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The ground field (throughout this talk): G = K(x)
I For any element f = p

q ∈ G with p, q ∈ K[x] where q 6= 0 and p, q
being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) 6= 0.

I We define L(f) to be the minimal value δ ∈ N such that q(k) 6= 0
holds for all k ≥ δ; further,

Z(f) = max(L(1
p), L(1

q )) if f 6= 0.

Example: For

f =
p

q
=

x− 4

(x− 3)(x− 1)
we get

(ev(f, n))n≥0 = (−4
3 , 0, 2, 0, 0,

1
8 , . . . ) ∈ QN

For n ≥ L(f) = 4 no poles arise;

for n ≥ Z(f) = max(L(1
p), L(1

q )) = max(4, 5) = 5 no zeroes arise.
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The ground field (throughout this talk): G = K(x)
I For any element f = p

q ∈ G with p, q ∈ K[x] where q 6= 0 and p, q
being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) 6= 0.

I We define L(f) to be the minimal value δ ∈ N such that q(k) 6= 0
holds for all k ≥ δ; further,

Z(f) = max(L(1
p), L(1

q )) if f 6= 0.

I We define

R = {r ∈ K \ {1} | r is a root of unity}
with the function ord : R → Z≥1 where

ord(r) = min{n ∈ Z≥1 | rn = 1}.
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G −→ SumProd(G) (nested sums over hypergeometric products)

Let#∧ , ⊕, �, Sum, Prod and RPow be operations with the signatures

#∧ : SumProd(G)× Z → SumProd(G)
⊕ : SumProd(G)× SumProd(G) → SumProd(G)
� : SumProd(G)× SumProd(G) → SumProd(G)
Sum : N× SumProd(G) → SumProd(G)
Prod : N× SumProd(G) → SumProd(G)
RPow : R → SumProd(G).

Prod∗(G)= the smallest set that contains 1 with the following properties:
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Prod∗(G)= the smallest set that contains 1 with the following properties:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).
2. If f ∈ G∗ and l ∈ N with l ≥ Z(f) then Prod(l, f) ∈ Prod∗(G).
3. If p, q ∈ Prod∗(G) then p� q ∈ Prod∗(G).
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Furthermore, we define

Π(G) ={RPow(r) | r ∈ R} ∪ {Prod(l, f) | f ∈ G, l ∈ N}.



Part 1: A term algebra for nested sums over hypergeometric products 5

G −→ SumProd(G) (nested sums over hypergeometric products)

Let#∧ , ⊕, �, Sum, Prod and RPow be operations with the signatures

#∧ : SumProd(G)× Z → SumProd(G)
⊕ : SumProd(G)× SumProd(G) → SumProd(G)
� : SumProd(G)× SumProd(G) → SumProd(G)
Sum : N× SumProd(G) → SumProd(G)
Prod : N× SumProd(G) → SumProd(G)
RPow : R → SumProd(G).

Prod∗(G)= the smallest set that contains 1 with the following properties:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).
2. If f ∈ G∗ and l ∈ N with l ≥ Z(f) then Prod(l, f) ∈ Prod∗(G).
3. If p, q ∈ Prod∗(G) then p� q ∈ Prod∗(G).
4. If p ∈ Prod∗(G) and z ∈ Z \ {0} then p#∧z ∈ Prod∗(G).

Example: In G = Q(x) we get

P = (Prod(1, x)︸ ︷︷ ︸
∈Π(G)

#∧(−2))� RPow(−1)︸ ︷︷ ︸
Π(G)

∈ Prod∗(G).



Part 1: A term algebra for nested sums over hypergeometric products 6

G −→ SumProd(G) (nested sums over hypergeometric products)
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1. For all f, g ∈ SumProd(G) we have f ⊕ g ∈ SumProd(G).
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4. For all f ∈ SumProd(G) and l ∈ N we have Sum(l, f) ∈ SumProd(G).

