
RISC-Linz

Research Institute for Symbolic Computation

Johannes Kepler University

A-4040 Linz, Austria, Europe

On the Probabilistic Model Checking

of a Retrial Queueing System

with Unreliable Server, Collision,
and Constant Time Impatience

Wolfgang SCHREINER and János SZTRIK

(July 2019)

RISC-Linz Report Series No. 19-11

Editors: RISC-Linz Faculty
B. Buchberger, R. Hemmecke, T. Jebelean, T. Kutsia, G. Landsmann, P. Paule,
V. Pillwein, N. Popov, J. Schicho, C. Schneider, W. Schreiner, W. Windsteiger,
F. Winkler.

Supported by: Austrian-Hungarian Bilateral Cooperation in Science and Technology
project 2017-2.2.4-TeT-AT-2017-00010 and the Aktion sterreich-Ungarn project 101u7.

On the Probabilistic Model Checking of a
Retrial Queueing System with Unreliable Server,

Collision, and Constant Time Impatience∗

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

János Sztrik
Department of Informatics Systems and Networks, Faculty of Informatics

University of Debrecen, Debrecen, Hungary
sztrik.janos@inf.unideb.hu

July 16, 2019

Abstract

We report on initial experiments with the automated analysis of a finite-source queueing
system with an unreliable server and collisions of service requests that cause clients to be
moved to an orbit until they can be served. However, clients remain in the obit only for
some maximum amount of time before they run out of patience and unsuccessfully abort
their service request. In contrast to earlier investigations, the duration of their patience is
not exponentially distributed but constrained by a constant time bound, which imposes a
problem for both their manual and automatic analysis. In this paper we address how such
systems can be nevertheless approximately analyzed to a certain extent with the help of the
probabilistic model checker PRISM.

∗Supported by the Austrian-Hungarian Bilateral Cooperation in Science and Technology project 2017-2.2.4-TeT-
AT-2017-00010 and the Aktion Österreich-Ungarn project 101öu7.

1

Contents

1 Introduction 3

2 The System Model 4

3 Experimental Evaluation 8

4 Conclusions 14

A The PRISM Specification 16

A.1 The System Model . 16
A.2 The CSL Queries . 20

2

1 Introduction

This paper presents some initial work on the automatic analysis of retrial queueing systems with
impatience [10] where service requests may be prematurely aborted, if customers run out of
patience when waiting to be served. Typically the duration of patience has been assumed to
be exponentially distributed, which allows the manual and automatic analysis of corresponding
systems. In contrast, for patience with constant time bounds, it seems that only simulation
techniques are applicable, as we have also used in other contexts [6]. The goal of this work is to
investigate how far also tools not based on simulation, such as the probabilistic model checker
PRISM [5, 7], can be applied for that purpose.

In various previous work (see e.g. [9]), we have successfully applied PRISM to the performance
modeling of various kinds of retrial queueing systems on the basis of Continuous Time Markov
Chains (CTMCs) where transition times are exponentially distributed. However, there have also
been some recent third-party extensions to PRISM that deal with other types of distributions:

• fdPRISM [3, 1] is an experimental extension of PRISM that supports “fixed delays”, exactly
what we need. Unfortunately, however, this extension only supports a very restricted form
of analysis, where the accumulated reward of a system is computed until a certain target
state is reached. This kind of analysis is too rigid for our goals; also since 2016 the
development of the system seems to be frozen.

• PRISM GSMP [2, 8] extends PRISM by Generalized Semi-Markov Processes (GSMPs)
which may be seen as CTMCs with any number of concurrently active state-changing
“events” at any given time. These events may follow various kinds of distributions,
in particular also the deterministic “Dirac” distribution which takes a single “timeout”
value t > 0. While this is indeed exactly what we need, the PRISM GSMP software
actually only supports the analysis of “Continuous Time Markov Chains with Alarms”
(ACTMCs) where there is at most one non-exponentially distributed event active in every
given state. Since our scenario involves multiple customers each of which has a separate
“patience timeout”, this restriction is too strong for our purpose.

