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Abstract. Express a modular form g of positive weight locally in terms of
a modular function h as y(h), say. Then y(h) as a function in h satisfies a
holonomic differential equation; i.e., one which is linear with coefficients being
polynomials in h. This fact traces back to Gauß and has been popularized
prominently by Zagier. Using holonomic procedures, computationally it is
often straightforward to derive such differential equations as conjectures. In
the spirit of the “first guess, then prove” paradigm, we present a new algorithm
to prove such conjectures.

1. Description of Contents

The study of holonomic functions and sequences satisfying linear differential and
difference equations, respectively, with polynomial coefficients has roots tracing
back (at least) to the time of Gauß.

Besides holonomic functions and sequences, the second major class of objects con-
sidered in this article are modular forms and functions which are non-holonomic:
any modular form satisfies a non-linear third order differential equation with
constant coefficients; see, for instance, [14, Prop. 16].

Neverthess, there is a connection between holonomic functions and modular forms
which also traces back to Gauß. Namely, express a modular form g of positive
weight locally in terms of a modular function h as y(h), say; then y(h) as a
function in h satisfies a holonomic differential equation.

Zagier in his classical exposition [14, Prop. 21] introduces to this fact as follows:
“. . . it is at the heart of the original discovery of modular forms by Gauss and
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of the later work of Fricke and Klein and others, and appears in modern litera-
ture as the theory of Picard-Fuchs differential equations or of the Gauss-Manin
connection but it is not nearly as well known as it ought to be.”

In [10] we began an algorithmic study of this connection which, on the holonomic
side, utilizes aspects of Zeilberger’s “holonomic systems approach” to special
functions identities [15]. Ibid., on the modular functions and forms side, we
sketched a contribution to theme of differential equations and modular forms,
which follows the “first guess, then prove” paradigm. In this article we present
the full mathematical details and derivations leading up to this new algorithmic
tool. The algorithm, ModFormDE, which provides non-trivial computer support
to prove claims of the following kind: given a modular function h and a modular
form g of positive weight, both for a fixed congruence subgroup, prove with regard
to the local expansion g = y(h) that the function y(h) in h satisfies a differential
equation which is linear and with coefficients being polynomials in h. This article
can be read completely independently from [10]; there are some natural overlaps,
but those are kept to a minimum.

Our article is structured as follows. In Section 2 we present two examples to
introduce in a concrete fashion to the holonomic paradigm in connection with
modular forms and functions. Section 3 contains basic notions and facts about
modular forms and functions needed; readers familiar with these notions will
skip this section. In Section 4 we describe our algorithm ModFormDE which
is based on work of Yifan Yang [13]; an illustrating example traces through its
steps. In Section 5 we present the two main theorems of the paper, Thm. 5.2 and
Thm. 5.3; they specify bounds for the total number of poles of modular functions
which are essential for the ModFormDE algorithm. In Section 6 we introduce
local expansions; they give rise to a notion of orders of modular forms of even
weight, which will be used in a crucial way. The Sections 7, 8, and 9 derive and
prove the bounds given in the main theorems; Section 10 gives a summary of how
these things are related. The Appendix Section 11 contains proofs, computational
aspects, and basic facts of meromorphic functions on Riemann surfaces. All this
material is of relevance, but if presented within the main text, would disturb the
flow of the presentation.

Conventions used throughout this paper: N denotes a positive integer, k is a
fixed non-negative integer (the weight of a modular form),

H := {z ∈ C : Im(z) > 0}, Ĉ := C ∪ {∞}, and Q̂ := Q ∪ {∞}.

The ring of univariate polynomials with complex coefficients is denoted by C[X],
its quotient field, the field of rational functions, is C(X).

Throughout, Γ stands for a congruence subgroup of SL2(Z); see Section 3.
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2. Introductory Examples

Holonomic differential equations are linear with polynomial coefficients. To illus-
trate their fundamental role for this paper, we consider concrete examples.

Example 2.1. Given

(1) G(t) := 2F1

( 1
2

1
2

1
; t
)

=
∞
∑

n=0

(1/2)n(1/2)n
(1)n

tn

n!
= 1+

t

4
+
9t2

64
+
25t3

256
+
1225t4

16384
+. . .

where (a)n := a(a+ 1) . . . (a+ n− 1), n ≥ 1, and (a)0 = 1.

Problem. Determine coefficients c(n) such that

(2) G(t) =
∞
∑

n=0

c(n)H(t)n where H(t) := 4t(1− t).

Using the holonomic tool-box, e.g., the RISC package GeneratingFunctions as
described in more detail in [10], one can solve this problem as follows:1

Step 1: Take as input sufficiently many coefficients in the expansion (1) of G(t).2

Step 2: With this input, compute sufficiently many values of the c(n):

c(0) = 1, c(1) =
1

16
, c(2) =

25

1024
, . . . , c(11) =

2363152308430225

1152921504606846976
.

“Sufficiently many” is meant with regard to the next step.

Step 3: Using a package like GeneratingFunctions, guess a recurrence for the
sequence (c(n))n≥0:

In[1]:= << RISC‘GeneratingFunctions‘

Package GeneratingFunctions version 0.8
written by Christian Mallinger c© RISC-JKU

In[2]:= cRec = GuessRE[{1,
1

16
,

25

1024
, . . . ,

2363152308430225

1152921504606846976
}, c[n]][[1]]

Out[2]= {16(n+ 1)2c(n+ 1)− (4n+ 1)2c(n) = 0, c(0) = 1}

In other words, we have guessed that

(3) G(t) = Y (H(t)) where Y (t) :=
∞
∑

n=0

c(n)tn with c(n) =
(1/4)n(1/4)n

(1)nn!
.

Step 4: To prove (3), we derive holonomic differential equations satisfied by G(t),
respectively by Y (H(t)). To derive the differential equation for G(t), we input
the first 12 coefficients of the power series expansion (1):

1The package, written in the Mathematica system, is available upon password request to the
first-named author.

2It turns out that taking the first 12 coefficients is sufficient.
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In[3]:= GDE = GuessDE[{1,
1

4
,
9

64
,
25

256
,
1225

16384
, . . . ,

7775536041

274877906944
},G[t]]

Out[3]= {4
(

t
2 − t

)

G
′′(t) + 4(2t− 1)G′(t) + g(t) = 0, G(0) = 1, G

′(0) =
1

4
}

This was derived as a guess. But using the power series expansion (1), one can
easily verify that this equation is indeed satisfied by G(t).

To derive the differential equation for Y (H(t)), we first derive a differential equa-
tion for Y (t) by converting the recurrence for the c(n) into a differential equation
for their generating function Y (t) =

∑

n≥0 c(n)t
n:

In[4]:= YDE = RE2DE[cRec,Y[t]]

Out[4]= {−16
(

t
2 − t

)

Y
′′(t)− 8(3t− 2)Y′(t)− Y(t) = 0, Y(0) = 1, Y

′(0) =
1

16
}

Finally the differential equation for Y (H(t)) can be computed by exploiting the
holonomic closure property of algebraic composition; see [7, Thm. 7.2.5]:

In[5]:= ACompose[yDE, y[t] == 4t(1 − t), y[t]]

Out[5]= {4
(

t
2 − t

)

y
′′(t) + 4(2t− 1)y′(t) + y(t) = 0, y(0) = 1, y

′(0) =
1

4
}

This differential equation for Y (H(t)) is the same as GDE in Out[3] for G(t);
also the initial values coincide, which proves (3).

Remark 2.2. The identity in (3) is the special case a = b = 1/4 of

(4) 2F1

( 2a 2b

a+ b+ 1
2

; t
)

= 2F1

( a b

a+ b+ 1
2

; 4t(1− t)
)

,

a classical identity in the theory of hypergeometric series; e.g., [1, (3.1.3)].

Example 2.3. Given

(5) g(τ) := θ3(τ)
2 = 1 + 4x+ 4x2 + 4x4 + 8x5 + 4x8 + 4x9 + . . . with x = eπiτ ,

where τ ∈ H. In addition to θ3(τ), we also need another Jacobi function θ2(τ):

(6) θ2(τ) :=
∑

n∈Z+1/2

eπin
2τ and θ3(τ) :=

∑

n∈Z

eπin
2τ = 1 + 2

∞
∑

n=1

eπin
2τ , τ ∈ H.

Problem. Determine coefficients c(n) such that for all τ ∈ H with Im(τ) suffi-
ciently big:

(7) g(τ) =
∞
∑

n=0

c(n)h(τ)n where h(τ) :=
1

16
λ(τ)(1− λ(τ)) = x− 24x2 + . . .

where

λ(τ) :=
θ2(τ)

4

θ3(τ)4
= 16x(1− 8x+ 44x2 + . . . ) with x = eπiτ and τ ∈ H.
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As explained in [10, Ex. 2.5], one can verify that for all γ ∈ Γ(2, 4, 4), a congru-
ence subgroup defined in (19),

θ2(γτ)
2 = (cτ + d) θ2(τ)

2,

and for all γ ∈ Γ(2, 4, 2), another congruence subgroup defined in (19),

θ3(γτ)
2 = (cτ + d) θ3(τ)

2.

In other words, θ22 and θ
2
3 are modular forms of weight 1 for Γ(2, 4, 4) ⊆ Γ(2, 4, 2);3

consequently, λ is a modular function for Γ(2, 4, 4).4

The problem to find an expansion as in (7) is similar to the expansion problem (3).
Differences are: in (3), G(t) is a hypergeometric function, in contrast to a modular
form g(τ) in (7); in addition, in (3), H(t) is a rational function (actually, a
polynomial) in contrast to a modular function h(τ) in (7).

Power series expansion (and, more generally, Puiseux series expansion) of modular
forms in terms of modular functions is the central theme in [10]. Namely, one
has the crucial fact, Prop. 4.3 below, that in expansions like (7) the coefficients
c(n) constitute a holonomic sequence. As a consequence, holonomic tools as in
the situation of (3) can be applied. More concretely, the holonomic approach to
solve problem (7), can be summarized as follows:

• By Prop. 4.3 we know that there exists a power series,

(8) y(z) :=
∞
∑

n=0

c(n)zn,

with a holonomic coefficient sequence (c(n))n≥0, such that locally

(9) g(τ) = y(h(τ)).

• Also by Prop. 4.3, y(h) must satisfy a holonomic differential equation of the
form

(10) Pm(h)y
(m)(h) + Pm−1(h)y

(m−1)(h) + · · ·+ P0(h)y(h) = 0,

with polynomials Pj(X) ∈ C[X] with Pm(X) 6= 0.

• A fundamental holonomic fact says:5 the differential equation (10) can be
converted into a recurrence for (c(n))n≥0, and vice versa.

• Our algorithm ModFormDE, described in Section 4, can be used to prove
conjectured differential equations of the form (10).

Consequently, to solve problem (7), one can proceed as follows:

3For the definition of modular form see Section 3.1.
4For the definition of modular function see Section 3.2.
5E.g., in the given context, used systematically in [10].
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• First use holonomic tools to guess a differential equation of the form (10),
then prove the differential equation using the algorithm ModFormDE.
Finally, to determine the desired coefficient sequence c(n), convert the
proven differential equation into a recurrence for the c(n).

To put this strategy into action, we begin by holonomic guessing of a recurrence
for the (c(n))n≥0. This way we already can see what is expected as an answer to
problem (7).

In the next step, we convert this recurrence into a differential equation for y, which
we then prove using the algorithm ModFormDE. Finally, the proven holonomic
differential equation is converted back into the recurrence for the c(n), which
then gives a valid and proven answer to problem (7).

The computational steps are as follows:

Step 1: Take as input sufficiently many coefficients in the expansion (5) of g(τ).6

Step 2: With this input, as explained in more detail in [10, Ex. 4.2], compute
sufficiently many values of the c(n):

c(0) = 1, c(1) = 4, c(2) = 100, c(3) = 3600, . . . , c(8) = 924193822500.(11)

“Sufficiently many” is meant with regard to the next step.

Step 3: Using the GeneratingFunctions package, guess a recurrence for the
sequence (c(n))n≥0:

In[6]:= cList = {1, 4, 100, 3600, 152100, 7033104, 344622096, 17582760000, 924193822500};

In[7]:= yRec = GuessRE[cList, c[n]][[1]]

Out[7]= {{−4(1+ 4n)2c[n] + (1+ n)2c[1+ n] == 0, c[0] == 1}

In other words, expressing the solution to this recurrence (of order 1) in terms of
rising factorials, we algorithmically derived the following conjecture for c(n) such
that (7):

c(n) =
(1/4)n(1/4)n

(1)n

43n

n!
.(12)

Step 4: To prove (12), the first step is to transform the recurrence yRec from
Out[7] into a holonomic differential equation satisfied by y(z) =

∑∞
n=0 c(n)z

n.
This is done by using the procedure call RE2DE as above:

In[8]:= yDE = RE2DE[{yRec, c[n], y[n]]

6It turns out that taking the first 10 coefficients as given in (5) is sufficient.
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Out[8]= {−4y[z]− (−1+ 96z)y′[z]− (−z+ 64z
2)y′′[z] = 0, y[0] = 1, y

′[0] = 4}

In view of (9), this differential equation rewrites into

(13) (64h2 − h)
d2y

dz2
(h) + (96h− 1)

dy

dz
(h) + 4y(h) = 0

with

(14) y(0) = c0 = 1 and
dy

dz
(0) = c1 = 4.

