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Abstract In the past few decades, design theory has grown to encompass a wide
variety of research directions. It comes as no surprise that applications in coding
theory and communications continue to arise, and also that designs have found
applications in new areas. Computer science has provided a new source of appli-
cations of designs, and simultaneously a field of new and challenging problems in
design theory. In this paper, we revisit a construction for orthogonal designs using
the multiplication tables of Cayley-Dixon algebras of dimension 2". The desired
orthogonal designs can be described by a system of equations with the aid of a
Grobner basis computation. For orders greater than 16 the combinatorial explosion
of the problem gives rise to equations that are unfeasible to be handled by tradi-
tional search algorithms. However, the structural properties of the designs make
this problem possible to be tackled in terms of rewriting techniques, by equational
unification. We establish connections between central concepts of design theory
and equational unification where equivalence operations of designs point to the
computation of a minimal complete set of unifiers. These connections make viable
the computation of some types of orthogonal designs that have not been found
before with the aforementioned algebraic modeling.
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1 Introduction

Orthogonal designs are an important class of combinatorial designs. They are of
great interest in applications for wireless communication [I9] and in statistics [12].
Even though there exist many combinatorial constructions for orthogonal designs
[6], [14], the ones that originate from Cayley-Dixon algebras [7l[8] have not been
explored enough. In particular, as we exemplify in this work, these algebras can
provide a general framework for obtaining orthogonal designs for powers of two.
Designs in these orders are also of theoretical interest due to their connection to
the asymptotic existence of orthogonal designs [0], [14].

Contribution. In this paper, after revisiting past methods, we model orthogonal
design problems as polynomial solving problems that can further be formulated in
terms of equational unification. In particular, the Cayley-Dixon formulation gives
rise to a polynomial system of equations of a specific form, that due to its size
cannot be handled by traditional search algorithms. By establishing and prov-
ing connections between central concepts of the theory of orthogonal designs and
equational unification, we are able to completely tackle these systems of equations,
where each solution of them gives rise to an orthogonal design. The efficiency of the
unification algorithms needed to solve the corresponding orthogonal design prob-
lems is evident also by the fact that we found some types of orthogonal designs,
that were not known before with this algebraic modeling of Cayley-Dixon alge-
bras. Our approach not only reports the orthogonal designs, but also constructs
the corresponding design matrices. In this way, we always give a constructive so-
lution to the problem which is not always the case with other approaches used in
design theory as we explain in the last section. Last, we would like to emphasize
the novel connections we established between base orthogonal designs, a notion
introduced in this paper, and minimal complete sets of unifiers, as a means to ad-
vance the knowledge in the field of design theory (orthogonal design equivalence
among other topics) and also benefit from the algorithmic notions of unification
theory as we applied them in this paper.

The paper is structured as follows. In Section [2] we give some details regarding or-
thogonal designs and list some of their applications. Afterwards, in Section [3] we
detail the algebraic framework for constructing orthogonal designs via compu-
tation algebra where we also introduce some new terms for designs. Some first
connections with unification theory are also shown. In the subsequent section we
give some basic notions of unification theory while in Section [5] we establish ad-
ditional connections of designs with concepts of unification theory that allow us
to formulate orthogonal design problems as unification problems. In Section [f] we
describe the unification algorithms we developed for solving the unification prob-
lems and in the last section, we translate the solutions obtained via unifiers back
to orthogonal designs.

We also provide the input matrices and polynomials in the accompanying data
set.

This paper is an extended and improved version of [9].
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2 Orthogonal Designs

In this section, we give some details regarding orthogonal designs. We provide the
necessary definitions and related concepts that will be needed for our approach
and list also some applications of orthogonal designs that are of broader interest.

2.1 Definitions and Related Concepts

An orthogonal design of order n and type (s1,s2,...,s4) (s; > 0), denoted by
OD(n; s1,52,...,84), on the commuting variables x1,z2, ..., Ty, iS an n x n matrix
D with entries from {0, +x1,+z2,...,+xy} such that

u
ppT = (Z sﬂ’%) In,

i=1

where DT is the transpose of D and I, is the identity matrix of order n. Alterna-
tively, the rows of D are formally pairwise orthogonal and each row has precisely
s; entries of the type +x;. The design matrix D may be considered as a matrix
with entries in the field of quotients of the integral domain Z[z1, z2,...,z]. In [5],
where this was first defined, it was mentioned that

u
DD = (Z sﬂ:f) In

=1

and so our alternative description of D applies equally well to the columns of D.
It was also shown in [5] that u < p(n), where p(n) (Radon’s function) is defined by
p(n) = 8c+ 2%, when n = 2%, b odd, a = 4c+d, 0 < d < 4. D will be called a full
orthogonal design, if n = s1 + s2 + ...+ sy. Due to the Equating-Killing Lemma,
given below, which is of central importance in the theory of Orthogonal Designs,
one is interested in full orthogonal designs.

Lemma 1 (The Equating and Killing Lemma, [6]) Let OD(n;s1,s2,...,54) be
an orthogonal design on the commuting variables {0, x1,tx2,...,Lxu}. Then there
exist an orthogonal design:

(i) OD(n;s1,82,...,8i+8j,...,5u) (si = s;, equating variables)
(it) OD(n;s1,82,...,8j—1,8j41,---,5u) (s; = 0, killing variables)
on the u — 1 commuting variables {0, &x1,£x2,...,£x;_1,%xj41,..., £2u}.

We also list the Doubling Lemma, which will be needed in the last section of
the paper.

Lemma 2 (The Doubling Lemma, [6]) If there exists an orthogonal design of order
n and type (s1,52,...,5u), then there exist orthogonal designs of type:

(i) (e1s1,e252,...,eusy) where e; =1 or 2,
(i) (s1,81,fs2,...,fsu) where f =1 or 2.
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Example 1 We give an example of some small orthogonal designs, and how we can
obtain one from another due to Lemma [l| and related equivalence operations.

Tl T2
xz2 —x1]|’

0OD(2;1,1)
T1 —T2 —T3 —T4 T1 —T2 T2 —T4 1 0—z3 O
To T1 —T4 T3 To T1 —T4 —T2 0 =z 0 x3
T3 T4 X1 —T2| |—w2 T4 x1 —22| |73 0 z1 O
T4 —T3 T2 T T4 T2 X2 Tl 0 —x3 0z
0D(4;1,1,1,1) 0OD(4;1,1,2) 0OD(4;1,1)

— 0D(4;1,1,2) can be obtained from OD(4;1,1,1,1) by setting z3 = —x2 in its
design matrix.

— 0D(4;1,1) can be obtained from OD(4;1,1,1,1) by setting xo = z4 = 0 in its
design matrix.

It is important to note here that in the first case, the transformation is com-
posed by the equating operation of the Equating and Killing Lemma and also
changing the sign of the variable. The last operation leaves invariant the type of
the design, however changes the design matrix. We describe more formally equiv-
alence of orthogonal designs taken from [I7] and [22].

Given two designs D; and D2 of the same order, we say that Do is a variant of
Dy, if it is obtained from D; by the following operations, performed in any order
and any number of times:

1. Multiply one row (one column) by -1.
2. Swap two rows (columns).
3. Rename or negate a variable throughout the design.

By renaming a variable here we mean either rename it by a fresh name, or
permute existing variable names. Then it is easy to prove that the relation of
being a variant is an equivalence relation. Below we write D1 ~ D2 to express this
fact. Note also that if D ~ Dg, then D; and D2 have the same type. This follows
directly from the definition of orthogonal design.

The general discussion of equivalence of orthogonal designs is very difficult
because of the lack of a nice canonical form. It also means that it is quite difficult
to decide whether or not two given orthogonal designs of the same order are
equivalent. To the best of our knowledge, there has been little effort contributing
to this point. In [I7], where the above mentioned notion of equivalence was first
introduced, some designs for small orders have been classified by hand.