Since therefore none of these extensions is thus applicable for the scenarios we envision,
we have to investigate how else we can deal in PRISM with constant time bounds. Here the
PRISM FAQ [7] gives in the question “How can I add deterministic time delays to a CTMC
model?” the following crucial advice:

All delays in a CTMC need to be modeled as exponential distributions. This is
what makes them efficient to analyze. If you included a transition whose delay was
deterministic, i.e. which always occurred after exactly the same delay, the model
would no longer be a CTMC.

One solution to this, if your model require such a delay, is to approximate a determin-
istic delay with an Erlang distribution (a special case of a phase-type distribution).
. . .

3

Repair

Clients

Server

Orbit

· · ·

N

2

1

...

no

ν

λ

γ2γ0, γ1

µ
busy?

T

yes

Figure 1: The System Model

In a nutshell, the advice is to equip the model with a particular “alarm clock”, an automaton
that triggers an action after a sequence of k > 0 transitions each of which is exponentially
distributed with mean time t/k; consequently the time after which the alarm “rings” follows
an Erlang distribution with mean time t and shape k. The special case k = 1 represents the
exponential distribution; the larger k is, the more “deterministic” the time variable has value t.
The trade-off, however, is that such an alarm clock causes a “blow-up” of the the size of the
model by a factor k, with correspondingly harsh consequences on the time and space needed for
analyzing the model.

In this paper, we will investigate how far it makes sense to follow this advice for the scenario
we have in mind. The rest of the paper is structured as follows: in Section 2 we describe in
detail our abstract system model and its concrete realization in PRISM; in Section 3, we show the
results of some initial experiments with analyzing the model; Section 4 presents our preliminary
conclusions. Appendix A gives the full definitions of the PRISM model and of the queries used
to analyze this model.

2 The System Model

We consider a system with the following characteristics (see Figure 1), a version of the system
presented in [4] generalized to consider the impatience of clients:

• There are N clients that request being served at rate λ.

• A server processes client requests at rate µ; after a client has been served, it may start
another service request.

4

• If a client finds upon a newly generated request the server busy with serving another client,
a collision occurs and both clients move to an orbit.

• A client in the orbit retries its service request at rate ν; also a retrial may cause a collision
in the server, which moves the currently served client into the orbit.

• If a client in the orbit does not find the server ready to accept its service request after T

time units, it aborts the current request and becomes ready to start another one.

• If the server is idle, it may fail with rate γ0. If the server is busy, it may fail with rate γ1;
this moves the currently served client to the orbit.

• While being in the failure state, the server does not serve clients; and all newly arriving
requests go into the orbit. A failed server is repaired with rate γ2 and then becomes ready
to serve clients again.

The parameters of the model are therefore as follows:

Parameter Interpretation
N number of clients
λ rate of service requests (arrival rate)
µ rate of service completions (departure rate)
ν rate of service retrials (retrial rate)
T maximum duration of service retrial (patience duration)
γ0 failure rate in idle state
γ1 failure rate in busy state
γ2 repair rate

Here all rates denote the parameters of exponential distributions; however, T is a constant
(deterministic) time.

In PRISM, we can approximate constant time T by an Erlang distribution with shape K as
generated by the following model (adapted from the example in the FAQ section of [7]):

ctmc

const double T = 10;

const int K;

module alarm

t: [0..K] init 1;

a: [0..1] init 0

[tick] t < K -> K/T : (t’ = t+1);

[alarm] t = K -> K/T : (a’ = 1);

endmodule

Analyzing this model with the CSL query

const double T0;

P=? [F<=T0 a=1]

5

Figure 2: Erlang Distribution

we can determine the probability that the transition alarm is fired at time T0. As Figure 2
demonstrates, the more K grows, the more “deterministically” T0 approximates the model con-
stant T = 10. The case K = 1 represents the exponential distribution.