The verification of (14) is straightforward from the x-expansions (5) and (7) of
g and h.

Using these x-expansions, also (13) can be verified up to a desired precision; i.e.,
by checking that the coefficients of xn in the x-expansion of the left side are zero
up to a certain power. But, needless to say, this gives no proof!

Step 5. To prove the correctness of (13), which is the conjectured differential
equation of the form (10), we use the algorithm ModFormDE as detailed out in
Section 4.4

Step 6. After having proved that (13), resp. yDE in Out[8], is correct, in view
of (8) we translate it back to a recurrence for the c(n). Using the holonomic
tool-box [10, Prop. 3.1] this can be done as follows:

In[9]:= DE2RE[yDE, y[z], c[n]]

Out[9]= −4(1+ 4n)2c[n] + (1+ n)2c[1+ n] = 0, c[0] = 1, c[1] = 4

As expected, this recurrence is nothing but recurrence yRec from Out[7] which
we had guessed. But now it comes as a consequence of a proven differential
equation, consequently we proved that (12) is indeed the answer to problem (12).

Remark 2.4 (Existence of (13)). As explained in Section 4, Prop. 4.1 and Ex. 4.2,
a holonomic differential equation of order 2,

(15) p2(h)
d2y

dz2
(h) + p1(h)

dy

dz
(h) + p0(h)y(h) = 0,

with pj(X) ∈ C[X] is guaranteed to exist.

Remark 2.5. Using holonomic tools has led us to guess that

(16) θ3(τ)
2 = 2F1

( 1
4

1
4

1
; 4λ(τ)(1− λ(τ))

)

;

using our algorithm ModFormDE, this relation is proved algorithmically. In
exactly the same manner one can algorithmically derive and prove that

(17) θ3(τ)
2 = 2F1

( 1
2

1
2

1
; λ(τ)

)

.
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Combining these two facts gives an alternative proof of the special instance a =
b = 1/4 of (4). This alternative proof avoids holonomic algebraic composition, it
only uses the differential equation (13) which relates g(τ) and h(τ).7

Remark 2.6. We also note the following connection to the complete elliptic inte-
gral K = K(τ) of the first kind with modulus k = k(τ),

(18) K(k(τ)) :=

∫ π/2

0

dϕ
√

1− k(τ)2 sin(ϕ)2
=
π

2
θ3(τ)

2 where k(τ)2 = λ(τ).

This equality involving the theta function is immediate from (17) by series ex-
pansion of the integrand in terms of powers of λ(τ) = k(τ)2. Besides other
applications, the Borweins in their famous monograph [2] used this identity to-
gether with 11 similar ones [2, Thm. 5.6 and Thm. 5.7] to derive and explain
identities which Ramanujan [12] gave (without too many details) to establish
formulas to approximate π, respectively 1/π.

3. Modular Functions and Forms: Basic Facts and Notions

This section contains basic notions and facts about modular forms and functions
needed. Readers familiar with these notions will skip this section, and use it only
as a dictionary concerning the notation used.

The group SL2(Z) = {( a b
c d ) ∈ Z2×2 : ad− bc = 1} acts on elements τ ∈ H by

(

a b
c d

)

τ :=
aτ + b

cτ + d
.

As usual, the normal subgroup Γ(N) of SL2(Z), called principal congruence sub-
group, is defined as

Γ(N) :=
{

(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡

(

1 0
0 1

)

(modN)
}

.

In this article, a congruence subgroup Γ is a subgroup of SL2(Z) such that Γ(N) ⊆
Γ for some N .8 Besides Γ(N), important congruence subgroups are

Γ0(N) :=
{

(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡

(

⋆ ⋆
0 ⋆

)

(modN)
}

7Via the chain rule, dg(τ)
dτ = dy(h(τ))

dτ = dy
dz (h) ·

dh
dτ (τ).

8More generally, a congruence subgroup is a discrete subgroup of SL2(R) such that Γ ⊇ Γ(N)
for some N and, in addition, Γ is commensurable with SL2(Z). I.e., Γ∩SL2(Z) has finite index
in Γ and SL2(Z). Yang’s setting [13] allows such Γ; hence our algorithm ModFormsDE also
extends to this case.
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and

Γ1(N) :=
{

(

a b
c d

)

∈ SL2(Z) :

(

a b
c d

)

≡

(

1 ⋆
0 1

)

(modN)
}

.

There are many refinements, for instance, for positive integers N,M,P such that
M | NP :

Γ(N,M,P ) :=
{

(

a b
c d

)

∈ SL2(Z) :(19)

a ≡ d ≡ 1 (modM), b ≡ 0 (modP ), c ≡ 0 (modN)
}

.

This congruence subgroup already appeared in Example 2.3.

Throughout this paper, Γ stands for a congruence subgroup.

3.1. Modular Forms. For a meromorphic function, f : H → Ĉ, and γ = ( a b
c d ) ∈

SL2(Z) the weight-k operator is defined as usual by

(f |kγ)(τ) := (cτ + d)−kf(γτ), τ ∈ H.

Also as usual, we define (e.g., [9, Def. 1.8]): Let f : H → Ĉ be meromorphic,
and Γ a congruence subgroup. Then f is called a (meromorphic) modular form
of weight k for Γ, if for all γ ∈ Γ,

(20) (f |kγ)(τ) = f(τ), τ ∈ H,

and if for each γ0 ∈ SL2(Z) there exist w0 = w0(γ0) ∈ Z>0 and n0 = n0(γ0) ∈ Z

such that f |kγ0 admits a Fourier expansion (with coefficients in C) of the form,

(21) (f |kγ0)(τ) =
∑

n≥n0

aγ0(n)q
n
w0
, τ ∈ H such that Im(τ) sufficiently big,

where qw0 := e2πiτ/w0 and aγ0(n0) 6= 0. If these conditions hold, one can show
that w0(γ0) = wγ0(Γ), where

9

(22) wγ0(Γ) := min
m∈Z>0

{

(

1 m
0 1

)

∈ γ−1
0 Γγ0 or

(

−1 m
0 −1

)

∈ γ−1
0 Γγ0

}

.

If γ0 = ( a b
c d ), then γ0∞ = a/c.10 Considering an expansion as (21) for any

γ1 ∈ SL2(Z) such that γ1∞ = a/c, the values w0 and n0 do not change; i.e.,

(23) (f |kγ1)(τ) =
∑

n≥n0

bγ0(n)q
n
w0

if (f |kγ0)(τ) =
∑

n≥n0

aγ0(n)q
n
w0
.

As consequence, we can define the order (“of vanishing”) of a modular form of

weight k at a/c ∈ Q̂ as follows:

(24) orda/c f := n0, where n0 is taken as in the expansion (21).

9See, e.g., [4, Sect. 3.2].
10a/0 := ∞.
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Another invariance of w0 and n0 occurs when γ0 is replaced by γγ0 where γ ∈ Γ;
i.e.,

(25) (f |k(γγ0))(τ) = (f |kγ0)(τ) =
∑

n≥n0

aγ0(n)q
n
w0

if (f |kγ0)(τ).

Given a congruence subgroup Γ, we define

Mk(Γ) := {f : H → Ĉ : f a modular form of weight k for Γ}.

3.2. Modular Functions. If the modular form f has weight k = 0, it is called
a modular function; we write f |γ0 instead of f |0γ0, and define,

M(Γ) := {f : H → Ĉ : f a modular function for Γ}.

For algorithmic zero recognition, modular functions f ∈ M(Γ) are fundamental
objects behaving in this regard like polynomials. Namely, owing to k = 0, one
has the invariance f(γτ) = f(τ) for all γ ∈ Γ, and the expansions (21) then allow

to extend f meromorphically to all the points a/c ∈ Q̂.11 To this end, the first

step is to extend the action of SL2(Z) on H to an action on Ĥ = H∪Q̂. Notation:

for any congruence subgroup Γ the orbit of τ ∈ Ĥ with respect to this action is
written as [τ ]Γ := {γτ : γ ∈ Γ}. We will write [τ ] instead of [τ ]Γ, if the subgroup
Γ is clear from the context.

After extending the action, the meromorphic extension of a modular function f
from H to a function on Ĥ is done by choosing γ0 = ( a b

c d ) ∈ SL2(Z) such that
γ0∞ = a/c, and one defines

f(a/c) := (f |γ0)(∞) :=











∞ if n0 < 0,

aγ0(0) if n0 = 0

0 if n0 > 0

.

Owing to the invariance (23), this definition is independent from the choice of
γ0. The invariance (25) implies f(a/c) = f(γ a

c
) for any γ ∈ Γ. Together with the

invariance (20), this means, a modular function is constant on all the Γ-orbits
[τ ]Γ. The set of all such orbits, denoted by X(Γ), can be equipped with the
structure of a compact Riemann surface.12 Hence a modular function f with
respect to Γ can be interpreted as a function f̂ : X(Γ) → Ĉ; in fact, such f̂ are
meromorphic functions on X(Γ).

11Recall a/0 := ∞.
12Charts are given explicitly in Section 6.1.
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3.3. Cusps. If τ = a/c ∈ Q̂ the orbits [τ ]Γ ∈ X(Γ) are called cusps. Congruence

subgroups have only a finite index in SL2(Z), hence Q̂ = {γ∞ : γ ∈ SL2(Z)} =
SL2(Z)∞ = ∪j Γγj∞ = ∪j[γj∞]Γ is a disjoint union of finitely many cusps. In
view of the invariance (25), a Fourier expansion for f ∈M(Γ) as in (21) is called
an expansion of f at the cusp [a/c]Γ, or simply at a/c.

In various contexts, special attention is given to the case a/c = ∞. Then one can
exploit the fact that each congruence subgroup Γ contains a translation matrix
( 1 w0
0 1 ) or

(

−1 w0
0 −1

)

with w ∈ Z>0 minimal; notice that w0 = wI(Γ) with I = ( 1 0
0 1 )

in (22). As a consequence of (20), any modular function f ∈ M(Γ) has minimal
period w0 ≥ 1. As a consequence, for f ∈ M(Γ) we can uniquely define an
expansion at infinity13 by singling out the Fourier expansion (21) with the choice
γ0 := ( 1 0

0 1 ) = I: in other words, for all τ ∈ H with Im(τ) sufficiently large,

(26) f(τ) =
∑

n≥n0

aI(n)q
n/w0 .

If γ0 = ( a b
c d ) then γ0∞ = a/c, and an expansion as in (21) is called expansion of

f a the cusp [a/c] or, in short, at a/c.

Owing to (23) and (25), the minimal period w0 = wγ0(Γ) is independent from
choice of the representative γ0∞ of the cusp [a/c]Γ = [γ0∞]Γ; it called the width
of the cusp [a/c]Γ.

The order orda/c f , as defined in (24), is also called the order of f at the cusp
[a/c]. For the order of f at the cusp [∞] (in short, at infinity) one often uses the
short hand notation,

ord f := ord∞ f.

3.4. Zero recognition of modular functions. For zero recognition of a modu-
lar function f , one exploits its extension to a meromorphic function f̂ : X(Γ) → Ĉ

on the compact Riemann surface X(Γ). Namely, if such functions are non-
constant they have the property that

(27) number of poles of f̂ = number of zeros of f̂ ,

counting multiplicities; for further details see Lemma 11.3 in the Appendix Sec-
tion 11.3.

In practice, there are various ways to bring the fact (27) into action. With regard
to our algorithm ModFormDE, the strategy for zero recognition will be this.

Given α ∈ M(Γ), decide whether α = 0. It is important what “given” for a
modular function α ∈M(Γ) means in our context; namely,

13I.e., at the point ∞ ∈ Q̂
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(⋆) it is possible to compute as many coefficients a(n) in its expansion at
infinity,

α(τ) =
∑

n≥n0

a(n)qnw0
with qw0 := e2πiτ/w0 .

Here n0 = ordα = ord∞ α, and w0 is the width of the cusp [∞]; in terms of
charts (61): qw0 = z∞(τ) when γ0 = ( 1 0

0 1 ).

Now suppose we have a bound on the number of poles of α,

NofPoles(α) ≤ N.

Then, as a consequence of (27), α is proven to be 0, if all the coefficients
a(n0), . . . , a(N) are 0.

It is important to notice, that “number of poles/zeros” has to be taken in the
interpretation of α as the induced meromorphic function α̂ : X(Γ) → C; in other
words, NofPoles(α) is the number of poles of α̂, multiplicities counted.

Remark 3.1. Notions like NofPoles will be used heavily when describing the math-
ematical fundament of the algorithm ModFormDE. They are defined explicitly
in (50) for modular functions, and in (114) for modular forms of even weight.