The approach proposed in this paper, besides providing a systematic search
method for orthogonal designs in order of powers of two, also exhibits some in-
teresting connections between the Equating and Killing Lemma and equivalence
of orthogonal designs on the one hand, and fundamental concepts of unification
theory such as subsumption and equi-generality on the other hand, as we can see
below in Section [Bl
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2.2 Applications of Orthogonal Designs

We give some references to works describing applications of orthogonal designs. We
do not aim to provide a comprehensive, or by all means complete, treatment of the
subject, as this is not the purpose of the present paper. We are merely interested in
giving a flavor of the many different application areas involved, in order to exhibit
that while orthogonal designs are specialized types of combinatorial structures
their applications are of a broader interest.

As first noted in [I2], orthogonal designs are used in statistics where they
generate optimal statistical designs used in weighing experiments. A special case
of orthogonal designs, the so called Hadamard matrices play an important role also
in coding theory where they have been used to generate the so called Hadamard
codes [I1], i.e. error-correcting codes that correct the maximum number of errors. It
is worthwhile to note that, a Hadamard code was used during the 1971 space probe
Mariner 9 mission by NASA to correct for picture transmission error. The Mariner
9 mission and the Coding Theory used in that project are the subjects of [13] and
[20]. Recently, complex orthogonal designs were used in [I9] to generate space-time
block codes, a relatively new paradigm for communication over Rayleigh fading
channels using multiple transmit antennas. In this case, the orthogonal structure
of the space-time block code derived by the orthogonal design gives a maximum-
likelihood decoding algorithm which is based only on linear processing at the
receiver.

Orthogonal designs are also used in telecommunications where they generate
sequences used in digital communications and in optics for the improvement of the
quality and resolution of image scanners. More details, regarding their applications
in communications and signal /image processing can be found in [2T1[6]16].

3 Orthogonal Designs via Computational Algebra

In this section, we revisit a construction for orthogonal designs based on the mul-
tiplication tables of algebras of order n. These multiplication tables are used to
construct right multiplication matrices that in the remainder of this paper are used
to construct orthogonal designs. Using the right multiplication operator is a way to
overcome the obstacle of non-associativity of the algebra. Non-associativity is an
obstacle, because it is incompatible with the existence of matrix representations,
that we could use directly to construct orthogonal designs. To circumvent this ob-
stacle we use the right multiplication operator, as it seems that left multiplication
is not suitable for our purposes.

First, we give an account of the classical Williamson construction for orthogonal
designs [2], from the point of view of quaternions, following Baumert and Hall to
be able to use it as reference in subsequent constructions.

A basis for quaternions is given by the four elements 1,4, j, k, having the prop-
erties

i?=-1,j%2=-1,k*= -1,
ijg =k, ji=—k, ik=—j, (1)
ki=j, jk=1, kj=—i.

These properties are enough to specify the full multiplication table for the four
basis elements. We note that quaternion multiplication is not commutative.
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To associate a 4 x4 matrix to each basis element, we use the right multiplication
ot .
operator on the column vector v = [1 ] k} . In particular, we perform (element-
wise) the four right multiplications v-1, v-4, v-j, v-k, which give the corresponding
four results:

1-1 1-] [1-5 1-k
i1 Qi Qg ik
VRN I RN I I R I I R
k1| kil [k-5] |k &

and subsequently we apply the quaternionic properties to simplify these into:

1 7 g

i -1 k —j

j 7 _k b _1 b i
k j —i -1

The next step is to express each of the 16 elements in the previous four simplified

column matrices as a linear combination of the quaternionic basis elements 1,1, j, k
and this gives rise to the following four 4 x 4 matrices respectively:

(1000 010 07
0100 —-100 0
Q1= ; Q2 = ;
0010 0 00-1
10001 L0010 |
[0 010 000 17
0 001 00-10
Qs = ) Q4 =
-1 000 0100
L0 100 |10 0 0]

Let z, y, z, u be commuting variables. Then the sum
Q1 +yQ2 + 2Q3 + uQ4
is equal to the classical Williamson array
T Yy z u
-y r —u z
Hy=
-z u oz —y
—u—-z Yy
which has the property
H4HZ = (:c2 + y2 + 22 + u2)I4.

The matrix H is the design matrix of an OD(4;1,1,1,1).

The Cayley-Dixon process allows us to obtain an algebra of dimension 2n from
an algebra of dimension n, see [4]. One limitation of this process is that it restricts
our method to study ODs in powers of two. By applying the Cayley-Dixon process
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successively to the algebras of quaternions we get octonions and sedenions [7].
Repeating the Cayley-Dixon process to the algebra of sedenions one obtains a
Cayley-Dixon algebra of dimension 32 and doing the same for the latter algebra
we can obtain a Cayley-Dixon algebra of order 64 [8]. Finally, we would like to
mention that the algebras of orthogonal designs are Clifford algebras [15].

3.1 Cayley-Dixon Orthogonal Designs

It is important to note that the Cayley-Dixon process essentially constructs the
multiplication tables we need to model orthogonal designs. Now we describe a
generic formulation of the algebraic modeling with multiplication tables of ap-
propriate Cayley-Dixon algebras of order n to obtain orthogonal designs of order
n.

Take a Cayley-Dixon algebra of dimension n with the basisep = 1,e1,...,ep—1.
To associate an n x n matrix to each basis element, we use the right multiplication
operator on the column vector v = [1 €1 ...6en—1 } t , where with y* we denote the
transposed vector of a row vector y. Then the n right multiplications v - eg, v -
e1, ..., v-en—1 giverise to n matrices Qo, ..., Qn—1 of order n by a straightforward

generalization of the procedure described earlier in Section [3] Let z1,...,z, be
n—1

commuting variables. Then the sum A = Z zi+1Q; is equal to an n x n matrix
i=0

n
with the property that the diagonal elements of AAT are all equal to Zm% , but
whose other elements are not necessarily all zero. Hence, A, in generaluLlis not a
design matrix. We call it a candidate matriz.

By requiring that all elements of AAT (except the diagonal ones) are equal to
zero, we obtain a polynomial system of equations in the set of variables {z1,...,zn}.
We define this problem as the Cayley-Dizon orthogonal design problem for A and de-
note it by CDODP(A). (We also say that the problem is of order n when A is of order
n.) The idea is that its solutions should give an instance of A, which will be an
orthogonal design matrix.

To represent solutions, we introduce a special kind of mapping that we call
substitution mapping or, simply, a substitution. Formally, a substitution from a set S;
to aset S D S; is a mapping from S; to Sz which is identity almost everywhere. We
use lower case Greek letters to denote them. The identity substitution is denoted
by €. The domain and the range of a substitution o are defined, respectively, as
dom(o) := {u | u € S1,u # o(u)} and ran(o) := Uycdom(o){o(u)}. A substitution,
usually, is represented as a function by a finite set of bindings of elements in its
domain. For instance, a substitution o is represented as {u — o(u) | u € dom(o)}.

It is important to highlight that we seek solutions of Cayley-Dixon orthogonal
design problems in an endomorphic form, i.e., substitutions from a set S to itself.
For cDODP(A) of order n, this set is {z1,...,2n}. Moreover, the domain and the
range of such substitutions should be disjoint, i.e., the substitutions should be
idempotent. These requirements are justified by the following:

— Mapping of variables z; to variables x;, for 4,5 € {1,...,n}, is due to the fact
that we force the matrix A to become an orthogonal design and, by definition,
the diagonal elements give rise to a quadratic form that is a sum of squares.
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— In particular, if several variables map to the same variable, it is the analogue of
the equating operation of the Equating-Killing Lemma for orthogonal designs
for the equations that are produced by the algebraic modeling. It is clear from
the context that equating variables in the polynomial system of equations is
the same as equating variables in the design matrix representation.

Theorem 1 Let n = 2"" for some m > 0 and A be a candidate matrixz of order n. For
any endomorphic idempotent solution of CDODP(A) there exists an orthogonal design of
order n.

Proof Let o be an endomorphic idempotent solution of CDODP(A) over the set of
variables {z1,...,zn}. From o, we associate with each z; a number s; as follows:

— If »; € dom(o) and z; ¢ ran(o), then s; = 0.

— If z; ¢ dom(o) and z; ¢ ran(o), then s; = 1.

— If z; ¢ dom(c) and z; € ran(o), then s; = m + 1, where m is the number of
variables that map to z; by o.

