
Submitted by
Alexander Brunhuemer

Submitted at
RISC
Research Institute for
Symbolic Computation

Supervisor
Univ.-Prof. DI Dr.
Franz Winkler

Co-Supervisor
A.Univ.-Prof. DI Dr.
Wolfgang Schreiner

September 2017

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
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Abstract

The goal of this Bachelor’s thesis is the formal specification and implementation of central
theories and algorithms in the field of discrete mathematics by using the RISC Algorithm
Language (RISCAL), developed at the Research Institute for Symbolic Computation (RISC).
This specification language and associated software system allow the verification of specifica-
tions, by using the concept of finite model checking. Validation on finite models is intended
to serve as a foundation layer for further research on the corresponding generalized theories
on infinite models.

This thesis results in a collection of specifications of exemplarily chosen formalized algo-
rithms of set theory, relation and function theory and graph theory. The algorithms are
specified in different ways (implicit, recursive and procedural), to emphasize the correspond-
ing connections between them.
The evaluation and validation of implemented theories is demonstrated on Dijkstra’s algo-

rithm for finding a shortest path between vertices in a graph.
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Kurzfassung

Das Ziel dieser Bachelorarbeit ist die formale Spezifikation und Implementierung von zen-
tralen Theorien und Algorithmen im Bereich der diskreten Mathematik, mithilfe der RISC
Algorithm Language (RISCAL), die am Research Institute for Symbolic Computation (RISC)
entwickelt wurde. Diese Spezifikationssprache und das dazugehörige Software-System erlau-
ben die Verifizierung von Spezifikationen mittels dem Konzept des Model-Checkings auf end-
lichen Bereichen. Die Validierung auf endlichen Modellen soll als Grundstein zur weiteren
Untersuchung auf verallgemeinerten Theorien auf unendlichen Domänen dienen.
Diese Arbeit resultiert in einer Sammlung von Spezifikationen über beispielhaft ausge-

wählte, formalisierte Algorithmen der Mengenlehre, Relationen- und Funktionentheorie, sowie
Graphentheorie. Die Algorithmen sind auf verschiedene Weisen spezifiziert (implizit, rekursiv
und prozedural), um die entsprechenden Zusammenhänge zwischen diesen hervorzuheben.
Die Auswertung und Validierung der implementierten Theorien wird anhand von Dijkstras

Algorithmus zum Finden eines kürzesten Pfades zwischen Knoten in einem Graphen durch-
geführt.
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1. Introduction and Background 1.2. Verification of Formalization

1. Introduction and Background

More and more systems of our society are dependent on software components. Therefore it
is without doubt of crucial importance that these components are free of errors or possible
difficulties. However, problems can be easily overlooked when tested manually, especially with
growing complexity of systems. Consequently it is just natural, to look out for ways to enable
automated testing and reasoning. To accomplish this, it is absolutely necessary to formalize
increasingly large parts of these systems. Hence it comes without surprise that these fields
of research are trending and knowledge in this area is in great demand. Mathematicians and
computer scientists are commissioned to model the important components and put them into
theories and algorithms.

1.1. Formalization Leads to Automation

The huge technological progress in the last centuries provides us with many useful tools with
opportunities to accelerate processes, which took lots of time before their invention. Comput-
ers allow us to calculate solutions for mathematical problems in a blink of an eye, which would
have taken years to determine by hand. But to use this big advantages, it is a must-have
to formalize the mathematical theories and put them into algorithms, because computers do
not understand informal human intentions. They just execute what the programmer or user
commands them to. The formal specifications have to be absolutely accurate, because even
little mistakes lead to frustrating meaninglessness and the verification will fail for sure.

1.2. Verification of Formalization

Since it can be a really challenging task to formalize mathematical theories or algorithms,
developers created (and still create) more and more tools to facilitate this process. However, if
one wants to verify the formalization of a computer program, which operates on an unbounded
domain of values, the only way to ensure correctness is via the generation of verification
conditions. These are logical formulas whose validity warrants the correctness of the program
with respect to its specification.
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1. Introduction and Background 1.3. Purpose and Results

The usual way to generate these verification conditions, and in further steps proof the
correctness of an algorithm, is as follows: At first the algorithm is specified formally and at-
tached with some annotations, to guide the verification process. These two steps are typically
done by human interaction. From the specification and additional annotations the program
automatically generates the according verification conditions, from which the proof of cor-
rectness should follow with help of e.g. theorem provers or model checkers. Typically this
requires some guidance of a human (tools supporting this step are called interactive proving
assistants). However, where humans interact, mistakes can happen and typically most effort
in the verification process is spent in proving wrong verification conditions (arising from too
strong or weak loop invariants). Therefore it would be great to have a way to be safe that
implemented conditions are correct.
Indeed it is a problem to make fully automatic verification possible. One possibility is

to restrict the domain of values to a finite number instead of operating on an unbounded
domain. To achieve that, one can apply model checkers that checks all possible executions of
the program and consequently it is decidable. RISCAL [21] is a specification language and
associated software system built exactly on this principle of decidability. RISCAL combines
a mathematical modelling language with an algorithmic descriptive language, and has the
purpose to support students and researchers in finding problems in specifications as quickly
as possible. RISCAL operates on finite models; as a consequence all propositions in RISCAL
are decidable.

1.3. Purpose and Results

The goal of this thesis is the formalization of theories from discrete mathematics [19] in the
specification language RISCAL. This includes the specification and assignment of according
meta-information of both the mathematical theories and the resulting algorithms. Further-
more the concepts are validated on small finite domains, which should work as a ground
layer for further research and propositions on infinite models. This approach should not only
give confidence that one is on the correct path, but also save much time to find errors in
considerations, because in most cases errors in the specifications and annotations from the
generalized concepts also appear in the finite domains.
The paper results in a collection of formalized mathematical theories and algorithms from

discrete mathematics, including the specifications and according annotations Appendix A. A
big focus in the elaborations lies on drawing the connections between different ways of describ-
ing an algorithm, which leads to a deeper understanding of the underlying theories. For most
functions or algorithms we provide an implicit, a recursive and a procedural specification.
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1. Introduction and Background 1.3. Purpose and Results

Finally the validation process is shown on Dijkstra’s algorithm.
In Chapter 2 we start out with an overview on formal specifications, verifications and differ-

ent approaches, how these can be performed. Also some tools for supporting this process are
highlighted, especially the RISCAL environment is described more precise. Chosen results
from the collection are presented more detailed in Chapter 3, following the strategy demon-
strated in Section 3.1. The process of validation by means of model checking is illustrated
on Dijkstra’s algorithm in Chapter 4. Chapter 5 concludes and summarizes our results.
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2. State of the Art 2.1. Formal Specification and Verification

2. State of the Art

We start with an overview on formal specifications and verifications and describe concrete
methods to accomplish these (semi-) automatically. Furthermore we learn about some tools
and languages for specification; especially we take a closer look on the RISCAL environment.

2.1. Formal Specification and Verification

According to the Oxford Dictionary [24], specification is „an act of identifying something
precisely or of stating a precise requirement“. In particular, formal specifications are speci-
fications, expressed in a notation (syntax) with a semantics that is formally defined in the
language of logic on the basis of well understood mathematical concepts. The mathematical
ground layer uses theories from discrete mathematics, logic and algebra, which allows us to
take advantage of techniques to check compliance to the rules of our language. So what is
included in a specification? Alagar and Periyasamy [2] list the following items (even though
they refer to software specifications, this can easily be generalised):

• Properties of Objects: Objects (simple or structured) associated with a defined type.

• Correctness Condition: A system should maintain some global correctness condition.
This condition can be verified at any stage of the process. If it cannot be verified, then
either the condition is too strong/weak or the stage does not suit your specification.

• Observable Behavior: A system’s interaction with its environment. This also includes
pre- or post-conditions of functions/procedures as well as invariants maintained by
loops.

The main goal of formally specifying is to assure the possibility of validation and verifica-
tion. There is a subtle difference between these two processes [14]:

• Validation: Are we trying to make the right thing? (i.e. is the specified product what
the user needs?)

• Verification: Are we trying to make the thing right? (i.e. is our product conform with
our specifications?)
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2. State of the Art 2.2. Model Checking

Consequently, when we talk about verification, this always depends on a certain specification.
Formal verification uses certain techniques to ensure correctness of the system with regard to
the formal specification which fall into one of the categories of model checking or automated
reasoning.

2.2. Model Checking

One approach to verify the correctness of a system is called model checking [5], where exhaus-
tive checking over all possible states of a system is carried out. The big advantage of model
checking is that this verification often can be done fully automatically. However, this method
is only applicable to a bounded problem domain, since the model has to be finite (or at least
one has to be able to represent all states finitely). If this is not the case, the model checking
would not terminate. Therefore, when using model checking, one usually has to make some
cutbacks, like restricting to a finite model (and check if the specification holds for this set of
states) or renounce to check the complete system but instead only a critical core part, where
model checking is possible.

A special form of model checking is the so-called runtime assertion checking [6], which
allows to check the correctness of individually selected executions. In many specification or
programming languages assertions are statements, which allow to test assumptions about the
specified system or the program. E.g. in Java (1.4 and higher) a runtime assertion check can
be implemented as follows:

1 if (i % 3 == 0) {
2 ...
3 } else if (i % 3 == 1) {
4 ...
5 } else { // we know i % 3 == 2
6 assert i % 3 == 2 : i;
7 ...
8 }

Code 2.1: Java example to runtime assertion checking

If the assertion was wrong (in Java this could happen if the variable i was negative, since the
remainder can happen to be negative in this case and the statement would yield false), an
AssertionException would be raised and the error could be traced directly.
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2. State of the Art 2.3. Automated Reasoning

2.3. Automated Reasoning

Another, more general, approach to verification is automated reasoning [9], i.e. the automatic
(or semi-automatic) construction of a mathematical proof of the correctness of a system. In
[15] we find:

„A problem being presented to an automated reasoning program consists of two
main items, namely a statement expressing the particular question being asked
called the problem’s conclusion, and a collection of statements expressing all the
relevant information available to the program— the problem’s assumptions. Solv-
ing a problem means proving the conclusion from the given assumptions by the
systematic application of rules of deduction embedded within the reasoning pro-
gram. The problem solving process ends when one such proof is found, when the
program is able to detect the non-existence of a proof, or when it simply runs out
of resources.“

Figure 2.1.: The process of automated reasoning

To use this way of verification, one has to derive mathematical correctness obligations
from the system and its specifications, the truth of which imply conformity of the system to
the specification. To dismantle these obligations, automated theorem provers or interactive
theorem provers are used. The difference between these two is, that interactive theorem
provers need at least a little guidance in the proving process, whilst automated theorem
provers work completely automatically.
RISC has developed several tools to support the process of theorem proving:

• Theorema: Theorema is a Mathematica package for computer supported mathematical
theorem proving and theory exploration [4, 25]. It mainly concentrates on automated
theorem proving, but also includes an interactive mode, in which the user is asked to
provide minimalistic inputs in the proving process.
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2. State of the Art 2.4. Software Specification Languages and Tools

• RISC ProofNavigator : The RISC ProofNavigator is an interactive proof assistant for
supporting formal reasoning about computer programs and computing systems. It is the
core reasoning component of the RISC ProgramExplorer [17, 23], a computer-supported
program reasoning environment, which was developed for supporting students in the
process of learning the techniques of program verification [16, 20].

The focus of this thesis, however, will lie on RISCAL, a tool developed at RISC that is
(currently) based on model-checking, and will be described in section 2.4.1

2.4. Software Specification Languages and Tools

In this section we will take a glance on some software specification languages and tools.
Therefore I will mainly stick to results of the master’s thesis of Daniela Ritirc, which compares
some of these, and demonstrates their behaviour on specific examples [18].

Alloy Alloy [10, 11] is a language which is completely based on relations and allows to describe
structures and their relationships. As described in [18], it is pretty complicated to define
mathematical algorithms with Alloy (e.g. a loop is specified in Alloy by describing the
changes of the variables during an iteration of the loop).

JML The Java Modeling Language (JML) [13] is an extension for the formal specifications
of Java programs, which also allows the introduction of loop invariants and other anno-
tations. However, as described in [18], it struggles with the complex semantics of Java,
when it comes to expressive specifications.

TLA/PlusCal The Temporal Logic of Actions (TLA) [12] with the extension PlusCal allows
to define mathematical algorithms in a very convenient way. Additionally it includes a
model-checker, which yields an error and the complete path, when it violates properties
of the algorithm. One essential disadvantage is the lack of the missing possibility to
implement recursive algorithms.

VDM The Vienna Development Method (VDM) [3] includes mathematical objects like sets
and functions and is therefore very helpful in defining mathematical algorithms. More-
over it allows to define recursive functions. Still it has its deficiencies in defining verifi-
cation conditions, since it is only possible to specify system conditions and not e.g. for
individual loops.

Event-B In specifications with Event-B [1], changes in variables are described with events,
where one can restrict which event can be executed at which state of the algorithm. The

9



2. State of the Art 2.4. Software Specification Languages and Tools

language allows mathematical expressions like sets and functions, as well as invariants
for each state. However when invariants are too complex, the provers cannot finish
proofs, although the specification is correct.

Summarised, we can say, that each tool has its advantages, but still lack some important
feature for our purposes. As a result the RISCAL was developed, which shall combine the
useful aspects of the languages, to provide a powerful gadget.

2.4.1. RISCAL

RISCAL [21, 22] is aimed to support the verification of mathematical algorithms. Therefore
it allows the developer to formulate the underlying mathematical theories (in the form of
functions, predicates, and theorems) and, on the basis of these theories, high-level algorithms
as they can be found in textbooks. To guarantee decidability, the language is based on a type
system which ensures that all variable domains are finite at any time. However, the types
may depend on unspecified numerical constants, which will be instantiated when starting the
program (and further become decidable). In summary RISCAL validates the meaningfulness
of definitions, the truthfulness of propositions and correctness of programs automatically, by
evaluation of terms and formulas and executing programs over all possible inputs.
In addition to the support of verification, RISCAL provides a very intuitive way to describe

the mathematical theories and algorithms. It supports most of the common special Unicode-
characters, which are used in mathematics. Consequently the specification is much easier to
read and somehow intuitive for the users, to understand the meaning behind the code.
The description of the mathematical and algorithmic theories consists of several parts:

• Types: With types, we introduce the mathematical objects we are working on in our
further specifications. They build the base for our further definitions.

• Predicates: Predicates are boolean-valued functions which describe, if a given property
is either true or false for given inputs of selected types.

• Functions: Functions are mappings from a given set of inputs to an according set of
outputs. Functions can be specified in two ways:

– Implicit: Implicit functions declare which predicates a result shall fulfil, but they
do not give a way how to compute such a result. It is a descriptive approach to
the desired solution.

10



2. State of the Art 2.4. Software Specification Languages and Tools

– Explicit: Explicit functions describe a constructive way to find such a result. Ex-
plicit functions may be recursively defined, provided that a termination measure
ensures the well-definedness of the definition.

• Theorems: Theorems are special forms of predicates, for which all applications are
expected to yield „true“ (if this is not the case, the evaluation will abort with an error
message).

