INFINITE PRODUCT FORMULAE FOR GENERATING FUNCTIONS
FOR SEQUENCES OF SQUARES

CHRISTIAN KRATTENTHALER', MIRCEA MERCA, AND CRISTIAN-SILVIU RADU'

ABSTRACT. We state and prove product formulae for several generating functions for
sequences (an)n>0 that are defined by the property that Pa, + b2 is a square, where
P and b are given integers. In particular, we prove corresponding conjectures of the
second author. We show that, by means of the Jacobi triple product identity, all these
generating functions can be reduced to a linear combination of theta function products.
The proof of our formulae then consists in simplifying these linear combinations of
theta products into single products. We do this in two ways: (1) by the use of
modular function theory, and (2) by applying the Weierstral addition formula for
theta products.

1. INTRODUCTION

In [3, Ids. 5.1-5.6, Ids. 6.1-6.14], the second author listed several empirically found
closed form product formulae for (signed) generating functions for certain sequences
of squares. A typical example (cf. [3, Id. 6.1] and Theorem 7 below) is the following
statement:

Let (an)n>0 = (0,4,7,10,21,26,33,59,61,95,108, ...) be the sequence of non-negative
integers m such that 240m + 1 is a square. Then

i(_l)l_(n+2)/4jqan _ (4,47, 4% 0% (4%, 4" ") o0 (1.1)
(4,0%¢°)oc ' '
n=0

Here, and in the following, ¢ is a complex number with |¢g| < 1, and the symbol
(a; q)s denotes the infinite product

oo

((I; Q)oo = H(l - aqi)a
i=0
Moreover, we use the short notation
(a1,02, .. amiq) == [ [(a;; @)oe-
j=1
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I Alternatively, all definitions and identities may be understood in the sense of formal power series
in q.
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This paper started by the observation that, by the use of Jacobi’s triple product
identity, the proofs of all these conjectured formulae can be reduced to the verification
of certain identities between (specialised) Jacobi theta functions. Now, it is a folklore
fact that, since these theta functions are modular functions (for certain subgroups of
SLy(7Z)), such identities are routinely verifiable. This is what we did, first. Subsequently,
however, we wanted to have a conceptual understanding of the established formulae.
Moreover, we were interested in whether there is more than just these, first empirically
found, formulae from [3]. Indeed, further computer experiments led us to discover
many more such formulae, but still of sporadic nature. Nevertheless, altogether, they
helped us to come up with two parametric theorems that subsume several of the earlier
empirically found formulae under one roof. Obviously, parametric theorems cannot
be routinely verified anymore. Rather we found that Weierstrafy’ three-term relation
between theta products is the “magic” identity that is behind all of our formulae. More
precisely, (aside from four formulae that are direct consequences of the Jacobi triple
product identity) for one class of formulae the verification consists in a single application
of Weierstraf3’ relation which reduces the sum of two theta products to a single theta
product, while for a second class of formulae the verification requires first a double
application of the triple product identity to reduce the sum of four theta products to
the sum of two theta products, and then another application to reduce the latter to a
single theta product. Our parametric theorems belong both to the first class. At this
point in time, we are not able to offer a conceptual understanding for our proofs for
the second class of formulae in the sense that we were not able to embed these into
parametric families of formulae. Rather, we performed some computer assisted searches
for more formulae in the second class that remained unsuccessful, suggesting that there
may not be parametric families in the second class but only these sporadic formulae.

Our paper is structured as follows. In the next section we collect the empirically found
identities from [3]. (We have slightly altered the order in which they are presented in
order to provide a more systematic listing.) They become theorems by the proofs
in Sections 7 and 9. Section 3 lists the additional identities that we found by our
computer experiments subsequent to the publication of [3]. The first step in all our
proofs is to apply Jacobi’s triple product identity that converts the left-hand sides of
our identities into a linear combination of products of theta functions. We recall Jacobi’s
identity in Section 4, where we also derive two (well-known) corollaries that we need
in some of the proofs. There follows another section of preparatory character, namely
Section 5, in which facts from the theory of modular functions are collected that are
relevant in our context. Based on them, we explain in Section 6 how to routinely verify
identities between theta products. In the subsequent section, Section 7, we apply this
methodology to prove all the theorems from Sections 2 and 3 (with the exception of
the theorems that are special cases of parametric families). We provide full details for
Theorem 1, while for all other theorems proofs are given in a stenographic fashion since
the pattern is always the same. Section 8 is again preparatory. There, we recall the
earlier mentioned Weierstra3’ addition formula, and two of its corollaries that we shall
use particularly frequently. Then, in Section 9, we present our proofs of all theorems
from Sections 2 and 3 (again with the exception of the theorems that are special cases
of parametric families) by the use of the Weierstrafl relation. Again, we give full details
for the proof of Theorem 1, while for all other theorems proofs are presented only in an
abridged fashion. The contents of Section 10 are two parametric families of formulae of
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the type as in (1.1); one of them consists in Theorem 34 and Corollary 35 (although these
contain different statements, their proofs are the same), and the other in Theorem 36
and Corollary 37 (again, these contain different statements, but their proofs are the
same). Finally, in Theorem 38 we unify the statements of Theorems 31 and 32, and we
provide a uniform proof. We close the article by mentioning some consequences and
open problems in Section 11.

2. GENERATING FUNCTIONS FOR SEQUENCES OF SQUARES

Here, we list the empirically found formulae for generating functions for sequences of
squares from [3]. They become theorems by the proofs in Sections 7 and 9, respectively.

Theorem 1 (conjectured in [3, Id. 5.1]). Let (a,)n>0 be the sequence of non-negative
integers m such that 840m + 361 is a square. Then

0 6 7.7

_1\t(n) jan _ (q’q yq 54 )oo
Z( 1> " = (q q4'q5) ) (2-1>
n—0 4 00

where
H(n) 0, ifn=0,1,3,510,12,14,15 (mod 16),
’)’L =
1, otherwise.

Theorem 2 (conjectured in [3, Id. 5.2]). Let (a,),>0 be the sequence of non-negative
integers m such that 840m + 529 is a square. Then

°© 6 7.7

) gan _ (847450 )%
Z( 1> 7" = (qz q3'q5) ’ (2'2)
n:O Y ) o0

where

1, otherwise.

) = {0, ifn=0,2,3,6,9,12,13,15 (mod 16),

Theorem 3 (conjectured in [3, Id. 5.3, corrected]). Let (a,)n>0 be the sequence of
non-negative integers m such that 840m + 121 is a square. Then

. —1 [(n+4)/8] Jan __ (q27 q57 C]7; q7)oo 9.3
Z( ) " = (q,q% ¢°) : (2.3)
n=0 ) ) o]

Theorem 4 (conjectured in [3, Id. 5.4]). Let (a,)n>0 be the sequence of non-negative
integers m such that 840m + 289 is a square. Then

= )t gan (%6, 4" 4" ) 04
Z( ) 7 = (q2 q3'q5) ) ( . )
nzo ) ) oo

where

H(n) = 0, ifn=0,1,3,510,12,14,15 (mod 16),
|1, otherwise.

Theorem 5 (conjectured in [3, Id. 5.5, corrected]). Let (a,)n>0 be the sequence of
non-negative integers m such that 840m + 1 is a square. Then

- _1)L(n+4)/8] jan _ (93794&7;(]7)00 9
Z( ) 7 = (q q4'q5) ) ( -5)
n=0 ’ ’ 0
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Theorem 6 (conjectured in (3, Id. 5.6]). Let (a,)n,>0 be the sequence of non-negative
integers m such that 840m + 169 is a square. Then

- )t gan (@, q* 4" 4 ) 06
Z( ) 7" = (q2 q3'q5) ’ ( : )
n:O ) ) o0

where
H(n) 0, ifn=0,1,2,4,11,13,14,15 (mod 16),
n)=
1, otherwise.

Theorem 7 (conjectured in [3, Id. 6.1, corrected]). Let (an)n>0 be the sequence of
non-negative integers m such that 240m + 1 is a square. Then

i(_l)L(n+2)/4ann _ (447%¢%) (¢°.4" 4" @)
(¢, ¢% ¢°)oo ' '
n=0

Theorem 8 (conjectured in [3, Id. 6.2]). Let (a,)n>0 be the sequence of non-negative
integers m such that 240m + 49 is a square. Then

i(_mmm o (006% 6% (¢°,4" 4% o0 2.8)
n—=0 - <q27 Q?’; q5)oo . ‘

Theorem 9 (conjectured in [3, Id. 6.5, corrected]). Let (a,)n>0 be the sequence of
non-negative integers m such that 240m + 121 is a square. Then

i(_l)L(n-i—?)/M qan — <q37 q57 q8; qs)oo (q27 q14; qIG)OO (2 9)
(¢, 4% @)oo ' '
n=0

Theorem 10 (conjectured in [3, Id. 6.6]). Let (a,)n>0 be the sequence of non-negative
integers m such that 240m + 169 is a square. Then

i(_l)ﬁm/équan (.0, %)= (0,470 ) (2.10)
(% 4% ¢°)so ' '
n=0

Theorem 11 (conjectured in [3, Id. 6.3, corrected]). Let (an)n>o0 be the sequence of
non-negative integers m such that 15m + 1 is a square. Then

i(_l)t(nw)mqan _ R N U (2.11)
(¢, 4% ¢°)os ' '
n=0

Theorem 12 (conjectured in [3, Id. 6.4, corrected]). Let (an)n>o0 be the sequence of
non-negative integers m such that 15m + 4 is a square. Then

i(_l)L(nﬂ-Q)/M qan — <q27 q67 q8; q8)oo (q47 q12; q16)00 (2 12)
(%, 6% ¢°) o0 ' '
n=0

Theorem 13 (conjectured in [3, Id. 6.7]). We have

io: qn(5n+1) — (q’ qg’ ql(); qlo)OO <q8’ q12; qQO)oo

(4,9% ¢°)so (2.13)

n=—oo
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Theorem 14 (conjectured in [3, Id. 6.8]). We have

0 20)

n(n+1) _  bn(n+1)+1) _ (Q7 q97 qlo; C]m)oo (q87 q12; q ) oo 214
(g q ) = (& : (2.14)
n=0 qa-,q°;9q )oo
Theorem 15 (conjectured in [3, Id. 6.9]). We have
% 2 8 _10. 10 6 14. 20
2 ey (565070 (67,474 )
nz_:l ( ) (¢ 4% ¢°)oo
Theorem 16 (conjectured in [3, Id. 6.10]). We have
i qn(5n+2) _ (q27 q8’ ql(]; qlo)OO (q67 q14; q20)oo (2 16)
= (¢, 4% ¢°)oo ' '
Theorem 17 (conjectured in [3, Id. 6.11]). We have
— (nnt) o nmeniny (@450 0" ) (0" 4" 6% 51
(¢"" + 4 ) = o - (2.17)
n=0 (qa q-;q )oo
Theorem 18 (conjectured in [3, Id. 6.12]). We have
f: qn(5n+3) _ <q37 q77 ql(]; qlo)oo <q47 qlﬁ; q20)00 (2 18)
“— (4% % ¢°)oo ' '
Theorem 19 (conjectured in [3, Id. 6.13]). We have
i qn(5n+4) — <q47 q67 qlo; qlo)OO <q27 qls; q20)00 . (219)
= (¢,4% @°)oo
Theorem 20 (conjectured in [3, Id. 6.14]). We have
- n?—1 . 5m2—1\ __ (q4aq6aq10;q10)oo (q2aq18;q20)oo 290
Z (¢ q ) = (% : (2.20)
— 7% 4% 6°)oc

3. MORE GENERATING FUNCTIONS FOR SEQUENCES OF SQUARES

In this section, we collect the additional formulae for generating functions for se-
quences of squares that we found when we started our work on this kind of identities.
Also these become theorems by the proofs in Sections 7 and 9, respectively.