(Since o is idempotent, dom(o) N ran(o) = 0 and we can not have the forth alter-
native.)
Let D be the matrix obtained from A by replacing each z;, 1 < i < n, with
o(z;) in it. Let {l1,...,lx} be the maximal subset of {1,...,n} such that s;; # 0
k

for each 1 < j < k. Then the matrix D has the property DDT = (Z slj:lej)In,
j=1
which implies that it is an orthogonal design of order n. Its type is (s, ..., 1)

The orthogonal designs whose existence is proved in this theorem are called
Cayley-Dizon orthogonal designs generated from A. When it does not cause confusion,
we drop the explicit reference to A.

Given a candidate matrix A and an endomorphic idempotent solution o of
CDODP(A), we denote by CDOD(A, o) the unique Cayley-Dixon orthogonal design
generated from A by o, as it has been (uniquely) constructed in the proof of
Theorem [l

It is important to note that the Cayley-Dixon orthogonal design problem is
instantiated for orders of power of two, since in these orders we are able to con-
struct the multiplication tables of the respective algebras by using successively the
Cayley-Dixon process on the construction of designs via quaternions of [2]. We are
interested in Cayley-Dixon orthogonal designs in orders 16, 32, 64, and 128:

— CDODP16: An instance of the CDODP(A) problem for the candidate matrix A of
order 16, consisting of a polynomial system of 42 equations in 14 variables.

— CDODP32: An instance of the CDODP(A) problem for the candidate matrix A of
order 32, consisting of a polynomial system of 252 equations in 30 variables.

— CDODP64: An instance of the CDODP(A) problem for the candidate matrix A of
order 64, consisting of a polynomial system of 1182 equations in 62 variables.

— CDODP128: An instance of the CDODP(A) problem for the candidate matrix A of
order 128, consisting of a polynomial system of 5088 equations in 126 variables.

For example, the candidate matrix A of order 16 is shown in Fig. [I} and the
corresponding problem of polynomial equations CDODP(A) in Fig. [2l Matrices and
polynomials of the other orders can be found in the accompanying data set.
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We emphasize here the computational difficulty of retrieving all endomorphic
solutions of the previous four problems. Some of them have been reported in [7]
(two solutions for order 16) and in [§] (one solution for order 32 and two solutions
for order 64). We have tried to use Grobner Bases to verify those results. In
particular, we have computed in Magma V2.12-14 a reduced Grébner basis (for
a total degree reverse lexicographical ordering) for the polynomial systems of the
CDODP16 and CDODP32 problems. For order 64 we did not manage to compute a
Grobner basis due to its enormous computational cost. Clearly, a solution of the
reduced polynomial system obtained by a Grobner basis corresponds to a solution
of the original system. We formulate the Cayley-Dixon orthogonal design problems
in terms of Grébner bases below.

— €DODP16GB: A reduced Grobner basis of the CDODP16 problem, consists of a
polynomial system of 21 equations in 14 variables.

— €DODP32GB: A reduced Grobner basis of the CDODP32 problem, consists of a
polynomial system of 290 equations in 30 variables.

Grdobner bases give some insight how to locate endomorphic solutions due to the
fact that binomial terms of the polynomial system could be written in a canonical
form. However, this is not sufficient to compute all required solutions as there is no
indication for the structure of substitution of different variables. Moreover, using
this property that distills from Grobner bases in [7] and [8], it was feasible only to
compute a handful of solutions and, respectively, orthogonal designs.

It is clear that a specialized equation solver is needed to retrieve all endomor-
phic solutions for the previous six problems. Performing some post-processing on
the structure of the polynomial systems we obtained for these problems, we observe
that each equation consists of the same number of positive and negative mono-
mial terms, and within each equation, all monomials have the same degree. This
property, together with the fact that we are looking for a solution that maps vari-
ables to variables, makes the Cayley-Dixon orthogonal design problems and their
Grobner basis counterparts very suitable to be attacked by equational unification
as we later explain in Sections [5] and [6}

More detailed figures that characterize polynomials in CDODP16, CDODP32, CDODP64,
CDODP128, CDODP16GB, and CDODP32GB are given in Table The word length there
refers to the number of monomials in a polynomial. Half of them are positive and
the other half are negative. Degree stands for the degree that each monomial has.
In the last column, the number of polynomials is shown. For instance, the first row
for cDODP32 indicates that there are 84 polynomials with the length 4, where all
monomials have degree 2. An example of such a polynomial is —x13x24 + 4725 +
x8r29 — Tox20. The longest polynomials can be found in the CDODP128 problem:
There are 870 of them with the length 60 there. An example of such a polynomial
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—r3T13 — T2216 + 810 + r5T11 =0

23714 — 2215 + T7x10 — TeT11 = 0

r3T15 + T2T14
—x3T16 + T2T13
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—Z5T11 — T8X10
—X5T12 — TeX11
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—Tex12 + T8T10
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+ zer11 + 25212 =0
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—zgT12 — 27711 = 0
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+ x3x14 + w4713 =0
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—Z6X15

+ 7214 + T2711
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T8x12

T8T12
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+ x7r11 — T4T16

X411 = 0
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zox13 =0
zox14 =0
z3x15 = 0

—r8T13 + T5T16 — 3210 + T2x11 =0

—T8T14 — 7213 + 6216 + T5T15 = 0

28214 — TeT16 — TaT10 + T2x12 = 0

—Zx8x15

—Zx8x15

+ z7x16 + T4T11

+ z7216 + T6T13

z3x12 =0

z5x14 = 0

Fig. 2 CDODP(A) problem of order 16, where A is the candidate matrix from Fig

is

— Te42121 + T4T69

— X18%87
+ T33%104

— 487105

— T16273

+ z30%91

— T452108 + 46107 + 492120 — T50T119

+ Te0x125 + T63T122 — T24T81 + T17L8S.

+ z7266

— T21T84 + T22783
—34T103 — £372100 + T38%99

— T517118 + 522117 + T55T114
T61%124 + T62T123 — T2T71
— X19%86 + T20X85 + T23T82

— X352102 + T36%101 + £39T98

— 10279

+ z28x93 + T31T90

— X13%76 + 1475

— 32789

— X43%110 + 447109 + T47T106

— I56T113 + T57T128 — T58T127

— 11078 + X12%77 + T15T74

+ x25796

— T26295

— 29792

— T40297 + T41T112 — T42T111

— I53%116 T 547115 — T59T126
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4 Equational Unification

Unification theory [1] studies unification problems: sets of equations between terms.
The latter, as usual, are constructed by a set of function symbols F and a (count-
ably infinite) set of variables V. We denote the set of terms over F and V by
T(F,V). Variables are denoted by z,y, z, function symbols by f, g, and terms by
s, t,r.

Our substitutions are a special case of the substitutions defined in Section 3.1}
mapping variables to terms. An application of a substitution o to a term ¢, denoted
to, is defined as follows: If t = z, then to := o(z). If t = f(s1,...,8n), n >0, then
to := f(s10,...,5n0). Composition of two substitutions o and ¢, written as o, is
defined as top := (to)p for any t.

An equational theory, defined by a set equational axioms E C T(F,V) x T (F,V),
is the least congruence relation on 7 (F,V), that is closed under substitution appli-
cation and contains E. It is denoted by =g. If s =g ¢, then we say that s and ¢ are
equal modulo E. The axioms (i.e., the elements of E) are written as s ~ ¢. For in-
stance, E = {f(z, f(y,2)) = f(f(z,y),2), f(z,y) = f(y,x)} defines the equational
theory of associativity and commutativity of f.

Given an E and a set of variables X, the substitution o is more general modulo
E on X than the substitution ¢, written o 4?5 o, iff there exists a substitution
¥ such that xo¥ =g xp for all x € X. The relation <§ is a quasi-order, and the
induced equivalence is denoted by 2%.

Given an E and a set of function symbols F, an F-unification problem I" over
F is a finite set of equations between terms over F and a countable infinite set
of variables V, written as I' := {s; i?E t1,...,8n i?E tn}. An E-unifier of I' is a
substitution o such that s;c =g t;o for all 1 <i < n.

Let I be an E-unification problem over F and let X be the set of all variables
that occur in I'. A minimal complete set of unifiers (mcsu, in short) of I', denoted
mesu(I'), is the set of substitutions such that the following three conditions are
satisfied:

— Correctness: Each element of mcsu(I") is an E-unifier of I'.