• Procedures: A procedure returns a value for a given input, after executing commands
in sequence that update the values of variables. Like functions, procedures may be
defined recursively.

The definition of a function, predicate, theorem or procedure may also include given pre-
conditions (requires), postconditions (ensures) and termination measures (decreases) in form
of annotations. Types, predicates and theorems shape the description of the mathematical
theories, whilst functions and procedures form the algorithmic part. With all these points
listed above, RISCAL also aims to give an understanding of the connections between the
mathematical theories and algorithmic approaches. Detailed examples of RISCAL theories
and algorithms are given in Appendix A.

11



3. Formal Specifications in Discrete Mathematics 3.1. General Strategy

3. Formal Specifications in Discrete
Mathematics

In the following chapter we will discuss some specifications in the RISCAL environment of
exemplarily chosen theories from discrete mathematics, specifically set theory, relation and
function theory, as well as graph theory. The algorithms in this chapter are for the most
part formulated in various versions (implicitly, recursively and procedural) to gain deeper
understanding of the connections between these different ways.

3.1. General Strategy

Figure 3.1.: General specification strategy

We apply a general strategy for the specification, which is demonstrated in this section on
an introductory example, namely the union of two sets from the numbers between 0 and N.

12



3. Formal Specifications in Discrete Mathematics 3.1. General Strategy

For a, b ⊆ {0, . . . , N}, we specify the equation:

a ∪ b = {x|x ∈ a ∨ x ∈ b} (3.1)

After defining the type structures, we give a first definition of the operation implicitly, or
by means of set quantifiers, if the function result is a set. Further we show the connections
between built-in operators and our implemented version, if possible. Finally, we specify the
functions concretely in form of recursions and procedures, and state theorems based on our
implemented specifications. The complete strategy is illustrated in Figure 3.1.

3.1.1. Step 1: Type Definition

First we specify the types needed for our theories. In our case there are two kind of types,
the elements included in a set as natural numbers from 0 to N, as well as the sets of these
elements. The simplest form of a type definition would be type id = T; which introduces a
name id for type T. Therefore for (3.1) we have:

1 val N:N;
2 type elem = N[N];
3 type set = Set[elem];

Specification 3.1: Type definition for a ∪ b

The first statement creates a value N from the natural numbers N, which will be instantiated
(chosen by the user) when the evaluation of the specification is executed. elem is the type
representation of one element from N between 0 and N and type set is a set of elem, where
Set is a language specific keyword, to introduce a set.

3.1.2. Step 2: Logical Characterization of Function

After building the fundamentals of our specifications we now define the predicates or func-
tions. As described in section 2.4.1, there are different ways of defining mathematical theories
and algorithms. The first way we are choosing is as an implicit function:

1 fun unionI(a:set,b:set):set =
2 choose c:set with (∀ x:elem. x ∈ c ⇔ x ∈ a ∨ x ∈ b);

Specification 3.2: a ∪ b as an implicit function

The function unionI ensures to choose a set „c“, which fulfills the property, that any
element „x“ of „c“ is either in set „a“ or „b“.

13



3. Formal Specifications in Discrete Mathematics 3.1. General Strategy

In case of set operations it is also possible to provide a definition of this operation explicitly
by means of set quantifiers, without changing the underlying logical structure of the property:

1 fun unionS(a:set,b:set):set =
2 { x | x:elem with (x ∈ a ∨ x ∈ b) };

Specification 3.3: a ∪ b by using set quantifiers

In the following sections we will apply the choose-notation, if the function result is not a
set, otherwise the set quantifier notation is used.

unionS is the name of our function with parameters a and b of type set. The return
value of the function is again of type set. In the second line we give the description of the
desired result by set quantification and make use of the convenience to use many standard
elements from the mathematical language. If necessary, it would also be possible to state
some preconditions by using the keyword requires, for restriction of the input parameters,
which is not needed here.

3.1.3. Step 3: Connections to Operations Provided by the Language

For functions, which are also implemented by built-in RISCAL operations, we show that both
functions (the built-in and the user-defined function) provide the same result. If we can point
this out, we are allowed to use the function provided by the system, which leads to massive
performance improvements in further evaluations. To accomplish this, we state a theorem on
equivalence of the two outcomes:

1 theorem unionT(a:set,b:set) ⇔
2 unionS(a,b) = a ∪ b;

Specification 3.4: Check, if implemented ∪-operator equals our specification

For theorems we expect all applications to yield true, so if our function unionS would be
different from the implemented ∪-operator for any input, the evaluation would be aborted
with an according error message.

3.1.4. Step 4: Explicit Predicate or Function Definition

Next we define the same function in an explicit way, i.e. as a recursively defined function:

1 multiple fun unionR(a:set,b:set):set
2 decreases |a|;
3 ensures result = a ∪ b;

14



3. Formal Specifications in Discrete Mathematics 3.1. General Strategy

4 = choose x:elem with x ∈ a
5 in ({x} ∪ unionR(a\{x},b))
6 else b;

Specification 3.5: a ∪ b as an explicit function

The multiple keyword is required for recursively defined functions or predicates with non-
deterministic semantics, such as the choose operator in this sample. With decreases we can
define termination measures, to make sure our function terminates. In our illustration above
we state, that with every call of our function the number of elements in set „a“ decreases, if
this is not the case, the execution is aborted.
In the definition of our recursive functions, we can make sure that our developed recursive

function equals the implicit function defined in Specification 3.2 (or in this case the system
operator), by creating a postcondition (with keyword ensures) to verify, that both yield the
same result. By use of these postconditions we can derive the connection between the different
ways of describing a function, which helps in the process of understanding the theories.

3.1.5. Step 5: Specific Algorithms in Form of Procedures

Another option to specify the mathematical theory is as a specific step-by-step algorithm.
By defining a sequence of commands we can give a clear recipe to find our desired solution.
This is exactly what procedures in RISCAL are used for:

1 proc unionP(a:set,b:set):set
2 ensures result = a ∪ b;
3 {
4 var res:set := a;
5 for x ∈ b do
6 invariant res = (a ∪ forSet);
7 {
8 res := res ∪ {x};
9 }

10 return res;
11 }

Specification 3.6: a ∪ b as a procedure

Additionally to the options we already used for the explicit function, we now used an
invariant, which states the crucial property for the correctness of the algorithm. Before
and after every iteration of the loop, the union of set „a“ and forSet (which is equal to the
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3. Formal Specifications in Discrete Mathematics 3.2. Set Theory

set of all elements chosen in this loop so far) equals our result set at that moment. These loop
invariants are not strictly necessary for successful execution of the algorithm, but support us
in deeper understanding of the algorithms, provide help in finding errors in our specifications,
and support subsequent proof-based verifications.

The postcondition (ensures...) again helps us to make sure that our result fits the
previous specifications.

3.1.6. Step 6: Stating Theorems

Finally, after having formalized our theory in different ways, we use the definitions to formu-
late and check theorems, e.g.:

1 theorem unionSubsetT(a:set,b:set) ⇔
2 a ⊆ (a ∪ b) ∧ b ⊆ (a ∪ b);

Specification 3.7: Verify that a ⊆ (a ∪ b) ∧ b ⊆ (a ∪ b) holds

The result of the evaluation of this specification can be used as a confirmation, that the
theorem is correct, at least on some finite domains. The strategy behind this activity is,
that if errors occur, they often also occur on small bounded domains, thus we can find over
checking the theorems on such domains.

3.2. Set Theory

The goal of this section is the specification of elementary parts of set theory in the RISCAL
environment. We adhere to the strategy described in Section 3.1 and start with the type
definition.

3.2.1. Type Definition

In [19, Chapter 2] we find: A set is defined as an unordered collection of objects. These
objects are called elements of the set, and it is said, the set contains an element (if set A

contains element a we write a ∈ A).
Like in the definition, we presuppose the existence of an element-operator and the structure

of a set for containing elements itself in our RISCAL specifications. This approach is called
naive set theory and can be looked up in [8]. More exact approaches would not be purposeful
and beyond the scope of this paper.
As a first step, we only need to define of which type our elements are, for the other types

we use implemented data structures:
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1 val N:N;
2 val Universe = 0..N;
3 type elem = N[N];
4 type set = Set[elem];

Specification 3.8: Basic type definition for specifications of set theory

The definition of N, elem and set is the same es in section 3.1.1. With Universe we
indicate the set which consists of all possible elements of type elem, which corresponds to
Universe = {0, . . . , N}.

3.2.2. Basic Set Operations

After defining the underlying type structure, we start with a basic relation on sets, namely
the subset relation (⊆). For two sets A and B in {0, . . . , N} we have

A ⊆ B ⇔ ∀x ∈ A : x ∈ B (3.2)

Which leads to the description:

1 pred isSubsetEq(a:set,b:set) ⇔
2 ∀x ∈ a. x ∈ b;

Specification 3.9: a ⊆ b as a predicate

RISCAL implements a subset operator, which allows us to verify the correctness of our
specification, by means of equality over all possible inputs. This can be achieved by stating
the corresponding theorem:

1 theorem subsetEqT(a:set,b:set) ⇔ isSubsetEq(a,b) ⇔ a ⊆ b;

Specification 3.10: Verify, if a ⊆ b equals our implementation

The implemented operators are much faster, than our developed functions. Hence we now
can use this equivalence in further specifications, e.g. in the postcondition, to accelerate the
process of evaluation.
This can be directly observed in the next step, the explicit function definition:

1 multiple fun isSubsetEqR(a:set,b:set):Bool
2 decreases |a|;
3 ensures result = (a ⊆ b);
4 = choose x:elem with x ∈ a
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5 in (x ∈ b ∧ isSubsetEqR(a\{x},b))
6 else true;

Specification 3.11: a ⊆ b as an explicit function

If „a“ is not empty (else we return true), we choose an element of it and check, if it is in
„b“. If this is not the case, the function returns false, else it calls the same function without
the chosen element in set „a“. Further, our annotation „decreases |a|;“ (where | · | is the
cardinality) verifies termination of our function.
For the procedural approach we proceed as follows:

1 proc isSubsetEqP(a:set,b:set):Bool
2 ensures result = (a ⊆ b);
3 {
4 var res:Bool := true;
5 for x ∈ a do
6 invariant res = (forSet ⊆ b);
7 {
8 res := res ∧ (x ∈ b);
9 }

10 return res;
11 }

Specification 3.12: a ⊆ b as a procedure

The invariant ensures that after/before any loop iteration our interim result equals the
truth content of forSet ⊆ b, with forSet corresponding to the set of all visited elements
inside this loop.
We will not provide further specifications on basic set operations in this context and instead

refer to Section 3.1 (where we specified a∪b) as well as Appendix A, since these operations are
all pretty similar and their specifications are following the same procedure. We presuppose
the existence of the other operators in the listing below.
Based on our specifications of basic set operations and the connection to the system oper-

ators, we can define some known laws of set theory as theorems:

1 theorem commutativeUnionT(a:set,b:set) ⇔
2 (a ∪ b = b ∪ a);
3 theorem associativeUnionT(a:set,b:set,c:set) ⇔
4 (a ∪ (b ∪ c) = (a ∪ b) ∪ c);
5 theorem distributiveUnionT(a:set,b:set,c:set) ⇔
6 (a ∪ (b ∩ c) = ((a ∪ b) ∩ (a ∪ c)));
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7 theorem deMorganUnionT(a:set,b:set) ⇔
8 complementS(a ∪ b) = complementS(a) ∩ complementS(b);

Specification 3.13: Stated theorems, on some basic laws of set operations

3.2.3. Cartesian Product

The Cartesian product of two sets A and B is a mathematical operation, which yields a set
of pairs where the first element of the pair is part of set A and the second element of set B.
Formally we have:

A×B = {(a, b) | a ∈ A ∧ b ∈ B} (3.3)

Since we need the structure pair for the implementation of the Cartesian product, the
following type definition is required:

1 type pair = Tuple[elem,elem];

Specification 3.14: Define a tuple of two elements of type elem as a pair

From (3.3) we directly gain the specification with set quantifiers:

1 fun cartesianProductS(a:set,b:set):Set[pair] =
2 { p | p:pair with (p.1 ∈ a ∧ p.2 ∈ b) };

Specification 3.15: a× b as a predicate

With p.1 and p.2 we can access the first respectively the second entry of „p“ from type
pair (we introduced this type in section 3.2.1). Again we can find an implemented operator
for the Cartesian product, therefore we state the according theorem:

1 theorem cartesianProductT(a:set,b:set) ⇔
2 cartesianProductS(a,b) = a × b;

Specification 3.16: Verify that a× b equals our specification

For a recursive implementation of the Cartesian product we choose an arbitrary element
„x“ of set „a“ (or return an empty set if „a“ is empty). Further, we add all possible pairs
with „x“ at position one and an element of set „b“ at position two into a set. The union of
this set and the result of the same function without element „x“ in set „a“ gives the desired
solution.
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1 multiple fun cartesianProductR(a:set,b:set):Set[pair]
2 decreases |a|;
3 ensures result = (a × b);
4 = choose x:elem with x ∈ a
5 in ({p | p:pair with p.1 = x ∧ p.2 ∈ b}
6 ∪ cartesianProductR(a\{x},b))
7 else ∅[pair];

Specification 3.17: a× b as an explicit function

The algorithmic description of the operation uses the same basic idea. Again, we choose
an arbitrary element and couple it with all elements of the other set. Then we choose another
element, et cetera. As before, we provide a loop invariant for verification of our interim results.

1 proc cartesianProductP(a:set,b:set):Set[pair]
2 ensures result = (a × b);
3 {
4 var res:Set[pair] := ∅[pair];
5 for x ∈ a do
6 invariant res = (forSet × b);
7 {
8 res := res ∪
9 {p | p:pair with p.1 = x ∧ p.2 ∈ b};

10 }
11 return res;
12 }

Specification 3.18: a× b as a procedure

3.2.4. Cardinality

The cardinality of a set is defined as the number of its elements and can be determined by use
of bijective functions. Generally a set has cardinality S, if and only if there exists a bijection
from set {0, . . . , S − 1} (or any other set with S elements) to this set. A function f : A→ B

is a bijection, if for any element of A exactly one element of B is associated by function f ,
and additionally all elements of B are in the image of f . We could also say f is bijective, if
(and only if) it is injective as well as surjective. The cardinality of a set is usually denoted
by | · |.
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Consequently, the introduction of some type for the definition of bijective functions and
subsequently the definiton of cardinality are necessary.