Using these ideas, Appendix A now gives the specification of a PRISM model for the system
sketched above. In essence, this model contains a server module and N client modules where
server and clients are synchronized by shared transitions.

The server module can be in one of four states indicated below:

module Server

s: [0..3] init 0; // 0: idle, 1: busy, 2: collision, 3: failed

// evict server due to collision

[evict] s = 2 -> infinity : (s’ = 0);

// evict server due to failure and then repair it

[evict] s = 0 -> gamma0 : (s’ = 3);

[evict] s = 1 -> gamma1 : (s’ = 3);

[repair] s = 3 -> gamma2 : (s’ = 0);

// interaction with client 1

[source1] N >= 1 & s = 0 -> (s’ = 1);

[orbit1] N >= 1 & s = 0 -> (s’ = 1);

[exit1] N >= 1 & s = 1 -> mu : (s’ = 0);

[scoll1] N >= 1 & s = 1 -> (s’ = 2);

[ocoll1] N >= 1 & s = 1 -> (s’ = 2);

[scoll1] N >= 1 & s = 3 -> true;

...

endmodule

In the “idle” state s = 0 the server may accept by a transition sourceC a request from client C

6

in the source or by a transition orbitC a request from that client in the orbit, thus switching to
the “busy” state s = 1. In that state, the server may by transition exitC successfully process that
request or experience by transitions scollC or ocollC collisions with requests from other clients
in the source or in the orbit, thus switching to the “collision” state s = 2. In that state, an “infinity
rate” transition s = 2 is possible that will subsequently cause by a transition evict the “eviction”
of the currently served client from the server (see below); also a transition scoll1 is possible that
corresponds to the failed attempt of a new request to enter the server. Evictions also occur when
the server fails (in either the idle or the busy state), by which the server switches to the “failure”
state s = 3. The server remains in that state in which it does not accept any requests until it is
repaired and then becomes idle again, thus accepting new requests.

Every client is an instance of the following module for Client 1:

module Client1

c1: [0..2] init 0; // 0: source, 1: server, 2: orbit

t1: [0..K] init 0; // tick counter when in orbit

// interaction with server

[source1] c1 = 0 -> lambda : (c1’ = 1);

[scoll1] c1 = 0 -> lambda : (t1’ = 1);

[orbit1] c1 = 2 -> nu : (c1’ = 1) & (t1’ = 0);

[ocoll1] c1 = 2 -> nu : true;

[exit1] c1 = 1 -> (c1’ = 0);

// go to orbit due to collision or failure

[evict] c1 = 0 & t1 > 0 -> (c1’ = 2);

[evict] c1 = 0 & t1 = 0 -> true;

[evict] c1 = 1 -> (c1’ = 2) & (t1’ = 1);

[evict] c1 = 2 -> true;

// in orbit countdown to abortion

[tick1] c1 = 2 & t1 < K -> K/T : (t1’ = t1+1);

[abort1] c1 = 2 & t1 = K -> K/T : (c1’ = 0) & (t1’ = 0);

endmodule

When in the “source” state c1 = 0, the client may generate a request, which causes either by
transition source1 is accepted by the idle server or by transition scoll1 causes a collision there.
In case of acceptance, the client switches to the “server” state 1, from which it expects to switch
after the service by transition exit1 back to the source state c1 = 0. In the case of a collision, the
client sets the timer t1 to 1 which differentiates the client that caused the collision from all the
other ones.

As shown above, when a server experiences a collision it performs a transition evict which is
synchronized with all clients. The client I with cI = 0 and tI > 0 that caused the collsion moves
from the source to the “orbit” state s = 2 as well as the client I with cI = 1 that was just being
served (also setting its timer tI to 1).

When Client 1 is in the orbit state c1 = 2, it attempts to enter the server by transition orbit1

but may also cause by transition ocoll1 a collision in the server. Simultaneously, however, by
the transition tick1 the “impatience” timer “ticks” incrementing the value t1. When that timer

7

reaches the value K , the transition ıabort1 aborts the request and the client moves back to the
source.