Furthermore, the set of nested sums over hypergeometric products is
given by

Σ(G) = {Sum(l, f) | l ∈ N and f ∈ SumProd(G)}
and the set of nested sums and hypergeometric products is given by

ΣΠ(G) = Σ(G) ∪Π(G).
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G −→ SumProd(G) (nested sums over hypergeometric products)

SumProd(G) = the smallest set containing G ∪ Prod∗(G) with:

1. For all f, g ∈ SumProd(G) we have f ⊕ g ∈ SumProd(G).
2. For all f, g ∈ SumProd(G) we have f � g ∈ SumProd(G).
3. For all f ∈ SumProd(G) and k ∈ Z≥1 we have f#∧k ∈ SumProd(G).
4. For all f ∈ SumProd(G) and l ∈ N we have Sum(l, f) ∈ SumProd(G).

Example

With G = K(x) we get, e.g., the following expressions:

E1 = Sum(1,Prod(1, x)) ∈ Σ(G) ⊂ SumProd(G),

E2 = Sum(1, 1
x+1 � Sum(1, 1

x3
)� Sum(1, 1

x)) ∈ Σ(G) ⊂ SumProd(G),

E3 = (E1 ⊕ E2)� E1 ∈ SumProd(G).



Part 1: A term algebra for nested sums over hypergeometric products 7

ev : G× N→ K −→ ev : SumProd(G)× N→ K

1. For f, g ∈ SumProd(G), k ∈ Z \ {0} (k > 0 if f /∈ Prod∗(G)) we set

ev(f#∧k, n) := ev(f, n)k,

ev(f ⊕ g, n) := ev(f, n) + ev(g, n),

ev(f � g, n) := ev(f, n) ev(g, n);

2. for r ∈ R and Sum(l, f),Prod(λ, g) ∈ SumProd(G) we define

ev(RPow(r), n) :=
n∏
i=1

r = rn,

ev(Sum(l, f), n) :=
n∑
i=l

ev(f, i),

ev(Prod(λ, g), n) :=
n∏
i=λ

ev(g, i) =
n∏
i=λ

g(i).

Note: Π(G) defines all hypergeometric products (which
evaluate to sequences with non-zero entries).
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ev applied to f ∈ SumProd(G) represents a sequence.
f can be considered as a simple program and ev(f, n) with n ∈ N executes
it (like an interpreter/compiler) yielding the nth entry of the represented
sequence.

Definition
For F ∈ SumProd(G) and n ∈ N we write F (n) := ev(F, n).

Example

For Ei ∈ SumProd(K(x)) with i = 1, 2, 3 we get

E1(n) = ev(E1, n) = ev(Sum(1,Prod(1, x)), n) =
n∑
k=1

k∏
i=1

i =
n∑
k=1

k!,
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E2(n) = ev(Sum(1, 1
x+1 � Sum(1, 1

x3
)� Sum(1, 1

x)), n)

=

n∑
k=1

1
1+k

( k∑
i=1

1
i3

) k∑
i=1

1
i
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E2(n) = ev(Sum(1, 1
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x3
)� Sum(1, 1

x)), n)
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1
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E3(n) = (E1(n) + E2(n))E1(n)
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Definition
• An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 � P1)⊕ (f2 � P2)⊕ · · · ⊕ (fr � Pr) (1)

with fi ∈ G∗ and

Pi = (ai,1
#∧zi,1)� (ai,2

#∧zi,2)� · · · � (ai,ni
#∧zi,ni)
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• An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 � P1)⊕ (f2 � P2)⊕ · · · ⊕ (fr � Pr) (1)

with fi ∈ G∗ and

Pi = (ai,1
#∧zi,1)� (ai,2

#∧zi,2)� · · · � (ai,ni
#∧zi,ni)

for 1 ≤ i ≤ r where

I ai,j = Sum(li,j , fi,j) with li,j ∈ N, fi,j ∈ SumProd(G) and zi,j ∈ Z≥1,

I ai,j = Prod(li,j , fi,j) with li,j ∈ N, fi,j ∈ Prod∗(G) and zi,j ∈ Z \ {0},
I ai,j = RPow(fi,j) with fi,j ∈ R and 1 ≤ zi,j < ord(ri,j)

such that the following properties hold:

1. for each 1 ≤ i ≤ r and 1 ≤ j < j′ < ni we have ai,j 6= ai,j′ ;

2. for each 1 ≤ i < i′ ≤ r with ni = nj there does not exist a σ ∈ Sni
with Pi′ = (ai,σ(1)