1 val S = N+1;
2 type size = N[S];
3 type map = Map[size,elem];

Specification 3.19: Type definitions for cardinality

Additionally, we first need some properties in form of predicates, before specifying the
cardinality operation. As explained, we need a bijective mapping f : {0, . . . , S − 1} → A,
with A ⊆ {0, . . . , N}. For this reason there are two properties required:

• The function f(x) is exclusively a mapping to set A for x ∈ {0, . . . , N} ( for all further
specifications on cardinality this predicate will be our precondition):

1 pred isMapToA(s:size, f:map, a:set) ⇔
2 (∀i:size with i >= s. f[i] = 0) ∧
3 (∀i:size with i < s. f[i] ∈ a);

Specification 3.20: Check, if f is mapping to set a

• f is a bijective function

1 pred isInjective(s:size, f:map, a:set)
2 requires isMapToA(s,f,a);
3 ⇔ ∀x:size,y:size with x < s ∧ y < s.
4 (f[x] = f[y]) ⇒ (x = y);
5

6 pred isSurjective(s:size, f:map, a:set)
7 requires isMapToA(s,f,a);
8 ⇔ ∀x:elem with x ∈ a. ∃y:size with y < s. f[y] = x;
9

10 pred isBijective(s:size, f:map, a:set)
11 requires isMapToA(s,f,a);
12 ⇔ isInjective(s,f,a) ∧ isSurjective(s,f,a);

Specification 3.21: Injectivity, surjectivity and bijectivity of mapping f

With these helper functions the implicit definition comes straight forward:
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1 fun cardinalityS(a:set):size =
2 choose s:size with ∃f:map
3 with isMapToA(s,f,a). isBijective(s, f, a);

Specification 3.22: |a| as an implicit function

Since | · | is an system-integrated cardinality operator, we can again determine if our
implementation matches the system operator:

1 theorem cardinalityT(a:set) ⇔ cardinalityS(a) = |a|;

Specification 3.23: Verify that |a| equals our implemented function

A much more intuitive way to describe cardinality are the recursive as well as the algorith-
mic implementation. We only have to choose an arbitrary element of the set, remove it and
count how often this can be performed, before the set is empty.

1 multiple fun cardinalityR(a:set):size
2 ensures result = |a|;
3 decreases |a|;
4 = choose x:elem with x ∈ a
5 in (1 + cardinalityR(a\{x}))
6 else 0;

Specification 3.24: |a| as an explicit function

1 proc cardinalityP(a:set):size
2 ensures result = |a|;
3 {
4 var res:size := 0;
5 for x ∈ a do
6 invariant res = |forSet|;
7 {
8 res := res + 1;
9 }

10 return res;
11 }

Specification 3.25: |a| as a procedure
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3.3. Relation and Function Theory

In this section we deal with basic specifications of relation and function theory (particularly we
will deal with binary relations) and adhere to the strategy described in Section 3.1. Detailled
theories and descriptions on relation theory are provided in [19, Chapter 9].

3.3.1. Type Definition

Let N, elem, set and pair be defined as described in section 3.2.1, additionally let A, B ⊆
{0, . . . , N} be two sets. Then r is called a relation between A and B, if and only if r is a set
of pairs (a, b), where a ∈ A and b ∈ B. In fact, r is a relation, if and only if it is a subset of
A×B. This implies the type definitions and the additional predicate:

1 val N:N;
2 val Universe = 0..N;
3 type elem = N[N];
4 type set = Set[elem];
5 type pair = Tuple[elem,elem];
6 type relation = Set[pair];
7

8 pred isRelation(r:relation,a:set,b:set)
9 ⇔ r ⊆ a × b;

Specification 3.26: Basic type definitions for relation and function theory

3.3.2. Composition of Relations

Let A, B, C ⊆ {0, . . . , N} be three sets. Let r be a relation between A and B, and s a
relation between B and C. Then the composition s ◦ r is a relation between A and C and is
defined as:

s ◦ r = {(a, c) | ∃b ∈ B : (a, b) ∈ r ∧ (b, c) ∈ s} (3.4)

The corresponding RISCAL specification can be defined as:

1 fun composeS(r:relation, s:relation, a:set, b:set, c:set):relation
2 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
3 = {p | p:pair with (p.1 ∈ a ∧ p.2 ∈ c
4 ∧ (∃x ∈ b. (〈p.1,x〉 ∈ r ∧ 〈x,p.2〉 ∈ s )))};

Specification 3.27: s ◦ r as a predicate
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In the preconditions we first check if both, „r“ and „s“, fulfill our isRelation-predicate
and only then form the accordingly composed relation. A strategy to gain an explicit function
as a recursion or a procedural algorithm can be found by taking an arbitrary pair x ∈ r and
create the set of pairs {p}, which are contained in s ◦ r with x.1 at position p.1.

1 multiple fun composeR(r:relation,s:relation,a:set,b:set,c:set):relation
2 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
3 ensures result = composeS(r,s,a,b,c);
4 decreases |r|;
5 = choose x:pair with x ∈ r
6 in ({p | p:pair with (p.1 = x.1
7 ∧ p.2 ∈ {e | e:elem with 〈x.2,e〉 ∈ s})}
8 ∪ composeR(r\{x},s,a,b,c))
9 else ∅[pair];

Specification 3.28: s ◦ r as an explicit function

1 proc composeP(r:relation,s:relation,a:set,b:set,c:set):relation
2 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
3 ensures result = composeS(r,s,a,b,c);
4 {
5 var res:relation := ∅[pair];
6 for x ∈ r do
7 invariant res = composeS(forSet,s,a,b,c);
8 {
9 res := res ∪

10 {p | p:pair with (p.1 = x.1
11 ∧ p.2 ∈ {e | e:elem with 〈x.2,e〉 ∈ s})};
12 }
13 return res;
14 }

Specification 3.29: s ◦ r as a procedure

In the beginning of this section we claimed that the achieved result is again a relation. For
verification of this assumption on our finite model, the following theorem is stated:

1 theorem compositionFromAtoC(r:relation, s:relation, a:set, b:set, c:set)
2 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
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3 ⇔ isRelation(composeS(r,s,a,b,c),a,c);

Specification 3.30: Verify that s ◦ r is a relation between a and c

3.3.3. Inverse Relations

From any relation r it is also possible to create another relation r−1 by simply switching the
arguments. For r = {〈a, b〉}:

r−1 = {〈b, a〉|〈a, b〉 ∈ r} (3.5)

Consequently this leads to the description with set quantifiers:

1 fun inverseS(r:relation, a:set, b:set):relation
2 requires isRelation(r,a,b);
3 = {p | p:pair with 〈p.2,p.1〉 ∈ r};

Specification 3.31: r−1 as a predicate

We will not give the explicit function and the algorithmic description in this context, since
this is going all along with the previous specifications, and instead refer to Appendix A.
If r is a subset of A×B, r−1 is a subset of B×A, called the inverse relation of r. However,

r◦r−1 does not necessarily equal the identity relation. On the other hand the inverse satisfies:

(r−1)−1 = r and (s ◦ r)−1 = r−1 ◦ s−1 (3.6)

Finally, these propositions can again be checked in the theorems:

1 theorem isInverseARelationT(r:relation, a:set, b:set)
2 requires isRelation(r,a,b);
3 ⇔ isRelation(inverseS(r,a,b),b,a);

Specification 3.32: Verify that r−1 is a relation from b to a

1 theorem inverseOfInverseT(r:relation, a:set, b:set)
2 requires isRelation(r,a,b);
3 ⇔ inverseS(inverseS(r,a,b),b,a) = r;

Specification 3.33: Verify that (r−1)−1 = r
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1 theorem composeInverseT(r:relation,s:relation,a:set,b:set,c:set)
2 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
3 ⇔ inverseS(composeS(r,s,a,b,c),a,c)
4 = composeS(inverseS(s,b,c),inverseS(r,a,b),c,b,a);

Specification 3.34: Verify that (s ◦ r)−1 = r−1 ◦ s−1

Endorelations as Monoids

It is also possible to verify that endorelations on a set (a relation r between A and B is an
endorelation ⇔ A = B) fulfill the properties of a monoid structure on the specified finite
domain in RISCAL. For this we have to show:

1. Associativity: Let r, s, t be endorelations on the same set, then:

(r ◦ s) ◦ t = r ◦ (s ◦ t)

2. Neutral element: Let e be the relation on set A with e = {〈a, a〉 | a ∈ A} and let r be
any endorelation on set A. Then

e ◦ r = r ◦ e = r

Or the same in RISCAL as theorems:

1 theorem associativityEndoT(r:relation,s:relation,t:relation,a:set)
2 requires isRelation(r,a,a) ∧ isRelation(s,a,a)
3 ∧ isRelation(t,a,a);
4 ⇔ composeS(composeS(r,s,a,a,a),t,a,a,a) =
5 composeS(r,composeS(s,t,a,a,a),a,a,a);

Specification 3.35: Verify that endorelations are associative

1 fun identity(a:set):relation
2 = { 〈 x,x 〉 | x:elem with x ∈ a};
3

4 theorem composeIdentityT(r:relation,a:set, b:set)
5 requires isRelation(r,a,b);
6 ⇔ composeS(r,identity(b),a,b,b) = r
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7 ∧ composeS(identity(a),r,a,a,b) = r;

Specification 3.36: The identity relation is the neutral element in the monoid of endorelations

3.3.4. Transitive Closure on Endorelations

Before defining the transitive closure of an endorelation, we need some preliminary work to
be provided:

Transitivity

An endorelation r on set A is called transitive, if whenever 〈a, b〉 ∈ r and 〈b, c〉 ∈ r, then
〈a, c〉 ∈ r for all a, b, c ∈ A. Hence, this property is required as a predicate:

1 pred isTransitiveS(r:relation,a:set)
2 requires isRelation(r,a,a);
3 ⇔ ∀ x ∈ r, y ∈ r. (x.2 = y.1) ⇒ 〈 x.1,y.2 〉 ∈ r;

Specification 3.37: Transitivity of an endorelation

Transitive Closure

Let r be an endorelation on set A. A transitive relation s containing r such that s is a subset
of every other transitive relation containing r, is called the transitive closure of r. So the
transitive closure is the smallest (with respect to ⊂) transitive set containing r. This leads
to the following RISCAL specification:

1 pred isRelationSubsetAndTransitive(s:relation,r:relation,a:set)
2 ⇔ isRelation(s,a,a) ∧ r ⊆ s ∧ isTransitiveS(s,a);

Specification 3.38: Check, if s is transitive and contains r

1 fun transitiveClosureS(r:relation,a:set):relation
2 requires isRelation(r,a,a);
3 = choose s:relation with (isRelationSubsetAndTransitive(s,r,a) ∧
4 (∀t:relation.
5 isRelationSubsetAndTransitive(t,r,a) ⇒ s ⊆ t));

Specification 3.39: The transitive closure of r as an implicit function
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Again we can find a recursive and algorithmic implementation of the transitive closure.
With the postconditions and termination measures we confirm correctness and decidability
of the functions.

1 val RelationUniverse = Universe × Universe;
2

3 multiple fun transitiveClosureR(r:relation,a:set):relation
4 requires isRelation(r,a,a);
5 ensures result = transitiveClosureS(r,a);
6 decreases |RelationUniverse\r|;
7 = if isTransitiveS(r,a) then r
8 else transitiveClosureR(
9 r ∪ { 〈x,y〉 | x:elem,y:elem with

10 (∃p∈r,q∈r. (x = p.1 ∧ y = q.2 ∧ p.2 = q.1)) }
11 , a);

Specification 3.40: The transitive closure of r as an explicit function

1 proc transitiveClosureP(r:relation,a:set):relation
2 requires isRelation(r,a,a);
3 ensures result = transitiveClosureS(r,a);
4 {
5 var res:relation := ∅[pair];
6 var toCheck:relation := r;
7 choose x ∈ toCheck do
8 {
9 for y ∈ res do

10 {
11 if x.1 = y.2 ∧ ¬(〈y.1, x.2〉 ∈ res) then
12 {
13 toCheck := toCheck ∪ { 〈y.1, x.2〉 };
14 }
15

16 if x.2 = y.1 ∧ ¬(〈x.1, y.2〉 ∈ res) then
17 {
18 toCheck := toCheck ∪ { 〈x.1, y.2〉 };
19 }
20 }
21

22 res := res ∪ { x };
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23 toCheck := toCheck \ { x };
24 }
25 return res;
26 }

Specification 3.41: The transitive closure of r as a procedure

3.3.5. Functions as Specific Relations

A relation is named function if it suffices some additional conditions. There are two basic
types of functions, partial functions and total functions.

Partial Function and Total Function

Let R be a relation between A and B. R is a total function, if and only if each element of set
A is related to exactly one element of set B, with respect to R. On the other hand a function
is called partial, if R is a total function on A′ ⊆ A and all elements of A \A′ are not related
to any elements of B.

Figure 3.2.: An example of a total function (left) and a partial function (right)

1 pred isPartialFunctionS(r:relation,a:set,b:set)
2 ⇔ isRelation(r,a,b) ∧ ∀x ∈ r, y ∈ r. (x.1 = y.1) ⇒ x.2 = y.2;

Specification 3.42: Check, if r is a partial function between a and b

1 pred isFunctionS(r:relation,a:set,b:set)
2 ⇔ isRelation(r,a,b) ∧ ∀z ∈ a. ∃f ∈ r.
3 (f.1 = z) ∧ ∀g ∈ r. (g.1 = f.1) ⇒ g.2 = f.2;

Specification 3.43: Check, if r is a total function between a and b
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Connection to Implemented Type „Map“

In RISCAL we can introduce a type map, which describes a mapping between two sets. Our
goal is to develop the connections between our functions defined by relations and this type
map. For this some preliminary specifications are necessary:

1 type map = Map[elem,elem];
2

3 pred isFunctionM(m:map, a:set, b:set)
4 ⇔ ∀x ∈ a. m[x] ∈ b;
5

6 pred equal(r:relation, m:map, a:set, b:set)
7 requires isFunctionS(r,a,b) ∧ isFunctionM(m,a,b);
8 ⇔ ∀x ∈ a. ∃y ∈ r. (y.1 = x ∧ m[x] = y.2);

Specification 3.44: Compare our specified functions with the implemented type Map

First we defined the type as a Map between two elements of type elem. The predicate
isFunctionM is required for verification, if our map „m“ is a mapping into set „b“ for any
element in set „a“. Predicate equal checks if „m“ maps all elements of „a“ to the same element
as our relation „r“ does.

With this specified, we can show that each relation with the function property induces a
map and vice versa.

1 fun relToMap(r:relation, a:set, b:set):map
2 requires isFunctionS(r,a,b);
3 ensures isFunctionM(result,a,b) ∧
4 equal(r,result,a,b);
5 = choose m:map with ∀x ∈ a. ∃y ∈ r. (x = y.1 ∧ m[x] = y.2) ;

Specification 3.45: Get the induced map of relation r

1 fun mapToRelation(m:map, a:set, b:set):relation
2 requires isFunctionM(m,a,b);
3 ensures isFunctionS(result,a,b) ∧ equal(result,m,a,b);
4 = {p | p:pair with (p.1 ∈ a ∧ p.2 = m[p.1])};

Specification 3.46: Get the induced relation of map m
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3.4. Graph Theory

Our third big topic of discrete mathematics concerns with graph theory, in particular we will
concentrate on Dijkstra’s algorithm, for finding the shortest path between vertices. When
we are talking about graphs in this section, we deal with undirected, unweighted and simple
graphs. This means:

• there is only one edge allowed between each vertex

• no loops (edges from a vertex to itself) are allowed

• the distance between any pair of nodes is 1

• an edge is always bidirectional

The basic type definition and some additional functions and properties for directed graphs
can be found in the specifications in Appendix A.