A critical aspect in above model is that each client indeed requires its own “alarm timer” which
is appropriately set when the client moves to the orbit and which causes upon “ringing” to move
the client out of the orbit again. Thus indeed it does not suffice to have a single module that
just counts the number of clients that are in the source respectively in the orbit but every client
requires its own state. Having N clients with S possible states thus yields a system with S

N

states, i.e., the size of the system grows exponentially with the number of clients. This will be
the major limit in the automatic analysis of the system by the PRISM model checker described
in Section 3.

Finally, to perform certain kinds of such an analysis, the system is also equipped with two
“transition rewards”:

rewards "NumExit"

[exit1] true : 1;

[exit2] true : 1;

...

endrewards

rewards "NumAbort"

[abort1] true : 1;

[abort2] true : 1;

...

endrewards

The transition reward E := NumExit “counts” every successful completion of a request by the
server while A := NumAbort counts every premature abortion due to a client running out of
patience. The long term ratio E/(E + A) = 1/(1 + (A/E)) thus determines the probability that a
client request is successfully completed.

3 Experimental Evaluation

In the following, we analyze the model introduced in Section 2 in PRISM. For this we mainly
use the CSL query

const int i;

"Pi": S=? [i = min(c1,1)+min(c2,1)+min(c3,1)+min(c4,1)+min(c5,1)

+min(c6,1)+min(c7,1)+min(c8,1)+min(c9,1)+min(c10,1)];

which calculates the probability P(i) that there are i clients not in the source, i.e., that they are
either in the orbit or being served. We apply for this analysis the PRISM “Hybrid” engine with
the “Jacobi” solver using the relative termination criterion ǫ = 0.01 (which is much larger than
the standard value ǫ = 10−6; this value however lets the computation time explode without really
significantly improving the accuracy of the results).

This evaluation is partially motivated by the corresponding data given in [4]; however, they
are not comparable because in that paper numerical calculations were performed for a system
without impatience on the basis of a manually derived equation system for N = 100. In our

8

model with constant time patience, the calculation for a single data point already with N = 10

and K = 3 takes one to two minutes; a computation with larger model sizes is completely out
of reach (in particular also due to memory limitations, for N = 10 and K = 5 the models need
multiple GB of memory).

Subsequently we use therefore (variations of) the following set of parameters:

N = 6, λ = 0.01, µ = 0.06, ν = 0.05, γ0 = 0.006, γ1 = 0.006, γ2 = .06,
T = 50, K = 5.

For these parameters the model has about 7 · 105 states and the computation of a data point takes
only 1–2 seconds (for K = 9, the model already has about 7 · 106 states and the computation of
a data point takes about 20 seconds).

Consequently we start our investigation by analyzing in Figure 3 the effect of the shape K of the
Erlang distribution on the analysis of the model. The upper diagram determines the probability
P(i) of a client being in the system; the lower diagram determines by the CSL query

"NE": R{"NumExit"}=? [S] ;

"NA": R{"NumAbort"}=? [S] ;

"PE": 1/(1+("NA"/"NE"));

the probability PE that a client request is not aborted due to impatience, i.e., that it is successfully
served. While for K < 5 the results show significant differences, they are indeed quite close
for K ≥ 5. This justifies the use of the manageable value K = 5 in the remaining experiments,
which reasonably well approximates a constant time (see Figure 2).

In Figure 4, we investigate the effect of varying arrival rate λ, departure rate µ, and retrial
rate ν. We see that the probabilities all form normal distributions with mean values shifted as
expected according to the modifications of the rates (higher arrival rates lead to a larger number
of clients in the system, higher departure rates lead to a lower number, higher retrial rates again
lead to a higher number).