#∧zi,σ(1))� (ai,σ(2)
#∧zi,σ(2))� · · · � (ai,σ(ni)

#∧zi,σ(ni)).
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Definition
• An expression A ∈ SumProd(G) is in reduced representation if

A = (f1 � P1)⊕ (f2 � P2)⊕ · · · ⊕ (fr � Pr) (1)

with fi ∈ G∗

• H ∈ SumProd(G) is in sum-product reduced representation if

I it is in reduced representation;

I for each Sum(l, A) and Prod(l, A) in H the following holds:
I A is in reduced representation as given in (1);

I l ≥ max(L(f1), . . . , L(fr)) (i.e., no poles occur);
I the lower bound l is greater than or equal to the lower bounds of the

sums and products inside of A.
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I For any element f = p
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being coprime we define

ev(f, k) =

{
0 if q(k) = 0
p(k)
q(k) if q(k) 6= 0.

I We define L(f) to be the minimal value δ ∈ N such that q(k) 6= 0
holds for all k ≥ δ; further,
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I the lower bound l is greater than or equal to the lower bounds of the

sums and products inside of A.

Example

E3 = (E1 ⊕ E2)� E1 is not in reduced representation

Sum(0, 1
x) is not in sum-product reduced represenation

Sum(1,Sum(2, 1
x)) is not in sum-product reduced represenation
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Definition
• An expression A ∈ SumProd(G) is in reduced representation if
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Key-Definitions: Let W ⊆ ΣΠ(G).

SumProd(W,G) =the set of elements from SumProd(G) which
are in reduced representation and the arising
sums/products are taken from W .

I W is called shift-closed over G if for any A ∈ SumProd(W,G), s ∈ Z
there are B ∈ SumProd(W,G) and δ ∈ N such that

A(n+ s) = B(n) ∀n ≥ δ.
I W is called shift-stable over G if for any product or sum in W the

multiplicand or summand is built by sums and products from W .

I W is called canonical reduced over G if for any
A,B ∈ SumProd(W,G) with

A(n) = B(n) ∀n ≥ δ
for some δ ∈ N the following holds: A and B are the same up to
permutations of the operands in ⊕ and �.
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Definition
W ⊆ ΣΠ(G) is called σ-reduced over G if

1. the elements in W are in sum-product reduced form,

2. W is shift-stable (and thus shift-closed) and

3. W is canonical reduced.

In particular, A ∈ SumProd(W,G) is called σ-reduced (w.r.t. W ) if W is
σ-reduced over G.

Problem SigmaReduce: Compute a σ-reduced representation

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G),

B1 . . . , Bu ∈ SumProd(W,G) and δ1, . . . , δu ∈ N
such that for all 1 ≤ i ≤ r we get

Ai(n) = Bi(n) n ≥ δi.



Part 1: A term algebra for nested sums over hypergeometric products 14

Definition
W ⊆ ΣΠ(G) is called σ-reduced over G if

1. the elements in W are in sum-product reduced form,

2. W is shift-stable (and thus shift-closed) and

3. W is canonical reduced.

In particular, A ∈ SumProd(W,G) is called σ-reduced (w.r.t. W ) if W is
σ-reduced over G.

Problem SigmaReduce: Compute a σ-reduced representation

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G),

B1 . . . , Bu ∈ SumProd(W,G) and δ1, . . . , δu ∈ N
such that for all 1 ≤ i ≤ r we get

Ai(n) = Bi(n) n ≥ δi.



Part 1: A term algebra for nested sums over hypergeometric products 15

Application: Canonical representations in term algebras

A1 A2 in SumProd(G)

σ-reduced
w.r.t. a W

B1 B2

∀n ∈ N ev(A1, n) = ev(B1, n) = ev(B2, n) = ev(A2, n)

m canonical simplifier

B1 = B2
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Outline of the talk:
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Outline of the talk:

Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings



Part 2: A canonical simplifier (based on DR theory) 18

Represent H = Sum(1, 1
x) ∈ SumProd(G) with

H(n) = Hn =

n∑
k=1

1

k
.

