
A Rule-based Approach to the Decidability of Safety of ABACα

Mircea Marin

West University of Timişoara

Timişoara, Romania

mircea.marin@e-uvt.ro

Temur Kutsia

RISC, Johannes Kepler University

Linz, Austria

kutsia@risc.jku.at

Besik Dundua

VIAM, Tbilisi State University and

International Black Sea University

Tbilisi, Georgia

bdundua@gmail.com

ABSTRACT
ABACα is a foundational model for attribute-based access control

with a minimal set of capabilities to configure many access con-

trol models of interest, including the dominant traditional ones:

discretionary (DAC), mandatory (MAC), and role-based (RBAC). A

fundamental security problem in the design of ABAC is to ensure

safety, that is, to guarantee that a certain subject can never gain

certain permissions to access certain object(s).

We propose a rule-based specification of ABACα and of its con-

figurations, and the semantic framework of ρLog to turn this speci-

fication into executable code for the operational model of ABACα .

Next, we identify some important properties of the operational

model which allow us to define a rule-based algorithm for the safety

problem, and to execute it with ρLog. The outcome is a practical

tool to check safety of ABACα configurations.

ρLog is a system for rule-based programming with strategies

and built-in support for constraint logic programming (CLP). We

argue that ρLog is an adequate framework for the specification and

verification of safety of ABACα configurations. In particular, the

authorization policies of ABACα can be interpreted properly by the

CLP component of ρLog, and the operations of its functional speci-

fication can be described by five strategies defined by conditional

rewrite rules.

CCS CONCEPTS
• Security and privacy → Access control; • Theory of com-
putation → Rewrite systems; Logic and verification; Con-
straint and logic programming.

KEYWORDS
attribute based access control (ABAC), rule-based programming,

safety

ACM Reference Format:
Mircea Marin, Temur Kutsia, and Besik Dundua. 2019. A Rule-based Ap-

proach to the Decidability of Safety of ABACα . In The 24th ACM Sym-
posium on Access Control Models and Technologies (SACMAT ’19), June 3–
6, 2019, Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3322431.3325416

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SACMAT ’19, June 3–6, 2019, Toronto, ON, Canada
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6753-0/19/06. . . $15.00

https://doi.org/10.1145/3322431.3325416

1 INTRODUCTION
Access control is a fundamental security requirement for computing

environments: It controls the ability of a subject to use an object in

some specific manner. A subject represents a user and any system

process or entity that acts on behalf of a user. Users represent

individuals who interact directly or indirectly with a system and

have been authenticated and established their identities. Objects are

the protected entities, and can represent either system abstractions

(e.g., processes, files, or ports) or system resources (e.g., printers).

Attribute-based access control (ABAC) is a logical access con-

trol with great flexibility to specify access control policies as rules

which get evaluated against the attributes of participating entities

(user/subject or subject/object), operations, and the environment rel-

evant to a request. Considerable work has been done and a number

of formal models have been proposed recently for ABAC [3, 4, 11].

Among them, ABACα became popular because of its minimal set of

features that make it powerful enough to configure the dominant

traditional access control models DAC, MAC and RBAC.

A fundamental security problem in the design of ABACmodels is

safety. According to [2], the safety problem for protection systems

is to determine in a given situation whether a subject can acquire a

particular right to an object. Recently, it was shown that safety of

ABACα is decidable [1]. The proof was based on state-matching

reduction of safety of ABACα to safety of the preauthorization

model UCON
finite

preA
, which is known to be decidable [12].

In this paper we describe a rule-based algorithm to decide safety

of ABACα . We use the rule-based programming system ρLog [9, 10],
which has adequate support (1) to define ABACα configurations

in its constraint logic programming component, (2) to specify the

operations of ABACα with rules, and (3) to define strategies which

control the application of these rules and enable a rule-based im-

plementation of a decision algorithm for the safety of ABACα .

Section 2 contains a brief description of ρLog. In Sect. 3 we

describe the ABACα model and our representation of ABACα con-

figurations. In Sect. 4 we present our rule-based specification for

the operations of ABACα and for the configuration-specific condi-

tions that constrain their execution. Section 5 contains our main

contributions: (1) a rule-based specification of an algorithm which

can decide the safety problem for configurations of ABACα , and

can be executed efficiently in ρLog; and (2) theoretical results which
guarantee the correctness of our algorithm. Section 6 concludes.