— Completeness: For each unifier ¢ of I' there exists o € mesu(I") such that
o "\<)E( p.

— Minimality: For all 01,02 € mesu(I), if 01 <% o2, then o1 = o2.

The signature of an equational theory E, denoted by sig(E), is the set of all
function symbols that appear in the axioms of E. An E-unification problem I" over
F is elementary, if F\ sig(E) = 0. It is a problem with constants, if F \ sig(E) is a
set of constants. It is called a general problem, if F\ sig(E) may contain arbitrary
function symbols.

When we are interested in E-unification problems of a special form, we talk
about a fragment of FE-unification. When solutions only of a special form are
needed, then we say that a variant of E-unification is considered.

5 Orthogonal Designs Meet Equational Unification

In this section, we establish the connections between orthogonal designs and equa-
tional unification. In particular, we show that Cayley-Dixon orthogonal designs
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defined in Section [3.1| can be constructed from unifiers of certain unification prob-
lems.

Recall that, as we observed, each equation in a Cayley-Dixon orthogonal design
problem consists of an equal number of positive and negative monomial terms.
Moreover, within an equation, all monomials have the same degree. That means
that the equations have the form zi1---21n + - 4+ Tm1 - Tmn — B11++ Bin —
-+ — Bmi1 - Bmn = 0 with n,m > 0. By taking the design variables as unification
variables, making the multiplication explicit, and placing negative monomials on
the other side of equation, we obtain a unification problem of the form zyq *--- %
Tin+F Tm1 k- * Tmn i;c&,*) Bii %% Bip + -+ Bm1 * - -+ * Bmn, where
x and + are associative and commutative (and the subscript AC(+, ) indicates
this fact). We refer to the unification problem obtained from a CDODP(A) (with
the candidate matrix A of order n) in this way as CDODP;(A) (of order n). The
important property, that is straightforward to see, is that there is a direct one-
to-one correspondence between endomorphic solutions of unification equations in
the cDODPy,(A) and those of the corresponding polynomial equations in the given
CDODP(A).

Theorem 2 Let n = 2™ for some m > 0 and A be a candidate matriz of order n. A
substitution o is an endomorphic idempotent unifier for CDODPy;(A) iff there exists a
Cayley-Dizon orthogonal design generated from A by o.

Proof By construction of CDODPy, o is an endomorphic idempotent unifier for
CDODPy, (A) iff o is an endomorphic idempotent solution of CDODP(A). By definition,
Cayley-Dixon orthogonal designs generated from A are those (and only those) that
are obtained from A by endomorphic idempotent solutions of CDODP(A) with the
help of the construction in the proof of Theorem

In the theory of orthogonal designs, as we have already mentioned, the Equating-
Killing Lemma plays a pivotal role, as it can produce a vast number of orthogonal
designs from any given one. It is natural to distinguish between orthogonal designs
that can or cannot be produced by the Equating-Killing Lemma.

Given two orthogonal designs of the same order, Dy and D3, we say D is
more general than Dy and write D1 < Do, if there exists an orthogonal design D3
of the same order as D; and D2 such that D; ~ D3 and D5 is obtained from
D3 by equating zero or more variables. Strictly more generality relation is written
D; <1 D3 and requires equating one or more variables to get Ds from D;.

Definition 1 (Basis) Let D be a set of orthogonal designs of order n. A basis for
D is a set B C D such that for each D € D, there is B € B such that B < D.

A trivial basis for D is D itself. The interesting ones are reduced bases defined
below:

Definition 2 (Reduced Basis, Base OD) Let B be a basis of the set D of or-
thogonal designs of the same order. B is a reduced basis of D, written rb(D), if B
does not contain two elements By, B such that By < Bs. The elements of rb(D)
are called the base orthogonal designs for D.

This notion of base orthogonal designs introduced here for the first time, exhibits
a remarkable connection with unification theory.
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Theorem 3 Consider the problem CDODP(A) and the corresponding unification prob-
lem CDODPy,(A) for a candidate matriz A. Let o be an element of the minimal complete
set of endomorphic idempotent unifiers of CDODPy,(A). Assume D is a set of Cayley-
Dizon orthogonal designs generated from A. Then CDOD(A, o) € D is a base orthogonal
design for D.

Proof Let V' be the set of variables of A. The theorem follows from the fol-
lowing fact: For two endomorphic idempotent unifiers ¢; and @2 of CDODP,, if
¢1 <Ac(+.+) #2, then CDOD(A, 1) <I CDOD(A,p2). (Recall that CDOD(A, ) is the
unique Cayley-Dixon orthogonal design generated from A by ¢.) Since ¢1 and ¢2
are endomorphic, ¢ '\<>/§C(+,*) 2 means that for some ¥, vp19 = vpg for all v € V.
Hence, ¥ is also endomorphic on V and it can be decomposed into ¥1192, where 1
is a permutation (a bijective mapping from dom(d) to dom(d)), and 92 is an en-
domorphic substitution. Then from CDOD(A, ¢1) we first can obtain an orthogonal
design D by renaming variables that correspond to 1. It gives CDOD(A, p1) ~ D.
Afterwards, from D we can perform variable equating according to 92, which will
give CDOD(A, p2). By the definition of <, we get CDOD(A, 1) < CDOD(A, ¢2).

The connections between orthogonal designs and unification theory presented
in this section are essential for translating Cayley-Dixon orthogonal design prob-
lems into unification problems, and in addition provide some concrete guidelines
on how to efficiently perform a systematic solving of the respective polynomial
systems.

6 Solving Unification Problems

Our unification problem I' contains only equations in the flattened form zi - - - x
T R iZC(Jﬁ*) Y1k skyh 4 Ay - kg for some n, m > 0, where
+ and * are the AC symbols. We call it a balanced fragment of AC-unification. We
are looking for AC-unifiers of I" that map variables of I" to variables of I, i.e., both
domain and range of unifiers should be subsets of var(I"). We call such variants
endomorphic. Hence, the problem we would like to solve is an endomorphic variant
of a balanced fragment of the elementary AC-unification. For brevity, we refer to it
as an ACgg-unification problem.

Note that this problem always has a unifier: Just map all variables to one of
them, and it will be a solution. What we are looking for is the minimal complete
set of unifiers.

AC-unification problems are solved by reducing them to systems of linear Dio-
phantine equations, see, e.g., [I8,[3]. However, it is pretty easy to formulate a direct
algorithm that computes a complete set of unifiers for ACgg-unification problems.
In fact, as we will see, the four rules below are sufficient to construct it. The rules
transform systems (pairs I'; o of a unification problem and a substitution) into sys-
tems. The symbol U stands for disjoint union. The subscript AC(+, *) is omitted,
as well as the symbol .

T: Trivial
. ?

{z="2}ul’; o =1T; 0.
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D-sum: Decomposition for Sums

{s1+Hsn="t+  +t,} Ul 0 =
{s1="7(t1),...,sn = 7(ta)}UT"; o,

where n > 1 and 7 is a permutation of the multiset {t1,...,tn}.

D-prod: Decomposition for Products
?

{itl"'xn =" yl---yn}UF'; o=
.7 .7
{zr = 7w(y1),...,2n = 7(yn)}U r's o,
where n > 1 and 7 is a permutation of the multiset {t1,...,tn}.

S: Solve
{Jzi? yyul’; o = I'{z —y}; oz —y}, where = # y.

We call a system I';o a balanced system, if I' is a balanced AC-unification
problem. By inspecting the rules, it is easy to see that the rules transform balanced
systems into balanced systems. Note that any balanced system I'; o, where I" # 0,
can be transformed, and each selected equation can be transformed by only one
rule.

To solve a unification problem I', we create the initial system I';e and apply
the rules exhaustively. Let BF denote this algorithm, to indicate that it is a brute
force approach, i.e., BF := (T | D-sum | D-prod | S)*, where | stands for choice and *
for iteration. The terminal systems have the form (J; . We say in this case that the
algorithm computes o. Given a balanced I', the set of all substitutions computed
by BF is denoted by Xgg(I"). This set is finite, because there can be finitely many
terminal systems (since rules that produce all possible permutations lead to finite
branching).