1. a formal ring
2. an evaluation function
3. a ring automorphism

m
τ(σ(s)) = 〈1, 1 + 1

2 , 1 + 1
2 + 1

3 , . . . 〉 = S (〈0, 1, 1 + 1
2 , . . . 〉) = S(τ(s))

τ is an injective difference ring homomorphism:

(K(x)[s], σ)
τ' (τ(Q(x))︸ ︷︷ ︸

rat. seq.

[〈Hn〉n≥0], S) ≤ (KN/ ∼, S)
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General construction

H ∈ SumProd(G)

y
I a formal ring A ⊇ G ⊇ K with h ∈ A;

I an evaluation function ev : A× N→ K with H(n) = ev(h, n);

I a ring automorphism σ : A→ A with H(n+ 1) with σ(h).
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A hypergeometric APS-extension of (K(x), σ) is

I a ring

A := K(x)

[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

I with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

products σ(p2) = a2p2 a2 ∈ K(x)∗

...
σ(pe) = aepe ae ∈ K(x)∗

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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Definition (Evaluation function)

Take (A, σ) with a subfield K of A with σ|K = id.

1. ev : A× N→ K is called evaluation function for (A, σ) if for all
f, g ∈ A, c ∈ K and l ∈ Z there exists a λ ∈ N with

∀n ≥ λ : ev(c, n) = c, (2)

∀n ≥ λ : ev(f + g, n) = ev(f, n) + ev(g, n), (3)

∀n ≥ λ : ev(f g, n) = ev(f, n) ev(g, n), (4)

∀n ≥ λ : ev(σl(f), n) = ev(f, n+ l). (5)

2. L : A→ N is called o-function if for any f, g ∈ A with
λ = max(L(f), L(g)) the properties (3) and (4) hold and for any
f ∈ A and l ∈ Z with λ = L(f) + max(0,−l) property (5) holds.

Let F ∈ SumProd(G), (A, σ) be a DR containing G and equipped with an
evaluation function ev : A× N→ K. We say that f ∈ A models F if
ev(f, n) = F (n) holds for all n ≥ λ for some λ ∈ N.
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Connection between SumProd(G) and hypergeometric APS-extension

(E, σ) with E = G〈t1〉 . . . 〈te〉 a hypergeometric APS-extension of (G, σ)
ev : E× N→ K, L : E→ N

y ∀n ≥ L(ti) :
ev(ti, n) = Ti(n) ∈ ΣΠ(G)

W = {T1, . . . , Te} ⊆ ΣΠ(G) is sum-product reduced and
shift stable: sums/products in Ti are from {T1, . . . , Ti−1}.
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0 6= F ∈ SumProd({T1, . . . , Te},G) with F (n) = ev(f, n) for all n ≥ L(f).
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(E, σ) with E = G〈t1〉 . . . 〈te〉 a hypergeometric APS-extension of (G, σ)
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shift stable: sums/products in Ti are from {T1, . . . , Ti−1}.

In particular, if f ∈ E \ {0}, then we can take the ”unique”
0 6= F ∈ SumProd({T1, . . . , Te},G) with F (n) = ev(f, n) for all n ≥ L(f).

Definition
For f ∈ E we also write expr(f) = F for this particular F .
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Connection between SumProd(G) and hypergeometric APS-extension

(E, σ) with E = G〈t1〉 . . . 〈te〉 a hypergeometric APS-extension of (G, σ)
ev : E× N→ K, L : E→ Ny ∀n ≥ L(ti) :

ev(ti, n) = Ti(n) ∈ ΣΠ(G)

W = {T1, . . . , Te} ⊆ ΣΠ(G) is sum-product reduced and
shift stable: sums/products in Ti are from {T1, . . . , Ti−1}.

Example

For f = x+ x+1
x s4 ∈ Q(x)[s] we obtain

expr(f) = F = x⊕ (x+1
x � (Sum(1, 1

x)#∧4) ∈ Sum(Q(x)))

with F (n) = ev(f, n) for all n ≥ 1.
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Connection between SumProd(G) and hypergeometric APS-extension

(E, σ) with E = G〈t1〉 . . . 〈te〉 a hypergeometric APS-extension of (G, σ)
ev : E× N→ K, L : E→ Ny ∀n ≥ L(ti) :

ev(ti, n) = Ti(n) ∈ ΣΠ(G)

x
W = {T1, . . . , Te} ⊆ ΣΠ(G) is sum-product reduced and
shift stable: sums/products in Ti are from {T1, . . . , Ti−1}.
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Difference ring theory in action

Let (E, σ) be a hypergeometric APS-extension of (G, σ) with
ev : E× N→ K and let τ : E→ KN/ ∼ be the K-homomorphism given by

τ(f) = (ev(f, n))n≥0.