Theorem 21. Let (a,),>0 be the sequence of non-negative integers m such that 120m+
49 is a square. Then

S g _ @00 .
n=0 ¢ B <q27q3;q5)oo . )

Theorem 22. Let (a,),>0 be the sequence of non-negative integers m such that 120m+1

18 a square. Then
o0

1)l (n+2)/4] jan _ <q27q37q5;q5)oo 39
Z( ) 7 = 4. 45 ) ( : )
(2,4% ) oo

n=0
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Theorem 23. Let (a,)n>0 be the sequence of non-negative integers m such that 168m+
121 s a square. Then

s 6 7.7
E _1\lBn/4] Jan __ (Q7q ,q 54 )oo

( 1) ¢ = (q3 q4'q7) : (3-3)
n=0 ) ) fe'e)

Theorem 24. Let (a,),>0 be the sequence of non-negative integers m such that 168m+1
18 a square. Then

- _)2)/4] jan <q2ﬂq5aq7;q7)oo 3.4
Z( ) ¢ = (q q6.q7> : ( . )
n=0 ) 3 00

Theorem 25. Let (a,),>0 be the sequence of non-negative integers m such that 168m+
25 s a square. Then

S 1)L (n+2)/4] jan _ <q37q47q7;q7)oo 35
Z( ) 7 = 2 5. 47 ) ( : )
n=0 (q , 4754 )oo

Theorem 26. Let (a,),>0 be the sequence of non-negative integers m such that 48m-+1
1s a square. Then

. 1)l (n+2)/4] jan _ (92796&8;(]8)00 36
Z( ) 7 = (q q7.qs> : ( : )
n=0 ) ) 00

Theorem 27. Let (a,),>0 be the sequence of non-negative integers m such that 48m+25
1s a square. Then

< -1 [5n/4] an __ (q27q67q8; qs)oo
Z( ) " = 3 5. 48 : (3'7)
n=0 (q , 4734 )oo

Theorem 28. Let (a,),>0 be the sequence of non-negative integers m such that 21m-+1

1s a square. Then

1) Le2)/4) o (0.4% 44 (0, 4% ™)
(¢, 4% ¢*)os

(3.8)

Theorem 29. Let (&n)nzo be the sequence of non-negative integers m such that 21m+4
18 a square. Then

i(_l) [(n+2)/4] qan — ((]2, C]5, q7; q7)00(q37 q11§ q14)00 (3 9)
(¢, 4% %) ' '
n=0

Theorem 30. Let (a,),>0 be the sequence of non-negative integers m such that 21m+16
18 a square. Then

0 3 4 7.7 13. 14
S ()l (¢°, 4%, 9" q lm(faq 14 oo (3.10)
— (¢: 4% q*)oo

Theorem 31. Let (a,),>0 be the sequence of non-negative integers m such that 16m-+1
1s a square. Then

0 6 10. .16
Z (0,47, 4% %) (4%, 4" ¢ )oo. (3.11)

(4, 6% ¢*) oo
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Theorem 32. Let (a,,)n>0 be the sequence of non-negative integers m such that 16m+9
18 a square. Then

(@, 0°, 4% ¢®)oo(@®, 0" ") s
pard (4,0% ¢")oo

(3.12)

Mg

4. THE JACOBI TRIPLE PRODUCT IDENTITY AND TWO OF ITS CONSEQUENCES
The Jacobi triple product identity says that (cf. [2, Eq. (1.6.1)])

S (13 = (g, 2,4/% 0). (4.1)

n=—oo

Letting ¢ — ¢* and setting z = —¢ in (4.1), we obtain

Zq = ("~ —4 oo

n=—0oo

00 -1
dgt=> ¢
n=1

n=—oo

Since we have

the previous identity implies

Zq=

On the other hand, letting ¢ — ¢* and setting z = —¢? in (4.1), we obtain

77/2 n
"t =2(" ¢ % )

n=—oo

=00 — 1), (4.2)

l\:)lr—l

Since we have
o

S S
n=0 n=—00
the previous identity implies
n2 n
d =~ 0% e (4.3)
n=0

5. BACKGROUND ON MODULAR FUNCTIONS

In this section, we give a brief introduction to modular functions, tailored to our pur-
poses. Let H := {z € C: Im(z) > 0} denote the upper half plane. Roughly speaking,
modular functions are (certain) meromorphic functions on H that are invariant under
the action of a subgroup I' of SLy(Z). In our setting, I' = I'y(N) and N > 2, where

T (N) = {(‘CL 2) € SLy(Z) : a,d =1 (mod N) and ¢ = 0 (mod N)} .

The crucial fact on which we base the “methodology” explained in the next section,
is the following proposition (cf. [4, Prop. 4.12]).
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Proposition 33. Let f be a non-constant meromorphic function on a compact Riemann
surface X. Then

Z ord,(f) =0,
peX
where ord,(f) is the order of the Laurent series expansion of f about the point p.

(
For v = (2%) and 7 € H we define y7 := %j:s. For a subgroup I' of SLy(Z), we let

A(T) := {f meromorphic on H: f(y7) = f(7) for all y € I and 7 € H}.

A function f € A(I'y(N)) can be viewed as a meromorphic function f on the Riemann
surface H/I'y(N) := {[r] : 7 € H}. Here, [1] := {y7 : v € I';(N)} denotes the orbit of
7 € H under the action of the group I'y(N), and f([7]) := f(). One equips H/I';(N)
with the quotient topology so that it is a topological space. To make H/T';(N) into a
Riemann surface, we follow the recipe in [5, Sec. 1.8] (cf. also [6]). Then f becomes a
meromorphic function on H/T'y (V). However, as we shall explain in Section 6, we want
to use Proposition 33, which is an assertion on meromorphic functions on a compact
Riemann surface. In other words, we would need H/I';(N) to be compact, which it is
not. So we need to add some points in order to make it compact. In order to achieve this,
we define H* := HUQU {ico}. We extend the action of v = (¢ %) to H* as follows. For
2€Q, welet v3 := j((j//f))j_rs if c(s/t) 4+ d # 0 and 3 := ioo otherwise. Moreover, we let
y(ico) = ¢ if ¢ # 0 and 7(ico) := oo otherwise. Then H*/T'y(N) := {[7] : 7 € H"} is a
compact topological space when equipped with the quotient topology. More precisely,
the topology of H* is generated by the topology of H (which inherits the standard
topology in C) and the sets Uy := {z € H : Im(z) > M} U{ioo}, and the sets yU), for
all v € SLy(Z), where M is a positive real number.

In particular X;(N) := H*/I';(N) is made into a Riemann surface following the
recipe given in [5, Sec. 1.8] (cf. also [6]). Again, this creates a problem: for a function
f € A(T'1(N), the corresponding function f on the quotient space is not necessarily
meromorphic on X;(N). The problematic points are the cusps {[s/t] : s/t € QU{ioc}}.
Given a function f € A(T'y(N)), in order for f to be meromorphic on X;(N), we need

that, for each reduced fraction ¢ € Q, f can be expressed as a Laurent series with

i =1

finite principal part in powers of e e Here, h, := N/ ged(c, N) is called the width
of the cusps a/c. When these additional conditions are satisfied we say that f is a
modular function for the group I'y(N), and we write f € M(I'1(/V)). In particular,
f € M(I'y(N)) implies that f is meromorphic on X;(N). Furthermore, ord,/q f equals

2771'7717

the order of the Laurent series of f in powers of e . For an arbitrary function
f € M(T'1(N)), the order of f at a point [ry] for 7o € H is ¢, where ¢ is the order of f
when expanded in powers of 7 — 7.

6. HOw TO “MECHANICALLY” PROVE THETA FUNCTION IDENTITIES
Let us fix a positive modulus N > 2. For g € {0,..., N — 1} define
E, = E,(q;N) 1= g"VPMN2(g9 ¢N=9, M), (6.1)

where By(z) = 2? — x + ¢ is the second Bernoulli polynomial. The function E, is
essentially a (specialised) Jacobi theta function, the “essentially” referring to the missing
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factor (¢"V;¢")s. In the following we explain how identities of the form

Z ¢ H B = (6.2)

7j=1

where the ¢;’s are complex numbers and the a(] Vs are integers, can be routinely verified
if each summand in the sum above is a modular function for the group I'y (V). It should
be noted that the left-hand side of (6.2) is a linear combination of theta products.
Now, to verify the identity (6.2), the following steps have to be performed. For
convenience, in the following we write LHS for the left-hand side of (6.2).
STEP 1. According to [8, Prop. 3], Hg E4°(g; N) is a modular function in 7 for the
group T';(N), where ¢ = ™7, that is, [], E,° is an element of M (T'y(N)) if

Zag =0 (mod 12) and 292% =0 (mod y(N)), (6.3)

g

where y(N) = 2N if N is even, and y(N) = N if N is odd. We use this criterion in
LHS for each summand in order to check that each summand is a modular function for
['1(N).

STEP 2. Representatives of the cusps for the group I'y (V) are computed. (There are
only finitely many.) The computer algebra programme Magma provides an implemen-
tation in form of the function Cusps(Gammal(N)).

STEP 3. For each (representative of a) cusp — except ioo, ¢ say, and j = 1,2,...,7,

)
the order of the function [], Eq ; at ¢ has to be computed. According to [8, Prop. 4],
the order ord(Ey; ¢, N) of the function E, at the cusp c of the group I'y (V) is given by

ord(E,; ¢, N) = = S cd(De, N) Ba({Nog/ sed(De, N)Y), (6.4)

where D, is the denominator of ¢ and N, is the numerator of ¢, while {a} denotes the

%)
fractional part of the rational number a.. The order of [], Ey . at c then is

Zag] ord(Ey; ¢, N).

g

STEP 4. We obtain a lower bound on the order of LHS at ¢ by taking the minimum
of the orders of the individual summands of the sum in LHS.

STEP 5. By Proposition 33, if LHS is not identically zero, then the sum of all the
orders equals zero. Hence, (again assuming that LHS is not identically zero) for the

function LHS on the compact Riemann surface X;(N), we have

0= Ol"d[ioo](l//_]\‘j;/g) + Z ord[c](f]:.fg) + Z Ol“d[p]([//_]\‘.]_;/g).
[c], ¢ a cusp, [c] # [ic0] [p], p not a cusp
If we sum all the lower bounds that we found in Step 4 over all the cusps different
from 200, then we obtain a lower bound, —U say, on the first sum in the above expres-
sion. Furthermore, from the definition of the function Ej it is obvious that it cannot
have a singularity at a point p € H, and thus the order of £, at p is non-negative. This



10 C. KRATTENTHALER, M. MERCA, AND C.-S. RADU

implies directly that the orders ordp, (EFIT? ) are non-negative, yielding the lower bound
0 on the second sum. Everything combined, we see that ordj.(LHS) < U.

STEP 6. We now verify by direct computation that LHS has the power series ex-

pansion 0+ 0g + - - - + 0¢Y + - - -. This says that ord[,-oo](f]:ITS’) > U (the reader should
recall that, under the relation ¢ = ¢*™7, the point 7 = ico corresponds to ¢ = 0), a
contradiction to our finding in Step 5 under the assumption that LH S is not identically
zero. Consequently, LHS must be the zero function.