Theorem 4 Given a balanced AC-unification problem I', the algorithm BF terminates
and computes Xgg(I"), which is a complete set of endomorphic idempotent AC-unifiers
of I

Proof To prove termination, we first define the size of an equation as the number
of symbol occurrences in it (including the x that is omitted in the rules). Next,
we associate to each AC-unification problem its measure: the multiset of sizes of
equations in it. Then we can see that each rule strictly decreases this measure.
For the rules T and S it is obvious. For the other two rules it follows from the
condition n > 1, which implies that the resulting set of equations reduces the
number of occurrences of + or *, while the rest does not increase. These facts,
together with the observation that the number of branching alternatives the rules
produce is finite, imply termination.

The S rule guarantees that the computed substitutions are endomorphic and
idempotent. Each rule preserves the set of endomorphic unifiers for the problems
it transforms. Hence the computed substitutions are endomorphic idempotent uni-
fiers. Completeness is implied by the fact that the permutations in the decompo-
sition rules generate all possible branchings in the search tree.

The set Ygg(I") is not minimal, in general. This is not surprising, since ACgg-
unification is, in fact, variadic commutative (also known as orderless) unifica-
tion [10]. No algorithm is known that would directly compute minimal complete
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set of unifiers for commutative unification problems. There is an additional mini-
mization step required.

Our main challenge, however, was related to the size of the problem. The
unification problems contain hundreds of equations and the brute-force approach
of BF usually is not feasible. We need to keep the alternatives as small as possible.
For this purpose, we elaborated three heuristics. Two of them concern equation
selection, and one unification problem simplification:

E-Sel: For transformation, select an equation with the minimal number of argu-
ments. For instance, if the unification problem is {zi1z2 + y3z3 =7 r3y3 +
Y1y2, T1 =’ y1}, the equation z; =’ y1 will be selected and transformed by the
rule Solve.

S-Sel: In the decomposition rules, permute that side of the selected equation that
generates fewer permutations (i.e., the side that has more repeated arguments).
It reduces the branching factor, but completeness is not violated, since equality
is symmetric.

Simp: Remove all AC-equal arguments from both sides of equations. This tech-
nique reduces, for 1nstance the equatlon r1T2+YsTs =7 r3y3 +y1y2 to x122 =7
y1y2 and x1T2y1 =’ y1x2y2 to T1 =’ ya. Technically, this can be achieved by
defining an ordering on variables that is extended lexicographically to products
and sums, rearranging unordered subterms in equations in the ordered form,
and then removing all common arguments from both sides of equations. (If
there are no common arguments, the equation is returned unchanged.) Note
that Simp subsumes the T rule, since it also removes the trivial equations.
Therefore, we will not use the T rule separately below.

Let D-sum-s and D-prod-s stand for the variants of D-sum and D-prod rules,
where the permutation side is selected according to S-Sel. Then we define the
refined algorithm Ref with the following strategy (o stands for composition, | for
choice, * for iteration), where the equation is selected according to E-Sel:

Ref := (Simp o (S | D-sum-s | D-prod-s))*.

In words, it means that Ref works with a set of systems, selects one of them
according to E-Sel (nondeterministically), simplifies it with respect to Simp, trans-
forms the obtained system into new ones with one of the rules S, D-sum-s, or
D-prod-s, and iterates.

Since unification problems are sets, simplification step may decrease the num-
ber of equations, when an equation simplifies to a trivial one, or to an existing
equation. It is not hard to see that Ref terminates and the selection and simpli-
fication heuristics affect neither soundness nor completeness. Therefore, based on
Theorem [4] we have that Ygrer(I") is a complete set of endomorphic idempotent
unifiers of I'.

As it turns out, Simp plays an important role in reducing the number of com-
puted unifiers and speeding up the computation. We also experimented with its
variation that removes trivial equations only, denoting by Ref™ the correspond-
ing version of the algorithm Ref. In Figure 2] one can clearly see the difference
between the algorithms with and without simplification rules with respect to the
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number of computed unifiers and computation timeEI The impact can be as much
as dropping the number of computed unifiers from 7312 to 20, and computation
time from 1311.316 to 1.3 seconds (see the case with CDODP32GB).

The set computed by Ref is complete but not minimal. A minimal and complete
algorithm ACEB for ACgp-unification problems can be formulated as

ACEB(I") := minimize(Zre(I)),

where minimize is a function that minimizes a set of substitutions. Therefore, we
have the following theorem:

Theorem 5 ACEB(I") = mesu(I).

For efficiency reasons, it makes sense to have an incremental version of the
algorithm ACEB: Instead of working with the entire set of equations at once, we
split this set into smaller subsets of some fixed size Size. After ACEB computes an
mcsu U of one such chunk, we generate all possible instances of the next subset
with respect to the unifiers in U, and proceed further in a similar way for each new
chunk. Such early minimization efforts reduce the number of redundant potential
solutions. This method is sensitive to the choice of Size. It should be big enough not
to trigger frequent calls of the expensive minimize function, and small enough not
to postpone minimization too much. As experiments showed, a good strategy for
the unification problems originated from the original polynomials is, for instance,
to set Size close to the number of equations of the smallest size. For instance, in
CDODP32, the polynomials of the smallest size are those that contain 4 monomials,
each of degree 2. There are 84 such polynomials (out of 252) there. Setting Size
to 84 led to the fastest computation of the result. However, for equations coming
from the polynomials in Grébner bases, we could not observe such a pattern.

The incremental version does not make a difference from the general version
for the algorithm Ref ™. Therefore, this algorithm was run on the entire set of input
equations instead of splitting it into smaller subsets.

Candidate matrices of orders 16, 32, 64, 128, and the polynomials that give
the Cayley-Dixon orthogonal design problems of the corresponding orders, are too
big to be placed in the paper. They can be found in the supplementary materials
of the paper.

Below we give the elements of ACEB(I") for unification problems I that origi-
nate from those problems:

CDODP16 and CDODP16GB:
16
01" ={ 22> w8, x3—>x8, T4 T3, 5 —> T8, L6 — T8, L7 — Ty, T10 — T16,
11 = T16, T12 — T16, T13 — T16, T14 — T16, T15 —> T16}

16
oy ={z10 > x2, 11 = T3, T12 — T4, T13 — T5, Ti4 — Te, T15 — T7, T16 — T )

CDODP32 and CDODP32GB:

1 The unification algorithms have been implemented in Mathematica 9.0 and their perfor-
mance has been measured on a Dell Linux Workstation with Intel Xeon E5-2680v2 2 CPU 2.8
GHz, 384 GB RAM.
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Problem Length | Degree | # of polynomials
CDODP16 4 2 42
Total: 42
4 2 84
CDODP32 8 2 42
12 2 126
Total: 252
4 2 252
8 2 84
12 2 168
CDODP64 16 2 42
20 2 168
24 2 126
28 2 342
Total: 1182
4 2 684
8 2 252
12 2 504
16 2 84
20 2 336
24 2 168
28 2 336
CD0ODP128 39 9 49
36 2 336
40 2 168
44 2 336
48 2 126
52 2 504
56 2 342
60 2 870
Total: 5088
CDODP16GB | 2 ] 2 21
Total: 21
2 2 105
4 2 21
CDODP32GB 4 3 137
4 4 27
Total: 290
Table 1 Statistics of the equation structure.
. Ref~ Ref ACEB
Problem # Pol. | Size # Unif. Seconds | # Unif. | Seconds | # Unif. Seconds
CDODP16 42 o) 264 1.104 65 0.464 2 0.424
o0 2267 88.332 3 91.168
CDODP32 252 g 3087 | 50.702 3 10.704
CDODP64 1182 | 252 4 3973.192
CDODP128 5088 10 5 | 19918.268
CDODP16GB 21 oo 45 0.132 7 0.052 2 0.056
CDODP32GB 290 00 7312 | 1311.316 20 1.300 3 1.340