4. The Algorithm ModFormDE

4.1. Existence of Holonomic Differential Equations for Modular Forms.

In Section 2 we showed how holonomic differential equations like (13) can be de-
rived, as a guess, in computer-supported fashion. Modular form theory guarantees
the existence of such differential equations. Zagier [14, Prop. 21] introduces to
this fact as follows: “. . . it is at the heart of the original discovery of modular
forms by Gauss and of the later work of Fricke and Klein and others, and appears
in modern literature as the theory of Picard-Fuchs differential equations or of the
Gauss-Manin connection — but it is not nearly as well known as it ought to be.
Here is a precise statement:”

Proposition 4.1. Let g(τ) be a modular form of weight k > 0 and h(τ) a modular
function, both with respect to the congruence subgroup Γ. Express g(τ) locally as
y(h(τ)). Then the function y(h) satisfies a linear differential equation of order
k + 1 with algebraic coefficients, or with polynomial coefficients if the compact
Riemann surface X(Γ) has genus 0 and ord(h(τ)) = 1.

Example 4.2. The existence of the differential equation (13) is owing to the fol-
lowing facts: g is a modular form of weight 1 for Γ(2, 4, 2), h is a modular function
for Γ(2, 4, 2) with ord(h) = 114, and X(Γ(2, 4, 2)) has genus 0.

14Such a modular function is called a Hauptmodul.



Holonomic Relations for Modular Forms 13

An important fact in the light of the holonomic paradigm: if one drops to re-
quire minimality of the order of the differential equation, y(h) always satisfies a
holonomic differential equation:

Proposition 4.3 ([10], Prop. 6.2). In the setting of Prop. 4.1, the function
y(h) satisfies a linear differential equation with rational coefficients also when the
genus of X(Γ) is non-zero or when ord(h(τ)) > 1. — In these cases, the order
of the differential equation in general will be larger than k + 1.

After stating Prop. 4.1, Zagier [14, p. 21] continues: “This proposition is per-
haps the single most important source of applications of modular forms in other
branches of mathematics, so with no apology we sketch three different proofs, . . . ”

Zagier’s third proof is constructive; i.e., given g and h, it constructs the cor-
responding differential equation. Following the holonomic paradigm, we take a
different approach: we first guess the corresponding holonomic differential equa-
tion algorithmially, and then prove it using our algorithm ModFormDE.

4.2. The Mathematical Fundament of Algorithm ModFormDE. Our al-
gorithm ModFormDE solves the following problem:

GIVEN a modular form g ∈ Mk(Γ) with weight k ∈ Z≥1 for the congruence
subgroup Γ, and a modular function h ∈ M(Γ) such that ordh = 1 where
qw0 = q1/w0 with q = e2πiτ is the local expansion variable at infinity. Moreover,
suppose g has a local expansion of the form

g(τ) = y(h(τ)) where y(z) :=
∞
∑

n=ord g

c(n)zn;

y(z) exists with uniquely determined holonomic coefficients according to Prop. 4.1
and Prop. 4.3.

PROVE that y(h) satisfies a holonomic differential equation of the form

(28) Pm(h)y
(m)(h) + Pm−1(h)y

(m−1)(h) + · · ·+ P0(h)y(h) = 0,

where the Pj(X) are given polynomials in C[X] with Pm(X) 6= 0.

Note. Notice that y(n)(h) := dny
dzn

(z)|z=h.

Our algorithm ModFormDE is based on work of Yifan Yang [13]. So, before
describing the steps of ModFormDE, we recall notation and notions used there.

• Differential operators [13, p. 4]: Let ϕ(τ) be a function defined on H having
an x-expansion15 ϕ̃(x) =

∑

n≥n0
a(n)xn with x = q1/w0 where q = e2πiτ :

(29) Dxϕ = Dxϕ(τ) :=
w0

2πi
·
dϕ

dτ
(τ) =

w0

2πi
· ϕ′(τ) = x ϕ̃′(x).

15Here we extend the setting in [13] from q = e2πiτ to x = q1/N0 to adapt to applications.
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Let ψ = ψ(z) be a function analytic in a neighborhood of 0, let h = h(τ) ∈M(Γ):

Dhψ = Dhψ(h) := h
dψ

dz
(h) = hψ′(h).

Fundamental functions on H [13, Thm. 1]:

Let Γ be a congruence subgroup, and let g ∈ Mk(Γ), k ≥ 1, and h ∈ M(Γ) be
fixed:

(30) G1 :=
Dxh

h
=
N0

2πi
·
h′

h
and G2 :=

Dxg

g
=
N0

2πi
·
g′

g
;

notice that h′ = h′(τ) = dh(τ)
dτ

and g′ = g′(τ) = dg(τ)
dτ

.

• Fundamental modular functions [13, Thm. 1]:

(31) p1 :=
DxG1 − 2G1G2/k

G2
1

and p2 := −
DxG2 −G2

2/k

G2
1

.

As proved in [13, Lemma 1], the pj are modular functions in M(Γ). Moreover,
they are also algebraic functions in h ∈ M(Γ). This means, for fixed j ∈ {1, 2},
pj and h satisfy an algebraic relation; see the remark after Thm. 8.1 in [10].

Because of the chain rule we have,

(32) Dhy = Dhy(h) = hy′(h) = h
g′

h′
= g

G2

G1

.

Yang [13, p. 9] also computed that

(33) D2
hy =

(

1−
1

k

)

· g
G2

2

G2
1

+ (−p1) · g
G2

G1

+ (−p2) · g,

and

D3
hy =

(

1−
1

k

)(

1−
2

k

)

· g
G3

2

G3
1

− 3
(

1−
1

k

)

p1 · g
G2

2

G2
1

(34)

+
(

p21 −
(

3−
2

k

)

p2 −Dhp1) · g
G2

G1

+ (p1p2 −Dhp2) · g,

where the pj ∈M(Γ) are the fundamental modular functions defined in (31) and

Dhpj = h
dpj
dh

. Mathematical induction [13, p. 10] on m ≥ 0 leads to16,

(35) Dm
h y =

m−1
∏

j=0

(1−
j

k
) · g

Gm
2

Gm
1

+ am,m−1 · g
Gm−1

2

Gm−1
1

+ · · ·+ am,1 · g
G2

G1

+ am,0 · g,

with the am,j being multivariate polynomials from the polynomial ring

(36) R := C

[

h, p1, p2,
dp1
dh

,
dp2
dh

, . . . ,
dmp1
dhm

,
dmp2
dhm

, . . .
]

.

16Notice that here we assume D0
hy = y(h) = g.
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Lemma 4.4. Let Γ be a congruence subgroup. Let g ∈ Mk(Γ) with k ≥ 1, and
h ∈M(Γ). Then the elements of R are modular functions in M(Γ).

Proof. Let p ∈ {p1, p2}. By [13, Lemma 1], p ∈ M(Γ). In addition, p is an
algebraic function in h; see, e.g., the remark after Thm. 8.1 in [10]. This means,
there exists a polynomial

R(X, Y ) := Y n + c1(X)Y n−1 + · · ·+ cn(X)

with rational function coefficients cj(X) ∈ C(X) such that R(h, p) = 0. By
the implicit function theorem one has that locally there exists an meromorphic
function r(z) such that R(h, p) = 0 iff p = r(h). Moreover,

dp

dh
= r′(h) = −

∂R

∂X
(h, p)/

∂R

∂Y
(h, p),

which, as a rational function in h and p, is inM(Γ). Applying the same argument
to p′ and h, etc., completes the proof also for the higher derivatives of p. �

Remark 4.5. In the proof we introduced a new function symbol r when writing
p as a function in h; i.e., p = r(h). However, in order to keep notation as lean
as possible, whenever things are clear from the context we will follow Yang, and
write p = p(h) instead of p = r(h) when referring to p as a function in h.

By relation (35) we are led to the following fact.

Lemma 4.6. Let Γ be a congruence subgroup. Let g ∈ Mk(Γ) with k ≥ 1, and
h ∈M(Γ). Then: (1) any expression of the form,

(37) Y := Qm(h)D
m
h y +Qm−1(h)D

m−1
h y + · · ·+Q0(h)y,

with polynomials Qj(X) ∈ C[X] can be written into “Yang form” as

(38) Y = αm · g
Gm

2

Gm
1

+ αm−1 · g
Gm−1

2

Gm−1
1

+ · · ·+ α0 · g with αj ∈ R;

(2) these coefficients αj are uniquely determined.

Proof. Part (1) is immediate from (35). Part (2) is a consequence of the fact that

the
Gm

2

Gm
1

are linearly independent over M(Γ); this is proved in Prop. 11.1 in the

Appendix Section 11. �
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4.3. Input, Output, and Steps of the Algorithm ModFormDE.

INPUT. (1) g ∈ Mk(Γ) and h ∈ M(Γ) such that ordh = 1; both functions
are given in the form of their x-expansions, where x = q1/w0 with q = e2πiτ ,
τ ∈ H, is the local expansion variable at infinity. More precisely, we assume that
sufficiently many coefficients of

g(τ) =
∞
∑

n=M

g(n)xn, M ∈ Z fixed,

and
h(τ) = x(1 + h1x+ h2x

2 + . . . )

can be computed.

(2) Polynomials P0(X), . . . , Pm(X) in C[X] with Pm(X) 6= 0.

(3) NofPoles(h): the number of poles of ĥ, defined in (50).

(4) If k is even, NofPoles(g): a pole number defined in (114); if k is odd,
NofPoles(g2).

(5) If k is odd, NofCusps(Γ) and NofElliptic(Γ): the number of cusps and of
elliptic points, defined in (48) and (49).

OUTPUT. Bounds for

(39) NofPoles(p1),NofPoles(p2), and NofPoles
(djpi
dhj

)

, i = 1, 2, j ≥ 1.

As a consequence of the steps of the algorithm, these bounds as part of the strat-
egy described in Section 3.4, enable a proof of the correctness of the differential
relation,

(40) Pm(h)y
(m)(h) + Pm−1(h)y

(m−1)(h) + · · ·+ P0(h)y(h) = 0.

In case (40) is not valid, the algorithm detects this. The output bounds for (39)
are specified in the Theorems 5.2 and 5.3 in Section 5.

THE STEPS OF THE ALGORITHM “ModFormDE”:

Step 0: Rewrite the left side of (40) into the form (37). — This is done by using
the relations hy′(h) = Dhy,

h2y′′(h) = D2
hy −Dhy, h

3y(3)(h) = D3
hy − 3hD2

hy + (3h− 1)Dhy, a.s.o.,

which, for example, can be precomputed.

Step 1: Transform the expression (37) into Yang form (38). — This is done by
using the relations (32), (33), (34), and (35) for m ≥ 4, which, for example, can
be precomputed.
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Step 2: Owing to the uniqueness of the coefficients αj in (38), the proof of (28)
finally is reduced to prove that

(41) αm = 0, αm−1 = 0, . . . , α0 = 0.

Since the αj are modular functions in M(Γ), this task, owing to (27), reduces to
determine upper bounds for the number of poles of each αj. Because of αj ∈ R,

by definition (36) it is sufficient to provide such bounds for h and for the
djpj
dhj ,

j ≥ 0, which is done in the Sections 7, 8, and 9, together with the summary given
in Section 10.

Finally, each zero test, αj = 0, is completed by computing sufficiently many
coefficients in the x-expansion of αj, which is derived from those of g and h.17 In
Section 4.4 we exemplify the steps of the algorithm by proving (13).

4.4. Proving (13) with the ModFormDE Algorithm. To illustrate the Mod-
FormDE algorithm, we prove the validity of (13).

As in (5) and (7), we are given18 g ∈ M1(Γ) and h ∈ M(Γ) with ordh = 1; here
Γ = Γ(2, 4, 2), and we note that X(Γ(2, 4, 2)) has genus gΓ = 0. Noticing that
ord g = 1, by Prop. 4.1 and Prop. 4.3 we know that g has a local expansion of
the form

g(τ) = y(h(τ)) where y(z) :=
∞
∑

n=0

c(n)zn,

where y(z) has uniquely determined holonomic coefficients. In Ex. 2.3(11) we
computed several of these coefficients; in addition, using software we conjectured
the holonomic differential equation (13)

(64h2 − h)
d2y

dz2
(h) + (96h− 1)

dy

dz
(h) + 4y(h) = 0

Using ModFormDE, its validity is proved as follows.

Concerning the input data (1), the x-expansions, x = qπiτ , are immediate from (6).

The polynomials (2) are read off from the differential equation: P0(X) = 4, P1(X) =
96X − 1, and P2(X) = X(64X − 1).

Concerning (3): NofPoles(h) = 1, since h is a Hauptmodul.

Concerning (4): Since k = 1, we have to determine NofPoles(g2). The product
expansion of g is classical; it gives,

(42) g(τ)2 =
η(τ)20

η(τ/2)8η(2τ)8
,

17Recall x = q1/w0 with q = e2πiτ .
18Given, in the sense of (⋆) in Section 3.4
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using the Dedekind eta function η(τ) = e
πiτ
12

∏∞
j=1(1− qj), q = e2πiτ . This repre-

sentation tells that g2 has no pole in H. So we need to inspect the cusps of X(Γ),
which are 3 in total; namely [0], [1] and [∞]. To see this, and to find the widths
of each of these cusps, which is 2 in each instance, one can, e.g., run Magma as
described in Section 11.2.1.