Likewise, Figure 4 investigates the effects of failure rates γ0 and γ1 and repair rate γ2. The
effects of the two failure rates are clearly different: increasing the idle failure rate γ0 has very
little effect, while increasing the busy failure rate γ1 reduces the probability on the left end
and increases the probability of the mean value; also increasing the repair rate γ2 has a similar
effect. These results do not really agree well with those of [4] where for N = 100 shifts in the
distributions towards different mean values are reported. The difference may be due to our small
value N = 6, the choices of the other parameters, to subtle differences between our models, and,
of course, ultimately to the fact that our model considers impatience while theirs does not. Here
more investigations are required.

Figure 6 now investigates the core effect of this paper, the impatience of clients. To exhibit
the effect of the Erlang distribution, we give figures for K = 1 (exponential distribution, upper
diagram) as well as for K = 5 (middle diagram) and K = 9 (lower diagram). The comparison of
the diagrams shows that indeed the exponential distribution shows a behavior that is significantly
different from the Erlang distributions with K ≥ 5; however, while K = 9 also differs from K = 5,
the differences are very minor. From these figures we clearly see that, the shorter the patience
span T of a client is, the higher the probability is that the client leaves the system (because the
request is not served). While for patience spans T ≥ 50, the differences become smaller, they
are still clearly visible.

9

Figure 3: Effects of Erlang shape K

10

Figure 4: Effect of system rates λ, µ, ν

11

Figure 5: Effect of failure/repair rates γ0, γ1, γ2

12

Figure 6: Effect of patience span T for K = 1, K = 5, and K = 9

13

4 Conclusions

We have investigated how the probabilistic model checker PRISM can be used to model retrieval
queueing systems with impatient clients whose patience span is a fixed constant. While prin-
cipally possible, this approach requires to model the state of every client with an independent
“patience timer”, an automaton whose transition time follows an Erlang distribution; the ap-
proach does therefore not scale but is limited to systems of small size. Nevertheless this work
may serve as a starting point for corresponding analytical investigations.

A generally open point is the validation of the presented PRISM model, which may have subtle
differences or errors with respect to our informal intentions; here a comparison with results
derived from alternative models (e.g., by applying numerical simulation) would be helpful.

References

[1] fdPRISM. 2018. url: https://www.fi.muni.cz/~xrehak/fdPRISM/.

[2] Ľuboš Korenčiak. “Parameter Synthesis in Continuous-Time Stochastic Systems”. PhD
thesis. Masaryk University, Faculty of Informatics, Brno, 2018. url: https://is.muni.
cz/th/zaes9.

[3] Ľuboš Korenčiak, Vojtěch Řehák, and Adrian Farmadin. “Extension of PRISM by Synthe-
sis of Optimal Timeouts in Fixed-Delay CTMC”. In: Integrated Formal Methods. Ed. by
Erika Ábrahám and Marieke Huisman. Vol. 9681. Lecture Notes in Computer Science.
Springer, 2016, pp. 130–138. isbn: 978-3-319-33693-0. doi: 10.1007/978-3-319-
33693-0_9.

[4] A. Kuki, T.Berczes, J.Sztrik, and A. Kvach. “Numerical Analysis of Retrial Queueing Sys-
tems with Conflict of Customers and an Unreliable Server”. In: Journal of Mathematical

Sciences 237.5 (Mar. 2019), pp. 673–683. doi: 10.1007/s10958-019-04193-1.

[5] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-time Systems”. In: Proc. 23rd International Conference on Computer Aided Verifi-

cation (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in
Computer Science. Springer, 2011, pp. 585–591. doi: 10.1007/978-3-642-22110-
1_47.

[6] Hamza Nemouchi and János Sztrik. “Performance Evaluation of Finite-Source Cognitive
Radio Networks with Collision Using Simulation”. In: 8th IEEE International Conference

on Cognitive Infocommunications (CogInfoCom 2017). Debrecen, Hungary, September
11–14, 2017, pp. 127–131. doi: 10.1109/CogInfoCom.2017.8268228.

[7] David A. Parker, ed. PRISM — Probabilistic Symbolic Model Checker. http://www.
prismmodelchecker.org. Department of Computer Science, University of Oxford, UK.
2013.