Table 2 Performance statistics table. “# Pol.” and “# Unif.” abbreviate the numbers of
polynomials and unifiers, respectively. Size is the size of equation chunks in the incremental
version of the algorithms, where co means no restriction for this size. The empty cells indicate

that trying the algorithm with those parameters was not feasible.
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032 ={ x9 = w9, x3— T, T4 — Ty, T5—+Ty, Te—>T9, T7—>Tg, g —> Tg,
rio — r9, *11 — L9, T12 — T9, T13 — L9, T14 — X9, T15 — T9, T16 — T9,
T18 —» T32, T19 —» T32, T20 —> T32, T21 —» T32, T22 — 32, T23 —» T32, T24 — I32,
X25 —» 32, T26 —» 32, T27 —» 32, T28 —» 32, L29 —» 32, T30 —» L32, T31 — T32 }

0‘322{ T2 — T8, r3 — T8, T4 — T8, 5 — T8, e — T8, Tr7 — T8, X10 — I32,
T11 — T32, T12 —» 32, T13 —» 32, T14 — T32, T15 — T32, T16 — T32, T18 —7 TS,
T19 — T8, T20 — T8, T21 — T, T22 —» T8, T23 — T8, T24 — T8, T25 — T9,
Toe — T32, Ta7 — T32, Tag — T32, T20 — T32, T30 — T32, T31 — T32 )

032 = { T2 — T26, T10 — T26, T11 — T3, T12 — T4, 13 — T5, T14 — T6, T15 — T7,
T16 — T8, T18 — T26, T19 — T3, T20 —» T4, I21 — X5, T22 —» T6, L23 — T7,
T24 — T8, X25 — L9, 27 —» T3, T28 —» T4, T29 — X5, T30 — T6, L31 — IT7,
32 — T8 }

CDODP64:

0'?4 :{ T2 — 9, xr3 — g, T4 — T9, rs — Tg, Te — 9, xr7 — X9, xr8 — T9,
r1io — T9, T11 — T9, T12 — T9, T13 — T9, Ti4 — T9, T15 — X9, T16 — T9,
ri7 — T9, x18 — L9, T19 —» X9, T20 —» L9, IT21 —» T9, T22 — X9, T23 — T9,
T24 — T9, X25 — L9, I26 — X9, T27 —» T9, IT28 —»T9, T29 — X9, T30 — T9,
31 — T9, X32 —> L9, X34 —» T64, T35 —7 T64, L36 — T64, T37 —» T64, L38 —7 T64,
T39 — T4, T40 — Te4, T4l —> T64, T42 —> T64, T43 — T64, T44 —> T64, T45 —7 T64,
T46 — T64, TAT —> T64, TA8 —7 T4, T49 — T64, T50 —7 T64, T51 — T64, T52 —> T64,
T53 — T64, T54 —> T64, T55 — T4, T56 —» T64, T57 — T64, T58 —» T64, T59 —> T64,
T60 — T64, T61 — T64, T62 — L64, L63 — C664}

0'34:{ T2 — X9, T3 — X9, T4 — X9, rs5 — Tg, Te — X9, Ty — Tg9, xrg — x9,
rio — r9, x11 — L9, T12 —» X9, T13 —» T9, Ti4 —» T9, T15 — X9, T16 — T9,
T17 —> T49, T18 —7 T64, T19 —> T64, T20 —7 T4, T21 —» T64, 22 —7 T64, L23 — T64,
T24 — T4, T25 —> Te4, T26 — T64, T27 —7» T64, T28 —» T64, T29 —» T64, T30 —7 T64,
T31 — T64, T32 —» Te4, T34 — T9, T35 —» T9, T36 — T9, T37 —» TY, T38 — X9,
T39 — T9, T40 —> T9, T4l — TY, T42 —> T9, T43 — T9, T44 —» TY, T45 — X9,
Ta6 —> L9, T47 —> TQ9, T48 — T9, I50 —» T64, T51 —» T64, L52 —7 T64, T53 — T64,
T54 — T64, T55 —7 T64, T56 — T64, T57 —» T4, IT58 —» L64, L59 —7 L64, L60 — T64,
61 — Ted, T62 — Ted, T63 — Ted }

0'24:{ T2 — T8, r3 — T8, T4 — T8, 5 — T8, e — T8, 7 — T8, T10 — T64,
T11 —> T4, T12 — Te4, T13 — T64, T14 — T64, T15 — T64, T16 — T64, L17 —7 T49,
rig — T8, T19 —» T, X20 —*» T8, I21 —» T8, X22 —» T8, T23 —» T8, T24 —» I8,
T25 — T9, T26 — T64, T27 — T4, T28 —» T64, T29 — T64, T30 — T64, T31 — T64,
T32 — T64, T34 — T8, T35 — T, T36 —» T8, IT37 —» T8, T38 —» T8, T39 —» I8,
T40 —> T8, T4l —» TQ9, T42 —> T64, T43 —» T64, Tdad —» T64, T45 —7 L64, T46 — T64,
Ta7 —> T64, T48 —7 Te4, T50 —» T8, I51 —» T, IT52 —» T, T53 —7 I8, T54 — I8,
I55 —» T8, X56 —» L8, I57 —> X9, I58 —» T4, IT59 —7 T4, L60 —7 L64, L61 —7 T64,
T2 —> Ted, T63 —> Ted )
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0'24 = { T2 — T58, T3 —» T59,
T12 — T60, 13 — T61,
T19 —* T59, 20 — T60,
T26 —* T58, 27 — I59,
T34 — T58, T35 — T59,
T4l —> T9, T42 — T58,
T48 —> T8, T50 — T58,
56 — T8, Is57 — X9,

CDODP128:

0%28 = { T2 — X9, T3 — T9,
T10 — T9, T11 — T9,
ri7 — T9, X18 —> X9,
T24 — T9, X25 —> X9,
T31 — T9, T32 —> T9,
r38 — T9, X39 — X9,
T45 —> T9, T46 — T9,
Ts52 — T9, X53 —> X9,
Ts59 — T9, X600 —> X9,
T67 —> T99, T68 — T99,
T74 —> T99, T75 —> XYY,
T81 —> T99, T82 —7 X99,
T88 —> T99, Tg9 —» T99,
T95 —> T99, X96 —7 99,

103 — 99, T104 — 99,
T110 — 99, 111 —* 99,
T117 — 99, T118 — T99,
T124 —> 99, T125 — T99,
0‘%28 = { T2 — T96, T3 — T96,
9 —> T96, L10 —7 T96,
T16 — T96, T17 — TI6,
T23 — T96, T24 — TI6,
T30 — T96, T31 —7 T96,
T37 —» T99, I38 —7 X99,
Ta4 —> T99, T45 —7 X99,
I51 — T99, I52 —7> X99,
T58 — T99, T59 — T99,
T66 — T96, TET — TI6,
T73 —> T96, T74 —7 T96,
T80 — T96, T81 —7 X96,
T8T —» T96, TS —7 L96,
T94 —> T96, T95 —7 T96,
T104 —7 T99, T105 —7 X99,
T111 —> T99, T112 — T99,
T118 — T99, T119 — T99,
T125 — T99, T126 —7 L99,

T4 — Te0, I5
T14 — T62, T15
T21 — T61l, T22
T28 — TE0, 29
I36 — T60, T37
T43 —> T59, T44
T51 — T59, T52

T63 — L7, Te4

T4 — X9,
T12 — T9,
T19 — T9,
T26 — T9,
33 — T9,
T40 — T9,
Ta7 — T9,
I54 — T9,
Te1 — T9,
T69 — T99,
T76 — T99,
83 — T99,
T90 — T99,
T97 — T99,

X105 — T99,
112 — X99,
T119 — T99,

T126 — T99,

T4 — T96,
T11 — T96,
T18 — T96,
T25 — T96,
T32 — T96,
T39 — T99,
T46 — T99,
T53 — 199,
T60 — T99,
T8 — TI6,
T75 — T96,
T82 — T96,
I89 — T96,
T98 — 99,