Since g2 ∈M2(Γ), according to Definition 6.12,

NofPoles(g2) = −
∑

cusps [a/c]∈X(Γ)

ord F̃a/c(z)<0

ord F̃a/c(z)

= −
∑

cusps [a/c]∈X(Γ)

orda/c(g
2)≤0

(

orda/c(g
2)− 1

)

,(43)

where F̃p(z) is the Laurent series for F := g2 defined in Lemma 6.6; the last
equality is by (77). Hence, in view of the three cusps [∞], [0], and [1], we have
to determine the orders of the x-expansions, x = eπiτ , of

(g2)(τ), (g2|2γ0)(τ), and (g2|2γ1)(τ),

with γ0 := ( 0 −1
1 0 ) and γ1 := ( 1 −1

1 0 ), such that γ0∞ = 0 and γ1∞ = 1.

At the cusp [∞]:

g(τ)2 = 1 + 8x+ 24x2 +O(x3), hence ord∞(g2) = 0.

At the cusp [0]:

(g2|2γ0)(τ) = (1 · τ + 0)−2g(−1/τ)2 = g(τ)2, hence ord0(g
2) = 0;

here one applies the classic transformation formula η(−1/τ) = (−iτ)1/2η(τ).

At the cusp [1]: as explained in Section 11.2.2, one finds that

(g2|2γ1)(τ) = u · x+O(x2), hence ord1(g
2) = 1.

Summarizing, using this information in (114), gives,

NofPoles(g2) = −
(

ord∞(g2)− 1
)

−
(

ord0(g
2)− 1

)

= 1 + 1 = 2.

Concerning input data (5): Since k is odd, we have to consider this case, and
note that

NofCusps(Γ) = 3 and NofElliptic(Γ) = 0;

to obtain this information is routine and can be left to software.

Remark 4.7. We have seen that the non-routine part in providing the required
input data (1) to (5) to algorithm ModFormDE, is to determine NofPoles(g2).
Nevertheless, for certain classes of modular functions and modular forms (e.g.,
those representable by eta quotients), also this step can be turned into algorith-
mics.
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After providing all the required input data (1) to (5), we turn to the steps of
algorithm ModFormDE:

Step 0: The conjectured differential equation rewrites into,

(44) Y := (64h− 1)D2
hy + 32hDhy + 4h g = 0.

Step 1: Owing to g ∈M1(Γ) we have k = 1, and the Yang form of Y becomes

(45) Y = α1 · g
G2

G1

+ α0 · g,

with

(46) α1 = 32h− (64h− 1)p1 ∈M(Γ) and α0 = 4h− (64h− 1)p2 ∈M(Γ).

Step 2: For this step, since k = 1, we need to use Theorem 5.3. This theorem
requires the notion NofPoles(f) for f ∈M(Γ), defined in (50), and the extended
notion (114) for modular forms f ∈M2k(Γ) defined in Section 6.

Step 2a. We first prove α1 = 0. By (55) of Theorem 5.3,

NofPoles(α1) ≤NofPoles(h) + NofPoles(h) + NofPoles(p1)

=2NofPoles(h) + NofPoles(p1)

≤2NofPoles(h) + (2k + 4)(g − 1) + 8NofPoles(h) + 3NofPoles(g2)

=10NofPoles(h) + 3NofPoles(g2) = 10 · 1 + 3 · 2 = 16.

Computing the x-expansion up to the power of x16 shows that α1(τ) = 0 + 0x+
0x2 + · · ·+ 0x16 + . . . This implies that α1 has at least 17 zeros and 16 poles or
less; so α1 has to be 0.

Step 2b. Second, we prove α2 = 0. By (56) of Theorem 5.3,

NofPoles(α2) ≤2NofPoles(h) + NofPoles(p2)

≤2NofPoles(h) + (6k + 4)(g − 1) + 6NofPoles(h) + 10NofPoles(g2)

+ 2NofCusps(Γ) + 2NofElliptic(Γ)

=8NofPoles(h) + 10NofPoles(g2) + 2 · 3 + 2 · 0 = 8 + 20 + 6 = 34.

Computing the x-expansion up to the power of x34 shows that α2(τ) = 0 + 0x+
0x2 + · · ·+ 0x34 + . . . This implies that α2 has at least 35 zeros and 34 poles or
less; so α2 has to be 0.
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5. Main theorems of even and odd weight

Our algorithm ModFormDE consists of two steps: after Step 1, which transforms
the conjectured differential equation into Yang form (38), in Step 2 one has to
prove (41) for the coefficients αj ∈ R ⊆ M(Γ). To this end, one invokes bounds
for the number of poles of the elements in R. In this section we state the two
main theorems, one for k even and one for k odd, which provide such bounds by
determining bounds for the number of poles of the generators of R,

h, p1, p2,
dp1
dh

,
dp2
dh

, . . . ,
dmp1
dhm

,
dmp2
dhm

, a.s.o.

To state the main results of this section, Thm. 5.2 and Thm. 5.3, we need to
make some preparations.

In Section 3.3 we defined cusps. We need to recall another standard notion from
modular group actions.

Definition 5.1. Let P = [p] ∈ X(Γ) with p ∈ H. Then P is an elliptic point of
X(Γ), if

(47) {γ ∈ Γ : γp = p} 6⊆ {( 1 0
0 1 ) ,

(

−1 0
0 −1

)

}.

One also says that p is an elliptic point for Γ.

Define

NofCusps(Γ) := no. of cusps of X(Γ),(48)

NofElliptic(Γ) := no. of elliptic points of X(Γ).(49)

In addition, for a modular function f ∈M(Γ) define,

(50) NofPoles(f) := number of poles P ∈ X(Γ) of f̂ .

multiplicities of poles are counted.

To state the following theorem, we need to extend definition (50) to modular
forms with even weight; this is done by the relation (114) in Definition 6.12.
Using these definitions, (50) and (114), the bounds we obtained for even weight
k are as follows.

Theorem 5.2. For a congruence subgroup Γ let t ∈ M(Γ) and F ∈ Mk(Γ). Let
gΓ be the genus of X(Γ). Then, if k is even, one has,

(51) NofPoles(p1) ≤ 8NofPoles(t) + 3NofPoles(F ) + (k + 4)(gΓ − 1),

NofPoles(p2) ≤ 2NofElliptic(Γ) + 2NofCusps(Γ)(52)

+ 6NofPoles(t) + 10NofPoles(F ) + (3k + 4)(gΓ − 1),
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and for the derivatives where j ≥ 1,

NofPoles
(djp1
dtj

)

≤ (12j + 6)NofPoles(t) + 3(j + 1)NofPoles(F )(53)

+ (jk + 8j + k + 2)(gΓ − 1),

NofPoles
(djp2
dtj

)

≤ 2(j + 1)NofElliptic(Γ) + 2(j + 1)NofCusps(Γ)(54)

+ 2(5j + 2)NofPoles(t) + 10(j + 1)NofPoles(F )

+ (3jk + 8j + 3k + 2)(gΓ − 1).

The bounds we obtained for odd weight k are as follows.

Theorem 5.3. For a congruence subgroup Γ let t ∈ M(Γ) and F ∈ Mk(Γ). Let
gΓ be the genus of X(Γ). Then, if k is odd, one has,

(55) NofPoles(p1) ≤ 8NofPoles(t) + 3NofPoles(F 2) + (2k + 4)(gΓ − 1),

NofPoles(p2) ≤ 2NofElliptic(Γ) + 2NofCusps(Γ)(56)

+ 6NofPoles(t) + 10NofPoles(F 2) + (6k + 4)(gΓ − 1),

and for the derivatives where j ≥ 1,

NofPoles
(djp1
dtj

)

≤ (12j + 6)NofPoles(t) + 3(j + 1)NofPoles(F 2)(57)

+ (2jk + 8j + 2k + 2)(gΓ − 1),

NofPoles
(djp2
dtj

)

≤ 2(j + 1)NofElliptic(Γ) + 2(j + 1)NofCusps(Γ)(58)

+ 2(5j + 2)NofPoles(t) + 10(j + 1)NofPoles(F 2)

+ (6jk + 8j + 6k + 2)(gΓ − 1).

The rest of our paper is devoted to the proofs of these statements. Section 6
introduces the mathematical requirements needed. Section 7 proves the bound
for p1, Section 8 for p2. The bounds for the derivatives of p1 and p2 are given in
Section 9. These considerations are completed by a proof summary in Section 10.

6. Locals expansions and orders

The rest of this section is devoted to proving these bounds. To this end, we
first consider local expansions which are used in a crucial way, also for defining
NofPoles(F ) for modular forms F with even weight; see Def. 6.12.
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6.1. Local expansions and orders. To bound the possible number of poles of
modular functions we use local series expansions in terms of charts. These charts
zP , as defined below, are homeomorphisms between open subsets of X(Γ) and of
C. More details on the topology used, in particular, why these charts make X(Γ)
into a Riemann surface, can be found, for instance, in [4, Sect. 2.2, 2.3 and 2.4].

Given P = [p] ∈ X(Γ) for some p ∈ Ĥ = H ∪ Q ∪ {∞}, we consider charts
zp : UP → C with zp([τ ]) := zp(τ) defined as usual by

(59) zp(τ) := τ − p, if p ∈ H is no elliptic point,

or by

(60) zp(τ) :=
(τ − p

τ − p

)h(p)

, if p ∈ H is an elliptic point (cf. Def. 5.1),

or, by

(61) zp(τ) := e2πiγ
−1
0 τ/w, if p =

a0
c0

= γ0∞ ∈ Q ∪ {∞},

where γ0 =
(

a0 b0
c0 d0

)

∈ SL2(Z) and w = wγ0(Γ); see (22). Here UP ⊆ X(N) is

a neighborhood of P = [p] such that UP = {[τ ] : τ ∈ V0} where V0 ⊆ Ĥ is

suitable open neighborhood of p in the given topology of Ĥ. Notice that defining
zp([τ ]) := zp(τ), we overloaded meaning: besides being a map on open subsets of

X(Γ), zp is also an analytic function on open subsets of Ĥ.

Furthermore, the periods h(p) equal either 2 or 3; we also note explicitly that all
these charts are centered at 0; i.e.,

(62) zp(P ) = zp(p) = 0.

We need to describe the behavior of charts under the change of orbit representa-
tives.

Lemma 6.1. Given p ∈ Ĥ, let r := γp for γ = ( a b
c d ) ∈ Γ. Then the charts

zp : V0 → C relate to the charts zr : γ(V0) → C as follows:

(i) if p ∈ H is no elliptic point, then r is no elliptic point, and for τ ∈ V0,

(63) zr(γτ) = γτ − r =
1

cp+ d
·
zp(τ)

cτ + d
;

(ii) if p ∈ H is an elliptic point, then r is an elliptic point,19 and for τ ∈ V0,

(64) zr(γτ) =
(γτ − r

γτ − r

)h(r)

=
(cp+ d

cp+ d

)h(p)

· zp(τ);

(iii) if p = γ0∞ ∈ Q̂, γ0 ∈ SL2(Z), is a cusp, then r is a cusp, and for τ ∈ V0,

(65) zr(γτ) = e2πi(γγ0)
−1(γτ)/w = zp(τ).

19Notice that h(p) = h(r).
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Proof. By straight-forward verifications. �

Before turning to local series representations, we recall the notion of order (“of
vanishing”) of Laurent series.

Definition 6.2 (order of a Laurent series). Let ϕ(z) =
∑∞

n=M c(n)zn be a Laurent
series with M ∈ Z and c(M) 6= 0:

ordϕ(z) :=M.

Remark 6.3. In this paper we use several notions of order. When referring to
the order of a Laurent series in powers of z, we always include the argument z
explicitly; i.e., we write ordϕ(z) instead of ordϕ.

The first part of the following lemma is implied by the fact that the zp are local
charts; the second part, the order invariance, from Riemann surface point of
view is by connecting Ordx f with the notion of multiplicity multx f .

20 For an
alternative proof of this invariance one can use the argument from the proof of
Lemma 6.6 when k = 0.

Lemma 6.4. Given a non-zero t ∈ M(Γ), and P = [p] ∈ X(Γ), p ∈ Ĥ. Then
there exists a Laurent series

(66) t̃p(z) :=
∞
∑

n=Mp

ap(n)z
n

such that
t(τ) = t̃p(zp(τ)), τ ∈ V0,

where V0 ⊆ Ĥ is a suitable neighborhood of p. Moreover, for any γ ∈ Γ,

Mp = ord t̃p(z) = ord t̃γp(z) =Mγp;

i.e., the order, ord t̃p(z), is independent from the choice of p as a representative
of P = [p].

The following definition generalizes (24) from cusps P = [a/c], a/c ∈ Q̂, to
general points (Γ-orbits) P = [p] ∈ X(Γ):

Definition 6.5 (order of a modular function at at point). For non-zero t ∈M(Γ)

and P = [p] ∈ X(Γ), p ∈ Ĥ:

(67) OrdP t := ord t̃p(z),

where t̃p(z) is as in Lemma 6.4.

The next two lemmas generalize Lemma 6.4 to modular forms.