7. “MECHANICAL” PROOFS

This section is devoted to the presentation of the proofs of the theorems in Sections 2
and 3 that are based on the procedure outlined in the previous section. We provide
full details for the proof of Theorem 1, while we remain brief for the proofs of the
other theorems, all of them being completely analogous. For the theorems which are
specialisations of the parametric theorems in Section 10, we refer to the proofs given
there.

Proof of Theorem 1. STEP 0. We write the sum on the left-hand side of (2.1) explicitly,
and then apply the Jacobi triple product identity to obtain an expression that is a linear
combination of products of theta functions.

In order to accomplish this, we first observe that squares that are congruent to 361
modulo 840 are of the form S?, where S = 19,61,79, 89,121,131, 149, 191 (mod 210).
Consequently, taking the definition of ¢(n) into account, we have

Z( Z q840( (210k+19)2—361) + Z(_l)kq%(@lokwntgm)
n=0 k=0
o [e.e]
. Z(_Dkqﬁ((momm)twl) + Z(_1>kq840((210k+89)2 361)
k=0 k=0
o0 o
Z q840 ((210k+121)2-361) +Z(_1> q840((210k+131)2 361)
k=0 k=0
Z q840( (210k+149)%2-361) Z(_l)kq84o((210k+191)2 361)
k=0 k=0
i )eq loge? L agk N (_1)kq%+%+4 _ i(_n’qu%k?ﬂ%kw
k=0 k=0 k=0
ad 105k SQk > 105k 121k 105k2 131k
+Z k +55549 Z( 1)kq +17+Z k +20
=0 k=0

B (_1)%%#?’%26 _ Z(_l)kq%Jr%H; (7.1)
k=0 k=0



GENERATING FUNCTIONS FOR SEQUENCES OF SQUARES 11

By performing the replacement £ — —k — 1, we see that the last sum on the right-hand
side of (7.1) can be rewritten as

o) —1

1052 | 191k 105k2 | 19k
S-S S (g
k=0 k=—00

Thus, it can be combined with the first sum on the right-hand side of (7.1). This is
similar for the other sums. As a result, they can be paired so that one obtains four
sums over all integers k:

o0 o0 o0

Z(_l)t(n)qan _ Z (_1)kq103’“2+%+ (— 1)kqmgk2+7k+4

n=0 k=—00 k=—o00

2 2
. Z k 105k +79k+7+ Z k’ 105k ¥+9

k=—o00 k=—o00

Now, as announced, to each of these sums we apply the Jacobi triple product identity
(4.1) to get

[e.o]

(_1)t(n)qan — (q1057q62’q43;q105)oo + q4 (QlOS,q C] q105)

n=0

_ q7 ((]1057 q£)27 q13; q105)

Thus, we have to prove the identity

0=(¢""q"¢"¢"")e + " (@', ¢*, ¢ ¢"* )

6 7.7
449,94
105 92 13 105)O<> ¢ (q105 105) ( )

o+ (@07, % ") . (7.2)

7 :
q" (¢, 479" q 4, q%q )
We divide both sides of the identity by the first term on the right-hand side and obtain
014 U050 ) (0767470
(195, ¢52, ¢%3; q105) (q105 4%, ¢*; ¢19%)
L 0 (4", 6% ¢") (4,4°,47 4 )

(419,652, ¢%3;¢'95) . (g, 4% ¢%)oo (q19%, ¢%2, ¢%3; q10%)
Now we fix N := 105. With the notation (6.1), our identity can be written as
0—1+ Ey  Eng . By ErEsEq3Ey5Eoo L Figyr Fiys Eigs Eya Lo Eosg (7.3)
E;3  E;3  Ey  EyEgEEi6ErgEoyFEagEs EsgEyuEyEs '

In order to rewrite the last term we used that

(@54") = (q".¢", ¢, ..., q"% ¢"™)

and similar “blow-ups” for other terms.

Y

STEP 1. We use the criterion (6.3) to see that all summands on the right-hand
side of (7.3) are modular functions for I';(105). Indeed, for N = 105 and g_iz’ we

have 1 — 1 = 0 (mod 12) and 22* — 43° = 0 (mod 105). This shows that £2 is

Eg

B and

a modular function for the group I';(105). Similarly, we observe that g—ig,
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E7Eg B3 Fs FooFog For Fog Fgs Eag Fas Eso
EsE9E11 E16E19FE24FEo6 E31 B39 Eaa Eg6 Es1
quently,

are modular functions for the group I';(105). Conse-

f =14+ @ o % + & B E7E8E13E15E20E22E27E28E35E42E48E50
E43 E43 E43 E4E9E11E16E19E24E26E31E39E44E46E51

is a modular function for the group I';(105).

STEP 2. We use the computer algebra Magma to compute representatives of the cusps
for the group I';(105). This is done by using the command Cusps (Gamma1(105)). The
output is

[00,0,1/13,1/12,2/23,1/11,3/32,2/21,1/10,3/29,5/48,2/19,3/28,4/37,1/9,\
5/44,4/35,3/26,8/69,5/43,2/17,3/25,4/33,1/8,6/47,5/39,9/70,4/31,11/84,\
13/99,5/38,7/53,2/15,13/96,8/59,3/22,7/51,1/7,5/34,4/27,29/195,18/121,\
3/20,48/319,79/525,5/33,16/105,7/45,18/115,8/51,4/25,17/105,1/6,6/35,\
11/63,18/103,7/40,8/45,23/129,5/28,7/39,9/50,11/60,9/49,12/65,5/27,\
19/102,30/161,13/69,17/90,4/21,1/5,109/525,27/130,19/91,23/110,22/105,\
47/222,18/85,33/1565,3/14,14/65,68/315,13/60,41/189,64/295,29/133,\
19/87,26/119,23/105,9/41,20/91,11/50,11/49,9/40,71/315,23/102,30/133,\
17/75,27/119,8/35,13/56,44/189,7/30,13/55,5/21,6/25,9/35,11/42,59/225,\
37/140,23/87,53/200,13/49,4/15,62/231,51/190,47/175,32/119,368/1365, \
17/63,13/48,29/105,31/112,46/165,41/147,59/210,69/245,2/7,13/45,\
17/63,71/245,7/24,92/315,45/154,43/147,31/105,34/115,29/98,52/175,\
25/84,94/315,19/63,32/105,13/42,24/77,11/35,16/45,113/315,48/133,\
38/105,23/63,11/30,31/84,13/35,37/98,8/21,67/175,523/1365,29/75,\
64/165,41/105,124/315,2/5,43/105,41/100,26/63,31/75,44/105,103/245,\
47/105,16/35,7/15,8/15,19/35,39/70,137/245,47/84,17/30,4/7,97/168,\
41/70,37/63,13/21,152/245,87/140,22/35,19/30,24/35,46/63,11/15,\
23/30,27/35]}.

STEP 3. We now compute the order of each summand of LHS at each cusp except ioco.
To do this, we have to use (6.4). Assume for example that we want to compute the
order at the cusp 27/35 of the function g—ii It is convenient to implement the following
two functions in Maple:

B:=proc(x)
X 2-x+1/6
end proc:

orderCuspl:=proc(x,N,g)

local a,c;

a:=numer (x) ;

c:=denom(x) ;
igecd(c,N)*B(frac(a*xg/igcd(c,N)))/2
end proc:

Now, in order to achieve our task we enter in Maple:

orderCusp1(27/35,105,22)-orderCuspl(27/35,105,43) ;
2
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The output means that % has a zero of order 2 at the cusp g—g
43

STEP 4. We want to compute a lower bound on the order of f at the cusp 27/35. In
order to do this, we do the above computation for each term in f and take the minimum
of all orders. This computation can be simplified by the function

orderCuspGroup:=proc(x,N,g)

local ii,order;

order:=0;

for ii from 1 to nops(g) do
order:=order+orderCuspl (x,N,glii] [1])*g[ii] [2];
od;

order

end proc:

This function takes as input the cusp representative x, the N — which in our case is
105 —, and the index g from E,. The product g—z; is expressed as

f1:=[[22,1],[43,-1]];
Then we can compute the order of g—ﬁ at the cusp 27/35 by typing

orderCuspGroup(27/35,105,f1);
2

We define the other terms by

f2:=[[8,1],[43,-11];

£3:=[[13,1],[43,-111;
f4:=[[7,1],[8,1]1,[13,1],[15,1],[20,1],[22,1],[27,1],[28,1],
(35,11, [42,1],[48,1],[50,1],[4,-11,[9,-1],[11,-1],[16,-1],
[19,-11, [24,-1],[26,-1],[31,-1],[39,-1]1, [44,-1],[46,-1],[51,-11]1;

Now we can get a lower bound on the order of f at the cusp 27/35 by writing

min (orderCuspGroup(27/35,105,f1) ,orderCuspGroup(27/35,105,£2),
orderCuspGroup(27/35,105,£3) ,orderCuspGroup(27/35,105,f4)) ;
0

Hence, our lower bound is 0.

STEP 5. We sum up the lower bounds on the orders at all cusps except ico. Thus,
we obtain an upper bound on the order of f at [ioc]. This is done as follows:

cusps:=[0,1/13,1/12,2/23,1/11,3/32,2/21,1/10,3/29,5/48,...];

cnt:=0;

for ii in cusps do

mn :=min(orderCuspGroup(ii,105,f1),orderCuspGroup(ii,105,£2),
orderCuspGroup(ii,105,£3) ,orderCuspGroup(ii,105,f4)); cnt:=cnt+mn; od;
print(cnt);

-148
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This means that the order of f at ¢00 is at most 148, under the assumption that f is
not identically zero.

STEP 6. It is routine to verify that f = 0+ 0q + - -- + 0¢'*® 4 - - -. This implies that

ordjis)(f) > 148. Hence, f must be the zero function. O

Proof of Theorem 2. It is elementary to see that squares that are congruent to 529
modulo 840 are of the form S?, where S = 23,37,47,103,107,163,173, 187 (mod 210).
If we now do a computation analogous to the one in the proof of Theorem 1, we obtain

Z(_1>t(n)qan _ (q105,q64,q41;q105)00 o q(q105,q71,q34; q105)oo

+ q2 (q1057q767q29; (]105)0O 4 q12 (q105’q1047q;q105>oo. (74>

Continuing as in the previous proof, we observe that the assertion of the theorem is
equivalent to
0=1_ Esy n Eay n By EyEeEns EaoEag Esy Ese Eso EraFigy Eis Eag
Ey Ey  Ey  EyEsEywE\rE\gEy3EsEsyEsrEssEyr sy’
where we used the notation (6.1) with N = 105. Using (6.3), we see that the right-hand
side is a modular function for the group I'1(105). We estimate the sum of the orders of
the right-hand side at the cusps using the same programmes as in the previous proof
with modifications of the parameters. The upper bound on the order of the right-
hand side at 700 is also 148, so it suffices to check that the first 148 coefficients of
the right-hand side are zero in order to prove the identity, which we checked using a
computer. ]

Proof of Theorem 3. It is elementary to see that squares that are congruent to 121
modulo 840 are of the form S?, where S = 11, 31,59, 101,109, 151,179, 199 (mod 210).
If we now do a computation analogous to the one in the proof of Theorem 1, we obtain

oo
Z(_1>L(n+4)/8jqan — (q1057q47’q58;q105)00 + q(q1057q37’q68;q105)00
n=0

+ q4 ((]1057q237q82;q105)OO + q12 (q1057q27q103;q105>oo' (75)