106 — T99,
T113 — T99,
T120 — T99,

X127 — T99,

— Z61,
— X7,

— T2, T23 — I7,

T — T62,

T16 — I8,

T17 — T49,

T24 — I8,

— T61, T30 — 62, L31 — 7,

— Tel, T3S — T62, T39 — T7,

— X60, T45 — TE1,
— X60, T53 — T61,

—):Cg}

x5
z13
z20
T27
T34
41
48
55
62
x70
77
T84
91
98
106
113
120

127

Ts5
x12
19
26
33
x40
x47
T54
Z61
Z69
76
xg3
90

Z100
z107
114
121

128

x9,
x9,
Z9,
Z9,
x9,
x9,
X9,
x9,
x9,
x99,
299,
x99,
x99,
x99,
x99,
x99,

x99,

A A

x99,

96,
96,
96,
Z96,
97,
x99,
x99,
x99,
x99,
296,
Z96,
Z96,
96,

x99,

N

x99,

1

99,
— X99,

Ze6

14

Z28

100
z107
114
121

128

Ze6
13
20
€27
T34
x41
48
55
Z62
Z70
7
x84
x91

101
108
T115

122

—r 99 }

T46 — T62,

T54 — T62,
— Z9, idrd
— 9, T15
— Z9, 22
— x9, X29
— T9, T36
— L9, T43
— 9, T50
— 9, I57
— Z9, Te4
— T99, X72
— X99, X79
— T99, T86
— T99, T93
— 99, T101
— T99, T108
—> T99, T115
— T99, T122
— T99 }
— 96, idrd

— T96, T14
— T96, T21
— X96, T28
— T99, I35
—> T99, T42
—> T99, T49
— T99, I56
— T99, T63
— X96, TT1
— T96, T78
— T96, T85
— T96, T92
— T99, 102
— 99, 109
— 99, T116

— X99, T123

Z10 — T58,

Z11 — T59,
x18 — T58,
x25 — 9,

xr32 — g,

T40 — T8,

Ta7 — T7,

T55 — T7,

— Zg, s
— T9, IT16
— T9, T23
— T9, T30
— T9, X37
— L9, T44
— T9, I51
— T9, I58
— T9, T66
— T99, T73
— T99, T80
— T99, I87
— T99, T94
— T99, 102
— T99, 109
— T99, T116
— T99, T123
— T96, s
— T96, T15
— T96, T22
— T96, T29
— T99, I36
—> T99, T43
— T99, I50
— T99, I57
— T99, Te4
— T96, TT2
— T96, TT79
— T96, T86
— T96, T93
— T99, 103

— T99, T110
— T99, T117

— T99, T124

x9,
x9,
Z9,
Z9,
x9,
x9,
x9,
x9,
x99,
299,
299,
x99,
x99,
x99,
x99,

x99,

N A A A A

x99,

A
8



Orthogonal Designs in Powers of Two 21
0'3%28 = { T2 — T99, T3 — 99, T4 —r T99, Tr5 — T99, e — T99, xT7 — T99, T8 — T99,
9 — T99, X10 —7 x99, T11 —» T99, T12 —» T99, T13 —» T99, T14 —» T99, T15 —7 T99,
T16 —» 99, X17 —> 81, T18 —» T96, L19 —7» L96, T20 —» T96, L21 —» T96, L22 —7 T96,
23 —> T96, L24 —> X96, T25 —» T96, L26 —7» L96, T27 —» T96, L28 —» L96, L29 —7 T96,
T30 — T96, T31 —» T96, L32 — TY6, T33 —» T97, T34 —» T99, T35 — T99, T36 —» T99,
T37 — T99, T38 —» T99, T39 —> T99, T40 —» T99, T4l —» T99, T42 — T99, T43 — T99,
T44 —> T99, T45 —> T99, T46 —> T99, T47 —» T99, T48 —» T99, T49 —7 T81, T50 — TY6,
T51 — 96, T52 —7 X96, IT53 —» T96, L54 —7 T96, T55 —» T96, L56 —7 L96, L57 —7 T96,
T58 —» 96, L59 —7 L96, L0 — L96, L61 —7 L96, L62 —> L96, L63 — L96, L64 —7 T96,
Te6 —» 99, L7 —> L99, T8 —» T99, L9 —» L99, T70 —» T99, X7l —» T99, 72 —» T99,
T73 —» T99, X74 —> x99, IT75 —» T99, X76 —» L99, T77 —» T99, X78 —» L99, 79 —7 T99,
T8O — T99, T82 —» TY6, L83 — T96, T84 —» T96, T85 —» TI6, T86 —7 T96, TT —» TY6,
T8 — T96, T8Y — TY6, T90 —7 TY6, TY91 —» T96, T92 —» TI6, T93 —7 T96, T94 — TY6,
T95 —» T96, L98 —7 XL99, T100 — L99, T101 — T99, L102 — T99, 103 — T99, T104 — T99,
T105 — T99, 106 —7 99, T107 —» T99, L108 — T99, L109 —~ T99, 110 — T99, T111 —7 T99,
T112 —> T99, T113 —7 X81, T114 —» T96, L115 —7 L96, L116 —7 L96, L117 — L96, T118 —7 T96,
T119 — 96, T120 —7 T96, L121 — T96, T122 —» 96, L123 — T96, T124 —> T96, T125 — T96,
T126 — T96, T127 — T96, T128 — T96 }

Ui28 = { T2 — T99, T3 — 99, T4 — T99, 5 — T99, Te — T99, 7 — T99, T8 — T99,
10 —* T96, T11 —» X96, T12 —> T96, T13 —» T96, L14 —» T96, T15 — T96, T16 —* T96,
T17 — T8l, T18 —» T99, T19 — T99, T20 —» T99, T21 —» T99, T22 — T99, T23 — T99,
T24 — T99, T25 —> X9, X26 — TY6, T27 —» TY6, T28 —» TY6, L29 — T96, T30 — TY6,
T31 —» T96, T32 —7 X96, L33 —» T97, T34 — T99, T35 —» T99, X36 —» T99, IL37 —7 T99,
T38 —» T99, T39 —7 x99, T40 —» T99, T4l —7» X9, T42 —» T96, L43 —» T96, L44 —7 T96,
T45 —> 96, T46 —7 L96, T47 —» T96, L48 —7» L96, T49 —» T81, I50 —» L99, IT51 —7 T99,
I52 —» T99, I53 —> x99, I54 —» T99, T55 —» XL99, IT56 —» 99, I57 —» L9, T58 —7 T96,
T59 — T96, TE0 —> T96, T61 — TY6, T62 —» T96, T63 — TI6, T64 — T96, T66 — T99,
Te7 — T99, TE8 — T99, TE9 — T99, TT0 —» T99, T71 —» T99, T72 — T99, IT73 —» T9,
T74 —> T96, T75 —7 X96, T76 —» T96, L77 —7 L96, T78 —» T96, L79 —7 T96, L8O —7 T96,
T82 —» T99, I3 —7» X99, T84 —» T99, T85 —7 L99, TG —» T99, I87 —» T99, IS —7 T99,
89 —» L9, T90 —7 96, T91 —» T96, L92 —7 L96, T93 — T96, L94 —» T96, L95 —7 T96,
T98 —» T99, T100 — 99, T101 —* T99, £102 — 99, £103 —* L99, 104 — L99, T105 —7 T9,

T106 = 96, T107 —7 T96, L108 —7 T96, 109 —» T96, L110 — L96, T111 —* T96, T112 — T96,
T113 — T81, T114 — 99, T115 —» T99, T116 — 99, T117 —» T99, T118 — T99, T119 —~ T99,
T120 — T99, T121 — X9, T122 —» T96, L123 —7 T96, L124 — T96, L125 — T96, L126 —~ L6,
T127 — T96, T128 — T96 |
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0'%28 = { T2 — T98, T3 — 99, T4 — T92, r5 — T93, Tre — 94, IT7 —> T95, T8 —»
T10 —> T98, T11 —7 x99, T12 —» T92, X13 —» L93, T14 —» T94, X15 — T95, T16 —
T17 —» T81, T18 —7» X98, T19 —» T99, X20 —» L92, 21 —» T93, X22 —» T94, IT23 —
T24 —> T96, I25 — X9, T26 —» T98, X27 —» L99, T28 —» T92, X29 —» T93, T30 —
31 — T95, I32 —> X96, L33 —» T97, X34 —» T98, T35 —» T99, X36 —» T92, IT37 —7
T38 — T94, T39 —» T95, T40 — TY6, T4l —» T9, T42 —> T98, T43 —7 T99, T44 —
T45 —> T93, T46 — X94, Ta7 —» T95, T48 — T96, L49 —» T81, L50 — T98, IT51 —
T52 —» T92, I53 —7 X93, T34 —» T94, I55 —» L95, 56 — T96, L57 —» L9, IT58 —
T59 —» 99, T60 —7 X92, Tl —» T93, L62 —7 L94, T3 —7 T95, L64 — T96, T66 —7
Te7 —» 99, Teg — X92, TE9 —» T93, X70 — L94, L7l —» T95, X72 —» T96, LT3 —7
T74 —> T98, X75 —» x99, ITr6 —» T92, X77 —» XL93, IT78 —» T94, X79 —» T95, T8O —7
T82 —» T9g, T3 —» T99, T84 — T92, T5 —» T93, T86 —7 T94, TYT —7 T95, TS —»
T8Y — T9, TY0 —» T98, T91 — T99, T100 —» T92, T101 — T93, T102 —7 T94, T103 —
T104 — T96, 105 — X9, T106 — L98, L107 — 99, T108 — T92, 109 — T93, T110 —
T111 — T95, T112 —7 96, T113 —» T81, L114 — T98, T115 —7 T99, L116 — T92, T117 —
T118 —* T94, T119 — 95, T120 —» L96, L121 —» L9, 122 —» T98, L123 — T99, T124 —
T125 — T93, T126 —> T94, T127 — T95, T128 — L96 }