3.4.1. Type Definition and Required Predicates

What we need in the first place, are the basic types to define what a graph or a path indeed
is. A (undirected and unweighted) graph consists of vertices and edges, which connect these
vertices. In undirected simple graphs edges are generally described over a set of edges, where
each edge is a set of two vertices. In our definition we choose our set of vertices as a subset of
the set {0, . . . , N}. We have to specify our edges as a general set of vertices, the restriction
to two-element sets comes with the predicate isUndirectedGraph.

1 val N:N;
2 type vertex = N[N];
3 type vertices = Set[vertex];
4 type undirEdge = Set[vertex];
5 type undirEdges = Set[undirEdge];
6 type undirGraph = Tuple[vertices, undirEdges];

Specification 3.47: Basic type definitions for graph theory

1 pred isUndirectedGraph(g:undirGraph)
2 ⇔ g.1 6= ∅[vertex] ∧ g.2 ⊆ Set(g.1,2);

Specification 3.48: Check, if set of vertices is not empty and set of edges only contains sets
with two elements
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Paths are another fundamental structure in graph theory, which are necessary for our
algorithm. As described in [19, Chapter 10], „paths are sequences of edges, that begin at a
certain vertex of a graph and travels from vertex to vertex along edges of the graph.“ Again
we only consider simple paths, which means that it does not contain the same edge more
than once, moreover we only allow that every vertex only occures once in the path, which is
sufficient, since we are looking for the shortest one. Therefore we can use an array of edges
with length N for storage.

1 type undirPath = Array[N,undirEdge];

Specification 3.49: Define the type path as array of edges

1 pred isPathInGraph(p:undirPath, g:undirGraph)
2 requires isUndirectedGraph(g);
3 ⇔ ∀m ∈ 0..N-1. (p[m] ∈ g.2) ∨ p[m] = ∅[vertex];

Specification 3.50: Check, if path is in graph g

To make sure that our array of edges fulfills the path properties we define predicates to
check, if each vertex only occures once, and that the sequence of edges are adjacent. I.e. for
any edge ei follows, that ei+1 is connected with ei.

1 // get number of edges within path, which include v
2 fun numberOfEdgesWithVertex(p:undirPath, v:vertex):N[N]
3 = |{e| e:undirEdge with (∃n ∈ 0..N-1. (p[n] = e)) ∧ v ∈ e}|;
4

5 // check if vertices are at most once in the path
6 // start- and end-vertex have to be checked extra
7 pred isVertexOnceInPath(p:undirPath, start:vertex, end:vertex,
8 v:vertices)
9 ⇔ numberOfEdgesWithVertex(p,start) = 1

10 ∧ numberOfEdgesWithVertex(p,end) = 1
11 ∧ ∀v1 ∈ (v\{start,end}). numberOfEdgesWithVertex(p,v1) <= 2;
12

13 // check if the edges are adjacent (neighboured)
14 pred isEdgeAdjacent(e1:undirEdge, e2:undirEdge)
15 ⇔ e1 ∩ e2 6= ∅[vertex] ∧ e1 6= e2;

Specification 3.51: Check, if path only contains each vertex once and successive edges are
adjacent
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Additionally it is required to verify if there are no gaps in our array, that all non-empty
entries are unique and to get the length of a path. All these additional properties specified
as predicates will not be provided here, instead they can be found specified in Appendix A.
Finally, after stating these restricting predicates, it is possible to check if a specific path is

connecting certain start- and end-vertices in a given graph, or if it is even possible to connect
these two vertices in it.

1 pred isPathBetweenVertices( p:undirPath, g:undirGraph,
2 start:vertex, end:vertex)
3 requires isUndirectedGraph(g)
4 ∧ isVertexInSetOfVertices(start,g.1)
5 ∧ isVertexInSetOfVertices(end,g.1)
6 ∧ isPathRequirementsFulfilled(p)
7 ∧ isPathInGraph(p,g);
8 ⇔ (start = end ∧ isArrayEmpty(p)) ∨
9 (start 6= end ∧ (∃n:N[N-1]. isArrayFilledToIndex(p,n)

10 ∧ isVertexOnceInPath(p, start, end, g.1)
11 ∧ ∀m ∈ 1..n. isEdgeAdjacent(p[m-1], p[m])));

Specification 3.52: Check if p is a path between start- and endvertex in graph g

1 pred isPathBetweenVerticesExisting(g:undirGraph, start:vertex,
2 end:vertex)
3 requires isUndirectedGraph(g)
4 ∧ isVertexInSetOfVertices(start,g.1)
5 ∧ isVertexInSetOfVertices(end,g.1);
6 ⇔ ∃p:undirPath. isPathRequirementsFulfilled(p) ∧
7 isPathInGraph(p,g) ∧
8 isPathBetweenVertices(p, g, start, end);

Specification 3.53: Check if a path between start- and end-vertex is existing in graph g

3.4.2. Shortest Path

Let p be a path, which suffices the requirements from above. p is called a shortest path
between start- and end-node, if for all paths q (which again suffice the requirement) between
the same vertices applies, that the length of p is smaller or equal to the length of q. Note
that a shortest path is not necessarily unique, since it can happen, that two different paths
from start to end have the same length.
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1 pred isShortestPath(g:undirGraph, start:vertex,
2 end:vertex, p:undirPath)
3 requires isUndirectedGraph(g)
4 ∧ start ∈ g.1 ∧ end ∈ g.1
5 ∧ isPathRequirementsFulfilled(p)
6 ∧ isPathInGraph(p,g);
7 ⇔ isPathBetweenVertices(p,g,start,end) ∧
8 ∀q:undirPath with isPathRequirementsFulfilled(q)
9 ∧ isPathInGraph(q,g)

10 ∧ isPathBetweenVertices(q,g,start,end)
11 . getLengthOfPath(p) <= getLengthOfPath(q);

Specification 3.54: Check if p is a shortest path between start- and endvertex in graph g

With this property, we can easily give an implicit version to find the shortest path between
given start- and end-vertices in a certain graph. The function returns a tuple with a Boolean
value and a path. The Boolean indicates, if a path was found, the path describes a shortest
path, if one was found.

1 fun getShortestPath(g:undirGraph, start:vertex,
2 end:vertex):Tuple[Bool,undirPath]
3 requires isUndirectedGraph(g)
4 ∧ isVertexInSetOfVertices(start,g.1)
5 ∧ isVertexInSetOfVertices(end,g.1);
6 ensures
7 result.1 = isPathBetweenVerticesExisting(g,start,end)
8 ∧ ((¬result.1) ∨
9 (isPathBetweenVertices(result.2,g,start,end)

10 ∧ isShortestPath(g,start,end,result.2)));
11 = choose p:undirPath with (isPathRequirementsFulfilled(p)
12 ∧ isPathInGraph(p,g)
13 ∧ isPathBetweenVertices(p,g,start,end)
14 ∧ isShortestPath(g,start,end,p))
15 in 〈true,p〉
16 else 〈false,Array[N,undirEdge](∅[vertex])〉;

Specification 3.55: Check if p is a path between start- and endvertex in graph g
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Dijkstra’s Algorithm

Dijkstra’s algorithm, published in 1959 by Edsger W. Dijkstra [7], is an algorithm conceived
to find the shortest path between vertices in an arbitrary graph. Dijkstra’s algorithm begins
with setting the distance of the source code to zero, the distance to all other nodes is set
to infinity (or in our implementation N + 1, since the maximum size of our path array is
N). The algorithm repeatedly chooses the vertex, which is connected to the start vertex and
not visited yet, with the least distance. The distance to the neighbours of the chosen vertex
is compared with the stored distances, and if the new distance is smaller than before, the
distance and predecessor of the neighbour is updated. The neighbours are now marked as
connected, and are potential candidates for the next iteration. A detailled description of the
algorithm can be found in [18, 19].

The algorithm terminates, since no vertex is visited twice and we are working with a finite
number of vertices. The same return values as in the previous function are used. In the first
place I will provide a version of the algorithm, without included invariants, for space and
readability reasons. The invariants will be treated extra in Section 3.4.2.

A validation of the algorithm, can be found in Chapter 4.

1 proc dijkstra(g:undirGraph, start:vertex,
2 end:vertex):Tuple[Bool,undirPath]
3 requires isUndirectedGraph(g)
4 ∧ start ∈ g.1 ∧ end ∈ g.1;
5 ensures
6 (result.1 = isPathBetweenVerticesExisting(g,start,end))
7 ∧ ((¬result.1) ∨
8 (isPathBetweenVertices(result.2,g,start,end)
9 ∧ isShortestPath(g,start,end,result.2)));

10 {
11 var res:undirPath := Array[N,undirEdge](∅[vertex]);
12 var found:Bool := false;
13

14 // initialize
15 var dist:Map[vertex,N[N+1]] := Map[vertex,N[N+1]](N+1);
16 var prev:Map[vertex,N[N+1]] := Map[vertex,N[N+1]](N+1);
17 var conn:vertices := {start};
18 dist[start] := 0;
19 prev[start] := start;
20 var Q:vertices := g.1;
21 var visited:vertices := ∅[vertex];
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22

23 // loop over all unvisited vertices and choose the
24 // one with the least distance
25 choose q ∈ (Q ∩ conn) with
26 (∀v ∈ (Q ∩ conn). dist[q] <= dist[v]) do
27 decreases |Q|;
28 {
29 // if q = end we have found the path and can stop
30 if(q = end) then
31 {
32 Q := ∅[vertex];
33 } else {
34 visited := visited ∪ {q};
35 Q := Q\{q};
36 // check unvisited neighborhood of chosen vertex
37 var V:vertices := getNeighborhood(q,g);
38 for n ∈ (V ∩ Q) do
39 {
40 var alt:N[N+1];
41 // if distance is already N+1, don’t raise it
42 if dist[q] = N+1 then alt := N+1;
43 // save alternativ distance
44 else alt := dist[q] + 1;
45 // if distance is smaller, then save new path
46 if n ∈ conn then
47 {
48 if alt < dist[n] then
49 {
50 dist[n] := alt;
51 prev[n] := q;
52 }
53 }
54 else
55 {
56 dist[n] := alt;
57 prev[n] := q;
58 conn := conn ∪ {n};
59 }
60 }
61 }
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62 }
63 // if path found, then create path array
64 if dist[end] 6= N+1 then
65 {
66 found := true;
67 var index:N[N];
68 var u:vertex := end;
69 for index := dist[end]; index > 0; index := index - 1
70 do {
71 res[index - 1] := {prev[u],u};
72 u := prev[u];
73 }
74 }
75 return 〈 found, res 〉;
76 }

Specification 3.56: Dijkstra’s algorithm (without invariants)

Invariants

There are two different invariants needed, first the invariants for the outer choose-loop,
second for the nested for-loop. These invariants (amongst other things) confirms, that
before/after any iteration the distance to any visited node, is the shortest distance possible
in the set of visited nodes. The detailed specifications can be seen below:

1
...

2 choose q ∈ (Q ∩ conn) with
3 (∀v ∈ (Q ∩ conn). dist[q] <= dist[v]) do
4 decreases |Q|;
5 // all neighbours of visited nodes are connected
6 invariant ∀v ∈ visited.
7 ∀neigh ∈ getNeighborhood(v,g).
8 neigh ∈ conn;
9 // all connected vertices (except start) have a

10 // connected neighbor
11 invariant ∀v:vertex with (v ∈ conn ∧ v 6= start).
12 ∃v2:vertex with (v2 ∈ conn).
13 v2 ∈ getNeighborhood(v,g);
14 // defines shortest dist of visited nodes
15 invariant ∀v:vertex with (v ∈ conn ∧ v 6= start).
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16 ∃v2 ∈ visited. (prev[v] = v2
17 ∧ v2 ∈ getNeighborhood(v,g)
18 ∧ dist[v] = dist[v2] + 1);
19 invariant ∀v:vertex with v ∈ conn.
20 (∀v2:vertex with v2 ∈ conn.
21 (v2 ∈ getNeighborhood(v,g) ⇒
22 dist[v] <= dist[v2] + 1));
23 // visited implies connected
24 invariant ∀v ∈ visited. (v ∈ conn);
25 // connected implies defined predecessor and distance
26 invariant ∀v ∈ conn. (prev[v] 6= N+1 ∧ dist[v] 6= N+1);
27 // Distance of visited nodes is shorter than the
28 // distance of unvisited but connected nodes
29 invariant ∀v ∈ visited. (∀v2 ∈ (Q ∩ conn).
30 (dist[v] <= dist[v2]));

31
...

Specification 3.57: Invariants for outer loop in Dijkstra’s algorithm

The invariants for the inner for-loop are basically the same as for the outer loop. Only
for the check, if all neighbours of the visited nodes are connected, an exception has to be
implemented. This statement does not hold for q, the vertex, which is checked in this iteration:

1
...

2 for n ∈ (V ∩ Q) do

3
...

4 // all neighbours of visited nodes are connected
5 invariant ∀v ∈ visited with v 6= q.
6 ∀neigh ∈ getNeighborhood(v,g).
7 neigh ∈ conn;

8
...

9
...

Specification 3.58: Invariants for inner loop in Dijkstra’s algorithm
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4. Evaluation and Validation

The RISCAL environment is a powerful tool, when it comes to validation of specifications. By
stating suitable pre- and postconditions, termination measures and loop invariants in form of
annotations, the system provides big support in verification of the correctness of algorithms
and specifications. When errors occur in the definitions of the annotations, they often can
be revealed, by running the model checks on the specification. This really saves one’s nerves,
since finding errors in wrong declared conditions is without doubt absolutely frustrating.
In this chapter the validation process in the RISCAL environment is demonstrated on a

concrete problem, which was formally specified in Chapter 3. For this purpose Dijkstra’s
algorithm will hold as an example.
The validation and evaluation process splits into two parts:

• Concrete representatives: In this verification process, test cases are created manually
and with these, the according functions/predicates/procedures/theorems are executed
and outputs are compared with the expected results. This method is applied for defini-
tions without post-conditions, which appears often for predicates, which are also used
as preconditions for other language constructs or inside of functions.

• Model checking: Because every type introduced in the RISCAL environment is finite
and therefore all RISCAL specifications (including predicates, functions, theorems, pro-
cedure) are executable and can be evaluated at any time, model checking can be applied
on the implemented theories, after the user set the unspecified constants, declared as
values, over the control panel. However, we are restricted to small values, otherwise
the domain of the possible input would grow into dimensions, where evaluation would
consume too much time with today’s computing performance.

4.1. Validating Dijkstra’s Algorithm

We start out with validating the required predicates and functions in Dijkstra’s algorithm on
concrete graphs. The formal specification of Dijkstra’s algorithm and the required predicates
can be found both in Section 3.4 and Appendix A.
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4.1.1. Concrete Representatives

Following predicates/functions are used in the algorithm, and need to be verified:

• isUndirectedGraph

• isPathBetweenVerticesExisting

• isPathBetweenVertices

• isShortestPath

• getNeighborhood

For this purpose we define a few graphs for testing purposes.