Next, we observe that, using the notation (6.1) with N = 105, the assertion of the
theorem is equivalent to
o_ 1y B Bn By  ByEiEEyEanEy BBy BysByEoBr

Eyr By By ErnEyEeEn EoyFogFis By Fisg EsgFiyy Eug
Using (6.3), we see that the right-hand side is a modular function for the group I'; (105).
We estimate the sum of the orders of the right-hand side at the cusps using the same
programmes as before with modifications of the parameters. The upper bound on the
order of the right-hand side at 700 is also 148, so it suffices to check that the first
148 coefficients of the right-hand side are zero in order to prove the identity, which we
checked using a computer. |

Proof of Theorem 4. It is elementary to see that squares that are congruent to 289
modulo 840 are of the form S?, where S = 17,53,67,73,137,143,157,193 (mod 210).
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If we now do a computation analogous to the one in the proof of Theorem 1, we obtain

[e.9]

Z(_l)t(n)qan _ (q1057q44’q61;q105)oo + (]3 (q105,q C] q105)

n=0

105 19 86 105)

— (@, 4", 6% ¢") e + ¢° (¢, 4", ¢*; ") . (7.6)

Next, we observe that, using the notation (6.1) with N = 105, the assertion of the
theorem is equivalent to
Fy  Eiwg  Eve  EsEoEhaEgFE19Fo Eog 3o Ess By Fag B

I .
E44 E44 E44 E3E8E13E17E18E22E27E32E38E43E48E52

Using (6.3), we see that the right-hand side is a modular function for the group I'y (105).
We estimate the sum of the orders of the right-hand side at the cusps using the same
programmes as before with modifications of the parameters. The upper bound on the
order of the right-hand side at ico is also 148, so it suffices to check that the first
148 coeflicients of the right-hand side are zero in order to prove the identity, which we
checked using a computer. O

Proof of Theorem 5. It is elementary to see that squares that are congruent to 1 modulo
840 are of the form S?%, where S = 1,29,41, 71,139, 169, 181,209 (mod 210). If we now
do a computation analogous to the one in the proof of Theorem 1, we obtain

o0

Z(_1>L(n+4)/8jqan — (q105’q52’q53;q105)00 + q(q105’q ’q q105)
n=0

+ q2 <q105’ q32’ q73; q105)Oo 4 q6 (q105’ q17’ q88; q105>00. (77)

Next, we observe that, using the notation (6.1) with N = 105, the assertion of the
theorem is equivalent to
Ess  Eso | Evr EzErErwEirErgEos Eog gy Figs Ess Eag Eys

I .
E52 E52 E52 ElEGE9E16E19E26E29E34E36E41E44E51

Using (6.3), we see that the right-hand side is a modular function for the group I'; (105).
We estimate the sum of the orders of the right-hand side at the cusps using the same
programmes as before with modifications of the parameters. The upper bound on the
order of the right-hand side at 700 is also 148, so it suffices to check that the first
148 coeflicients of the right-hand side are zero in order to prove the identity, which we
checked using a computer. |

Proof of Theorem 6. 1t is elementary to see that squares that are congruent to 169
modulo 840 are of the form S?, where S = 13,43,83,97,113,127,167,197 (mod 210).
If we now do a computation analogous to the one in the proof of Theorem 1, we obtain

o0

Z(_1>t(n)qan — (q1057q4 q 105) +q ( 1057q q q105)oo
n=0

+* (00" a0 ) — 0 (@, 0 0" (78)
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Next, we observe that, using the notation (6.1) with N = 105, the assertion of the
theorem is equivalent to
E3  En By EgErEr EryEoy EoyFos By Ess Fzg Fiys Eyg

0=14 2Ly 24 .
Eyw LEas Ey  EobsFEroFh3EaFo3For g3 Esr FysEyr Eyg

Using (6.3), we see that the right-hand side is a modular function for the group I'; (105).
We estimate the sum of the orders of the right-hand side at the cusps using the same
programmes as before with modifications of the parameters. The upper bound on the
order of the right-hand side at ico is also 148, so it suffices to check that the first
148 coefficients of the right-hand side are zero in order to prove the identity, which we
checked using a computer. [

Proof of Theorem 7. It is elementary to see that squares that are congruent to 1 modulo
240 are of the form S? where S = 1,31,41,49,71,79,89,119 (mod 120). If we now do
a computation analogous to the one in the proof of Theorem 1, we obtain

o0

D (=l g = ("0, —¢, %5 0" + ¢* (¢, 0%, =41 ¢")e
n=0
g2 gl —qloo. q120>oo_ (7.9)

Rewriting this expression, we see that the assertion of the theorem is equivalent to

— (q1207 —q%, —g%%; g120)  — q10(

0— <q120; quO)oo(qllsy q122; q240)oo N q4 (q120; q120)oo(q587 q182; q240)oo
<q597 qﬁl; q120)oo (q29, q91; q120)oo
B (q120; q120)oo(q22a q218; q240)oo 10 (q120; q120>oo(q227 q218; q240)oo
q (qll’ q109; quO)oo q (qll7 q109; q120)OO
(4,47, ¢% 4% (0% ¢"% ¢"%)
(¢, 4" ¢°) oo

By dividing both sides of the identity by the first term on the right-hand side and using
the notation (6.1) with N = 240, we obtain

Esslisoligy  EssEsoFe1  EaplisgFig
EyEg 1 E1is EigEio1Eiis EiiFigErs
 ErEgEroEns Err By Elog Blas Eigy Eigg Eisg Foao Flag Ey7 Elyg Ess Es Esg
EsEy By FrgEoy Eog B3y Fizs gy Eyg Esy
" E63E65E70E72E73E80E87E88E90E95E97E102E103E105E112E113'
Ee6 Eeg Er76 Egg ooy Foy Egg Erv01 Ervog B4 F1e

0=1+

Each term on the right-hand side is a modular function for the group I';(240). As
before, using Magma we compute a list of all the cusps. Here we have 448 cusps.
Again, we can give an upper bound on the order of the right-hand side at ioco. Running
our programme, we obtain 592. We need to verify that the right-hand side has the form
0+0g+---+0¢"2 +---, which can be routinely done. This proves the identity. [

Proof of Theorem 8. 1t is elementary to see that squares that are congruent to 49 mod-
ulo 240 are of the form S?, where S = 7,17,23,47,73,97,103,113 (mod 120). If we
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now do a computation analogous to the one in the proof of Theorem 1, we obtain

o0

> (=P g = (g 47, =47 ") — ¢ (6", 4%, =47 ")
n=0

+q (qno —q q q120> —q9 <q120 _q13 q q12o)
B ( 120 120) ( ,q240) B (q120,q120) (q ,q (1240)0O
o (q 3 q q120> q (q43 q77 q120)
L 2o (@ P o (0 0o (0, 6 ) (7.10)
q (q377 q837 qlzo)oo q (qlgﬂ q107’ quO)oo .

Next, we observe that, using the notation (6.1) with N = 240, the assertion of the
theorem is equivalent to

Esslerbiss | EssbigrEry  EagEszEer
EisFErrFEi0s  EsrEssEie  E13Ei06Er07
_ EyEgEgEroEns Ere By Foas o Eig1 3o Flag Eay Elyg Eisy Ess Eis
FEyEsEro B3B8 Ear Fag Ei3r Eyz Esy
" E64E65E70E71E74E79E80E81E86E89E90E95E96E104E105ElllE119'
Feo Figg Firy Firg Figo Figs gy Fig3 Eios E'vor Eros Bty

0=1-—

As before, each term is a modular function for the group I'1(240). The upper bound on
the order of the right-hand side at ioo is 592. We verified that the right-hand side has
the form 0+ 0q + - - - 4+ 0¢°%2 + - - .. This proves the theorem. O

Proof of Theorem 9. It is elementary to see that squares that are congruent to 121
modulo 240 are of the form S2%, where S = 11,19,29,59,61,91,101, 109 (mod 120). If

we now do a computation analogous to the one in the proof of Theorem 1, we obtain

Z(_l)L(nw)/q ¢ = (qmo’ —q49, —q71; q120) +q (q120 —q4 q q120)
n=0
— ¢ (¢"°, —¢* q 10"

(¢"%; q120>oo(q 0% 7)o

H <q120a —q, q J q120)

(@' ¢ (¢*%, ¢"%; ¢**°)

—q

= (g, q7%; q120) +4q (g™, q™; q120)
T C e P U T ) R P C B e S UL e (7.11)
v (', ¢%;¢') @ (¢, 4" ¢'%) B

Next, we observe that, using the notation (6.1) with N = 240, the assertion of the
theorem is equivalent to

Eywlnlsy  EyEe B EyEyEn
EnFErgEes  EsiFgglbos  EyEogErig
B EsEs Eglis g Fyr Eigg Fisp Lgs Eogr Elyo Elyg Foas Blasg Eiso Eiss
EyEyEg Fig Eog B3y Eize Fizg Foyy g By
» E62E67E72E75E77E78E80E82E83E85E88E93E107E110E112E115E117.
FEryErg Erg Eigy Figy Fgg Eigg Eos 111 Eri6 g

0=1+
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As before, each term is a modular function for the group I'1(240). The upper bound on
the order of the right-hand side at ioo is 592. We verified that the right-hand side has
the form 0+ 0q + - - - 4+ 0¢°%2 + - - .. This proves the theorem. O

Proof of Theorem 10. It is elementary to see that squares that are congruent to 169
modulo 240 are of the form S?, where S = 13,37,43,53,67,77,83,107 (mod 120). If
we now do a computation analogous to the one in the proof of Theorem 1, we obtain

o0

Z(_1>L5n/4jqan _ (q120, _q477 —q73; 61120)(>o _ q5 (q120, —q23, —q97; 61120)(>o

n=0
+ (q120, _q\7, — 103, q120)oo e (qlzo7 T ' q120)oo

_ (q120; q120)oo(q947 q146; q240)oo s (q120; q120)00(q467 q194; q240)oo
<q477 q73; q120)oo (q23’ q97; q120)oo
(q120; (]120)00(q347 q206; q240)OO " <q120; qIQO)OO(qu’ q226; q240)<x>

+4q' (7.12)

(¢'7,¢'93; ¢120) o (¢7, ¢"13; ¢120) o
Next, we observe that, using the notation (6.1) with N = 240, the assertion of the
theorem is equivalent to

_ BugBurBry | EsyBurbry EvnEyrEnr

EasEosEgr  ErrEosEnos  ErFgsFnis

_ EsEv By EreErg gy Eay Eog g0 Eiga Eigs Ego Eas Eoag Eso Es1 Ese Esg
ErErgErg By Fog Fog g3 Esg Flyg Eisy By Eisg
« E61E64E66E69E75E80E85E91E96E99E101E104E109E110E114E115'
FEg3 Ees Bt Foga Eor Ero2 B3 Eros Bz Eris

As before, each term is a modular function for the group I';(240). The upper bound on
the order of the right-hand side at ioo is 592. We verified that the right-hand side has

0=1

the form 0 + 0q + - - - + 0¢°® + - - -. This proves the theorem. |
Proof of Theorem 11. This is a special case of Theorem 36. OJ
Proof of Theorem 12. This is a special case of Theorem 36. OJ

Proof of Theorem 13. This is a direct consequence of the Jacobi triple product identity
(4.1): one replaces ¢ by ¢'° and then chooses z = —¢°® there. O