20See the Section 11.3 for further details.
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Lemma 6.6. Given a non-zero F ∈ Mk(Γ) with k even, and P = [p] ∈ X(Γ),

p ∈ Ĥ. Then there exists a Laurent series

(68) F̃p(z) :=
∞
∑

n=Np

bp(n)z
n

such that

(69) F (τ) = z′p(τ)
k/2 F̃p(zp(τ)), τ ∈ V0,

where V0 ⊆ Ĥ is a suitable neighborhood of p. Moreover, for any γ ∈ Γ,

Np = ord F̃p(z) = ord F̃γp(z) = Nγp;

i.e., the order, ord F̃p(z), is independent from the choice of p as a representative
of P = [p].

Proof. Take t ∈M(Γ) with t̃p(z) as in (66). Consequently,

(70) t′(τ) = z′p(τ)
∞
∑

n=Mp

n ap(n)zp(τ)
n−1 ∈M2(Γ),

and applying Lemma 6.4 to the modular function F/(t′)k/2 ∈ M(Γ) proves the
first part of the statement. To prove the invariance of the order when choosing
different orbit representatives, assume that r = γp for γ = ( a b

c d ) ∈ Γ. If p ∈ H is
not an elliptic point, for the expansion with respect to r we have by (63),

F (γτ) = z′r(γτ)
k/2 F̃r(zr(γτ)) = F̃r

( 1

cp+ d
·
zp(τ)

cτ + d

)

.

This, together with the modular transformation property, implies

F (τ) =
1

(cτ + d)k
F (γτ) =

1

(cτ + d)k
F̃r

( 1

cp+ d
·
zp(τ)

cτ + d

)

= F̃p(zp(τ)),

where the last line is by (69) with z′p(τ) = 1. Hence by −d/c 6∈ H, and observing
that

1

cτ + d
=

1

cp+ d
−

c(τ − p)

(cp+ d)2
+O

(

(τ − p)2
)

=
1

cp+ d
+O(zp(τ)),

we have ord F̃r = ord F̃p. Second, suppose p ∈ H is an elliptic point. Then
by (64),

zr(γτ) = ξ(p)zp(τ) for ξ(p) :=
(cp+ d

cp+ d

)h(p)

.
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Hence,

F (γτ) = z′r(γτ)
k/2 F̃r(zr(γτ)) =

( ξ(p)

(γτ)′

)k/2

z′p(τ)
k/2F̃r(ξ(p)zp(τ))

= ξ(p)k/2(cτ + d)kz′p(τ)
k/2F̃r(ξ(p)zp(τ)).

This implies, similarly to above,

F (τ) =
1

(cτ + d)k
F (γτ) = ξ(p)k/2z′p(τ)

k/2F̃r(ξ(p)zp(τ))

= z′p(τ)
k/2F̃p(zp(τ));

which gives ord F̃r = ord F̃p. Finally, suppose p = γ0∞ ∈ Q̂, γ0 ∈ SL2(Z). Then
applying (65) gives,

F (γτ) = z′r(γτ)
k/2 F̃r(zr(γτ)) =

(z′p(τ)

(γτ)′

)k/2

F̃r(zp(τ))

= (cτ + d)k z′p(τ)
k/2F̃r(zp(τ)).

Invoking the modular transformation property as above, we obtain

F (τ) =
1

(cτ + d)k
F (γτ) = z′p(τ)

k/2F̃r(zp(τ))

= z′p(τ)
k/2F̃p(zp(τ));

which implies ord F̃r = ord F̃p, and which completes the proof of the lemma. �

To state the analogue of Lemma 6.6 for odd k, we need the square root of a
Laurent series, which is a Puiseux series defined as follows.

Definition 6.7. Let G(z) =
∑∞

n=N c(n)z
n with ordG(z) = N . Then

G(z)1/2 :=
√

c(N) zN/2(1 + ψ(z))1/2 =
√

c(N) zN/2

∞
∑

ℓ=0

(

1/2

ℓ

)

ψ(z)ℓ,

where ψ(z) = 1
c(N)

∑∞
n=1 c(N+n)zn, and where for

√

c(N) we choose the principal

branch.

Lemma 6.8. Given a non-zero F ∈ Mk(Γ) with k odd, and P = [p] ∈ X(Γ),

p ∈ Ĥ. Then

(71) F (τ) = z′p(τ)
k/2 F̃p(zp(τ)), τ ∈ V0,

with
F̃p(z) := G̃p(z)

1/2;

where G̃p(z) is the Laurent series such that, according to Lemma 6.6,

(72) G(τ) := F (τ)2 = z′p(τ)
k G̃p(zp(τ)) ∈M2k(Γ), τ ∈ V0,
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where V0 ⊆ Ĥ is a suitable neighborhood of p, and where the root z′p(z)
1/2 is

chosen as the appropriate branch.

Proof. The existence of the Laurent series G̃(z) such that (72) is owing to Lemma 6.6
since G(τ) := F (τ)2 ∈M2k(Γ). The rest follows from Def. 6.7. �

For our analysis of poles it will be convenient to extend Def. 6.5 to modular forms.

Definition 6.9 (order of a modular form at a point). For non-zero F ∈ Mk(Γ)

with k even, and P = [p] ∈ X(Γ), p ∈ Ĥ:

(73) OrdP F := ord F̃p(z),

where F̃p is as in Lemma 6.6.

Remark 6.10. This definition can be extended to k odd, but we do not need it
here.

Remark 6.11. A more important remark concerns the fact that if F ∈M(Γ) (i.e.,
if k = 0), one has,

(74) OrdP F = OrdP F̂ ,

where P = [p] ∈ X(Γ). Here the order on the right side is the order at P of the

induced meromorphic function F̂ : X(Γ) → Ĉ defined on the Riemann surface
X = X(Γ); see Section 11.3. In this case, one has, according to Lemma 11.3,

(75)
∑

P∈X(Γ)

OrdP F = 0.

We will need the generalization (80) for modular forms F ∈ Mk(Γ) with ordp F ;
this is the main motivation to introduce the order as in Def. 6.9

Before stating and proving (80), we conclude this section by extending the notion
NofPoles(F ) from modular functions to modular forms.

Definition 6.12. Let F ∈Mk(Γ) with k even.

(76) NofPoles(F ) := −
∑

[p]∈X(Γ)

ord F̃p(z)<0

Ord[p] F,

where F̃p(z) is the Laurent series defined in Lemma 6.6.

Remark 6.13. When k = 0; i.e., if F is a modular function in M(Γ), then this
coincides with the definition (50). This means, then NofPoles(F ) is nothing but

the number of poles of the induced function F̂ on X(Γ).
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We conclude this section by a fact which is useful in applying the algorithm
ModFormDE; see, for example, Section 4.4. Given a modular forms of even
weight, it relates our two different notions of orders taken at cusps.

Lemma 6.14. Let F ∈M2k(Γ) and P = [a/c] ∈ X(Γ), p = a/c ∈ Q̂. Then,

(77) orda/c F = Ord[a/c] F + k.

Proof. By Lemma 6.6,

(78) F (τ) = z′a/c(τ)
k

∞
∑

n=Na/c

b(n)za/c(τ)
n,

where Na/c = ord[a/c] F 6= 0. If γ0 = ( a b
c d ) ∈ SL2(Z) such that γ0∞ = a/c, then

zp(τ) := e2πiγ
−1
0 τ/w0 where w0 = wγ0(Γ).

Define,

(79) qw0 := za/c(γ0τ) = e2πiτ/w0 , and thus, (c0τ + d0)
−2z′a/c(γ0τ) =

2πi

w0

qw0 .

The weight-2k action applied to F , and using (78) gives,

(F |2kγ0)(τ) = (c0τ + d0)
−2kz′a/c(γ0τ)

k

∞
∑

n=Na/c

b(n)qnw0

=
(2πi

w0

)k

qkw0

∞
∑

n=Na/c

b(n)qnw0
,

where the last equality is by (79). Comparing this to the definition (24), proves
the statement. �

Notice that for k = 0, Lemma 6.14 turns into (74) if P is a cusp.

6.2. A bound from the Riemann-Hurwitz formula. A last major ingredient
for our analysis of poles is the following proposition which is an application of
the Riemann-Hurwitz formula.

Proposition 6.15. Let F ∈Mk(Γ) be non-zero with k even. Then

(80)
∑

P∈X(Γ)

OrdP F = k(gΓ − 1),

where gΓ is the genus of the compact Riemann surface X(Γ).
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Remark 6.16. Notice that the sum on the left side is well-defined. Namely, sup-
pose that ordP F 6= 0 for infinitely finitely many P ∈ X(Γ). Choosing a bounded

fundamental domain F ⊂ Ĥ for X(Γ), this would imply that F would have in-
finitely many poles or zeros in F . Let us assume the latter.21 Then this set has
a limit point in Ĥ. Since F is non-zero, this limit point must be in Q̂. But prop-
erty (21) in the definition of modular forms implies that the poles of F cannot

cluster at any a/c ∈ Q̂.22

We will apply Prop. 6.15 in the following form.

Corollary 6.17. Let F ∈Mk(Γ), k even, such that for P = [p] ∈ X(Γ),

F (τ) = z′p(τ)
k/2F̃p(zp(τ)),

where F̃p(z) is a Laurent series as in Lemma 6.6. Then

(81)
∑

[p]∈X(Γ)

ord F̃p(z) = k(gΓ − 1),

where gΓ is the genus of the compact Riemann surface X(Γ).

Convention. When here and in the following the domain of a sum is specified as
“[p] ∈ X(Γ)”, then this is understood as follows: For each P = [p] ∈ X(Γ) take

exactly one representative p ∈ Ĥ; the sum then runs over all such p.

Before we prove Prop. 6.15, we prepare with a few facts.

Lemma 6.18. Let F and G be non-zero modular forms in Mk(Γ) with k even.
Then for P ∈ X(Γ),

(82) OrdP F −OrdP G = OrdP (F/G).

Proof. Apply Lemma 6.6 together with Lemma 6.4. �

Lemma 6.19. Let F and G be non-zero modular forms in Mk(Γ) with k even.
Then

(83)
∑

P∈X(Γ)

OrdP F =
∑

P∈X(Γ)

OrdP G.

Proof. In view of F/G ∈M(Γ), apply Lemma 11.3 together with Lemma 6.18 �

21Otherwise, consider 1/F .
22See, for instance, the remark in [4, Def. 3.2.1].
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As already mentioned, for the proof of Prop. 6.15 we utilize the Riemann-Hurwitz
formula for a non-constant meromorphic function ϕ : X(Γ) → Ĉ which has
exactly n poles in X(Γ), counting multiplicities; see, e.g., [8, Thm. 4.16]:23

(84)
∑

P∈X(Γ)

(multP ϕ− 1) = 2 gΓ + 2n− 2.

Here gΓ denotes the genus of X(Γ), and multP ϕ is the usual multiplicity of ϕ at
P ; we recall its exact definition in Section 11.3.

Now we are ready to prove the sum estimate (80).

Proof of Prop. 6.15. For k = 0 this is (123). To prove the statement for weight
k = 2, take some t ∈ M(Γ) and suppose t̂ has exactly n poles in X(Γ). For
P ∈ X(Γ), notice that

(85) multP t̂ =

{

−OrdP t, if P is a pole of t̂

OrdP t
′ + 1, otherwise

.

The second equality is a consequence of using Def. 6.9 on t′ ∈ M2(Γ) together
with (70). In addition, we need that at a pole P ∈ X(Γ) of t̂,

OrdP t
′ −OrdP t = −1.

Using these properties and defining,

(86) Poles(t) := {P ∈ X(Γ) : P is a pole of t̂},

we obtain by (85),

∑

P∈Poles(t)

(multP t− 1) =
∑

P∈Poles(t)

(−OrdP t− 1)

= −2
∑

P∈Poles(t)

OrdP t+
∑

P∈Poles(t)

OrdP t
′ = 2n+

∑

P∈Poles(t)

OrdP t
′,

and,
∑

P∈X(Γ)\Poles(t)

(multP t− 1) =
∑

P∈X(Γ)\Poles(t)

ordP t
′.

23Actually the special case we need, Y = Ĉ, was given by Riemann; e.g., [3].
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Combining these two sums we obtain, as a consequence of Lemma 11.3 and
Lemma 6.18,

0 =
∑

P∈X(Γ)

OrdP (F/t
′) =

∑

P∈X(Γ)

OrdP F −
∑

P∈X(Γ)

OrdP t
′

=
∑

P∈X(Γ)

OrdP F + 2n−
∑

P∈X(Γ)

(multP t− 1)

=
∑

P∈X(Γ)

OrdP F − 2gΓ + 2.

This proves (6.15) for F ∈M2(Γ); for the last equality we invoked the Riemann-
Hurwitz formula (84).