[8] PRISM GSMP. 2019. url: https://github.com/muhrik/prism-gsmp.

14

[9] Wolfgang Schreiner, Tamas Berczes, and Janos Sztrik. “Probabilistic Model Checking on
HPC Systems for the Performance Analysis of Mobile Networks”. In: Annales Mathemat-

icae et Informaticae 43 (2014), pp. 123–144. url: http://ami.ektf.hu/uploads/
papers/finalpdf/AMI_43_from123to144.pdf.

[10] Patrick Wüchner, János Sztrik, and Hermann de Meer. “Finite-source M/M/S retrial queue
with search for balking and impatient customers from the orbit”. In: Computer Networks

53.8 (2009). Performance Modeling of Computer Networks: Special Issue in Memory of
Dr. Gunter Bolch, pp. 1264–1273. issn: 1389-1286. doi: 10.1016/j.comnet.2009.
02.015.

15

A The PRISM Specification

A.1 The System Model

// --

// ConstantTime.prism

// constant time delay (CTMC version with Erlang approximation)

//

// a finite source system with a single non-reliable server and

// customer impatience with constant time

// (here approximated by Erlang distribution)

//

// (c) 2019, Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

// Research Institute for Symbolic Computation, Johannes Kepler

// University, Linz, Austria (https://www.risc.jku.at)

// --

// continuous time markov chain (ctmc) model

ctmc

// --

// parameters

// --

// number of clients (maximum 10, otherwise model has to be adapted)

const int N;

const double lambda; // arrival rate

const double mu; // service rate

const double nu; // retrial rate

const double gamma0; // server failure rate in idle state

const double gamma1; // server failure rate in busy state

const double gamma2; // repair rate

const double T; // duration of patience

const int K; // shape of Erlang distribution (=1: exponential)

const double infinity = 9999; // infinity rate

// --

// system model

// --

module Server

s: [0..3] init 0; // 0: idle, 1: busy, 2: collision, 3: failed

// evict server due to collision

[evict] s = 2 -> infinity : (s’ = 0);

// evict server due to failure and then repair it

[evict] s = 0 -> gamma0 : (s’ = 3);

[evict] s = 1 -> gamma1 : (s’ = 3);

[repair] s = 3 -> gamma2 : (s’ = 0);

16

// interaction with client 1

[source1] N >= 1 & s = 0 -> (s’ = 1);

[orbit1] N >= 1 & s = 0 -> (s’ = 1);

[exit1] N >= 1 & s = 1 -> mu : (s’ = 0);

[scoll1] N >= 1 & s = 1 -> (s’ = 2);

[ocoll1] N >= 1 & s = 1 -> (s’ = 2);

[scoll1] N >= 1 & s = 3 -> true;

// interaction with client 2

[source2] N >= 2 & s = 0 -> (s’ = 1);

[orbit2] N >= 2 & s = 0 -> (s’ = 1);

[exit2] N >= 2 & s = 1 -> mu : (s’ = 0);

[scoll2] N >= 2 & s = 1 -> (s’ = 2);

[ocoll2] N >= 2 & s = 1 -> (s’ = 2);

[scoll2] N >= 2 & s = 3 -> true;

// interaction with client 3

[source3] N >= 3 & s = 0 -> (s’ = 1);

[orbit3] N >= 3 & s = 0 -> (s’ = 1);

[exit3] N >= 3 & s = 1 -> mu : (s’ = 0);

[scoll3] N >= 3 & s = 1 -> (s’ = 2);

[ocoll3] N >= 3 & s = 1 -> (s’ = 2);

[scoll3] N >= 3 & s = 3 -> true;

// interaction with client 4

[source4] N >= 4 & s = 0 -> (s’ = 1);

[orbit4] N >= 4 & s = 0 -> (s’ = 1);

[exit4] N >= 4 & s = 1 -> mu : (s’ = 0);

[scoll4] N >= 4 & s = 1 -> (s’ = 2);