Proof of Theorem 14. Using (4.3), we obtain
<qn(n+1) o q5n(n+1)+1) _ (612;(12)00 (_q2;q2)§o . q(qlo;ql[))oo (_qlo; q10)§o. (713)
n=0
Hence, the assertion of the theorem is equivalent to
0= @ha)s q(qm;q”)io (2.4%4"4")x (6%, 6%)
(%0 (0" ¢ (@%@ %)
Using the notation (6.1) with N = 20, we see that this is equivalent to
EyEe  ErEgEgEr
EyEs  E3E FqEs

0=1-
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The right-hand side is a modular function for the group I';(20). The cusps for this
group are computed as usual using Magma:

01312113171132917334

1000 0 6 I 5 4 10°3' 20°30°8°5°20°2'12°5° 475

There are in total 20 cusps. Estimating the order of the right-hand side at ioo, one
obtains an upper bound of 4. Hence it is sufficient to show that the right-hand side has

the form 0 + 0g + 0¢? + 0¢® + 0¢* + - - -, which can be done routinely. O
Proof of Theorem 15. Using (4.2), we obtain
- n? 5n2_l 2. .2 o 2)\2 10. 10 5. 10N2 4
L4+ (@ +¢™) = 5((¢% ) (-0 0% + (@%10) (—¢%10)%). (T14)
n=1

Hence, the assertion of the theorem is equivalent to

0= M@)ol d)% | 10070 0)5 (6% 0% 4o (6, 6™ 47

2 (g% 2 (¢%a"0)% (4,9% ¢°)oo ‘
Using the notation (6.1) with N = 20, we see that this is equivalent to

0= 1 n lEngEgEg B E1E§E§E$Eg'
2 2 FESE,E}Fg E2E2E3E

The right-hand side is a modular function for the group I';(20). There are in total the
20 cusps exhibited in the previous proof. Estimating the order of the right-hand side
at 100, one obtains an upper bound of 4. Hence it is sufficient to show that the right-
hand side has the form 0+ 0g + 0¢* + 0¢® 4+ 0¢* + - - -, which can be done routinely. O

Proof of Theorem 16. This is a direct consequence of the Jacobi triple product identity
(4.1): one replaces ¢ by ¢'° and then chooses z = —¢" there. O

Proof of Theorem 17. Using (4.3), we obtain

("D 4+ @) = (6 ) (=% D)% + 0 (6% ) (=% g%, (7.15)
n=0
Hence, the assertion of the theorem is equivalent to
4. 42 20. 202 3 .7 10. 10 4 16. 20
0= (q2,q2)oo +q(q10,q10)oo RSy zoogq 4% o
(%6 (€4 (¢, 0% 6%)oo
Using the notation (6.1) with N = 20, we see that this is equivalent to
E
0—1+ 2Ls E2E3E7E10_
E,Es  E\E,E3E,
The right-hand side is a modular function for the group I';(20). There are in total
the 20 cusps exhibited in the proof of Theorem 15. Estimating the order of the right-
hand side at 700, one obtains an upper bound of 4. Hence it is sufficient to show that
the right-hand side has the form 0 + 0g + 0¢* + 0¢® + 0¢* + - - -, which can be done
routinely. 0

Proof of Theorem 18. This is a direct consequence of the Jacobi triple product identity
(4.1): one replaces g by ¢'° and then chooses z = —¢® there. O
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Proof of Theorem 19. This is a direct consequence of the Jacobi triple product identity
(4.1): one replaces ¢ by ¢'° and then chooses z = —¢° there. O

Proof of Theorem 20. Using (4.2), we obtain

00 . 1
( n?—1 q5 271) — ((q27q2) (_q’q2)2 — (qlo;ql(]) (_qS;ql[))Z ) (116)
=1

Hence, the assertion of the theorem is equivalent to

1 (% )(@® 9% 1 (@%@ %% (g% 4% a'% ") o (6 4" ¢%0)
29 (@GP 2 (4% ¢"0)% - (4% 4% ¢°) '
Using the notation (6.1) with N = 20, we see that this is equivalent to

1 1E}EZE2E} B F}E3E2E,E}

2 2E3EE3Es  E3E2EZEy

The right-hand side is a modular function for the group I'1(20). There are in total
the 20 cusps exhibited in the proof of Theorem 15. Estimating the order of the right-
hand side at 700, one obtains an upper bound of 4. Hence it is sufficient to show that
the right-hand side has the form 0 4 0g + 0¢® 4+ 0¢® + 0¢* + - - -, which can be done

routinely. [
Proof of Theorem 21. This is a special case of Corollary 35. 0
Proof of Theorem 22. This is a special case of Theorem 34. 0
Proof of Theorem 23. This is a special case of Corollary 35. O
Proof of Theorem 2/. This is a special case of Theorem 34. O
Proof of Theorem 25. This is a special case of Theorem 34. OJ

Proof of Theorem 26. 1t is elementary to see that squares that are congruent to 1 mod-
ulo 48 are of the form N? where N = 1,7,17,23 (mod 24). If we now do a computation
analogous to the one in the proof of Theorem 1, we obtain
D (Lo e = (20", " e + a0, 07, 6% ) - (7.17)
n=0
Next, we observe that, using the notation (6.1) with N = 24, the assertion of the
theorem is equivalent to
B EEEsEy
By E\ErEyEyn
The right-hand side is a modular function for the group I';(24). The cusps for this
group are computed as usual using Magma:

111215 32171137 5 41119523
{007 Oa gv ?7 67 ﬁ? 57 ﬂa ﬂ) §7 Za ﬁ) %a §7 ga 1_8’ Ea §7 ﬁ) 57 1_67 ga §7 Z}
There are in total 24 cusps. Estimating the order of the right-hand side at 00, one
obtains an upper bound of 4. Hence it is sufficient to show that the right-hand side has

the form 0 + 0q + 0¢® 4 0¢® + 0¢* + - - -, which can be done routinely. O

0=1+
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Proof of Theorem 27. 1t is elementary to see that squares that are congruent to 25

modulo 48 are of the form S?, where S = 5,11,13,19 (mod 24). If we now do a

computation analogous to the one in the proof of Theorem 1, we obtain
Z(_l)Lsn/z;ann = (¢, q": ™) — (6, 0%, ;4. (7.18)
n=0

Next, we observe that, using the notation (6.1) with N = 24, the assertion of the

theorem is equivalent to

By EyEeEgEn

Er  E3EsEEn

The right-hand side is a modular function for the group I';(24). There are in total the

24 cusps exhibited in the previous proof. Estimating the order of the right-hand side

at 100, one obtains an upper bound of 4. Hence it is sufficient to show that the right-

hand side has the form 0+ 0q + 0¢* + 0¢® 4+ 0¢* + - - -, which can be done routinely. [

0=1-

Proof of Theorem 28. This is a special case of Theorem 36. OJ
Proof of Theorem 29. This is a special case of Theorem 36.
Proof of Theorem 30. This theorem is a special case of Corollary 37.

Proof of Theorem 31. This is a special case of Theorem 38.

[ R I B

Proof of Theorem 32. This is a special case of Theorem 38.

8. THETA FUNCTION IDENTITIES

In this section and the following ones, we use a different notation for the theta
functions that appear in our context, namely

0(a;q) = (a, ¢/ ;@)oo

It should be noted that, up to a power of ¢, the function E,(q; N) that we used in
Sections 6 and 7 can be expressed as 6(¢%; ¢V).

Our proofs in Sections 9 and 10 are based on Weierstral’ addition formula (cf. [7,
p. 451, Example 5])

0(zy; q) 0(x/y; q) 0(uv; q) 0(u/v; q) — O(wv; q) O(x/v; q) O(uy; q) O(u/y; q)
= ge@v; 9)0(y/v; q) (wu; q) Oz /u;q). (8.1)

Two specialisations of this formula are of particular importance in our context. If,
n (8.1), we replace g by ¢*V and specialise x = ¢, y = u?/¢", and v = ¢~ /u, then we
obtain the relation

0(u? ¢*N) 0(¢*N Ju?; ¢*™) 0(q™; ¢*V) 0 ( 2/ ¢*)

0(¢*™ Ju; ¢*N) 0(u; V) 0(u® /g™ ¢*N) 0(g™ Ju; ¢*)

q
= 79(%& ™) 0(u? /N ™) 0(¢V s ¢*N) 0(g™ Jus ),
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or, equivalently,

N
0(u*/q"; ™) + % 0w’ /4™ ™)
0(u?; ™) 0(q*" [u*; ™) 0(a™; ¢™) 0(u?/q"; ¢*)
0(u; g*V) 0(q™ /u; ¢*N) 0(gVu; g*N) '

Written in alternative notation, this is

N
q
(US/QN,Q4N/U3,Q3N;QSN>OO + 7 (US/QQN,QSN/U?),Q?)N; qSN)OO
_ (/e Y e?, q gV ) 82)
(s ¢V /u; qN) oo

Similarly, if in (8.1) we replace ¢ by ¢*" and specialise * = ¢*, y = u?/¢*", and
v = ¢*V /u, then we obtain the relation

0(u?; ™) 0(¢"" Ju®; ¢*N) 0(¢*™; ™) 0(u® 1™ ¢*)
—0(¢" Ju; ) 0(u; ¢*N) 0(u® [ ¢*N) 0(* Ju; ™)
2N
= L") 0 14 ™) (g us %) 0(a* s ™),
u
or, equivalently,
q3N
0(u*/q*"; q™) = ~50(u? /¢ )
_ 0% ) 0(g™ Ju?; V) 6(6*; ) 0(u?/ >N )
0(u; @*N) 0(q*N Ju; ¢3N) 0(u/qV; ¢3N)

Written in alternative notation, this is

3N
q
(Ug/QQN,q5N/U3,q3N; QSN)Oo _ ” (u3/q4N,q7N/u3,q3N; qSN)OO

W/, ¢ /u?,¢"; 4" )
T (w/d”, N Jui gV - (83)

9. PROOFS BY USING THE WEIERSTRASS RELATION

In this section, we provide proofs of the theorems in Sections 2 and 3 that utilise
the Weierstrafl relation (8.1). Again, for the theorems which are specialisations of the
parametric theorems in Section 10, we refer to the proofs given there (which also make
use the Weierstra$ relation).