To prove (6.15) for F ∈Mk(Γ) where k ≥ 2 is even, take some g ∈M2(Γ). Then
f := F/gk/2 ∈M(Γ), and one has,

0
(123)
=

∑

P∈X(Γ)

OrdP f
(82)
=

∑

P∈X(Γ)

OrdP F −
k

2

∑

P∈X(Γ)

OrdP g

=
∑

P∈X(Γ)

OrdP F −
k

2
(2gΓ − 2)),

where the last line is by the k = 2 part already proven. This completes the proof
of Prop. 6.15. �

7. Bounds for p1

7.1. Rewriting p1. We need to rewrite p1 ∈M(Γ) in a form which is convenient
for the analysis of poles.

Let P = [p] ∈ X(Γ) be fixed. For t ∈M(Γ) let

(87) t(τ) = Tp(zp(τ)), where Tp(z) := t̃p(z)

is the Laurent series as defined in (66).

Derivatives of a Laurent series T (z) =
∑∞

n=M a(n)zn are defined as usual by

T (j)(z) :=
∞
∑

n=M

(n)j a(n)z
n−j, j = 0, 1, . . .

In particular, T (z) = T (0)(z), T ′(z) = T (1)(z), and T ′′(z) = T (2)(z). Hence,
relation (70) turns into,

(88) Dqt(τ) =
1

2πi
t′(τ) =

1

2πi
z′p(τ)T

(1)
p (zp(τ)).
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For D2
q t one has,

(89) D2
q t =

1

(2πi)2

(

z′′pT
(1)
p (zp) + (z′p)

2T (2)
p (zp)

)

,

where we omitted the argument τ .

Given the same fixed p ∈ Ĥ as above for t ∈M(Γ):

Case A: For F ∈Mk(Γ), k even, let

(90) F (τ) = z′p(τ)
k/2f0,p(zp(τ)), where f0,p(z) := F̃p(z)

is the Laurent series defined as in (68).

Case B: For F ∈Mk(Γ), k odd, let

(91) F (τ) = z′p(τ)
k/2f1,p(zp(τ)), where f1,p(z) := G̃p(z)

1/2

is the square root of the Laurent series G̃p(z) defined as in (72) such that

(92) G(τ) := F (τ)2 = z′p(τ)
k G̃p(zp(τ)) ∈M2k(Γ).

Combining both Cases A and B, one has24

(93)
DqF

F
=

1

2πi

(z′p f
(1)
δ,p (zp)

fδ,p(zp)
+
k

2
·
z′′p
z′p

)

,

where δ = 0 if k is even, and δ = 1 if k is odd.

Lemma 7.1. Given t ∈ M(Γ), F ∈ Mk(Γ), and P = [p] ∈ X(Γ), p ∈ Ĥ. Then
there exists a Laurent series,

(94) P1,p(z) := −1 +
Tp(z)

T
(1)
p (z)

(T
(2)
p (z)

T
(1)
p (z)

−
2

k

f
(1)
δ,p (z)

fδ,p(z)

)

,

where δ = 0 if k is even, and δ = 1 if k is odd, such that

(95) p1(τ) = P1,p(zp(τ)), τ ∈ V0,

V0 being a suitable open neighborhood of p.

Proof. By (31)25 and using,

DqG1 =
D2

q t

t
−

(Dqt)
2

t2
,

24We again omit the argument τ .
25With t instead of h, and with F instead of g.
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one has, applying (88), (88), and (102),

p1 =
( t

Dqt

)2(D2
q t

t
−

(Dqt)
2

t2

)

−
2

k

t

Dqt

DqF

F

= −1 +
t

Dqt

(D2
q t

Dqt
−

2

k

DqF

F

)

= −1 + (2πi)
Tp(zp)

z′pT
(1)
p (zp)

×

(

z′′pT
(1)
p (zp) + (z′p)

2T
(2)
p (zp)

(2πi)z′pT
(1)
p (zp)

−
2

k

1

2πi

(z′p f
(1)
δ,p (zp)

fδ,p(zp)
+
k

2
·
z′′p
z′p

)

)

= −1 + (2πi)
Tp(zp)

z′pT
(1)
p (zp)

( z′pT
(2)
p (zp)

(2πi)T
(1)
p (zp)

−
2

k

z′p f
(1)
δ,p (zp)

(2πi)fδ,p(zp)

)

.

�

7.2. Bounds for the poles of p1. To estimate the number of poles of p1 ∈
M(Γ), Lemma 7.1 implies,

NofPoles(p1) = −
∑

P∈Poles(p1)

OrdP p1 = −
∑

[p]∈Poles(p1)

ordP1,p(z)

≤ −
∑

[p]∈Poles(p1)

ord
Tp(z)

T
(1)
p (z)

−
∑

[p]∈Poles(p1)

ord
T

(2)
p (z)

T
(1)
p (z)

(96)

−
∑

[p]∈Poles(p1)

ord
f
(1)
δ,p (z)

fδ,p(z)
,

with δ = 0 if k is even, and δ = 1 if k is odd.

To proceed with our pole estimation, we treat each of the sums in (96) separately.
To this end, it will be convenient to define

π(x) :=

{

x, if x < 0

0, if x ≥ 0
, and ζ(x) :=

{

x, if x > 0

0, if x ≤ 0
.

In addition, the following two facts will be useful.

Lemma 7.2.
∑

[p]∈X(Γ)

ordT (1)
p (z) =

∑

[p]∈X(Γ)

π(ordT (1)
p (z)) +

∑

[p]∈X(Γ)

ζ(ordT (1)
p (z)) = 2(gΓ − 1).

Proof. In view of (88), the statement is proved by applying Corollary 6.17 to
t′ ∈M2(Γ). �

The second lemma we want to list explicitly is trivial, but useful.
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Lemma 7.3. Let f(z) =
∑∞

n=M c(n)zn be a Laurent series, then:

ord f(z) < 0 ⇒ ord f (j)(z) = ord f(z)− j for j ∈ Z≥0.

We begin with bounds for the first two sums on the right side of (96).

Lemma 7.4. For j ∈ Z≥0, j 6= 1, i ∈ {1, 2},

−
∑

[p]∈Poles(pi)

ord
T

(j)
p (z)

T
(1)
p (z)

≤ 2gΓ − 2− 2
∑

[p]∈X(Γ)

π(ordTp(z)) + (j + 1)
∑

[p]∈X(Γ)
ordTp(z)<0

1.

Proof.

−
∑

[p]∈Poles(pi)

ord
T

(j)
p (z)

T
(1)
p (z)

≤ −
∑

[p]∈X(Γ)

ordT
(j)
p (z)/T

(1)
p (z)<0

ord
T

(j)
p (z)

T
(1)
p (z)

= −
∑

[p]∈X(Γ)

π
(

ord
T

(j)
p (z)

T
(1)
p (z)

)

= −
∑

[p]∈X(Γ)

π(ordT (j)
p (z)) +

∑

[p]∈X(Γ)

ζ(ordT (1)
p (z))

= −
∑

[p]∈X(Γ)

π(ordT (j)
p (z)) + 2gΓ − 2−

∑

[p]∈X(Γ)

π(ordT (1)
p (z)),

where the last equality is by Lemma 7.2. Now the statement follows by Lemma 7.3
in the version,

(97) −
∑

[p]∈X(Γ)

π(ordT (j)
p (z)) = −

∑

[p]∈X(Γ)

π(ordTp(z)) + j
∑

[p]∈X(Γ)
ordTp(z)<0

1.

�

The following simplification of the upper bound is straightforward.

Corollary 7.5. For j ∈ Z≥0, j 6= 1, i ∈ {1, 2},

−
∑

[p]∈Poles(pi)

ord
T

(j)
p (z)

T
(1)
p (z)

≤ 2gΓ − 2 + (j + 3) NofPoles(t).

Proof. Obviously,
∑

[p]∈X(Γ)
ordTp(z)<0

1 ≤ −
∑

[p]∈X(Γ)

π(ordTp(z))

and, by definition (87),

−
∑

[p]∈X(Γ)

π(ordTp(z)) = NofPoles(t).

This implies the corollary. �
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Next we treat the even case of the third sum in (96).

Lemma 7.6. For j ∈ Z≥1, i ∈ {1, 2},

−
∑

[p]∈Poles(pi)

ord
f
(j)
0,p (z)

f0,p(z)
≤ k(gΓ − 1)− 2

∑

[p]∈X(Γ)

π(ord f0,p(z)) + j
∑

[p]∈X(Γ)
ord f0,p(z)<0

1.

Proof. The proof works analogously to that of Lemma 7.4; the only difference is
that one uses Lemma 7.2 for general even k in the version,
∑

[p]∈X(Γ)

ord f0,p(z) =
∑

[p]∈X(Γ)

π(ord f0,p(z)) +
∑

[p]∈X(Γ)

ζ(ord f0,p(z)) = k(gΓ − 1).

�

Corollary 7.7. For j ∈ Z≥1, i ∈ {1, 2},

−
∑

[p]∈Poles(pi)

ord
f
(j)
0,p (z)

f0,p(z)
≤ k(gΓ − 1) + (j + 2)NofPoles(F ).

Proof. Obviously,
∑

[p]∈X(Γ)
ord f0,p(z)<0

1 ≤ −
∑

[p]∈X(Γ)

π(ord f0,p(z)).

By Def. (6.12),

−
∑

[p]∈X(Γ)

π(ord f0,p(z)) = NofPoles(F ).

This implies the corollary. �

Case (1a), k even (i.e., δ = 0): Applying Corollary 7.5 and 7.7 to (96) gives,

NofPoles(p1) ≤ 2gΓ − 2 + 3NofPoles(t) + 2gΓ − 2 + 5NofPoles(t)

+ k(gΓ − 1) + 3NofPoles(F )

= (k + 4)(gΓ − 1) + 8NofPoles(t) + 3NofPoles(F ).(98)

For Case (1b) we need one more observation. Recalling the definition (91), one
has,

(99)
f
(1)
1,p (z)

f1,p(z)
=

1

2

G̃
(1)
p (z)

G̃p(z)
,

with f
(1)
1,p (z) = G̃p(z)

1/2, where G̃p(z) is the Laurent series such that for G :=
F 2 ∈M2k(Γ):

G(τ) = z′p(τ)
k G̃p(zp(τ)).
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Consequently, Cor. 7.7 with j = 1 carries over to this situation with 2k instead
of k and G = F 2 instead of F :

Corollary 7.8. For j ∈ Z≥1, i ∈ {1, 2},

−
∑

[p]∈Poles(pi)

ord
f
(1)
1,p (z)

f1,p(z)
≤ 2k(gΓ − 1) + 3NofPoles(F 2).

Now we establish the bound estimate for odd k.

Case (1b), k odd (i.e., δ = 1): Applying Corollary 7.5 and 7.8 to (96) gives,

NofPoles(p1) ≤ 2gΓ − 2 + 3NofPoles(t) + 2gΓ − 2 + 5NofPoles(t)

+ 2k(gΓ − 1) + 3NofPoles(F 2)

= (2k + 4)(gΓ − 1) + 8NofPoles(t) + 3NofPoles(F 2).(100)

8. Bounds for p2

8.1. Rewriting p2. As with p1, we first need to rewrite p2 ∈ M(Γ) in a form
which is convenient for the analysis of poles.

Let P = [p] ∈ X(Γ) be fixed. We assume the same setting as in Section 7: i.e.,
for t ∈M(Γ) the Laurent series Tp(z) is defined as in (87) such that

(101) t(τ) = Tp(zp(τ)), where Tp(z) := t̃p(z);

for F ∈Mk(Γ), the Laurent series fδ,p(zp(τ)), δ ∈ {0, 1},

F (τ) = z′p(τ)
k/2fδ,p(zp(τ)), where fδ,p(z) := F̃p(z)

are defined as in (90) if k is even, and as in (91) if k is odd. In the even case, we
take δ = 0, in the odd case δ = 1.

(102)
DqF

F
=

1

2πi

(z′p f
(1)
δ,p (zp)

fδ,p(zp)
+
k

2
·
z′′p
z′p

)

,

For p1 we used the formula (102) for DqF/F . For p2 we need,

D2
qF

F
=

1

(2πi)2

((z′p)
2f

(2)
δ,p (zp)

fδ,p(zp)
+ (k + 1) ·

z′′pf
(1)
δ,p (zp)

fδ,p(zp)
+
k

2
·
z
(3)
p

z′p
+
k(k − 2)

4
·
(z′′p )

2

(z′p)
2

)

,

which, as (102), can be derived by straightforward computation.



36 PETER PAULE AND SILVIU RADU

This relation together with (102) gives,

p2 =
1

G2
1

(

DqG2 −
1

k
G2

2

)

=
( t

Dqt

)2(

Dq
DqF

F
−

1

k

(DqF

F

)2)

=
( t

Dqt

)2(D2
qF

F
− (1 +

1

k
)
(DqF

F

)2)

=
Tp(zp)

2

T
(1)
p (zp)2

(103)

×
(f

(2)
δ,p (zp)

fδ,p(zp)
− (1 +

1

k
)
f
(1)
δ,p (zp)

2

fδ,p(zp)2
+

kz
(3)
p

2(z′p)
3
−

3k(z′′p )
2

4(z′p)
4

)

We need to consider in more detail the expression,

ℓ(z(1)p (τ), z
(2)
P (τ), z(3)p (τ)) :=

z
(3)
p (τ)

z′p(τ)
3
−

3kz′′p (τ)
2

2z′p(τ)
4
.