1 val testGraph:undirGraph = 〈 {0,1,2,3,4}
2 , {{0,1},{0,2},{0,3},{1,3},{2,3}} 〉;
3 val testGraph2:undirGraph = 〈 {0,1,2,3,4}
4 , {{0,1},{1,4},{3,4},{2,3}} 〉;
5 val testGraph3:undirGraph = 〈 {0,1,2,3}
6 , {{0,1},{1,2},{2,3},{3,0}} 〉;

Code 4.1: Concrete graphs for validating predicates/functions for Dijkstra’s algorithm

This figure illustrates the test-graph definitions:

Figure 4.1.: testGraph (left), testGraph2 (middle), testGraph3 (right)

isUndirectedGraph

The predicate isUndirectedGraph(g) verifies, if the set of vertices in graph g is not empty,
and the set of edges only contains sets with 2 elements.

40



4. Evaluation and Validation 4.1. Validating Dijkstra’s Algorithm

1 proc testIsUndirectedGraph():()
2 {
3 print "Is testGraph an undirected graph? ";
4 print isUndirectedGraph(testGraph);
5 print "Is testGraph3 an undirected graph? ";
6 print isUndirectedGraph(testGraph3);
7 val noGraph1:undirGraph := 〈 {}[vertex]
8 , {{0,1},{1,2},{2,3},{3,0}} 〉;
9 val noGraph2:undirGraph := 〈 {0,1,2,3}

10 , {{0,1,2}} 〉;
11 print "Is noGraph1 an undirected graph? ";
12 print isUndirectedGraph(noGraph1);
13 print "Is noGraph2 an undirected graph? ";
14 print isUndirectedGraph(noGraph2);
15 }

Code 4.2: Test-procedure for validating isUndirectedGraph

Expected result: The first two function calls are performed with valid test-graphs and should
yield „true“. noGraph1 contains an empty set of vertices and noGraph2 contains an edge with
3 vertices in it, therefore both calls should yield „false“.

Actual output:

1 Executing testIsUndirectedGraph().
2 Is testGraph an undirected graph?
3 true
4 Is testGraph3 an undirected graph?
5 true
6 Is noGraph1 an undirected graph?
7 false
8 Is noGraph2 an undirected graph?
9 false

getNeighborhood

The function getNeighborhood(v,g) determines the set of vertices, which are adjacent
(neighbors) to vertex v in graph g.
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1 proc testGetNeighborhood():()
2 {
3 print "Testgraph: ";
4 print "Neighbors vertex 0 :";
5 print getNeighborhood(0,testGraph);
6 print "Neighbors vertex 4:";
7 print getNeighborhood(4,testGraph);
8

9 print "";
10 print "Testgraph 2: ";
11 print "Neighbors vertex 3:";
12 print getNeighborhood(3,testGraph2);
13 }

Code 4.3: Test-procedure for validating getNeighborhood

Expected result:

• Vertex 0 in „testGraph“: {1,2,3}

• Vertex 4 in „testGraph“: {}

• Vertex 3 in „testGraph2“: {2,4}

Actual output:

1 Executing testGetNeighborhood().
2 Testgraph:
3 Neighbors vertex 0 :
4 {1,2,3}
5 Neighbors vertex 4:
6 {}
7

8 Testgraph 2:
9 Neighbors vertex 3:

10 {2,4}

isPathBetweenVerticesExisting

The predicate isPathBetweenVerticesExisting(g,v1,v2) verifies, if a path is existing be-
tween vertex v1 and v2 in graph g.
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1 proc testIsPathBetweenVerticesExisting():()
2 {
3 print "Is path between vertices existing in testGraph?";
4 print isPathBetweenVerticesExisting(testGraph, 1, 2);
5

6 print "";
7 print "Is path between vertices existing in testGraph?";
8 print isPathBetweenVerticesExisting(testGraph, 1, 4);
9 }

Code 4.4: Test-procedure for validating isPathBetweenVerticesExisting

Expected result: The first call of the predicate is expected to yield „true“, since vertices 1
and 2 are direct neighbors. On the other hand, the second test should yield „false“, since
there is no path between vertices 1 and 4 in testGraph.
Actual output:

1 Executing testIsPathBetweenVerticesExisting().
2 Is path between vertices existing in testGraph?
3 true
4

5 Is path between vertices existing in testGraph2?
6 false

isPathBetweenVertices

The predicate isPathBetweenVertices(p,g,start,end) verifies, if p is a path from vertex
start to end in graph g.

1 proc testIsPathBetweenVertices():()
2 {
3 var p:undirPath := Array[N,undirEdge](∅[vertex]);
4 p[0] := {0,1}; p[1] := {1,3}; p[2] := {3,2};
5

6 print "is path between vertices? Testgraph, start:0, end:2";
7 print isPathBetweenVertices(p,testGraph,0,2);
8

9 print "";
10 print "is path between vertices? Testgraph, start:1, end:2";
11 print isPathBetweenVertices(p,testGraph,1,2);
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12

13 print "";
14 print "is path between vertices? Testgraph, start:0, end:3";
15 print isPathBetweenVertices(p,testGraph,0,3);
16

17 }

Code 4.5: Test-procedure for validating isPathBetweenVertices

Expected result: The first call of the predicate is expected to yield „true“, since the path
connects vertices 0 and 2 in testGraph. On the other hand, the other tests should yield
„false“, since p is not a path between the given vertices in testGraph.
Actual output:

1 Executing testIsPathBetweenVertices().
2 is path between vertices? Testgraph, start:0, end:2
3 true
4

5 is path between vertices? Testgraph, start:1, end:2
6 false
7

8 is path between vertices? Testgraph, start:0, end:3
9 false

isShortestPath

The predicate isShortestPath(g,start,end,p) verifies, if p is a shortest path from vertex
start to end in graph g.

1 proc testIsShortestPath():()
2 {
3 var p:undirPath := Array[N,undirEdge](∅[vertex]);
4 p[0] := {0,1}; p[1] := {1,3}; p[2] := {3,2};
5

6 print "";
7 print "is shortest path between vertices? Testgraph, start:0, end:2";
8 print isShortestPath(testGraph,0,2,p);
9

10 var q:undirPath := Array[N,undirEdge](∅[vertex]);
11 q[0] := {0,2};
12
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13 print "";
14 print "is shortest path between vertices? Testgraph, start:0, end:2";
15 print isShortestPath(testGraph,0,2,q);
16

17 var p2:undirPath := Array[N,undirEdge](∅[vertex]);
18 p2[0] := {0,1}; p2[1] := {1,2};
19 print "";
20 print "is shortest path between vertices? Testgraph3, start:0, end:2";
21 print isShortestPath(testGraph3,0,2,p2);
22

23 var p3:undirPath := Array[N,undirEdge](∅[vertex]);
24 p3[0] := {0,3}; p3[1] := {3,2};
25 print "";
26 print "is shortest path between vertices? Testgraph3, start:0, end:2";
27 print isShortestPath(testGraph3,0,2,p3);
28 }

Code 4.6: Test-procedure for validating isShortestPath

Expected result: The first call of the predicate is expected to yield „false“, since p is a
path, that connects vertices 0 and 2, but not the shortest one. The second call should yield
„true“, since q is a shortest path between 0 and 2 in testGraph. Test three and four should
both yield „true“, since they both connect vertices 0 and 2 in testGraph3 and have the same
length.

Actual output:

1 Executing testIsShortestPath().
2

3 is shortest path between vertices? Testgraph, start:0, end:2
4 false
5

6 is shortest path between vertices? Testgraph, start:0, end:2
7 true
8

9 is shortest path between vertices? Testgraph3, start:0, end:2
10 true
11

12 is shortest path between vertices? Testgraph3, start:0, end:2
13 true
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Outcome

All function and predicate calls delivered the expected result and passed our tests with our
concrete graphs.

4.1.2. Model Checking

Before applying the model check on Dijkstra’s algorithm, we have to decide, which value we
are choosing for our yet unspecified constant N. The value should neither be too small (to
create useful test-cases), nor too big (to avoid unending evaluation). For N = 2 we would
have 18432 different input values, which seems a bit too small. For N = 4 it grows to about
3.436∗1012 different input values, which takes too long to evaluate. So N = 3, with 16777216
different input values, would be a good choice to start our model check on Dijkstra’s algo-
rithm, since the number of input values is manageable, but still representative.

When running the model check, the RISCAL environment fulfills a number of validations:

1. The system chooses one possible input after the other, and . . .

2. . . . checks, if the chosen input value fulfills the stated preconditions, if not the input is
dismissed

3. . . . performs the defined command sequence in the procedure

4. . . . if loop invariants or termination measures are defined, before and after each loop
iteration these are validated

5. . . . after all commands in the sequence are performed, the returned result is compared
with the given postconditions

6. If any of the validations between steps 4-5 failed, the execution aborts, and an error
message is shown with the corresponding failure in execution

As a result, if our execution is successful, we can be sure, that our result matches all
postconditions, as well as all invariants and termination measures. When running the model
check in silent mode (only errors are shown), we get the following output:

1 Using N=3.
2 Type checking and translation completed.
3 Executing dijkstra(Tuple[Set[Z],Set[Set[Z]]],Z,Z) with all 16777216 inputs.
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4 PARALLEL execution with 4 threads (output disabled).

5
...

6 Execution completed for ALL inputs (122061 ms, 1364 checked, 16775852 inadmissible).

The check ran through without errors, so for our specification, this implies:

• Postconditions

– The Boolean return value matches the result of isPathBetweenVerticesExisting,
and

– if a path was found, the result ensures, that it suffices isPathBetweenVertices,
and

– the found result is actually a shortest path, since isShortestPath yields true,
for all i.

• Termination measures

– Because decreases |Q| confirms, that with every loop iteration the set of unvisited
nodes becomes smaller, we can be sure that our algorithm terminates.

• Invariants: Before/after any iteration we know:

– all visited vertices are in set conn

– all vertices in conn have an initialized predecessor and distance to start-vertex

– the calculated distances, define shortest distances in the set of visited nodes (proofs
on this fact can be found in [18])

These properties all hold for at least N = 3.
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5. Conclusions and Summarization

The various formalizations and implementations of theories and algorithms on different topics
of discrete mathematics, provided in this thesis, showed, that the RISCAL environment is a
powerful tool to support the process of specification. Not only verifying the specified algo-
rithm itself by using the verification conditions, but also checking, if the specified annotations
are neither too strong nor to weak, has become a manageable task.

Additionally, it is very easy to implement different types of the same function in RISCAL.
The system can cope with implicit definitions, as well as recursive or procedural algorithms,
which leads to a deeper understanding of the connections in between. Consequently, RISCAL
has the potential to function as a supportive tool in teaching students, when it comes to
lectures on topics like algorithms or data structures.
Sure, there are limits to the theories, one can specify and verify with the RISCAL environ-

ment. E.g.: For theories, which mainly depend on models over infinite domains, the results
in the verification by RISCAL only have limited meaningfulness. It can always occur, that
an algorithm, which works on a bounded domain, does not determine the correct result on
unbounded domains. However the results can still be used as a hint, if one’s considerations
lead into the right direction.
Another thing to keep in mind is the fast growing number of possible inputs, when using

the model checking. One really has to be aware of the number and complexity of parameters
used in the specifications, since even little values could multiply to a huge domain, which
would be too time-consuming, if verified.
In Appendix A, a complete collection of the specified theories described in this thesis is

attached.
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Acronyms

JML Java Modeling Language

RISC Research Institute for Symbolic Computation

RISCAL RISC Algorithm Language

TLA Temporal Logic of Actions

VDM Vienna Development Method
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A. Appendix A.1. Set Theory

A. Appendix

A.1. Set Theory

1 val N:N;
2 val Universe = 0..N;
3 type elem = N[N];
4 type set = Set[elem];
5 type pair = Tuple[elem,elem];
6 //------------------------------
7 // a ⊆ b
8 pred isSubsetEq(a:set,b:set) ⇔
9 ∀x ∈ a. x ∈ b;

10

11 // compare isSubsetEq with the implemented operator ⊆
12 theorem subsetEqT(a:set,b:set) ⇔ isSubsetEq(a,b) = (a ⊆ b);
13

14 // a ⊆ b defined as a procedure
15 proc isSubsetEqP(a:set,b:set):Bool
16 ensures result = (a ⊆ b);
17 {
18 var res:Bool := true;
19 for x ∈ a do
20 invariant res = (forSet ⊆ b);
21 {
22 res := res ∧ (x ∈ b);
23 }
24 return res;
25 }
26

27 // a ⊆ b recursively defined
28 multiple fun isSubsetEqR(a:set,b:set):Bool
29 decreases |a|;
30 ensures result = (a ⊆ b);
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31 = choose x:elem with x ∈ a
32 in (x ∈ b ∧ isSubsetEqR(a\{x},b))
33 else true;
34

35 //-------------------------------
36 // is a real subset of b?
37 pred isSubset(a:set,b:set) ⇔
38 a ⊆ b ∧ (∃x ∈ b. ¬(x ∈ a));
39

40 // are a and b equal?
41 pred isEqual(a:set,b:set) ⇔
42 (a ⊆ b) ∧ (b ⊆ a);
43

44 // compare defined equal predicate with the implemented operator
45 theorem equalT(a:set,b:set) ⇔ isEqual(a,b) = (a = b);
46

47 //------------------------------
48 fun powersetS(a:set):Set[set] =
49 { x | x:set with (x ⊆ a) };
50

51 theorem powersetT(a:set) ⇔ powersetS(a) = Set(a);
52

53 theorem powersetProperties(a:set) ⇔
54 (∅[elem] ∈ powersetS(a) ∧ ∅[set] ⊆ powersetS(a));
55

56 //------------------------------
57 // a ∪ b implicitly defined
58 fun unionI(a:set,b:set):set =
59 choose c:set with (∀ x:elem. x ∈ c ⇔ x ∈ a ∨ x ∈ b);
60

61 fun unionS(a:set,b:set):set =
62 { x | x:elem with (x ∈ a ∨ x ∈ b) };
63

64 // is unionS(a,b) = (a ∪ b)?
65 theorem unionT(a:set,b:set) ⇔
66 unionS(a,b) = (a ∪ b);
67

68 // a ∪ b defined as a procedure
69 proc unionP(a:set,b:set):set
70 ensures result = a ∪ b;
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71 {
72 var res:set := a;
73 for x ∈ b do
74 invariant res = (a ∪ forSet);
75 {
76 res := res ∪ {x};
77 }
78 return res;
79 }
80

81 // a ∪ b recursively defined
82 multiple fun unionR(a:set,b:set):set
83 decreases |a|;
84 ensures result = a ∪ b;
85 = choose x:elem with x ∈ a
86 in ({x} ∪ unionR(a\{x},b))
87 else b;
88

89

90 //------------------------------
91 // a ∩ b defined with set quantifiers
92 fun intersectS(a:set,b:set):set =
93 { x | x:elem with (x ∈ a ∧ x ∈ b) };
94

95 // is intersectS(a,b) equal to a ∩ b
96 theorem intersectT(a:set,b:set) ⇔ intersectS(a,b) = (a ∩ b);
97