Proof of Theorem 1. Our point of departure is (7.2). By (8.2) with N = 35 and u = ¢%,
respectively with N = 35 and u = ¢*°, we get

[e.e]

S (1) g = (47, 4", 4% %) / (@, 6%, 6% )
(q267 qQ7 q35)oo <q19’ qlﬁ; q35)oo

n=0
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If we now replace ¢ by ¢*> and choose u = ¢'°, v = ¢*, . = ¢*, and y = ¢® in (8.1), we
obtain?
0(g"";:4%) 0(¢";4%) 0(a"%; ¢®) 0(q": ¢*) + ¢'0(¢”; ™) 0(¢%: ) 0(¢**; ¢™°) 0(q"; ¢™)
=0(¢";¢%) 0(¢*;¢™) 0(¢"; ) 0(d"; ¢™),

and thus the above right-hand side becomes

0(42; %) (4% ¢%) 0(¢"; %) 0(47: %) (¢%%; ¢* )

0(¢'%; %) 0(¢% ¢*) 0(a": ¢*) 0(q*; ¢%®)

which is equivalent to the right-hand side of (2.1). O]

Proof of Theorem 2. Our point of departure is (7.4). By (8.2) with N = 35 and u = ¢%,
respectively with N = 35 and u = ¢*3, we get

i<_1)t(n)qa" _ (@' d®d")w q(q“,q24,q35;q35)o<>

(@, ¢ 0% (0%, 4% %) o0
If we now replace g by ¢** and choose u = ¢'°, v = ¢3, v = ¢'7, and y = ¢'* in (8.1), we
obtain

0(a™;0) 0(a% 0%) 0(a'; 4%) ("% ¢%) — 0(¢™: ¢7) 0(a™": ¢7) 0(¢™: ) 0(q5 4*)
— 40(¢": ) 6("; %) 0(¢%% ¢) 8(¢%: ¢,
and thus the above right-hand side becomes
0(¢™; ¢%) 0(q™; ¢%) 6(4™; ¢*) 0(a; ¢™) (¢ )
0(q'";4>) (¢ ¢%) 0(¢°*; ¢%) 0(¢*; ¢%°)
which is equivalent to the right-hand side of (2.2). O

Proof of Theorem 3. Our point of departure is (7.5). By (8.2) with N = 35 and u = ¢*!,
respectively with N = 35 and u = ¢**, we get

n=0

i(_l)L(nJr@/Sann _ (¢*, 4, 4% ) i q(q137q227q35;q35)oo
(q317 q4; q35)oo (q24’ qll; q35)oo

If we now replace ¢ by ¢** and choose u = ¢'*, v = ¢°, v = ¢'°, and y = ¢'3 in (8.1), we
obtain

(4% %) (4% ¢) 0(¢%: ) 0(¢%: ) — 0(: ) 6(c% ) 0(¢%7; ) 0(g; ¢)
= a0(q*:4%) 0(q":¢*) 0(¢™: ¢*) 0(a: ¢™),
and thus the above right-hand side becomes
0(¢*; ¢*) 0(¢* ¢™) 0(¢*; ¢°°) 0(¢°: ¢*) (4% 47
0(q*; 4%) 0(q"; %) 0(% ¢°) 0(q; ¢*)
which is equivalent to the right-hand side of (2.3). O

n=0

’In case the reader wonders how we came up with these choices of u,v,z,y (and the choices in
subsequent proofs): after a lot of trial and error which produced some useful choices in certain cases,
but did not lead to the recognition of any underlying patterns (we doubt in fact that there are), we
decided to write a Maple programme that goes through all possible choices of u, v, z,y in non-negative
powers of ¢ and outputs choices that are appropriate to establish our identities.
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Proof of Theorem 4. Our point of departure is (7.6). By (8.2) with N = 35 and u = ¢*?,
respectively with N = 35 and v = ¢*®, we get

[e.e]

S (C1)ge (6*,4% 6" 0¢®)e  5(0,06*, 6% ¢% )

q
(@2 % 0% (45, 4" %) o
If we now replace ¢ by ¢ and choose u = ¢7, v = ¢'°, x = ¢, and y = ¢* in (8.1), we
obtain

0(¢'";¢%) 0(¢%; ¢%) 0(¢% ¢*) 0(¢"%; %) — 0(¢°; ¢*) 0(¢'% ¢*°) 0(¢™*; ) 0(¢°; )
= ¢°0(q; ) 0(¢%; ¢*°) 0(¢*%; ¢*) 0(¢%; ¢*°)
after little manipulation. Thus, the above right-hand side becomes
0(¢°:4%) 0(a"°: %) 0(¢*; ¢®) 0(a% 4*°) (¢ %)
0(q'";¢) 0(¢* ¢%) 0('; ¢%) 0(¢%; ¢%°)
which is equivalent to the right-hand side of (2.4). O]

Proof of Theorem 5. Our point of departure is (7.7). By (8.2) with N = 35 and u = ¢*,
respectively with N = 35 and u = ¢34, we get

n=0

i<_1)t<n+4)/gjqan _ (@”.4"%.¢%¢®) N q(q33,q2,q35;q35)oo
(6*, 4% ¢* )0 (@*, 45 0% )

If we now replace ¢ by ¢* and choose u = ¢°, v = ¢'*, * = ¢, and y = ¢* in (8.1), we
obtain

0(¢"*;¢%) 0(a’; ™) 0(a"; ¢*) 0(a"; ¢*) — 0(a**:¢%) 0(a”; ¢*) 0(a"; ¢°) (a5 ¢™)
= q0(¢%;4%) 0(¢" ¢*) 0(a"; ¢*) 0(¢%; ¢™)
after little manipulation. Thus, the above right-hand side becomes
0(¢"%; ¢%) 0(¢%; ¢*) 0(0"% %) 0(q": %) (6% 4% e
0(¢% 4*) 0(q; 4%) 6(*%: ¢%) 0(q”; ¢*) ’
which is equivalent to the right-hand side of (2.5). O]

Proof of Theorem 6. Our point of departure is (7.8). By (8.2) with N = 35 and u = ¢%,
respectively with N = 35 and u = ¢*2, we get

n=0

i(_l)t(n)qan _ (0", ', 6% ) oo L (@°, 4%, 6% ) e
(@, 4% %) (622, 4%; %) o

If we now replace ¢ by ¢* and choose u = ¢", v = ¢'% x = ¢, and y = ¢° in (8.1), we
obtain

0(¢*';¢®) 0(q";¢®) 0(a":¢%) 0(¢"; ¢7°) — 0(a":¢7°) 0(a'%; 4™) 0(¢"; ¢™) 0(a%; )
= ¢*0(¢°; %) 0(¢*; ¢®) 0(¢*; %) 0(¢* ¢*)
after little manipulation. Thus, the above right-hand side becomes
0(q%": %) 0(q*: ) 00" %) 0(0%; ¢%) (¢ 4% ) oo
0(q% ¢%) 0(¢'%; ¢%) 0(q'2; ¢%) 0(¢2; ¢%)
which is equivalent to the right-hand side of (2.6). O]

n=0
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Proof of Theorem 7. Our point of departure is (7.9). By (8.2) with N = 40 and u =
—q*3, respectively with N = 40 and u = —q23 we get

i) e @0 %0 ) | 4 (656 0" ¢
> (1) ¢ = +q
o (=4%, =4 q4°) (=%, —¢'7; ¢")oe
If we now replace ¢ by ¢*° and choose u = —¢°, v = ¢!, x = —¢, and y = —¢® in (8.1),

we obtain
0(=4""¢") 0(¢% ¢") 0(¢"% ¢*) 6(—4¢"; ¢*°)
—0(¢";¢") 0(=4"*;¢") 0(—¢'"; ¢") 0(q*; ¢")
= ¢"0(¢%¢") 0(=q": ¢"°) 0(—¢*; ¢"°) 0(¢*; ¢™°)
after little manipulation. Thus, the above right-hand side becomes
0(=q*:4") 0(¢% ¢™) 0(¢"; ¢™) 6(=4¢""; ¢*)6(a: 4°) (4" ")

0(=q"":q"0) 0(—=q"; ¢*0) 0(—q"%; ¢*°) 0(q*; ¢*°) ’

which is equivalent to the right-hand side of (2.7). O

Proof of Theorem 8. Our point of departure is the first two lines in (7.10). By (8.2)
with N =40 and u = —¢3!, respectively with N = 40 and u = —¢*, we get

i(_l)LSn/M qan _ <q227 q187 q40; q40>00 . (q387 q27 q4O; q40)oo
n=0 (_(]31, _qg’ q40)oo (_q397 —q, q40)oo
If we now replace ¢ by ¢*° and choose u = —¢®, v = ¢*, x = ¢!7, and y = ¢" in (8.1), we

obtain
0(q**;q") 0(4"% ¢*°) 0(—¢": ¢*) 0(—4*; ¢*)
o 9(q22; C]4O> 9<q12; q40) 9(_q15; q40) (9(—6]; C]40)
= —q0(¢"* ¢*) 0(¢% ¢*°) 0(—=¢*; ¢*°) 0(—¢"; ™),
and thus the above right-hand side becomes
0(a*;¢") 0(¢"% q*) 0(=q"1¢") 0(=¢: ") (4" ¢*%)

0(=¢;q*) 0(—q*:¢*°) 0(¢"*; ¢*°) 0(—q'%; ¢*°) 7

which is equivalent to the right-hand side of (2.8). O]

Proof of Theorem 9. The point of departure is the first two lines in (7.11). By (8.2)
with N =40 and u = —¢*7, respectively with N = 40 and u = —¢*", we get

- n+2)/4| an __ (q347 q67 q40; q40)oo (q14a q267 q40; q40)oo
Z(_l)t( )/4] gon — q
— (=¥, —* 0% (—¢*,—¢"%¢"")

By (8.1) with N =40, u = —¢'®, v = ¢!, y = ¢*5, and z = ¢'?, we get
0(q™q™) 0(a* ¢™) 0(—¢*":¢™) 0(—a’: ™) = 0(¢™: ¢™) 0(¢%: ¢"°) 0(—¢*'; ¢™°) 0(—q: ¢™°)
= —q0(¢*:q") 0(¢"; 4") 0(—¢”: ¢") 0(—¢* ¢"),
and thus the above right-hand side becomes
0(q™; q*) 0(a%; q*°) 0(—¢*"; ¢*°) 0(=q:¢™°) ("% ¢™)x
A(—a77:4") 01— ) g% ) B 54"
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which is equivalent to the right-hand side of (2.9). O]

Proof of Theorem 10. Our point of departure is the first two lines in (7.12). By (8.2)

with N = 40 and u = —¢?°, respectively by (8.3) with N = 40 and u = —¢*?, we get
% 18 22, 10, 410

Z<_1)L5n/4ann _ (q 47,4754 oo q5 <q387q27q40;q40)oo .
(=%, =" ) (=", —¢*%; %) ws

If we now replace ¢ by ¢*° and choose u = —¢*3, v = —¢*°, x = —¢*, and y = ¢® in
(8.1), we obtain
0(—4*;¢*) 0(¢"% ¢") 0(¢'% ¢*°) 0(=q"; ¢™)
—0(—=¢*;4") 0(¢"% ¢") 0(¢"%; ¢") 0(=¢"; ¢"°)
= —¢"0(—q";¢") 0(¢% ¢*) 0(¢°*; ¢"°) 6(—¢; ¢")
after little manipulation. Thus, the above right-hand side becomes
0(—q*; q") 0(¢'%: ¢") 6(a" ¢*) 0(—4": ") (4" ¢*%)
0(—q"; ¢*°) 0(—q"%; ¢*°) 0(q'%; ¢*°) 0(—q%; ¢*°)

n=0

which is equivalent to the right-hand side of (2.10). O
Proof of Theorem 11. This is a special case of Theorem 36. 0
Proof of Theorem 12. This is a special case of Theorem 36. O

Proof of Theorem 13. As we already said, this is a direct consequence of the Jacobi
triple product identity (4.1): one replaces ¢ by ¢*° and then chooses z = —¢°® there. [

Proof of Theorem 14. We start again with (cf. (7.13))

Z (qn(n+1) o qsn(n+1)+1) _ (q2;q2)oo (_q2; q2>go —q (qlo;qIO)oo (_qlo;ql())go_

n=0
The right-hand side can be rewritten as
(a%q"% (%)% _ (@d*)% (9(q4; ) 0(¢% 4*) )
0(¢* ¢*) 0(¢% ¢*)
If in (8.1) we choose u = ¢°, v = ¢, x = ¢*2, and y = ¢*, then we obtain
0(a"%;q™) 0(a%: ¢™) 0(a": ™) 0(¢% ™) — 0(a"*; ™) 0(a'*: ) 0(¢”; ¢) (a5 4*°)
=q0(¢°:¢*) 0(a* ¢*) 0(¢'":¢*) 0(¢"; 4).