If [p] ∈ X(Γ) is an ordinary point, zp(τ) = τ − p and

ℓ(z(1)p (τ), z
(2)
P (τ), z(3)p ) = 0 for all τ ∈ V0.

If [p] ∈ X(Γ) is an elliptic point of order 2, zp(τ) = ( τ−p
τ−p

)2, and one has,

ℓ(z(1)p (τ), z
(2)
P (τ), z(3)p ) = −

3

8

1

zp(τ)2
.

If [p] ∈ X(Γ) is an elliptic point of order 3, zp(τ) = ( τ−p
τ−p

)3, and one has,

ℓ(z(1)p (τ), z
(2)
P (τ), z(3)p ) = −

4

9

1

zp(τ)2
.

If [p] ∈ X(Γ) is a cusp; then p = a/c = γ∞, γ = ( a b
c d ) ∈ SL2(Z), and zp(τ) :=

e2πiγ
−1τ/w with w = wγ(Γ) as in (22). In this case,

ℓ(z(1)p (τ), z
(2)
P (τ), z(3)p ) = −

1

2

1

zp(τ)2
.

This leads us to summarize in a definition.

Definition 8.1. Define c : X(Γ) → C for P = [p] ∈ X(Γ) as follows:

c(P ) := c(p) :=



















0, if P is an ordinary point

−3/8, if P is elliptic of order 2

−4/9, if P is elliptic of order 3

−1/2, if P is a cusp, P = [a/c].

.

Summarizing, we obtained a Laurent series representation of p2.
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Lemma 8.2. Given t ∈ M(Γ), F ∈ Mk(Γ), and P = [p] ∈ X(Γ), p ∈ Ĥ. Then
there exists a Laurent series,

(104) P2,p(z) :=
Tp(z)

2

T
(1)
p (z)2

(f
(2)
δ,p (z)

fδ,p(z)
− (1 +

1

k
) ·
f
(1)
δ,p (z)

2

fδ,p(z)2
+
k

2
·
c(p)

z2

)

where c is as in Def. 8.1, and where δ = 0 if k is even, and δ = 1 if k is odd,
such that

(105) p2(τ) = P2,p(zp(τ)), τ ∈ V0,

V0 being a suitable open neighborhood of p.

8.2. Bounds for the poles of p2. To estimate the number of poles of p2 ∈
M(Γ), Lemma 8.2 implies,

NofPoles(p2) = −
∑

P∈Poles(p2)

OrdP p2 = −
∑

[p]∈Poles(p2)

ordP2,p(z)

≤ −
∑

[p]∈Poles(p2)

ord
Tp(z)

2

T
(1)
p (z)2

−
∑

[p]∈Poles(p2)

ord
f
(2)
δ,p (z)

fδ,p(z)
(106)

−
∑

[p]∈Poles(p2)

ord
f
(1)
δ,p (z)

2

fδ,p(z)2
+

∑

[p]∈Poles(p2)
c(P ) 6=0

2,

with δ = 0 if k is even, and δ = 1 if k is odd.

As a consequence, similarly to the Cases (1a) and (1b), we obtain bounds for p2:

Case (2a), k even (i.e., δ = 0): Applying Corollary 7.5 and 7.7 to (106) gives,

NofPoles(p2) ≤ 4gΓ − 4 + 6NofPoles(t) + k(gΓ − 1) + 4NofPoles(F )

+ 2k(gΓ − 1) + 6NofPoles(F )

+ 2 NofCusps(Γ) + 2 NofElliptic(Γ).

= (3k + 4)(gΓ − 1) + 6NofPoles(t) + 10NofPoles(F )(107)

+ 2 NofCusps(Γ) + 2 NofElliptic(Γ).

For Case (2b) we need one more observation. As with (99), we recall the defini-
tion (91) and obtain,

(108)
f
(2)
1,p (z)

f1,p(z)
= −

1

4

G̃
(1)
p (z)2

G̃p(z)2
+

1

2

G̃
(2)
p (z)

G̃p(z)
,

with f
(1)
1,p (z) = G̃p(z)

1/2, where G̃p(z) is the Laurent series such that for G :=
F 2 ∈M2k(Γ):

G(τ) = z′p(τ)
k G̃p(zp(τ)).
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Owing to Cor. 7.7, relation (108) implies,

−
∑

[p]∈Poles(p2)

ord
f
(2)
1,p (z)

f1,p(z)
≤ 4k(g − 1) + 2(1 + 2)NofPoles(F 2)

+ 2k(g − 1) + (2 + 2)NofPoles(F 2)

= 6k(g − 1) + 10NofPoles(F 2).(109)

Now we are ready to establish the bound estimate for p2 for odd k.

Case (2b), k odd (i.e., δ = 1): Applying (109), Corollary 7.5 and 7.8 to (106)
gives,

NofPoles(p2) ≤ 4gΓ − 4 + 6NofPoles(t) + 6k(gΓ − 1) + 10NofPoles(F 2)

+ 4k(gΓ − 1) + 6NofPoles(F 2).

+ 2 NofCusps(Γ) + 2 NofElliptic(Γ).

= (10k + 4)(gΓ − 1) + 6NofPoles(t) + 16NofPoles(F 2)(110)

+ 2 NofCusps(Γ) + 2 NofElliptic(Γ).

We want to point out that, when setting up such bound estimates, a proper or-
ganization of the terms involved can be important. For example, we can improve
upon (110) as follows.

Instead of treating φp(z) :=
f
(2)
1,p (z)

f1,p(z)
and ψp(z) :=

f
(1)
1,p (z)

2

f1,p(z)2
separately to obtain,

−
∑

[p]∈Poles(p2)

ordφp(z)−
∑

[p]∈Poles(p2)

ordψp(z) ≤ 10k(gΓ − 1) + 32NofPoles(F ),

one can combine them,

φp(z)−
(

1 +
1

k

)

ψp(z)
(99),(108)

= −
2k + 1

4k

G̃
(1)
p (z)2

G̃p(z)2
+

1

2

G̃
(2)
p (z)

G̃p(z)
,

to obtain, using Cor. 7.7 in its version for F 2 instead of F ,

−
∑

[p]∈Poles(p2)

ord
(

φp(z)− (1 +
1

k
)ψp(z)

)

≤ 4k(gΓ − 1) + 2(1 + 2)NofPoles(F 2)

+ 2k(gΓ − 1) + (2 + 2)NofPoles(F 2)

= 6k(gΓ − 1) + 10NofPoles(F 2).

This simple reorganization led us to an improvement of the bound estimate (110).

Case (2b), k odd, improved version:

NofPoles(p2) ≤ (6k + 4)(gΓ − 1) + 6NofPoles(t) + 10NofPoles(F 2)(111)

+ 2 NofCusps(Γ) + 2 NofElliptic(Γ).
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9. Bounds for the derivatives of p1 and p2

To complete the proof of Theorem 5.2 we need to bound the number of poles of

the derivatives djpi
dtj

∈ M(Γ), i ∈ {1, 2} and j ∈ Z≥1. To this end, given H and
t in M(Γ) where H = r(t) is a function in t, we will show that such bounds for
djH
dtj

can be expressed in terms of pole bounds for H and t.

We begin with the case j = 1, noting that

(112)
dH

dt
= r′(t) =

H ′

t′
∈M(Γ) owing to H ′(τ) = r′(t(τ))t′(τ).

To state our first lemma, we need define a number of “different” poles of a modular
form F with even weight. Via the relation (69), this number is related to the
number of pairwise different poles of F contained in a fundamental domain.

Definition 9.1. Let F ∈Mk(Γ) with k even. Then

(113) NofDiffPoles(F ) :=
∑

P∈X(Γ)
OrdP F<0

1 =
∑

[p]∈X(Γ)

ord F̃p(z)<0

1,

where F̃p(z) is the Laurent series defined in Lemma 6.6.

Lemma 9.2.

NofPoles
(dH

dt

)

≤ 2gΓ − 2 + NofPoles(H) + NofPoles(t)

+ NofDiffPoles(H) + NofDiffPoles(t).

Proof.

−
∑

P∈Poles( dH
dt

)

OrdP

(dH

dt

)

≤ −
∑

P∈X(Γ)

π(OrdP

(dH

dt

)

)

(112)
= −

∑

P∈X(Γ)

π(OrdP H
′) +

∑

P∈X(Γ)

ζ(OrdP t
′)

(80)
= −

∑

P∈X(Γ)

π(OrdP H
′) + 2(gΓ − 1)−

∑

P∈X(Γ)

π(OrdP t
′).

Observing that, by Lemma 7.3,

−
∑

P∈X(Γ)

π(OrdP H
′) = −

∑

P∈X(Γ)

π(OrdP H) +
∑

P∈X(Γ)
OrdP H<0

1,

together with the analogous relation for t instead of H, completes the proof of
the lemma. �
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Lemma 9.3. For j ∈ Z≥1,

NofPoles
(djH

dtj

)

≤ 2j(gΓ − 1) + NofPoles(H) + j NofPoles(t)

+

j−1
∑

m=0

NofDiffPoles
(dmH

dtm

)

+ j NofDiffPoles(t).

Proof. The case j = 1 is Lemma 9.2. Assuming the statement holds for j− 1, we
show it holds for j. By Lemma 9.2,

NofPoles
(djH

dtj

)

≤ 2gΓ − 2 + NofPoles
(dj−1H

dtj−1

)

+NofPoles(t)

+ NofDiffPoles
(dj−1H

dtj−1

)

+NofDiffPoles(t)

≤ 2gΓ − 2 +
(

2(j − 1)(gΓ − 1) + NofPoles(H)

+ (j − 1)NofPoles(t) +

j−2
∑

m=0

NofDiffPoles
(dmH

dtm

)

+ (j − 1)NofDiffPoles(t)
)

+NofPoles(t)

+ NofDiffPoles
(dj−1H

dtj−1

)

+NofDiffPoles(t);

for the equality we applied the induction hypothesis. �

For the next lemma we need the counterpart to Def. (9.1).

Definition 9.4. Let F ∈Mk(Γ) with k even. Then

(114) NofDiffZeros(F ) :=
∑

P∈X(Γ)
OrdP F>0

1 =
∑

[p]∈X(Γ)

ordp F̃p(z)>0

1,

where F̃p(z) is the Laurent series defined in Lemma 6.6.

Lemma 9.5. For j ∈ Z≥1,

(115) NofDiffPoles
(djH

dtj

)

≤ NofDiffPoles(H) + NofDiffZeros(t′).

Proof. Given P = [p] ∈ X(Γ), let H(τ) = H̃p(zp(τ)) and t(τ) = t̃p(zp(τ)) with
Laurent series on the right hand sides as defined in Lemma 6.4. Then H ′(τ) =
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z′p(τ)(H̃p)
′(zp(τ)), and owing to dH

dt
= H ′/t′,

NofDiffPoles
(dH

dt

)

=
∑

P∈X(Γ)

OrdP H′/t′<0

1 ≤
∑

[p]∈X(Γ)

ord(H̃p)′(z)<0

1 +
∑

[p]∈X(Γ)

ord(t̃p)′(z)>0

1

=
∑

[p]∈X(Γ)

ord(H̃p)(z)<0

1 + NofDiffZeros(t′) = NofDiffPoles(H) + NofDiffZeros(t′).

The general case j ≥ 1 follows by mathematical induction. We omit its (technical)
details; instead we sketch the essential structure underlying the induction step.
Because of djH

dtj
∈ M(Γ), for each fixed j ∈ Z≥1 and [p] ∈ X(Γ) there is a

representation djH
dtj

(t(τ)) = Lp(zp(τ)), where Lp(z) is a Laurent series. To obtain
further insight into this representation, we use Faá Di Bruno’s Formula,

H(j)(τ) =
dj

dτ j
H(t(τ)) =

j
∑

i=1

diH(t(τ))

dti
·Bi,k(t

′(τ), . . . , t(i−k+1)(τ)),

with Bi,k(x1, . . . , xi−k+1) being the (partial) Bell polynomials. With this formula
one finds that

Lp(z) =

j
∑

i=1

ci,p(z) · (H̃p)
(i)(z) with ci,p(z) =

Ci,p

(t̃)′p(z)
2j−1

,

where the Ci,p are polynomials in (t̃p)
′(z), (t̃p)

′′(z), . . . , such that for each mono-
mial, constant · (t̃p)

′(z)α1(t̃p)
′′(z)α2 . . . , occurring as a summand in Ci,p, one has

1 · α1 + 2 · α2 + · · · ≤ 2j − 2. This property guarantees that no further poles are
introduced. We give the Lp for j = 1, 2, 3 explicitly:

Lp(z) =
1

(t̃p)′(z)
· (H̃p)

′(z), if j = 1;

Lp(z) = −
(t̃p)

′′(z)

(t̃p)′(z)3
· (H̃p)

′(z) +
(t̃p)

′(z)

(t̃p)′(z)3
· (H̃p)

′′(z), if j = 2;

Lp(z) =
3(t̃p)

′′(z)2 + (t̃p)
′(z)(t̃p)

(3)(z)

(t̃p)′(z)5
· (H̃p)

′(z)

−
3(t̃p)

′(z)(t̃p)
′′(z)

(t̃p)′(z)5
· (H̃p)

′′(z) +
(t̃p)

′(z)2

(t̃p)′(z)5
· (H̃p)

(3)(z), if j = 3.