Lemma
Let W = {T1, . . . , Te} ∈ ΣΠ(G) with Ti = expr(ti). Then:

W is canonical reduced ⇔ τ is injective.

Using difference ring theory we get the following crucial property:

Theorem

τ is injective ⇔ constσE = K.
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Example

For our difference field G = K(x) with σ(x) = x+ 1 and constσK = K we
have constσK(x) = K.

Definition
A hypergeometric APS-extension (E, σ) of (G, σ) is called
hypergeometric RΠΣ-extension if

constσE = K.

Theorem
Let W = {T1, . . . , Te} ⊂ ΣΠ(G) be in sum-product reduced representation
and shift-stable, i.e., for each 1 ≤ i ≤ e the arising sums and products in Ti
are contained in {T1, . . . , Ti−1}. Then the following is equivalent:

1. There is a hypergeometric RΠΣ-extension (E, σ) of (G, σ) with
E = G〈t1〉 . . . 〈te〉 equipped with an evaluation function ev with
Ti = expr(ti) ∈ ΣΠ(G) for 1 ≤ i ≤ e.

2. W is σ-reduced over G.
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This yields a strategy (actually the only strategy for shift-stable sets).

A strategy to solve Problem SigmaReduce

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G) with B1 . . . , Bu ∈

SumProd(W,G) and δ1, . . . , δu ∈ N such that Ai(n) = Bi(n)
holds for all n ≥ δi and 1 ≤ i ≤ r.

1. Construct RΠΣ-extension (E, σ) of (G, σ) with E = G〈t1〉 . . . 〈te〉
equipped with ev : E× N→ K such that we get a1, . . . , au ∈ E and
δ1, . . . , δu ∈ N with

Ai(n) = ev(ai, n) ∀n ≥ δi. (9)

2. Set W = {T1, . . . , Te} with Ti := expr(ti) ∈ ΣΠ(G) for 1 ≤ i ≤ e.

3. Set Bi := expr(ai) ∈ SumProd(W,G) for 1 ≤ i ≤ u.

4. Return W , (B1, . . . , Bu) and (δ1, . . . , δu).
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Outline of the talk:

Part 1: A term algebra for nested sums over hypergeometric products

Part 2: A canonical simplifier (justified by difference ring theory)

Part 3: Construction of appropriate difference rings
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A hypergeometric APS-extension of (K(x), σ) is
I a ring

A := K(x)[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

I with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

hypergeometric ↔ σ(p1) = a1 p1 a1 ∈ K(x)∗

products σ(p2) = a2p2 a2 ∈ K(x)∗
...

σ(pe) = aepe ae ∈ K(x)∗

γ is a primitive λth
root of unity

γk ↔ σ(z) = γ z zλ = 1

(nested) sum ↔ σ(s1) = s1 + f1 f1 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z]

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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Represent sums (extension of Karr’s result, 1981)

I Let (A, σ) be a difference ring with constant set

constσA := {k ∈ A | σ(k) = k}.

Note 1: constσA is a ring that contains Q

Note 2: We always take care that constσA is a field

I Adjoin a new variable t to A (i.e., A[t] is a polynomial ring).

I Extend the shift operator s.t.

σ(t) = t+ f for some f ∈ A.
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Represent products (extension of Karr’s result, 1981)

I Let (A, σ) be a difference ring with constant field

constσA := {k ∈ A | σ(k) = k}.

I Take the ring of Laurent polynomials A[t, 1
t ].

I Extend the shift operator s.t.

σ(t) = a t for some a ∈ A∗.
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@n ∈ Z \ {0} :

σ(g) = a g
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The hypergeometric case

I Take the difference field (K(x), σ) with σ|K = id and σ(x) = x+ 1.