If this is used in (9.1), then we obtain the right-hand side of (2.14) after little manipu-
lation. O]

(P g0 ¢ g0 q0) (9:1)

Proof of Theorem 15. We start again with (cf. (7.14))

1+ (0 + ™) = (05 P (0 D% + (@00 (=% 00)%). (92)

N | —
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Now, we have the relation® (cf. [2, Eq. (8.10.9)])

(6% = (€ D)oo (9.3)
Upon replacement of ¢ by —g, we obtain the variant
(—: ) = (070 (0% €)oo (9-4)

We use the latter identity in (9.2) and get
- (qz ) (—q; q2)co 10. 10 5. 1032
1+ (" +¢™) = ( + ("% 4" (0% ¢'%)%
;( )= (43 4%)o0 (=% ¢%)oc ( Jeo )
1 (9(612;611 )0(q":4"°) (0% 4")o0 0(=4:¢™°) 0(—*1 ¢"°) (=0° ¢")
2\ 0(¢;:4") 0(¢% q"°) (% ¢*°) 0 0(—a% ¢*) (=0 ¢*) (=4 ¢"*) o

+ (4"% 4")oo (=4 qw)i) :

If, in the first expression within parentheses we use (9.4) with ¢ replaced by ¢°, then
the above becomes

(o2, sm?y (4'% )0 (—%; ¢"0)2%
1+Z(q e )_29(61;6110) 0(q; q10)9( ¢®) 0(—q*; )
< (0(¢% ") 0(a*; ¢") 0(—4; ") 0(—¢% ¢"°)

+0(q;4"°) 0(¢% ") 0(=a* ¢°) 0(—4"; q2)> :
We now choose u = —¢, v = ¢, = ¢*, and y = ¢® in (8.1). This gives the relation

0(a*¢'°) 0(a*:a") 0(—q: ¢'°) (=41 4"°) + 0(g: ¢'°) 0(°; ¢™°) 0(—¢% ¢'°) O(—q"; ¢™°)
=0(¢’;4"°) 0(—q*; 4" 0(¢”; ¢'°) 0(—1; ¢"°).
If this is used in the above expression, then we obtain (2.15) after some manipulation,

where (9.4) is again used with ¢ replaced by ¢°. O

Proof of Theorem 16. As we already said, this is a direct consequence of the Jacobi
triple product identity (4.1): one replaces ¢ by ¢! and then chooses z = —¢” there. [

Proof of Theorem 17. We start again with (cf. (7.15))

o0

Z (qn(n—H) + q5n(n+1)+1 _ (qZ; qZ)OO (—(]2; q2)io +q (qlo; qlo)oo (_qlo; ql(])zo‘
n=0

The right-hand side can be rewritten as
(0405 | (@000 _ (@) (005a) 6% a) | (9.5)
(4% ¢%) o 7% 1) oo 7% ¢ \ 0(q2; ¢2) 0(¢5; ¢®) : :

3In combinatorial terms, this is Euler’s theorem that the number of partitions of n into odd parts
equals the number of partitions of n into distinct parts.
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If in (8.1) we choose u = ¢°, v = ¢*, x = ¢°, and y = ¢*, then we obtain
0(a": q*) 0(a*: q™) 0(a":q™) 0(a*: ¢™) — 0(q% ¢™) 0(a"; ¢™) 0(a”; ™) O(q: ¢™)
=q0(¢°:¢) 0(a* ¢*) 0(q"": ¢*) 0(g: 4°).
If this is used in (9.5), then we obtain the right-hand side of (2.17) after little manipu-
lation. O

Proof of Theorem 18. As we already said, this is a direct consequence of the Jacobi
triple product identity (4.1): one replaces ¢ by ¢*° and then chooses z = —¢® there. [

Proof of Theorem 19. As we already said, this is a direct consequence of the Jacobi
triple product identity (4.1): one replaces ¢ by ¢! and then chooses z = —¢° there. [

Proof of Theorem 20. We start again with (cf. (7.16))

N 2 1

(" =g = 2 (@3 0) (—0:07)% = ("3 0) (=05 0)%). (0.6)
n=1

The right-hand side is almost the same expression as the one on the right-hand side of
(9.2), except for a multiplicative factor of 1/2 and a changed sign. Hence, by proceeding

as in the alternative proof of Theorem 15, we arrive at

- (qn2—1 _ q5n2—1) _ ("5 9" (=% ¢"")3,
2q0(q;¢'°) 0(¢*; ¢*°) 0(—a?; ¢*) 0(—q*; ¢*)
x (0(q% ¢") 0(q*; ¢") 0(—q;¢"°) 6(—4% ¢"°)
—0(q;4") 0(¢* ¢"°) 6(—¢* ¢*) O(—q"; q2)> :
We now choose u = —¢3, v = q, x = ¢*, and y = ¢* in (8.1). This gives the relation
0(q* ¢") 0(¢* q"°) 0(—¢* ¢") 0(—q; ¢"°) — 0(—q*; ¢") 0(—¢*; ¢"°) 6(¢*; ¢"°) 0(q; ¢"°)
=q0(—q*q"")0(—1;¢") 0(¢°; ¢"°) 0(q; ¢"°).

If this is used in the above expression, then we obtain (2.20) after some manipulation,
where (9.4) is again used with ¢ replaced by ¢°.

n=1

OJ
Proof of Theorem 21. This is a special case of Corollary 35. 0
Proof of Theorem 22. This theorem is a special case of Theorem 34. O
Proof of Theorem 23. This is a special case of Corollary 35. O
Proof of Theorem 24. This theorem is a special case of Theorem 34. O
Proof of Theorem 25. This theorem is a special case of Theorem 34. O

Proof of Theorem 26. Using (8.2) with N = 8 and u = ¢, the right-hand side of (7.17)
can be simplified into one product. This gives the claimed result. |

Proof of Theorem 27. Using (8.3) with N = 8 and u = ¢*!, the right-hand side of (7.18)
can be simplified into one product. This gives the claimed result. O
OJ

Proof of Theorem 28. This theorem is a special case of Theorem 36.
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Proof of Theorem 29. This theorem is a special case of Theorem 36.
Proof of Theorem 30. This theorem is a special case of Corollary 37.
Proof of Theorem 31. This is a special case of Theorem 38.

O 0O o0 d

Proof of Theorem 32. This is a special case of Theorem 38.

10. PARAMETRIC FAMILIES OF GENERATING FUNCTIONS FOR SEQUENCES OF
SQUARES

Here we present two results on generating functions for sequences of squares that
contain parameters. The first of these results consists in Theorem 34 and Corollary 35,
while the second consists in in Theorem 36 and Corollary 37. For each theorem-corollary
pair the proof is the same, but the theorem covers a parameter range that is different
from that of the corollary. We conclude the section by stating, and proving, a uniform
version of Theorems 31 and 32.

The following theorem covers Theorems 22, 24 and 25.

Theorem 34. Let P be an odd prime power and let a be an odd positive integer relatively
prime to P and less than P. Let (a,)n>0 be the sequence of non-negative integers m
such that 24Pm + a® is a square.

(1) If a = P (mod 3), then

i(—l)“””)/‘”q“n _ (q(P=)/3 q@P+a)/3 4P gP) o)
= (q(Pfa)/6’ q(5P+a)/6; qP)oo : :
(2) If a # P (mod 3), then
i(—l)t(””)/‘”qan _ (q(PFa)/3, g2P=a)/3 gP. oP) 02
—~ (qPHa)/6 qBP=a)/6; ¢P) :

Proof. We have to find all S such that
S*=a*> (mod 24P). (10.3)
We claim that there are the following two cases:
(C1) If a = P (mod 3), then S = a,2P — a,4P + a,6P — a (mod 6P).
(C2) If a # P (mod 3), then S =a,2P + a,4P — a,6P — a (mod 6P).
It should be noted that the condition a < P guarantees that, in both cases, the
congruence classes above are listed in increasing order.

By assumption, a is odd. Hence, also S must be odd and automatically S? = a
1 (mod 8). Consequently, the congruence (10.3) can be reduced to

(S—a)(S+a)=0 (mod6P).

2

Two solutions are immediate, namely S = a (mod 6P) and S = —a (mod 6P). There
are two further possibilities:

S=a(mod 6) and S = —a (mod P), (10.4)
and

S=—a (mod 6) and S =a (mod P). (10.5)
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Under our assumption that a is relatively prime to P, there are no other possibilities.
For, writing P = p° with p an odd prime number, the simultaneous congruences

S =a (mod p*) and S = —a (mod p°)

with a + 8 = e and both a and  positive would imply that 2a is divisible by p, a
contradiction to our assumptions.

It is straightforward to see that, depending on whether a = P (mod 3) or not, the
solutions to (10.4) respectively to (10.5) are given by the second and third option in
(C1) and (C2) above.

We now discuss Case (C1). Here, we have

Z(_l) [(n+2) /4 Z q24P ((6Pk+a)?—a? ) + Z ((6Pk+2P—a)?—a?)
n=0 k=0 k=0
Z qMP ((6 Pk+4P+a)?—a? Z q24P ((6 Pk+6P—a)%—a?)
k= k=0
Z kg3 (3Pk*Fak) 4 Z g3 (BPR P a)k)+§ (P—a)
k=0
Z (3Pk2 +(4P+a)k)+1(2P+a) _ Z(_l) q2(3Pk2 (6P—a)kz)+%(3P—a).
k=0 k=0

Again, sums can be put together in pairs, so that one obtains two sums over all inte-
gers k:

Z(—l)“”””‘”qan = Z (—1)kq2 3Pk Fak) | Z kb BPE+RP-a)k)+}(P=a).
n=0 k=—o00 k=—o00

Now, to each of these sums we apply the Jacobi triple product identity (4.1) to get

Z(_l)L(n+2)/4j ¢ = (q:aP7 q(3P+a)/27 q(3P—a)/2; q3P)OO
n=0
+ q(Pfa)/G (qsp, q(SPfa)/Q, q(P+a)/2; qsp)

(e ohs

The sum of these two products simplifies to the single product on the right-hand side
of (10.1) as is seen by applying (8.2) with N = P and u = ¢®®F+®/S,
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On the other hand, if we are in Case (C2), then we have

Z(_l)t(n+2)/4jqan _ Z(_l) q24p((6Pk+zz —a? _|_ Z q24P( (6Pk+2P+a)%—a?)
n=0 k=0 k=0

S S
_Z(_l)kq24p((6Pk+4P a)?—a? Z q24P ((6Pk+6P—a)?—a?)

k=0 k=0
— Z(_:l)k % 3Pk2+ak +Z % 3Pk2 (2P+a)k)+%(P+a)
k=0 k=0
. (_1)kq%(3Pk2+(4Pfa)k)+é(2Pfa) . Z(_1)kq%(3pk2+(6Pfa)k)+%(3Pfa)'
k=0 k=0

Again, sums can be put together in pairs, so that one obtains two sums over all inte-
gers k:

Z(_l)L(nJrZ)/équan _ Z( 1) %3Pk2+ak)+ Z %3Pk2+(2P+a)k)+é(P+a)_
n=0 k=—o00 k=—o00

Now, to each of these sums we apply the Jacobi triple product identity (4.1) to get

[e.9]

Z(_1>L(n+2)/4j qan — (qu, q(3P+a)/27 q(3P—a)/2; q3p)oo
n=0

i q(P+a)/6 (qu’ q(5P+a)/2’ q(P—a)/2; qSP)

[ ohs

The sum of these two products simplifies to the single product on the right-hand side
of (10.2) as is seen by applying (8.2) with N = P and u = ¢®"~2/6. O

The following corollary covers Theorems 21 and 23.