[ocoll4] N >= 4 & s = 1 -> (s’ = 2);

[scoll4] N >= 4 & s = 3 -> true;

// interaction with client 5

[source5] N >= 5 & s = 0 -> (s’ = 1);

[orbit5] N >= 5 & s = 0 -> (s’ = 1);

[exit5] N >= 5 & s = 1 -> mu : (s’ = 0);

[scoll5] N >= 5 & s = 1 -> (s’ = 2);

[ocoll5] N >= 5 & s = 1 -> (s’ = 2);

[scoll5] N >= 5 & s = 3 -> true;

// interaction with client 6

[source6] N >= 6 & s = 0 -> (s’ = 1);

[orbit6] N >= 6 & s = 0 -> (s’ = 1);

[exit6] N >= 6 & s = 1 -> mu : (s’ = 0);

[scoll6] N >= 6 & s = 1 -> (s’ = 2);

[ocoll6] N >= 6 & s = 1 -> (s’ = 2);

[scoll6] N >= 6 & s = 3 -> true;

// interaction with client 7

[source7] N >= 7 & s = 0 -> (s’ = 1);

[orbit7] N >= 7 & s = 0 -> (s’ = 1);

[exit7] N >= 7 & s = 1 -> mu : (s’ = 0);

[scoll7] N >= 7 & s = 1 -> (s’ = 2);

17

[ocoll7] N >= 7 & s = 1 -> (s’ = 2);

[scoll7] N >= 7 & s = 3 -> true;

// interaction with client 8

[source8] N >= 8 & s = 0 -> (s’ = 1);

[orbit8] N >= 8 & s = 0 -> (s’ = 1);

[exit8] N >= 8 & s = 1 -> mu : (s’ = 0);

[scoll8] N >= 8 & s = 1 -> (s’ = 2);

[ocoll8] N >= 8 & s = 1 -> (s’ = 2);

[scoll8] N >= 8 & s = 3 -> true;

// interaction with client 9

[source9] N >= 9 & s = 0 -> (s’ = 1);

[orbit9] N >= 9 & s = 0 -> (s’ = 1);

[exit9] N >= 9 & s = 1 -> mu : (s’ = 0);

[scoll9] N >= 9 & s = 1 -> (s’ = 2);

[ocoll9] N >= 9 & s = 1 -> (s’ = 2);

[scoll9] N >= 9 & s = 3 -> true;

// interaction with client 10

[source10] N >= 10 & s = 0 -> (s’ = 1);

[orbit10] N >= 10 & s = 0 -> (s’ = 1);

[exit10] N >= 10 & s = 1 -> mu : (s’ = 0);

[scoll10] N >= 10 & s = 1 -> (s’ = 2);

[ocoll10] N >= 10 & s = 1 -> (s’ = 2);

[scoll10] N >= 10 & s = 3 -> true;

endmodule

module Client1

c1: [0..2] init 0; // 0: source, 1: server, 2: orbit

t1: [0..K] init 0; // tick counter when in orbit

// interaction with server

[source1] c1 = 0 -> lambda : (c1’ = 1);

[scoll1] c1 = 0 -> lambda : (t1’ = 1);

[orbit1] c1 = 2 -> nu : (c1’ = 1) & (t1’ = 0);

[ocoll1] c1 = 2 -> nu : true;

[exit1] c1 = 1 -> (c1’ = 0);

// go to orbit due to collision or failure

[evict] c1 = 0 & t1 > 0 -> (c1’ = 2);

[evict] c1 = 0 & t1 = 0 -> true;

[evict] c1 = 1 -> (c1’ = 2) & (t1’ = 1);

[evict] c1 = 2 -> true;

// in orbit countdown to abortion

[tick1] c1 = 2 & t1 < K -> K/T : (t1’ = t1+1);