We note that if It and I'x are unification problems originating from CDODP16 and
CDODP16GB, respectively, then, as expected, ACEB(I1) = ACEB(I%). This also ap-
plies to CDODP32 and CDODP32GB.

7 New Cayley-Dixon Orthogonal Designs via Equational Unification

In this section, we translate back from unifiers to solutions of the polynomial
systems that give rise to Cayley-Dixon orthogonal designs and list their types.
As noted before, the elements of ACEB(I") correspond to base orthogonal designs
from Corollary |3 which implies that the designs we list below are sufficient to give
all Cayley-Dixon orthogonal designs for orders 16, 32, 64, and 128. Therefore, we
provide a complete solution to the Cayley-Dixon orthogonal design problem for
these orders.

1.

For order 16 we obtain the following two base Cayley-Dixon orthogonal designs:
— From 01%: OD(16;1,1,7,7).
— From 03%: OD(16;1,1,2,2,2,2,2,2,2).
For order 32 we obtain the following three base Cayley-Dixon orthogonal de-
signs:
— From o%2: OD(32;1,1,15,15).
— From o3%: 0D(32;1,1,2,14,14).
2:1,1
t

— From o3%: OD(32;1,1,2,4,4,4,4,4,4,4).

For order 64 we obtain the following four base Cayley-Dixon orthogonal designs:
— From o%*: OD(64;1,1,31,31).

— From o$*: 0D(64;1,1,2,30,30).

— From o$%: OD(64;1,1,2,4,28,28).

— From o$*: OD(64;1,1,2,4,8,8,8,8,8,8,8).

For order 128 we obtain the following five base Cayley-Dixon orthogonal de-
signs:

— From ¢128: OD(128;1,1,63,63).
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x93,
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xg,

296,
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Z95,
94,
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— From 0328: OD(128;1,1,2,62,62).

— From 032%: OD(128;1,1,2,4,60,60).

— From 0128: 0D(128;1,1,2,4,8,56,56).

— From 0328: OD(128;1,1,2,4,8,16,16,16,16,16, 16, 16).

It is important to note that from the previous list, some Cayley-Dixon or-
thogonal designs appear here for the first time. Namely, OD(32;1,1,2,14,14),
0OD(64;1,1,2,30,30), and OD(64;1,1,2,4,28,28) have not been reported in [7]
and [8], respectively. Moreover, all five orthogonal designs of order 128 are new
within the Cayley-Dixon class.

However, these types of orthogonal designs are not new in the literature on
orthogonal designs, as they can be obtained by other methods. In particular, the
existence of OD(32;1,1,2,14,14) is attributed to a result of Robinson (p. 358,
Corollary D.2., [6]) which states that all orthogonal designs of type (1,1,a,b,c),
a+b+c=2"—2 exist in order 28t > 3, for a =2, b= 14, ¢ = 14 and t = 5.
Again, from Robinson’s result, the 0D(64;1,1,2,30,30) and OD(128;1,1,2,62,62)
are known for a = 2, b = 30, ¢ = 30, t = 6 and a = 2, b = 62, ¢ = 62,
t = 7, respectively. Finally, by applying the Doubling Lemma (c.f. Lemma [2))
to OD(32;1,1,2,14,14), we can get OD(64;1,1,2,4,28,28). Likewise, applying the
Doubling Lemma to the designs OD(64;1,1,2,4,28,28), 0D(64;1,1,2,30,30), and
0D(64;1,1,2,4,8,8,8,8,8,8,8), we can obtain in a one-to-one correspondence the
following ones: 0D(128;1,1,2,4,8,56,56), 0D(128;1,1,2,4,60,60), and OD(128;1,1,
2,4,8,16,16,16, 16,16, 16, 16).

From the previous discussion, three patterns for the orthogonal designs that
are modeled by Cayley-Dixon algebras and obtained via equational unification are
visible:

— The four variable designs are of the form OD(2";1,1,2"" ! —1,2"~1 — 1), for
orders 2" where n = 4,5,6,7. These types of orthogonal designs can also be
obtained via simple Paley matrices [6].

— The five variable designs are of the form OD(2";1,1,a,b,c) where a = 2, b =
2" -2, c=2"-2for n =5,6,7. As we already noted, these types of orthogonal
designs can be obtained from Robinson’s results.

— It is clear that there is an analogy between the Cayley-Dixon process and the
Doubling Lemma. In particular, by applying the doubling lemma, we get the
following constructions: (OD;1 ~» OD2 means that ODs can be obtained from
OD1 by the doubling lemma.)

0D(16;1,1,2,2,2,2,2,2,2) ~
0D(32;1,1,2,4,4,4,4,4,4,4) ~
0D(64;1,1,2,4,8,8,8,8,8,8,8) ~
0D(128;1,1,2,4,8,16,16,16,16, 16, 16, 16).
0D(32;1,1,2,14,14) ~
OD(64;1,1,2,4,28,28) ~
0D(128;1,1,2,4,8,56,56).
0D(64;1,1,2,30,30) ~
0D(128;1,1,2,4, 60, 60).
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Moreover, we would like to explicitly state that these designs are new with
respect to the algebraic modeling of Cayley-Dizon algebras (in the class of Cayley-
Dixon orthogonal designs). However, the corresponding types of orthogonal designs
have been reported in the literature also with other techniques. To make our
contribution in this section more precise, we can say the following:

1. It was not known before that most of the orthogonal designs we found belong
also to the class of Cayley-Dixon orthogonal designs.

2. Our approach not only reports the orthogonal designs, but also constructs
the corresponding design matrices. In this way, we always give a constructive
solution to the problem. It is not always the case with the other approaches. In
some cases, there are semi-constructive techniques (doubling method), but in
some other, there is only the existential, non-constructive method (Robinson’s
Lemma). (The doubling method is semi-constructive in the sense that one
needs to know the design matrix of the initial orthogonal design in order to
build design matrices of the orthogonal designs the doubling method gives.) To
the best of our knowledge this is the first time that the specific design matrices
have been constructed explicitly.

3. The design matrices are of interest for the applications of orthogonal designs,
since in that case it is not enough to know that the design type exists. For
example, in weighing experiments you need the design matrix to perform the
actual experiment.

4. The fact that the class of Cayley-Dixon orthogonal designs contains the previ-
ous types of orthogonal designs is of interest also to the asymptotic existence
of orthogonal designs [6], [I4] and can be a subject of future work.

8 Conclusion

In this paper, we presented an algebraic framework for modeling orthogonal de-
signs in order of powers of two via Cayley-Dixon algebras of the same orders. This
framework gives rise to a polynomial system of equations that is infeasible to be
tackled with traditional search algorithms, as the order increases. We exhibited
that the structural properties of this algebraic framework can be written in terms
of unification theory by establishing important connections between orthogonal
designs and unifiers. These connections enabled the development of unification
algorithms that can solve the problems arising from the algebraic modeling of or-
thogonal designs and find solutions that were not known before with this algebraic
modeling of Cayley-Dixon algebras.
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