Corollary 35. Let P be an odd prime power and let a be an odd positive integer
relatively prime to P with P < a < 2P. Let (a,)n,>0 be the sequence of non-negative
integers m such that 24Pm + a? is a square.

(1) If a = P (mod 3), then

o)

Z(_l)t(n+2)/4ann _ (Q(P—a)/37q(2P+a)/3,qP;qP)oo. (10.6)
vt (¢(P=a)/6_qBP+a)[6. ¢P)
(2) If a # P (mod 3), then
0 (P+a)/3 ,(2P—a)/3 P._ P
Z(_l)t5n/4jqan _ (q — g 4 54 )oo (107)
e (q(P+a)/6_q(5P=a)[6. P

Proof. If one looks through the arguments of the proof of Theorem 34, then one sees
that everything can be copied verbatim, until it comes to the description of the two
cases to be considered: we have to adapt the order of the congruence classes, as shown
below.

(C1’) If a = P (mod 3), then S =2P —a,a,6P — a,4P + a (mod 6P).

(C2)) If a # P (mod 3), then S = a,4P — a,2P + a,6P — a (mod 6P).
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While in Case (C1’), the rest of the proof can be copied, in Case (C2’) this requires
a change in sign in the original sum from (—1)L+2/4) o (—1)n/4], O
The following theorem covers Theorems 11, 12, 28 and 29.

Theorem 36. Let P be an odd prime power and let a be a positive integer relatively
prime to P and less than P/2. Let (a,)n>0 be the sequence of non-negative integers m
such that 3Pm + a? is a square.

(1) If a = P (mod 3), then

i<_1)L(n+2)/4J ¢ = (CI(4P_40L)/37 qP+ia)/3 2P ") (108)
v (¢BP—20)/3 ¢(P+20)/3; 2P _
(2) If a # P (mod 3), then
i(_l)t(nH)Mann _ (q(4p(4;ia)/23;%(2P(;1a;/j/gzp’ M) o (109)
+2a —2a .
— (q q $ %) oo
Proof. We have to find all S such that
S*=a* (mod 3P).
As before, there are two cases:
(C1) If a = P (mod 3), then S =a, P+ a,2P — a,3P — a (mod 3P).
(C2) If a # P (mod 3), then S =a,P —a,2P + a,3P — a (mod 3P).
We now discuss Case (C1). Here, we have
Z(—l)t("“)/4J ¢ = Z(_1)kq$((3Pk+a)2—a2) + Z(_l)kqﬁ((fiPk—i-P—ka)Q—aZ)
n=0 k=0 k=0
i L (3Pk+2P—a)%—a? i L ((3Pk+3P—a)2—a?)
35 ( 35 (
k=0 k=0
io: k 3Pk2+2ak + Z k 3Pk2+2 (P+a)k+ % (P+2a)
k=0
_ Z k 3sz2+2 2P—a)k+%(P—a) _ i(_1)kzq3Pk2+2(3P—a)k+3P—2a.
k=0

Again, sums can be put together in pairs, so that one obtains two sums over all inte-
gers k:

Z(_l)\_(n+2)/4jqan _ Z ( 1)k 3Pk;2+2ak+ Z k 3Pk2+2(P+a)k+ (P+2a)
n=0 k=—oc0 k=—00

Now, to each of these sums we apply the Jacobi triple product identity (4.1) to get

o0

Z(_l)L(n+2)/4j qa" _ (q6P7 q3P+2a’ qSP—Qa; qGP)

oo
n=0

+ g PHRaB (5P pP2e gP=2e, 46F)

o0
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The sum of these two products simplifies to the single product on the right-hand side
of (10.8) as is seen by applying (8.2) with N = 2P and u = ¢®®"~2%/3,

On the other hand, if we are in Case (C2), then we have

Z(_l)L(n+2)/4jqan _ Z(_l)kqé((?»Pk—&-a)Q—aQ) + Z(_l)kqﬁ((?)Pk—i-P—a)g—aQ)
n=0 k=0 k=0
Z % (3Pk+2P+a)?—a? Z ip (3Pk+3P—a)?—a?)
k=0 k=0
k 3Pk2+2ak k: 3Pk2+2 P—a)k+3(P—2a)
=2 (-1 + Z
k=0
2 a a 2 —a —4a
_ Z 1)kg3Pk*+22P+ Yk+4(P+a) _ Z(_l)kq:wk +2(3P—a)k+3P—2a_
k=0
Again, sums can be put together in pairs, so that one obtains two sums over all inte-
gers k:
n an 2494 2 a —2a
Z(_DL( +2)/4Jq _ Z ( 1)k 3Pk2+2 k_|_ Z k 3Pl~c +2(P—a)k+3(P-2 ).
n=0 k=—00 k=—o00

Now, to each of these sums we apply the Jacobi triple product identity (4.1) to get

[e.o]

Z(_1>[(n+2)/4j qan _ (q6P’ q3P+2a’ q3P—2a; qGP)

oo
n=0

4 q(P—2a)/3 (q3P’ P2 P2 o )

The sum of these two products simplifies to the single product on the right-hand side
of (10.8) as is seen by applying (8.2) with N = 2P and u = ¢®F+22/3, O

The following corollary covers Theorem 30.

Corollary 37. Let P be an odd prime power and let a be a positive integer relatively
prime to P with P/2 < a < P. Let (a,),>0 be the sequence of non-negative integers m
such that 3Pm + a® is a square.

(1) If a = P (mod 3), then

i(_l)b”"/@q _ (q(4P—4a)/3’ g2P+1a)/3 2P, 0*" ) (10.10)
. (q(BP—20)/3 ¢(P+20)/3. (2P _
(2) If a # P (mod 3), then
i JLn2)/4] gan _ _ (qUPaa)ss, qBPAD, 2P ) o (10.11)
— (qBP+20)/3 q(P=20)/3; 2P

Proof. Here, one goes through the proof of Theorem 36. Everything can be copied,
except that the description of the two cases to be considered now reads as shown
below, and that this requires a modification of the sign in Case (C1’).

(C1’) If a = P (mod 3), then S = a,2P —a, P+ a,3P — a (mod 3P).

(C2') If a # P (mod 3), then S =P —a,a,3P —a,2P + a (mod 3P). O
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The following theorem covers Theorems 31 and 32.

Theorem 38. Let a be 1 or 3. Furthermore, let (a,),>0 be the sequence of non-negative
integers m such that 16m + a* is a square. Then

D 0" = (05 6%)00 (=0 ¢%) o0 (=07 ¢F) - (10.12)
n=0

Proof. We have to find all S such that
S?=a* (mod 16),

or, equivalently,
(S—a)(S+a)=0 (mod 16).

Since a is odd, only one of the factors N — a and N + a can be divisible by 4. Hence,
either S = a (mod 8) or S = —a (mod 8). Consequently, we have

qa‘" = Z q%ﬁ((8k+a)2—a2) + Z q%ﬁ((8k—a)2—a2)
n=0 k=0 k=1
’ta 2_q 24,4
D IUAREED SUEE D DI
The proof is completed by applying the Jacobi triple product identity (4.1). ]

11. CONSEQUENCES AND OPEN PROBLEMS

In this section, we record a consequence of Theorem 1 that is inspired by earlier
work of the Andrews and the second author [1]. Furthermore, we end by reminding the
reader of a conjecture from [3] related to Theorems 1-6.

In [1], the function M (n) is defined as the number of partitions of n in which k is
the least positive integer that is not a part and there are more parts > k than there
are parts < k. For example, if n = 18 and k = 3 then we have Mj3(18) = 3 because the
three partitions in question are

5+5+5+2+1, 64+5+4+2+1, and 7+4+4+2+1.

Let A(n) be the number of the partitions of n into parts not congruent to 0, 7, 8,
13, 15, 20, 22, 27, 28 (mod 35) and the parts congruent to 4, 9, 11, 16, 19, 24, 26, 31
(mod 35) have two colors.

We have the following corollary of Theorem 1.

Corollary 39. Let k and n be positive integers. With a,, and t(n) as in Theorem 1, we
have

DL YD (A —Bi—1)/2) —d(n) | =D (1) My(n —ay),
j=—(k=1) j=0

where

D ifn=a
M;{( DA, if 0= a,

0, otherwise.
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Proof. Elementary generating function calculus gives

1
ZA N Y e (1L1)

(:0% %) (6%, %, 4% @%; 0o

Similarly, it is not difficult to see that the generating function for the numbers My (n)
is given by

) ) k
q(2>+(k+1)n [n B 1}
Mi(n)q" = -_ , 11.2
; =) ; (;q)n  [F—1 (11.2)
where
1-q)1—-¢*) - (1-g") .
n , f0<k<n,
R e B e e o ey
0, otherwise,
is the usual ¢g-binomial coefficient.
Euler’s pentagonal number theorem

arises from Jacobi’s triple product identity (4.1) by replacing ¢ by ¢*> and putting
z = ¢q. Andrews and the second author [1] proved the following truncated form of
Euler’s identity:

-1 k—1 k +(k+1)n 1
(-1) Z (—1)ngnGn=1/2 — (_1)k-1 +Z e { - 1} (11.4)
=—(k-1) n==k

Multiplying both sides of (11.4) by (11.1), and using Theorem 1 and (11.2), we obtain

n=—(k—1) n=0

= (i(—l)t("’q“”> (i Mk(n)Q”> :

The assertion of the corollary now follows by comparing coefficients of ¢ on both sides
of this equation. O

According to (11.4), for k > 0, the coefficients of ¢" in the series

k

are all zero for 0 < n < k(3k + 1)/2, and for n > k(3k + 1)/2 all the coefficients are
positive. Related to this result on truncated pentagonal number series, we remark that
there is substantial numerical evidence that there is in fact a stronger result.
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Conjecture 40. For k > 0, the coefficients of q" in the series

k
B 1 o
(—1)Ft . > (=PI 1] (0.¢% 4747
P G==(k-)

(—1)* = e .
= —1)IfBIHN/2 (1 — BT
(¢%,6% 4", 6% 4")ec ]Zk( ) ( )
are all zero for 0 <n < k(3k+1)/2 andn =k(3k+1)/2+1. Forn = k(3k+1)/2 and
n > k(3k 4+ 1)/2 + 2 all the coefficients are positive.

Remark. The equality above follows easily from (11.3) and little manipulation.

If we assume Conjecture 40, then we immediately deduce that the partition functions
A(n) satisfies the following infinite families of linear inequalities.

Conjecture 41. For k > 0, we have
k

DR DY (1AM —(35—1)/2) —d(n) | =0,

j=—(k—=1)
with strict inequalities if n = k(3k +1)/2 orn > k(3k +1)/2 + 2.

To conclude the article, we want to recall a conjecture from [3] that is very similar
in appearance to Conjecture 40 and is related (again via (11.3)) to Theorems 1-6.

Conjecture 42. For k> 0 and S € {1,2,3,4,5,6}, the coefficients of ¢" in the series

(1" (Vi TGI8 (1 5418
(¢, 4% ¢°) (=1)q (1 q )
q,97,9" )oo <

Jj=k

and
o0

(=1)* i Ti(i+1)/2—358 2j+1)S
— ) (~1)q 3(G+1)/2=7 (1 — ¢t )
(¢, 4% ¢°)oo 4

i=k
are non-negative.
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