98 // a ∩ b defined as a procedure
99 proc intersectP(a:set,b:set):set

100 ensures result = a ∩ b;
101 {
102 var res:set := ∅[elem];
103 for x ∈ a do
104 invariant res = (b ∩ forSet);
105 {
106 if x ∈ b then res := res ∪ {x};
107 }
108 return res;
109 }
110
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111 // a ∩ b recursively defined
112 multiple fun intersectR(a:set,b:set):set
113 decreases |a|;
114 ensures result = a ∩ b;
115 = choose x:elem with x ∈ a
116 in (if x ∈ b then {x} ∪ intersectR(a\{x},b)
117 else intersectR(a\{x},b))
118 else ∅[elem];
119

120 //------------------------------
121 // a\b defined with set quantifiers
122 fun differenceS(a:set,b:set):set =
123 { x | x:elem with (x ∈ a ∧ ¬(x ∈ b)) };
124

125 // is differenceS(a,b) equal to a\b ?
126 theorem differenceT(a:set,b:set) ⇔ differenceS(a,b) = (a \ b);
127

128 // a\b defined as a procedure
129 proc differenceP(a:set,b:set):set
130 ensures result = (a\b);
131 {
132 var res:set := ∅[elem];
133 for x ∈ a do
134 invariant res = (forSet\b);
135 {
136 if ¬(x ∈ b) then res := res ∪ {x};
137 }
138 return res;
139 }
140

141 // a\b recursively defined
142 multiple fun differenceR(a:set,b:set):set
143 decreases |b|;
144 ensures result = (a\b);
145 = choose x:elem with x ∈ b
146 in differenceR(a\{x},b\{x})
147 else a;
148

149 //------------------------------
150 fun complementS(a:set):set =
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151 { x | x:elem with ¬(x ∈ a) };
152

153 theorem complementT(a:set) ⇔ complementS(a) = (Universe\a);
154

155 proc complementP(a:set):set
156 ensures result = (Universe\a);
157 {
158 var res:set := 0..N;
159 for x ∈ a do
160 invariant res = (0..N\forSet);
161 {
162 res := res \ {x};
163 }
164 return res;
165 }
166

167 multiple fun complementR(a:set):set
168 decreases |Universe\a|;
169 ensures result = (0..N\a);
170 = choose x:elem with ¬(x ∈ a)
171 in ({x} ∪ complementR(a ∪ {x}))
172 else ∅[elem];
173

174 //-------------------------------
175 // a,b disjunct:
176 pred disjunct(a:set,b:set) ⇔ (a ∩ b = ∅[elem]);
177

178 //-------------------------------
179 // laws for operations on sets:
180 theorem commutativeUnionT(a:set,b:set) ⇔ (a ∪ b = b ∪ a);
181 theorem commutativeIntersectT(a:set,b:set) ⇔ (a ∩ b = b ∩ a);
182

183 theorem associativeUnionT(a:set,b:set,c:set) ⇔ (a ∪ (b ∪ c) = (a ∪ b) ∪ c);
184 theorem associativeIntersectT(a:set,b:set,c:set) ⇔ (a ∩ (b ∩ c) = (a ∩ b) ∩ c);
185

186 theorem distributiveUnionT(a:set,b:set,c:set) ⇔ (a ∪ (b ∩ c) = ((a ∪ b) ∩ (a ∪
c)));

187 theorem distributiveIntersectT(a:set,b:set,c:set) ⇔ (a ∩ (b ∪ c) = ((a ∩ b) ∪ (a
∩ c)));

188
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189 theorem deMorganUnionT(a:set,b:set) ⇔ complementS(a ∪ b) = complementS(a) ∩
complementS(b);

190 theorem deMorganIntersectT(a:set,b:set) ⇔ complementS(a ∩ b) = complementS(a) ∪
complementS(b);

191

192

193 //------------------------------
194 // Cartesian product defined with set quantifiers
195 fun cartesianProductS(a:set,b:set):Set[pair] =
196 { p | p:pair with (p.1 ∈ a ∧ p.2 ∈ b) };
197

198 // is cartesianProductS(a,b) equal to a × b
199 theorem cartesianProductT(a:set,b:set) ⇔ cartesianProductS(a,b) = a × b;
200

201 // Cartesian product defined as a procedure
202 proc cartesianProductP(a:set,b:set):Set[pair]
203 ensures result = (a × b);
204 {
205 var res:Set[pair] := ∅[pair];
206 for x ∈ a do
207 invariant res = (forSet × b);
208 {
209 res := res ∪
210 {p | p:pair with p.1 = x ∧ p.2 ∈ b};
211 }
212 return res;
213 }
214

215 // Cartesian product recursively defined
216 multiple fun cartesianProductR(a:set,b:set):Set[pair]
217 decreases |a|;
218 ensures result = (a × b);
219 = choose x:elem with x ∈ a
220 in ({p | p:pair with p.1 = x ∧ p.2 ∈ b}
221 ∪ cartesianProductR(a\{x},b))
222 else ∅[pair];
223

224 //--------------------------------------
225 // cardinality
226 val S = N+1;
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227 type size = N[S];
228 type map = Map[size,elem];
229

230 // m is a map of the first s natural numbers into a
231 pred isMapToA(s:size, f:map, a:set) ⇔
232 (∀i:size with i >= s. f[i] = 0) ∧
233 (∀i:size with i < s. f[i] ∈ a);
234

235 // is f injective on a at the first s entries?
236 pred isInjective(s:size, f:map, a:set)
237 requires isMapToA(s,f,a);
238 ⇔ ∀x:size,y:size with (x < s ∧ y < s). ((f[x] = f[y]) ⇒ (x = y));
239

240 // is every element of a in the image of f?
241 pred isSurjective(s:size, f:map, a:set)
242 requires isMapToA(s,f,a);
243 ⇔ ∀x:elem with x ∈ a. ∃y:size with y < s. f[y] = x;
244

245 // is f bijective on set a?
246 pred isBijective(s:size, f:map, a:set)
247 requires isMapToA(s,f,a);
248 ⇔ isInjective(s,f,a) ∧ isSurjective(s,f,a);
249

250 // the cardinality of set a
251 fun cardinalityS(a:set):size =
252 choose s:size with ∃f:map with isMapToA(s,f,a). isBijective(s, f, a);
253

254 // is cardinalityS(a) equal to |a|?
255 theorem cardinalityT(a:set) ⇔ cardinalityS(a) = |a|;
256

257 // the cardinality defined recursively
258 multiple fun cardinalityR(a:set):size
259 ensures result = |a|;
260 decreases |a|;
261 = choose x:elem with x ∈ a
262 in (1 + cardinalityR(a\{x}))
263 else 0;
264

265

266 proc cardinalityP(a:set):size

59



A. Appendix A.1. Set Theory

267 ensures result = |a|;
268 {
269 var res:size := 0;
270 for x ∈ a do
271 invariant res = |forSet|;
272 {
273 res := res + 1;
274 }
275 return res;
276 }
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A.2. Relation and Function Theory

1 val N:N;
2 val Universe = 0..N;
3 type elem = N[N];
4 type set = Set[elem];
5 type pair = Tuple[elem,elem];
6 type relation = Set[pair];
7

8 // r is relation between sets a and b ⇔ r ⊆ a × b
9 pred isRelation(r:relation,a:set,b:set)

10 ⇔ r ⊆ a × b;
11

12 // is r relation between a and b as a procedure
13 proc isRelationP(r:relation,a:set,b:set):Bool
14 ensures result = isRelation(r,a,b);
15 {
16 var res:Bool := true;
17 for x ∈ r do
18 invariant res = isRelation(forSet,a,b);
19 {
20 res := res ∧ (x.1 ∈ a ∧ x.2 ∈ b);
21 }
22 return res;
23 }
24

25 // is r relation between a and b as a recursion
26 multiple fun isRelationR(r:relation,a:set,b:set):Bool
27 decreases |r|;
28 ensures result = isRelation(r,a,b);
29 = choose x:pair with x ∈ r
30 in (x.1 ∈ a ∧ x.2 ∈ b ∧ isRelationR(r\{x},a,b))
31 else true;
32

33 //----------------------------------------------------
34 // composition of relation r:a->b and s:b->c (s◦r)
35 fun composeS(r:relation, s:relation, a:set, b:set, c:set):relation
36 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
37 = {p | p:pair with (p.1 ∈ a ∧ p.2 ∈ c
38 ∧ (∃x ∈ b. (〈p.1,x〉 ∈ r ∧ 〈x,p.2〉 ∈ s )))};
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39

40 // composition is relation from a to c
41 theorem compositionFromAtoC(r:relation, s:relation, a:set, b:set, c:set)
42 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
43 ⇔ isRelation(composeS(r,s,a,b,c),a,c);
44

45 // composition s◦r as a procedure
46 proc composeP(r:relation,s:relation,a:set,b:set,c:set):relation
47 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
48 ensures result = composeS(r,s,a,b,c);
49 {
50 var res:relation := ∅[pair];
51 for x ∈ r do
52 invariant res = composeS(forSet,s,a,b,c);
53 {
54 res := res ∪ {p | p:pair with (p.1 = x.1
55 ∧ p.2 ∈ {e | e:elem with 〈x.2,e〉 ∈ s})};
56 }
57 return res;
58 }
59

60

61 // composition s◦r as a recurrence
62 multiple fun composeR(r:relation,s:relation,a:set,b:set,c:set):relation
63 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
64 ensures result = composeS(r,s,a,b,c);
65 decreases |r|;
66 = choose x:pair with x ∈ r
67 in ({p | p:pair with (p.1 = x.1
68 ∧ p.2 ∈ {e | e:elem with 〈x.2,e〉 ∈ s})}
69 ∪ composeR(r\{x},s,a,b,c))
70 else ∅[pair];
71

72 //-----------------------------------------------------
73 // inverse relations
74 fun inverseS(r:relation, a:set, b:set):relation
75 requires isRelation(r,a,b);
76 = {p | p:pair with 〈p.2,p.1〉 ∈ r};
77

78 // the inverse relation of r:a->b is a relation from b->a
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79 theorem isInverseARelationT(r:relation, a:set, b:set)
80 requires isRelation(r,a,b);
81 ⇔ isRelation(inverseS(r,a,b),b,a);
82

83 // (r−1)−1 = r
84 theorem inverseOfInverseT(r:relation, a:set, b:set)
85 requires isRelation(r,a,b);
86 ⇔ inverseS(inverseS(r,a,b),b,a) = r;
87

88 // r−1 as a procedure
89 proc inverseP(r:relation,a:set,b:set):relation
90 requires isRelation(r,a,b);
91 ensures result = inverseS(r,a,b);
92 {
93 var res:relation := ∅[pair];
94 for x ∈ r do
95 invariant res = inverseS(forSet,a,b);
96 {
97 res := res ∪ { 〈x.2,x.1〉 };
98 }
99 return res;

100 }
101

102 // r−1 as a recursion
103 multiple fun inverseR(r:relation,a:set,b:set):relation
104 requires isRelation(r,a,b);
105 ensures result = inverseS(r,a,b);
106 decreases |r|;
107 = choose x:pair with x ∈ r
108 in ({ 〈x.2,x.1〉 } ∪ inverseR(r\{x},a,b))
109 else ∅[pair];
110

111 // (s◦r)−1 = r−1◦s−1

112 theorem composeInverseT(r:relation,s:relation,a:set,b:set,c:set)
113 requires isRelation(r,a,b) ∧ isRelation(s,b,c);
114 ⇔ inverseS(composeS(r,s,a,b,c),a,c) =

composeS(inverseS(s,b,c),inverseS(r,a,b),c,b,a);
115

116 //---------------------------------------------
117 // identity relation on set a
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118 fun identity(a:set):relation
119 = { 〈x,x〉 | x:elem with x ∈ a};
120

121 // r◦I=I◦r=r
122 theorem neutralT(r:relation,a:set)
123 requires isRelation(r,a,a);
124 ⇔ composeS(r,identity(a),a,a,a) = r
125 ∧ composeS(identity(a),r,a,a,a) = r;
126

127

128 //----------------------------------------------
129 // monoid axioms for endorelations
130 // associativity: t◦(s◦r) = (t◦s)◦r
131 theorem associativityEndoT(r:relation,s:relation,t:relation,
132 a:set)
133 requires isRelation(r,a,a) ∧ isRelation(s,a,a)
134 ∧ isRelation(t,a,a);
135 ⇔ composeS(composeS(r,s,a,a,a),t,a,a,a) =
136 composeS(r,composeS(s,t,a,a,a),a,a,a);
137

138 //---------------------------------------------
139 // is relation r:a->a reflexive?
140 pred isReflexiveS(r:relation,a:set)
141 requires isRelation(r,a,a);
142 ⇔ ∀x ∈ a. 〈x,x〉 ∈ r;
143

144 // is relation r:a->a symmetric?
145 pred isSymmetricS(r:relation,a:set)
146 requires isRelation(r,a,a);
147 ⇔ ∀x ∈ r. 〈x.2,x.1〉 ∈ r;
148

149 // is relation r:a->a anti-symmetric?
150 pred isAntiSymmetricS(r:relation,a:set)
151 requires isRelation(r,a,a);
152 ⇔ ∀x ∈ r. (〈x.2,x.1〉 ∈ r ⇒ x.2 = x.1);
153

154 // is relation r:a->a transitive?
155 pred isTransitiveS(r:relation,a:set)
156 requires isRelation(r,a,a);
157 ⇔ ∀x ∈ r, y ∈ r. ((x.2 = y.1) ⇒ 〈x.1,y.2〉 ∈ r);
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158

159 //----------------------------------------------
160 // is s a relation on a->a ∧ r ⊆ s ∧ is s transitive?
161 pred isRelationSubsetAndTransitive(s:relation,r:relation,a:set)
162 ⇔ isRelation(s,a,a) ∧ r ⊆ s ∧ isTransitiveS(s,a);
163

164 // transitive closure of relation r:a->a
165 // transitive closure t is the smallest relation with r ⊆ t and
166 // t is transitive
167 fun transitiveClosureS(r:relation,a:set):relation
168 requires isRelation(r,a,a);
169 = choose s:relation with (isRelationSubsetAndTransitive(s,r,a) ∧
170 (∀t:relation.
171 isRelationSubsetAndTransitive(t,r,a) ⇒ s ⊆ t));
172

173 // transitive closure of r as a procedure
174 proc transitiveClosureP(r:relation,a:set):relation
175 requires isRelation(r,a,a);
176 ensures result = transitiveClosureS(r,a);
177 {
178 var res:relation := ∅[pair];
179 var toCheck:relation := r;
180 choose x ∈ toCheck do
181 //invariant res = transitiveClosureS(forSet,a);
182 {
183 for y ∈ res do
184 {
185 if x.1 = y.2 ∧ ¬(〈y.1, x.2〉 ∈ res) then
186 {
187 toCheck := toCheck ∪ { 〈y.1, x.2〉 };
188 }
189 if x.2 = y.1 ∧ ¬(〈x.1, y.2〉 ∈ res) then
190 {
191 toCheck := toCheck ∪ { 〈x.1, y.2〉 };
192 }
193 }
194 res := res ∪ { x };
195 toCheck := toCheck \ { x };
196 }
197 return res;
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198 }
199