Further details of the induction proof are left to the reader. �

Lemma 9.5 implies for j ∈ Z≥1,

j−1
∑

m=1

NofDiffPoles
(dmH

dtm

) (115)

≤ (j − 1)(NofDiffPoles(H) + NofDiffZeros(t′)).
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We use this to simplify the right side of Lemma 9.3,

NofPoles
(djH

dtj

)

≤ 2j(gΓ − 1) + NofPoles(H) + j NofPoles(t)

+ j NofDiffPoles(H) + (j − 1)NofDiffZeros(t′)(116)

+ j NofDiffPoles(t).

For further simplification, observe that

NofDiffZeros(t′) ≤
∑

P∈X(Γ)

ζ(OrdP t
′)

(80)
= 2(gΓ − 1)−

∑

P∈X(Γ)

π(OrdP t
′)

= 2(gΓ − 1) + NofPoles(t′) = 2(gΓ − 1) + NofDiffPoles(t) + NofPoles(t)

where the last equality is by Lemma 7.3. Using this on (116) one obtains,

NofPoles
(djH

dtj

)

≤ 2(2j − 1)(gΓ − 1) + NofPoles(H) + (2j − 1)NofPoles(t)

+ j NofDiffPoles(H) + (2j − 1)NofDiffPoles(t).(117)

Finally, as another step of simplification, we apply

NofDiffPoles(H) ≤ NofPoles(H) and NofDiffPoles(t) ≤ NofPoles(t),

which reduces (117) to

Lemma 9.6. For H, t ∈M(Γ) and j ∈ Z≥1,

NofPoles
(djH

dtj

)

≤ (2j − 1)(2gΓ − 2)(118)

+ (j + 1)NofPoles(H) + (4j − 2)NofPoles(t).

10. The proof of Theorem 5.2 and Theorem 5.3 summarized

First we collect all the ingredients to prove Theorem 5.2 whose statements are
for the case of even weight k.

The derivations resulting in (98), resp. (107), prove the bounds (51) for p1, resp.
(52) for p2, of Theorem 5.2. Applying Lemma 9.6 for even k to H := p1 gives,

NofPoles
(djp1
dtj

)

≤ (2j − 1)(2gΓ − 2)

+ (j + 1)NofPoles(p1) + (4j − 2)NofPoles(t)

(98)

≤ (2j − 1)(2gΓ − 2) + (4j − 2)NofPoles(t)

+ (j + 1)
(

(k + 4)(gΓ − 1) + 8NofPoles(t) + 3NofPoles(F )
)

= (jk + 8j + k + 2)(gΓ − 1)

+ 6(2j + 1)NofPoles(t) + 3(j + 1)NofPoles(F );



Holonomic Relations for Modular Forms 43

which is (53) of Theorem 5.2 For even k, applying Lemma 9.6 to H := p2,
using (107), gives (54) of Theorem 5.2.

Finally, we collect all the ingredients to prove Theorem 5.3 whose statements are
for the case of odd weight k.

The derivations resulting in (100), resp. (111), prove the bounds (55) for p1, resp.
(56) for p2, of Theorem 5.3. Applying Lemma 9.6 for odd k to H := p1 gives,

NofPoles
(djp1
dtj

)

≤ (2j − 1)(2gΓ − 2)

+ (j + 1)NofPoles(p1) + (4j − 2)NofPoles(t)

(100)

≤ (2j − 1)(2gΓ − 2) + (4j − 2)NofPoles(t)

+ (j + 1)
(

8NofPoles(t) + 3NofPoles(F 2) + (2k + 4)(gΓ − 1)
)

= 2(1 + 4j + k + jk)(gΓ − 1)

+ 6(2j + 1)NofPoles(t) + 3(j + 1)NofPoles(F 2);

which is (57) of Theorem 5.2 For odd k, applying Lemma 9.6 to H := p2, us-
ing (111), gives (58) of Theorem 5.3.

This completes the proofs of Theorem 5.2 and Theorem 5.3.

11. Appendix

11.1. Linear independence of Yang functions.

Proposition 11.1. Let Γ be a congruence subgroup. Let g ∈ Mk(Γ) with k ≥ 1,
and h ∈M(Γ). Then the Yang functions,

{

1,
G2

G1

,
G2

2

G2
1

, . . . ,
Gm

2

Gm
1

}, m ≥ 0,

as functions on H are linearly independent over the field M(Γ) of modular func-
tions for Γ.

Before proving Prop. 11.1 we prove a lemma.

Lemma 11.2. Let a0(τ), . . . , am(τ) be functions on H with period r; i.e.,

aj(τ + r) = a(τ), τ ∈ H, j = 0, . . . ,m.

If for fixed integers c, d ∈ Z, c 6= 0,

(119) a0(τ) +
a1(τ)

cτ + d
+

a2(τ)

(cτ + d)2
+ · · ·+

a1(τ)

(cτ + d)m
= 0, τ ∈ H,

then
a0(τ) = a1(τ) = a2(τ) = · · · = am(τ), τ ∈ H.
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Proof. Consider the Vandermonde matrix

A =















1 1
cτ+d

1
(cτ+d)2

. . . 1
(cτ+d)m

1 1
c(τ+r)+d

1
(c(τ+r)+d)2

. . . 1
(c(τ+r)+d)m

1 1
c(τ+2r)+d

1
(c(τ+2r)+d)2

. . . 1
(c(τ+2r)+d)m

...
...

...
. . .

...
1 1

c(τ+mr)+d
1

(c(τ+mr)+d)2
. . . 1

(c(τ+mr)+d)m















,

which is invertible since it has a non-zero determinant:

det(A) =
∏

1≤i<j≤m+1

( 1

c(τ + jr) + d
−

1

c(τ + ir) + d

)

6= 0.

Hence a relation like (119) with aj(τ) not all zero cannot exist. �

Proof of Prop. 11.1. Let a0(τ), . . . , am(τ) be modular functions in M(Γ). By
induction on m ≥ 0, we will prove the statement in the following form: Suppose
that

(120) a0(τ) + a1(τ)
G2(τ)

G1(τ)
+ · · ·+ am(τ)

G2(τ)
m

G1(τ)m
= 0, τ ∈ H,

then aj = 0 for 0 ≤ j ≤ m.

The statement is true for m = 0. Assuming its truth up to m = N − 1, we prove
it is true also for m = N .

In our argument we use as a crucial fact that there exists an common period
r ∈ Z≥1 such that aj(τ + r) = aj(τ) and Gj(τ + r) = Gj(τ). For γ = ( a b

c d ) ∈ Γ,

G2(γτ)

G1(γτ)
=
G2(τ)

G1(τ)
+
ck(cτ + d)−1

G1(τ)

with c′ := c/(2πi). Now suppose a relation of type (120) holds for m = N ; i.e.,

(121) a0(τ) + a1(τ)
G2(τ)

G1(τ)
+ · · ·+ aN(τ)

G2(τ)
N

G1(τ)N
= 0, τ ∈ H.

Applying γ = ( a b
c d ) ∈ Γ to this equation yields,

a0(τ)+a1(τ)
(G2(τ)

G1(τ)
+
c′k(cτ + d)−1

G1(τ)

)

+· · ·+aN(τ)
(G2(τ)

G1(τ)
+
c′k(cτ + d)−1

G1(τ)

)N

= 0.

This can be rewritten into the form,

b0(τ) +
b1(τ)

cτ + d
+ · · ·+

bN−1(τ)

(cτ + d)N−1
+

(c′k)NaN(τ)

G1(τ)(cτ + d)N
= 0, τ ∈ H.

Here we use the common periodicity r, aj(τ + r) = aj(τ) and Gj(τ + r) =
Gj(τ), which produces periodic coefficients; i.e., bj(τ + r) = bj(τ). Hence, by
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Lemma 11.2, the b0, . . . , bN−1 are all 0, which implies that also aN = 0. This
reduces (121) to

a0(τ) + a1(τ)
G2(τ)

G1(τ)
+ · · ·+ aN−1(τ)

G2(τ)
N−1

G1(τ)N−1
= 0, τ ∈ H,

which by the induction hypothesis implies a0 = · · · = aN−1 = 0. This completes
the proof of Prop. 11.1. �

11.2. Computational details for the ModFormDE example in Sect. 4.4.

This section presents computational parts of our exemplification of algorithm
ModFormDE in Section 4.4.

11.2.1. Cusps of the congruence group Γ(2, 4, 2). With the Magma system, the
cusps [0], [1], and [∞] of Γ = Γ(2, 4, 2), together with each width, can be com-
puted as follows:

> G:=CongruenceSubgroup([2,4,2]);

> Cusps(G);

[

oo,

0,

1

]

> Widths(G);

[ 2, 2, 2 ]

11.2.2. Expansion of g2 at the cusp [1] of X(Γ(2, 4, 2). By Lemma 1.13 in [11]

and because of (cτ +d)−1/2η
(

aτ+b
cτ+d

)

= ǫ(a, b, c, d)η(τ), where ǫ(a, b, c, d) is a 24-th

root of unity, we have for all A,B,C,D ∈ Z such that AD − BC 6= 0:

( gcd(A,C)

AD −BC
(Cτ +D)

)−1/2

=ǫ(A/ gcd(A,C),−y, C/ gcd(A,C), x)η
( gcd(A,C)τ +Bx+Dy

(AD −BC) gcd(A,C)−1

)

.

Here x, y are any integers such that Ax+Cy = gcd(A,C). This formula together
with η(τ) = q1/24

∏∞
n=1(1− qn) implies that

(122) (Cτ +D)−1/2η
(Aτ + B

Cτ +D

)

= q
gcd(A,C)2

24(AD−BC) (u+O(q
gcd(A,C)2

AD−BC )).
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Now since

τ−2g
(τ − 1

τ

)2

= 24

(

τ−1/2η
(

τ−1
τ

))20

(

(2τ)−1/2η
(

τ−1
2τ

))8(

τ−1/2η
(

2τ−2
τ

))8

we have by (122):

τ−2g
(τ − 1

τ

)2

=
(q1/24(u1 +O(q)))20

(q1/(24·2)(u2 +O(q1/2)))8(q1/(24·2)(u3 +O(q1/2)))8

= q20/24−8/48−8/48(u+O(q1/2)) = q1/2(u+O(q1/2)),

where u and the ui are non-zero complex numbers.

11.3. Meromorphic Functions on Riemann Surfaces - Basic Notions.

To make this article as much self-contained as possible, in this second appendix
section we recall most of the facts we need about meromorphic functions on
Riemann surfaces. For the terminology we basically follow [6]; other classic texts
are [5] and [8].

Lemma 11.3 states a fundamental fact why implies as an immediate but important
corollary that any analytic function on a compact Riemann surface is constant.
For its proof see, for instance, [8, Prop. 4.12]:

Lemma 11.3. Let f be a non-constant meromorphic function on a compact Rie-
mann surface X. Then

(123)
∑

x∈X

Ordx f = 0.

.

Here the order of f at x0 ∈ X, Ordx0 f , is defined as follows.

Definition 11.4. Suppose

f(x) =
∑

n=m

cn(φ(x)− φ(x0))
n, cm 6= 0,

is the local Laurent expansion of f at x0 ∈ X using the local coordinate chart
φ : U0 → C which homeomorphically maps a neighborhood U0 of x0 to an open
set V0 ⊆ C. Then,

Ordx0 f := m.

In our context, X = X(Γ) and f = t̂ : X(Γ) → Ĉ where t̂ is induced by the
modular function t ∈ M(Γ); moreover, φ = zp as described in Section 6.1 serve
as the local charts at x0 = P = [p] ∈ X(Γ).
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Let M(X) denote the field of meromorphic functions f : X → Ĉ on a Riemann
surface X.26 Let f ∈ M(X) be non-constant and x ∈ X: then for every neigh-
borhood U of x there exist neighborhoods Ux ⊆ U of x and V of f(x) such that
the set f−1(v) ∩ Ux contains exactly k elements for every v ∈ V \ {f(x)}. This
number k is called the multiplicity of f at x; notation: k = multx f .

27 If X is
compact, f ∈ M(X) is surjective and each v ∈ Ĉ has the same number of preim-
ages, say n, counting multiplicities; i.e., n =

∑

x∈f−1(v)multx f ; see, e.g., [6, Thm.

4.24]. This number n is called the degree of f ; notation: n = Degf . One of the
consequences is that non-constant functions on compact Riemann surfaces have
as many (finitely many) zeros as poles counting multiplicities; this is Lemma 11.3.

12. Conclusion

In this paper we focused on the mathematics underlying our algorithm ModFor-
mDE. With regard to possible applications, we feel there is quite some potential
waiting for further exploration. There will be also the need to supplement such
investigations by algorithmic developments, in particular, by supporting software.
For instance, in our illustrating example in Section 4.4 we have seen that we still
need software to determine NofPoles(g2) automatically.
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