[abort1] c1 = 2 & t1 = K -> K/T : (c1’ = 0) & (t1’ = 0);

endmodule

module Client2 = Client1

[c1=c2, t1=t2, source1=source2, scoll1=scoll2, ocoll1=ocoll2,

orbit1=orbit2, exit1=exit2, tick1=tick2, abort1=abort2]

endmodule

18

module Client3 = Client1

[c1=c3, t1=t3, source1=source3, scoll1=scoll3, ocoll1=ocoll3,

orbit1=orbit3, exit1=exit3, tick1=tick3, abort1=abort3]

endmodule

module Client4 = Client1

[c1=c4, t1=t4, source1=source4, scoll1=scoll4, ocoll1=ocoll4,

orbit1=orbit4, exit1=exit4, tick1=tick4, abort1=abort4]

endmodule

module Client5 = Client1

[c1=c5, t1=t5, source1=source5, scoll1=scoll5, ocoll1=ocoll5,

orbit1=orbit5, exit1=exit5, tick1=tick5, abort1=abort5]

endmodule

module Client6 = Client1

[c1=c6, t1=t6, source1=source6, scoll1=scoll6, ocoll1=ocoll6,

orbit1=orbit6, exit1=exit6, tick1=tick6, abort1=abort6]

endmodule

module Client7 = Client1

[c1=c7, t1=t7, source1=source7, scoll1=scoll7, ocoll1=ocoll7,

orbit1=orbit7, exit1=exit7, tick1=tick7, abort1=abort7]

endmodule

module Client8 = Client1

[c1=c8, t1=t8, source1=source8, scoll1=scoll8, ocoll1=ocoll8,

orbit1=orbit8, exit1=exit8, tick1=tick8, abort1=abort8]

endmodule

module Client9 = Client1

[c1=c9, t1=t9, source1=source9, scoll1=scoll9, ocoll1=ocoll9,

orbit1=orbit9, exit1=exit9, tick1=tick9, abort1=abort9]

endmodule

module Client10 = Client1

[c1=c10, t1=t10, source1=source10, scoll1=scoll10, ocoll1=ocoll10,

orbit1=orbit10, exit1=exit10, tick1=tick10, abort1=abort10]

endmodule

// --

// system rewards

// --

rewards "NumClient"

c1 > 0 : 1;

c2 > 0 : 1;

c3 > 0 : 1;

c4 > 0 : 1;

c5 > 0 : 1;

c6 > 0 : 1;

c7 > 0 : 1;

c8 > 0 : 1;

19

c9 > 0 : 1;

c10 > 0 : 1;

endrewards

rewards "NumExit"

[exit1] true : 1;

[exit2] true : 1;

[exit3] true : 1;

[exit4] true : 1;

[exit5] true : 1;

[exit6] true : 1;

[exit7] true : 1;

[exit8] true : 1;

[exit9] true : 1;

[exit10] true : 1;

endrewards

rewards "NumAbort"

[abort1] true : 1;

[abort2] true : 1;

[abort3] true : 1;

[abort4] true : 1;

[abort5] true : 1;

[abort6] true : 1;

[abort7] true : 1;

[abort8] true : 1;

[abort9] true : 1;

[abort10] true : 1;

endrewards

// --

// end of model

// --

A.2 The CSL Queries

// number of customers in system

"NC": R{"NumClient"}=? [S] ;

// number of successful exits from server

"NE": R{"NumExit"}=? [S] ;

// number of aborts from orbit

"NA": R{"NumAbort"}=? [S] ;

// probability for successful exit

"PE": 1/(1+("NA"/"NE"));

// average sojourn time

"T": "NC"/(lambda*(N-"NC")*"PE");

// probability that i clients are in system

const int i;

20

"Pi": S=? [i = min(c1,1)+min(c2,1)+min(c3,1)+min(c4,1)+min(c5,1)

+min(c6,1)+min(c7,1)+min(c8,1)+min(c9,1)+min(c10,1)];

21

	Introduction
	The System Model
	Experimental Evaluation
	Conclusions
	The PRISM Specification
	The System Model
	The CSL Queries