200 val RelationUniverse = Universe × Universe;
201 // transitive closure of r as a recursion
202 multiple fun transitiveClosureR(r:relation,a:set):relation
203 requires isRelation(r,a,a);
204 ensures result = transitiveClosureS(r,a);
205 decreases |RelationUniverse\r|;
206 = if isTransitiveS(r,a) then r
207 else transitiveClosureR(
208 r ∪ { 〈x,y〉 | x:elem,y:elem with
209 (∃p∈r,q∈r. (x = p.1 ∧ y = q.2 ∧ p.2 = q.1)) }
210 , a);
211

212 //----------------------------------------------
213 // is relation r:a->b a partial function?
214 pred isPartialFunctionS(r:relation,a:set,b:set)
215 ⇔ isRelation(r,a,b) ∧ ∀x ∈ r, y ∈ r. (x.1 = y.1 ⇒ x.2 = y.2);
216

217 // is relation r:a->b a total function?
218 pred isFunctionS(r:relation,a:set,b:set)
219 ⇔ isRelation(r,a,b) ∧
220 ∀z ∈ a. (∃f ∈ r.
221 (f.1 = z ∧ ∀g ∈ r. (g.1 = f.1 ⇒ g.2 = f.2))) ;
222

223 //--------------------------------------
224 // Connection to type ’Map’
225 type map = Map[elem,elem];
226

227 pred isFunctionM(m:map, a:set, b:set)
228 ⇔ (∀x ∈ a. m[x] ∈ b) ;
229

230 pred equal(r:relation, m:map, a:set, b:set)
231 requires isFunctionS(r,a,b) ∧ isFunctionM(m,a,b);
232 ⇔ ∀x ∈ a. ∃y ∈ r. (y.1 = x ∧ m[x] = y.2);
233

234 fun relToMap(r:relation, a:set, b:set):map
235 requires isFunctionS(r,a,b);
236 ensures isFunctionM(result,a,b) ∧
237 equal(r,result,a,b);
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238 = choose m:map with ((∀x ∈ a. ∃y ∈ r. (x = y.1 ∧ m[x] = y.2)));
239

240 fun mapToRelation(m:map, a:set, b:set):relation
241 requires isFunctionM(m,a,b);
242 ensures isFunctionS(result,a,b) ∧ equal(result,m,a,b);
243 = {p | p:pair with (p.1 ∈ a ∧ p.2 = m[p.1])};
244

245 // a relation is equal to its induced
246 // relation of the induced map
247 theorem relationT1(r:relation, a:set, b:set)
248 requires isFunctionS(r,a,b);
249 ⇔ r = mapToRelation(relToMap(r,a,b),a,b);
250

251 // a map is equal to its induced map of the induced relation
252 theorem mapT1(m:map, a:set, b:set)
253 requires isFunctionM(m,a,b);
254 ⇔ ∀x ∈ a. (m[x] = relToMap(mapToRelation(m,a,b),a,b)[x]);
255

256 // composition of functions f2◦f1 is again a function
257 theorem compositionOfFunctions(f1:relation, f2:relation,
258 a:set,b:set,c:set)
259 requires isRelation(f1,a,b) ∧ isRelation(f2,b,c);
260 ⇔ (isFunctionS(f1,a,b) ∧ isFunctionS(f2,b,c)) ⇒
261 isFunctionS(composeS(f1,f2,a,b,c),a,c);
262

263 // is the function surjective?
264 pred isSurjectiveFunction(f:relation, a:set, b:set)
265 requires isFunctionS(f,a,b);
266 ⇔ ∀x ∈ b. (∃y ∈ a. (〈y,x〉 ∈ f));
267

268 // is the function injective?
269 pred isInjectiveFunction(f:relation, a:set, b:set)
270 requires isFunctionS(f,a,b);
271 ⇔ ∀x ∈ f, y ∈ f. ((x.2 = y.2) ⇒ (x.1 = y.1));
272

273 // is the function bijective?
274 pred isBijectiveFunction(f:relation, a:set, b:set)
275 requires isFunctionS(f,a,b);
276 ⇔ isSurjectiveFunction(f,a,b) ∧ isInjectiveFunction(f,a,b);
277
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278 // inverse of bijective function is bijective
279 theorem inverseBijectiveT(f:relation,a:set,b:set)
280 requires isFunctionS(f,a,b);
281 ⇔ isBijectiveFunction(f,a,b) ⇒
282 isBijectiveFunction(inverseS(f,a,b),b,a);
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A.3. Graph Theory

1 type vertex = N[N];
2 type vertices = Set[vertex];
3 type dirEdge = Tuple[vertex,vertex];
4 type dirEdges = Set[dirEdge];
5 type undirEdge = Set[vertex];
6 type undirEdges = Set[undirEdge];
7 type dirGraph = Tuple[vertices, dirEdges];
8 type undirGraph = Tuple[vertices, undirEdges];
9 type undirPath = Array[N,undirEdge];

10

11 // disable empty set of vertices and
12 // only allow sets with 2 elements in set of edges
13 pred isUndirectedGraph(g:undirGraph)
14 ⇔ g.1 6= ∅[vertex] ∧ (g.2 ⊆ Set(g.1,2));
15

16 // don’t allow empty set of vertices and check if all
17 // elements in the edges are in the set of vertices
18 pred isDirectedGraph(g:dirGraph)
19 ⇔ g.1 6= ∅[vertex] ∧ (g.2 ⊆ { e | e:dirEdge with
20 e.1 ∈ g.1 ∧ e.2 ∈ g.1});
21

22 // check if a certain vertex v1 is in a set of vertices v
23 pred isVertexInSetOfVertices(v1:vertex, v:vertices)
24 ⇔ v1 ∈ v;
25

26 // are the vertices v1 and v2 adjacent in graph g?
27 pred areVerticesAdjacent(g:undirGraph, v1:vertex, v2:vertex)
28 requires isVertexInSetOfVertices(v1,g.1)
29 ∧ isVertexInSetOfVertices(v2,g.1)
30 ∧ isUndirectedGraph(g);
31 ⇔ {v1,v2} ∈ g.2;
32

33 // get the complete undirected graph to a set of vertices
34 fun getCompleteUndirectedGraph(v:vertices):undirGraph
35 requires v 6= ∅[vertex];
36 ensures isUndirectedGraph(result);
37 = 〈v, { {x,y} | x:vertex,y:vertex with
38 x ∈ v ∧ y ∈ v ∧ x ~= y } 〉;
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39

40 // get undirected graph from directed graph
41 fun getUndirectedGraph(g:dirGraph):undirGraph
42 requires isDirectedGraph(g);
43 ensures isUndirectedGraph(result);
44 = 〈g.1, {{x,y} | x:vertex,y:vertex with x 6= y ∧
45 (〈x,y〉 ∈ g.2 ∨ 〈y,x〉 ∈ g.2)}〉;
46

47 // get the neighborhood of a vertex v in graph g
48 fun getNeighborhood(v:vertex, g:undirGraph):vertices
49 requires isUndirectedGraph(g)
50 ∧ isVertexInSetOfVertices(v,g.1);
51 = {v2 | v2:vertex with (v2 ∈ g.1 ∧ {v,v2} ∈ g.2)};
52

53 // get the degree of a vertex v in graph g
54 fun getDegree(v:vertex, g:undirGraph):N[N]
55 requires isUndirectedGraph(g)
56 ∧ isVertexInSetOfVertices(v,g.1);
57 = | getNeighborhood(v,g) |;
58

59 // theorem: 2 times the number of edges equals the
60 // sum over all degrees of the vertices
61 theorem handshakingTheorem(g:undirGraph)
62 requires isUndirectedGraph(g);
63 ⇔ 2*|g.2| =

∑
v ∈ g.1 . getDegree(v,g);

64

65 // theorem: number of vertices of odd degree is even
66 theorem numberOfVerticesOfOddDegree(g:undirGraph)
67 requires isUndirectedGraph(g);
68 ⇔ (|{v | v:vertex with (v ∈ g.1)
69 ∧ (getDegree(v,g) % 2) = 1}| % 2 ) = 0;
70

71 // are 2 sets of vertices disjoint?
72 pred isDisjoint(v1:vertices, v2:vertices)
73 ⇔ (v1 ∩ v2) = ∅[vertex];
74

75 // is graph g bipartite?
76 pred isGraphBipartite(g:undirGraph)
77 requires isUndirectedGraph(g);
78 ⇔ ∃v1:vertices,v2:vertices. (∀x ∈ g.1, y ∈ g.1 with {x,y} ∈ g.2 .
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79 (isDisjoint(v1,v2) ∧
80 ((x ∈ v1 ∧ y ∈ v2) ∨ (x ∈ v2 ∧ y ∈ v1))));
81

82 // is h subgraph of g?
83 pred isSubGraph(g:undirGraph,h:undirGraph)
84 requires isUndirectedGraph(g) ∧ isUndirectedGraph(h);
85 ⇔ h.1 ⊆ g.1 ∧ h.2 ⊆ g.2;
86

87 // returns the induced graph of graph g and set of vertices v
88 fun inducedSubGraph(g:undirGraph, v:vertices):undirGraph
89 requires isUndirectedGraph(g) ∧ v ⊆ g.1 ∧ v 6= ∅[vertex];
90 ensures isSubGraph(g,result);
91 = 〈v, { {x,y} | x ∈ v,y ∈ v with {x,y} ∈ g.2 } 〉;
92

93 //-------------------------------------------------------
94 // paths
95

96 // check if array is filled till index n and if array
97 // is empty after this index
98 pred isArrayFilledToIndex(a:Array[N,undirEdge], n:N[N-1])
99 ⇔ (∀m ∈ n+1..N-1. (a[m] = ∅[vertex])) ∧

100 (∀l ∈ 0..n. (a[l] 6= ∅[vertex]));
101

102 // check if array is empty
103 pred isArrayEmpty(a:Array[N,undirEdge])
104 ⇔ ∀m ∈ 0..N-1. (a[m] = ∅[vertex]);
105

106 // check if all entries are empty, after the first entry
107 // is empty
108 pred isArrayEmptyFromFirstEmptyEntry(a:Array[N,undirEdge])
109 ⇔ ∀m ∈ 0..N-1. (((a[m] = ∅[vertex]) ⇒
110 (∀n ∈ 0..N-1 with n > m. (a[n] = ∅[vertex]))));
111

112 // check if path is in graph g
113 pred isPathInGraph(p:undirPath, g:undirGraph)
114 requires isUndirectedGraph(g);
115 ⇔ ∀m ∈ 0..N-1. (p[m] ∈ g.2 ∨ p[m] = ∅[vertex]);
116

117 // get number of edges within path, which include v
118 fun numberOfEdgesWithVertex(p:undirPath, v:vertex):N[N]
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119 = |{e| e:undirEdge with ((∃n ∈ 0..N-1. (p[n] = e)) ∧ v ∈ e)}|;
120

121 // check if vertices are at most once in the path
122 // start- and end-vertice have to be checked extra
123 pred isVertexOnceInPath(p:undirPath, start:vertex, end:vertex,
124 v:vertices)
125 ⇔ numberOfEdgesWithVertex(p,start) = 1
126 ∧ numberOfEdgesWithVertex(p,end) = 1
127 ∧ ∀v1 ∈ (v\{start,end}). numberOfEdgesWithVertex(p,v1) <= 2;
128

129 // check if the edges are adjacent
130 pred isEdgeAdjacent(e1:undirEdge, e2:undirEdge)
131 ⇔ (e1 ∩ e2) 6= ∅[vertex] ∧ e1 6= e2;
132

133 pred areNonEmptyEntriesUnique(a:Array[N,undirEdge])
134 ⇔ ∀m ∈0..N-1. ((a[m] = ∅[vertex]) ∨
135 (∀n ∈ (0..N-1)\{m}. a[n] 6= a[m]));
136

137 pred isPathRequirementsFulfilled(p:undirPath)
138 ⇔ isArrayEmptyFromFirstEmptyEntry(p)
139 ∧ areNonEmptyEntriesUnique(p);
140

141 // check if p is a path between start- and endvertice in graph g
142 pred isPathBetweenVertices( p:undirPath, g:undirGraph,
143 start:vertex, end:vertex)
144 requires isUndirectedGraph(g)
145 ∧ isVertexInSetOfVertices(start,g.1)
146 ∧ isVertexInSetOfVertices(end,g.1)
147 ∧ isPathRequirementsFulfilled(p)
148 ∧ isPathInGraph(p,g);
149 ⇔ ((start = end) ∧ isArrayEmpty(p)) ∨
150 (start 6= end ∧ (∃n:N[N-1]. (isArrayFilledToIndex(p,n)
151 ∧ isVertexOnceInPath(p, start, end, g.1)
152 ∧ ∀m ∈ 1..n. (isEdgeAdjacent(p[m-1], p[m])))));
153

154 // is graph g connected? that means, is every vertex connected
155 // by a path to every other vertex in graph g?
156 pred isGraphConnected(g:undirGraph)
157 requires isUndirectedGraph(g);
158 ⇔ ∀v1 ∈ g.1, v2 ∈ g.1.
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159 (∃p:undirPath. isPathRequirementsFulfilled(p) ∧
160 isPathInGraph(p,g) ∧
161 isPathBetweenVertices(p, g, v1, v2));
162

163 pred isPathBetweenVerticesExisting(g:undirGraph, start:vertex,
164 end:vertex)
165 requires isUndirectedGraph(g)
166 ∧ isVertexInSetOfVertices(start,g.1)
167 ∧ isVertexInSetOfVertices(end,g.1);
168 ⇔ ∃p:undirPath. (isPathRequirementsFulfilled(p) ∧
169 isPathInGraph(p,g) ∧
170 isPathBetweenVertices(p, g, start, end));
171 // ----------------------------------------------------
172 // get all paths between 2 vertices
173 fun getPathsBetweenVertices(g:undirGraph, start:vertex,
174 end:vertex):Set[undirPath]
175 requires isUndirectedGraph(g)
176 ∧ isVertexInSetOfVertices(start,g.1)
177 ∧ isVertexInSetOfVertices(end,g.1);
178 ensures ¬(∃q:undirPath with (isPathRequirementsFulfilled(q)
179 ∧ isPathInGraph(q,g)).
180 isPathBetweenVertices(q,g,start,end)
181 ∧ ¬(q ∈ result));
182 = {p | p:undirPath with isPathRequirementsFulfilled(p)
183 ∧ isPathInGraph(p,g)
184 ∧ isPathBetweenVertices(p,g,start,end)};
185

186 // find any path between start- and end-vertex
187 fun getPathBetweenVertices(g:undirGraph, start:vertex,
188 end:vertex):Tuple[Bool,undirPath]
189 requires isUndirectedGraph(g)
190 ∧ isVertexInSetOfVertices(start,g.1)
191 ∧ isVertexInSetOfVertices(end,g.1);
192 ensures
193 (result.1 = isPathBetweenVerticesExisting(g,start,end))
194 ∧ ((¬result.1) ∨
195 isPathBetweenVertices(result.2,g,start,end));
196 = choose p:undirPath with (isPathRequirementsFulfilled(p)
197 ∧ isPathInGraph(p,g)
198 ∧ isPathBetweenVertices(p,g,start,end))
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199 in 〈true,p〉
200 else 〈false,Array[N,undirEdge](∅[vertex])〉;
201