I Let α1, . . . , αr ∈ K(x)∗

I Then there is a difference ring

E

= K(x) [t1, t
−1
1 ] . . . [te, t

−1
e ]︸ ︷︷ ︸

tower of Π-ext.

[z]︸︷︷︸
(−1)k or γk

with
I σ(ti)

ti
∈ K(x)∗ for 1 ≤ i ≤ e

I σ(z) = γ z and zλ = 1 for some primitive λth root of unity γ ∈ K∗

I constσE = K

such that for 1 ≤ i ≤ r there are gi ∈ E∗ with

σ(gi) = αi gi

Note: There are similar results for the q-rational, multi-basic and mixed case
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A hypergeometric RΠΣ-extension of (K(x), σ) is
I a ring

A := K(x)[p1, p
−1
1 ][p2, p

−1
2 ] . . . [pe, p

−1
e ][z][s1][s2][s3] . . .

I with an automorphism where σ(c) = c for all c ∈ K and where

σ(x) = x+ 1

hypergeometric ↔ σ(p1) = a1 p1 a1 ∈ K(x)∗

products σ(p2) = a2p2 a2 ∈ K(x)∗
...

σ(pe) = aepe ae ∈ K(x)∗

γ is a primitive λth
root of unity

γk ↔ σ(z) = γ z zλ = 1

(nested) sum ↔ σ(s1) = s1 + f1 f1 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z]

σ(s2) = s2 + f2 f2 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1]

σ(s3) = s3 + f3 f3 ∈ K(x)[p1, p
−1
1 ] . . . [pe, p

−1
e ][z][s1][s2]

...

such that constσE = K
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This yields a strategy (actually the only strategy for shift-stable sets).

A strategy to solve Problem SigmaReduce

Given: A1, . . . , Au ∈ SumProd(G) with G = K(x).
Find: a σ-reduced set W = {T1, . . . , Te} ⊂ ΣΠ(G) with B1 . . . , Bu ∈

SumProd(W,G) and δ1, . . . , δu ∈ N such that Ai(n) = Bi(n)
holds for all n ≥ δi and 1 ≤ i ≤ r.

1. Construct RΠΣ-extension (E, σ) of (G, σ) with E = G〈t1〉 . . . 〈te〉
equipped with ev : E× N→ K such that we get a1, . . . , au ∈ E and
δ1, . . . , δu ∈ N with

Ai(n) = ev(ai, n) ∀n ≥ δi. (9)

2. Set W = {T1, . . . , Te} with Ti := expr(ti) ∈ ΣΠ(G) for 1 ≤ i ≤ e.

3. Set Bi := expr(ai) ∈ SumProd(W,G) for 1 ≤ i ≤ u.

4. Return W , (B1, . . . , Bu) and (δ1, . . . , δu).
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Conclusion. All results can be generalized to the following setting:

I the mixed multibasic hypergeometric case:
G := K(x, x1, . . . , xv) with K = K(q1, . . . , qv) For f = p

q ∈ G with
p, q ∈ K[x, x1, . . . , xv] where q 6= 0 and p, q being coprime we define

ev(f, k) =

0 if q(k, qk1 , . . . , q
k
v ) = 0

p(k,qk1 ,...,q
k
v )

q(k,qk1 ,...,q
k
v )

if q(k, qk1 , . . . , q
k
v ) 6= 0.

I simple products: Prod∗(G) is the smallest set that contains 1 with:

1. If r ∈ R then RPow(r) ∈ Prod∗(G).

2. If

p ∈ Prod∗(G),

f ∈ G∗, l ∈ N with l ≥ Z(f) then Prod(l,f

�p

) ∈ Prod∗(G).

3. If p, q ∈ Prod∗(G) then p� q ∈ Prod∗(G).

4. If p ∈ Prod∗(G) and z ∈ Z \ {0} then p#∧z ∈ Prod∗(G).

For further details see
Term Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. To appear in:
Anti-Differentiation and the Calculation of Feynman Amplitudes, J. Blümlein and C. Schneider (ed.),
Texts and Monographs in Symbolic Computuation, 2021. Springer, arXiv:2102.01471 [cs.SC]
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