202 // find any path between start- and end-vertex as a procedure
203 proc getPathBetweenVerticesP(g:undirGraph, start:vertex,
204 end:vertex):Tuple[Bool,undirPath]
205 requires isUndirectedGraph(g)
206 ∧ isVertexInSetOfVertices(start,g.1)
207 ∧ isVertexInSetOfVertices(end,g.1);
208 ensures
209 (result.1 = isPathBetweenVerticesExisting(g,start,end))
210 ∧ ((¬result.1) ∨
211 isPathBetweenVertices(result.2,g,start,end));
212 {
213 var res:undirPath := Array[N,undirEdge](∅[vertex]);
214 var found:Bool := false;
215 if start 6= end then
216 {
217 var lastVertex:vertex := start;
218 var visited:vertices := {start};
219 var i:N[N+1];
220 for i := 0; i < N ∧ ¬found; i := i+1 do
221 {
222 if {lastVertex,end} ∈ g.2 then
223 {
224 res[i] := {lastVertex,end};
225 found := true;
226 } else
227 {
228 var v1:N[N+1];
229 choose v ∈ getNeighborhood(lastVertex, g)\visited
230 with isPathBetweenVerticesExisting(
231 inducedSubGraph(g,g.1\visited),
232 v, end)
233 then v1 := v;
234 else v1 := N+1;
235 if(v1 6= N+1) then {
236 res[i] := {lastVertex,v1};
237 visited := visited ∪ {v1};
238 lastVertex := v1;
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239 } else {
240 // no viable vertex found
241 // -> return found = false
242 i = N;
243 }
244 }
245 }
246 } else {
247 found := true;
248 }
249 return 〈found,res〉;
250 }
251

252 // ---------------------------------------------------
253 // length of a path
254 fun getLengthOfPath(p:undirPath):N[N]
255 requires isPathRequirementsFulfilled(p);
256 = choose i:N[N-1] with (p[i] = ∅[vertex] ∧
257 ∀j ∈ 0..(i-1). p[j] 6= ∅[vertex])
258 in i
259 else N;
260

261 // ---------------------------------------------------
262 // shortest path
263 pred isShortestPath(g:undirGraph, start:vertex,
264 end:vertex, p:undirPath)
265 requires isUndirectedGraph(g)
266 ∧ isVertexInSetOfVertices(start,g.1)
267 ∧ isVertexInSetOfVertices(end,g.1)
268 ∧ isPathRequirementsFulfilled(p)
269 ∧ isPathInGraph(p,g);
270 ⇔ isPathBetweenVertices(p,g,start,end) ∧
271 ∀q:undirPath with (isPathRequirementsFulfilled(q)
272 ∧ isPathInGraph(q,g)
273 ∧ isPathBetweenVertices(q,g,start,end))
274 . (getLengthOfPath(p) ≤ getLengthOfPath(q));
275

276 fun getShortestPath(g:undirGraph, start:vertex,
277 end:vertex):Tuple[Bool,undirPath]
278 requires isUndirectedGraph(g)
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279 ∧ isVertexInSetOfVertices(start,g.1)
280 ∧ isVertexInSetOfVertices(end,g.1);
281 ensures
282 (result.1 = isPathBetweenVerticesExisting(g,start,end))
283 ∧ ((¬result.1) ∨
284 (isPathBetweenVertices(result.2,g,start,end)
285 ∧ isShortestPath(g,start,end,result.2)));
286 = choose p:undirPath with (isPathRequirementsFulfilled(p)
287 ∧ isPathInGraph(p,g)
288 ∧ isPathBetweenVertices(p,g,start,end)
289 ∧ isShortestPath(g,start,end,p))
290 in 〈true,p〉
291 else 〈false,Array[N,undirEdge](∅[vertex])〉;
292

293 proc dijkstra(g:undirGraph, start:vertex,
294 end:vertex):Tuple[Bool,undirPath]
295 requires isUndirectedGraph(g)
296 ∧ start ∈ g.1
297 ∧ end ∈ g.1;
298 ensures
299 (result.1 = isPathBetweenVerticesExisting(g,start,end))
300 ∧ ((¬result.1) ∨
301 (isPathBetweenVertices(result.2,g,start,end)
302 ∧ isShortestPath(g,start,end,result.2)));
303 {
304 var res:undirPath := Array[N,undirEdge](∅[vertex]);
305 var found:Bool := false;
306

307 // initialize
308 var dist:Map[vertex,N[N+1]] := Map[vertex,N[N+1]](N+1);
309 var prev:Map[vertex,N[N+1]] := Map[vertex,N[N+1]](N+1);
310 var conn:vertices := {start};
311 dist[start] := 0;
312 prev[start] := start;
313 var Q:vertices := g.1;
314 var visited:vertices := ∅[vertex];
315

316 // loop over all unvisited vertices and choose the
317 // one with the least distance
318 choose q ∈ (Q ∩ conn) with
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319 (∀v ∈ (Q ∩ conn). dist[q] ≤ dist[v]) do
320 decreases |Q|;
321 // all neighbours of visited nodes are connected
322 invariant ∀v ∈ visited.
323 ∀neigh ∈ getNeighborhood(v,g).
324 neigh ∈ conn;
325 // all connected vertices (except start) have a
326 // connected neighbor
327 invariant ∀v:vertex with (v ∈ conn ∧ v 6= start).
328 ∃v2:vertex with (v2 ∈ conn).
329 v2 ∈ getNeighborhood(v,g);
330 // defines shortest dist of visited nodes
331 invariant ∀v:vertex with (v ∈ conn ∧ v 6= start).
332 ∃v2 ∈ visited. (prev[v] = v2
333 ∧ v2 ∈ getNeighborhood(v,g)
334 ∧ dist[v] = dist[v2] + 1);
335 invariant ∀v:vertex with v ∈ conn.
336 (∀v2:vertex with v2 ∈ conn.
337 (v2 ∈ getNeighborhood(v,g) ⇒
338 dist[v] <= dist[v2] + 1));
339 // visited implies connected
340 invariant ∀v ∈ visited. (v ∈ conn);
341 // connected implies defined predecessor and distance
342 invariant ∀v ∈ conn. (prev[v] 6= N+1 ∧ dist[v] 6= N+1);
343 // Distance of visited nodes is shorter than the
344 // distance of unvisited but connected nodes
345 invariant ∀v ∈ visited. (∀v2 ∈ (Q ∩ conn).
346 (dist[v] <= dist[v2]));
347 {
348 // if q = end we have found the path and can stop
349 if(q = end) then
350 {
351 Q := ∅[vertex];
352 } else {
353 visited := visited ∪ {q};
354 Q := Q\{q};
355 // check unvisited neighborhood of chosen vertex
356 var V:vertices := getNeighborhood(q,g);
357 for n ∈ (V ∩ Q) do
358 // all neighbours of visited nodes are connected
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359 invariant ∀v ∈ visited with v 6= q.
360 ∀neigh ∈ getNeighborhood(v,g).
361 neigh ∈ conn;
362 // all connected vertices (except start) have a
363 // connected neighbor
364 invariant ∀v:vertex with (v ∈ conn ∧ v 6= start).
365 ∃v2:vertex with (v2 ∈ conn).
366 v2 ∈ getNeighborhood(v,g);
367 // defines shortest dist of visited nodes
368 invariant ∀v:vertex with (v ∈ conn ∧ v 6= start).
369 ∃v2 ∈ visited. (prev[v] = v2
370 ∧ v2 ∈ getNeighborhood(v,g)
371 ∧ dist[v] = dist[v2] + 1);
372 invariant ∀v:vertex with v ∈ conn.
373 (∀v2:vertex with v2 ∈ conn.
374 (v2 ∈ getNeighborhood(v,g) ⇒
375 dist[v] <= dist[v2] + 1));
376 // visited implies connected
377 invariant ∀v ∈ visited. (v ∈ conn);
378 // connected implies defined predecessor and distance
379 invariant ∀v ∈ conn. (prev[v] 6= N+1 ∧ dist[v] 6= N+1);
380 // Distance of visited nodes is shorter than the
381 // distance of unvisited but connected nodes
382 invariant ∀v ∈ visited. (∀v2 ∈ (Q ∩ conn).
383 (dist[v] <= dist[v2]));
384 {
385 var alt:N[N+1];
386 // if distance is already N+1, don’t raise it
387 if dist[q] = N+1 then alt := N+1;
388 // save alternativ distance
389 else alt := dist[q] + 1;
390 // if distance is smaller, then save new path
391 if n ∈ conn then
392 {
393 if alt < dist[n] then
394 {
395 dist[n] := alt;
396 prev[n] := q;
397 }
398 }
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399 else
400 {
401 dist[n] := alt;
402 prev[n] := q;
403 conn := conn ∪ {n};
404 }
405 }
406 }
407 }
408

409 // if path found, then create path array
410 if dist[end] 6= N+1 then
411 {
412 found := true;
413 var index:N[N];
414 var u:vertex := end;
415 for index := dist[end]; index > 0; index := index - 1
416 do {
417 res[index - 1] := {prev[u],u};
418 u := prev[u];
419 }
420 }
421

422 return 〈 found, res 〉;
423 }
424

425 // ------------------------------------------------
426 // tests for unchecked predicates with concrete graphs
427 // set N ≥ 4
428

429 val testGraph:undirGraph = 〈 {0,1,2,3,4}
430 , {{0,1},{0,2},{0,3},{1,3},{2,3}} 〉;
431 val testGraph2:undirGraph = 〈 {0,1,2,3,4}
432 , {{0,1},{1,4},{3,4},{2,3}} 〉;
433 val testGraph3:undirGraph = 〈 {0,1,2,3}
434 , {{0,1},{1,2},{2,3},{3,0}} 〉;
435

436 proc testIsUndirectedGraph():()
437 {
438 print "Is testGraph an undirected graph? ";
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439 print isUndirectedGraph(testGraph);
440 print "Is testGraph3 an undirected graph? ";
441 print isUndirectedGraph(testGraph3);
442 val noGraph1:undirGraph := 〈 {}[vertex]
443 , {{0,1},{1,2},{2,3},{3,0}} 〉;
444 val noGraph2:undirGraph := 〈 {0,1,2,3}
445 , {{0,1,2}} 〉;
446 print "Is noGraph1 an undirected graph? ";
447 print isUndirectedGraph(noGraph1);
448 print "Is noGraph2 an undirected graph? ";
449 print isUndirectedGraph(noGraph2);
450 }
451

452 proc testGetNeighborhood():()
453 {
454 print "Testgraph: ";
455 print "Neighbors vertex 0 :";
456 print getNeighborhood(0,testGraph);
457 print getDegree(0,testGraph);
458 print "Neighbors vertex 4:";
459 print getNeighborhood(4,testGraph);
460 print getDegree(4,testGraph);
461

462 print "";
463 print "Testgraph 2: ";
464 print "Neighbors vertex 3:";
465 print getNeighborhood(3,testGraph2);
466 print getDegree(3,testGraph2);
467 }
468

469 proc testCompleteUndirectedGraph():()
470 {
471 print "CompleteGraph of {0,1,2}";
472 print getCompleteUndirectedGraph({0,1,2});
473

474 print "";
475 print "CompleteGraph of {0,1,3,4}";
476 print getCompleteUndirectedGraph({0,1,3,4});
477 }
478
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479 proc testIsGraphBipartite():()
480 {
481 print "Testgraph:";
482 print "Bipartite:";
483 print isGraphBipartite(testGraph);
484

485 print "";
486 print "Testgraph2:";
487 print "Bipartite:";
488 print isGraphBipartite(testGraph2);
489 }
490

491 proc testInducedSubgraph():()
492 {
493 print "Testgraph:";
494 print "Induced Subgraph:";
495 print inducedSubGraph(testGraph, {0,1,2,4});
496

497 print "";
498 print "Testgraph2:";
499 print "Induced Subgraph:";
500 print inducedSubGraph(testGraph2, {0,1});
501 }
502

503 proc testIsPathBetweenVertices():()
504 {
505 var p:undirPath := Array[N,undirEdge](∅[vertex]);
506 p[0] := {0,1}; p[1] := {1,3}; p[2] := {3,2};
507

508 print "is path between vertices? Testgraph, start:0, end:2";
509 print isPathBetweenVertices(p,testGraph,0,2);
510

511 print "";
512 print "is path between vertices? Testgraph, start:1, end:2";
513 print isPathBetweenVertices(p,testGraph,1,2);
514

515 print "";
516 print "is path between vertices? Testgraph, start:0, end:3";
517 print isPathBetweenVertices(p,testGraph,0,3);
518 }
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519

520 proc testIsShortestPath():()
521 {
522 // is shortest path?
523 var p:undirPath := Array[N,undirEdge](∅[vertex]);
524 p[0] := {0,1}; p[1] := {1,3}; p[2] := {3,2};
525 print "";
526 print "is shortest path between vertices? Testgraph, start:0, end:2";
527 print isShortestPath(testGraph,0,2,p);
528

529 var q:undirPath := Array[N,undirEdge](∅[vertex]);
530 q[0] := {0,2};
531

532 print "";
533 print "is shortest path between vertices? Testgraph, start:0, end:2";
534 print isShortestPath(testGraph,0,2,q);
535

536 var p2:undirPath := Array[N,undirEdge](∅[vertex]);
537 p2[0] := {0,1}; p2[1] := {1,2};
538 print "";
539 print "is shortest path between vertices? Testgraph3, start:0, end:2";
540 print isShortestPath(testGraph3,0,2,p2);
541

542 var p3:undirPath := Array[N,undirEdge](∅[vertex]);
543 p3[0] := {0,3}; p3[1] := {3,2};
544 print "";
545 print "is shortest path between vertices? Testgraph3, start:0, end:2";
546 print isShortestPath(testGraph3,0,2,p3);
547 }
548

549 proc testIsGraphConnected():()
550 {
551 print "Is testGraph connected?";
552 print isGraphConnected(testGraph);
553

554 print "Is testGraph2 connected?";
555 print isGraphConnected(testGraph2);
556 }
557

558 proc testIsPathBetweenVerticesExisting():()
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559 {
560 print "Is path between vertices existing in testGraph?";
561 print isPathBetweenVerticesExisting(testGraph, 1, 2);
562

563 print "";
564 print "Is path between vertices existing in testGraph2?";
565 print isPathBetweenVerticesExisting(testGraph, 1, 4);
566 }
567

568 proc testGetLengthOfPath():()
569 {
570 var p:undirPath := Array[N,undirEdge](∅[vertex]);
571 p[0] := {0,1}; p[1] := {1,3}; p[2] := {3,2};
572 print "length of path:";
573 print getLengthOfPath(p);
574

575 var q:undirPath := Array[N,undirEdge](∅[vertex]);
576 print "length of path:";
577 print getLengthOfPath(q);
578

579 var p1:undirPath := Array[N,undirEdge](∅[vertex]);
580 p1[0] := {0,1}; p1[1] := {1,3}; p1[2] := {3,2}; p1[3] := {2,4};
581 print "length of path:";
582 print getLengthOfPath(p1);
583 }
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