2 THE ρLOG SYSTEM
ρLog [8–10] is a system for rule-based programming developed on

top of the rewriting and constraint solving capabilities of Mathe-

matica [13]. It provides (1) a logical framework to reason in theories

whose deduction rules can be specified by conditional rewrite rules

https://doi.org/10.1145/3322431.3325416
https://doi.org/10.1145/3322431.3325416
https://doi.org/10.1145/3322431.3325416


of a very general kind, and (2) a semantic framework where com-

putations are sequences of state transitions modelled as rewrite

steps controlled by strategies. In this section, we focus on the use

of ρLog as semantic framework to express possible evolutions of

state transition systems.

A program consists of rules s →stg t/; cond1 ∧ . . . ∧ condn with

the intended reading “s reduces to t with strategy stg (notation

s →stg t ) whenever cond1 and . . . and condn hold.” Such a rule is

a partial definition for strategy stg. To illustrate how reduction

works, suppose states are lists of numbers, and we wish to define

transitions that swap list elements which are not in increasing order.

In ρLog syntax, the labeled rule for such transitions is

{a___,x_,b___,y_,c___} →
”sw”

{a,y,b,x,c}/;(x>y).

where {. . .} is the list constructor, and "sw" is the strategy for this

kind of reduction. Note the following peculiarities of ρLog:

(1) a, x, b, y, c are variables. They are identified by suffixing their

first occurrences
1
in the rule with _ or with ___,

(2) We used two kinds of variables: those suffixed by _ are place-
holders for one element, and are called ordinary variables;
those suffixed by ___ are placeholders for a sequence of el-
ements, and are called sequence variables. Sequence vari-
ables are a novel capability of some programming languages,

which increases the expressive power and conciseness of

rule-based specifications. ρLog allows the use of anonymous

variables: _ is a nameless placeholder for an element, and

___ is a nameless placeholder for a sequence of elements.

(3) (x>y) is a boolean condition that is properly interpreted by

the constraint logic programming component (CLP) of ρLog.

Thus, rewriting with this rule swaps list elements x and y if x>y and
x occurs before y in the list. Repeated applications of such rewrite

steps will eventually yield the sorted version of any list of numbers.

Sequence variables introduce nondeterminism in the rewriting

process: For example, there are three ways to reduce {3, 2, 1} with
the labeled rule for "sw": {3, 2, 1} →

”sw”
{2, 3, 1} with matcher

{a 7→ ⌜⌝, x 7→ 3,b 7→ ⌜⌝,y 7→ 2, c 7→ ⌜1⌝}; {3, 2, 1} →
”sw”
{1, 2, 3}

with matcher {a 7→ ⌜⌝, x 7→ 3, b 7→ ⌜2⌝, y 7→ 1, c 7→ ⌜⌝};
{3, 2, 1} →

”sw”
{3, 1, 2} with matcher {a 7→ ⌜3⌝, x 7→ 2, b 7→

⌜⌝, y 7→ 1, c 7→ ⌜⌝}, where ⌜e1 . . . en⌝ represents the sequence
of elements e1, . . . , en , in this order. This nondeterminism is due

to the fact that matching with sequence variables is finitary [5, 6].

Algorithms which enumerate all finitely many matchers with terms

containing such variables are described in [7].

In general, the conditional part of a rule is a conjunction of

constraints of three kinds: (1) reducibility formulas s →stg t , (2) ir-
reducibility formulas s ↛stg t , (3) any boolean formulas expressed

in the host language of Mathematica.

ρLog is designed to work with strategies of three kinds:
(1) Atomic strategies, designated by a string identifier sId, and

defined by one or more labeled rules of the form

s →
sId

t/; cond1 ∧ . . . ∧ condn .

The following atomic strategies are predefined:

"Id": s →
”Id”

t , abbreviated s ≡ t , which holds if s = t .
"elem": l →

”elem”
e holds if e is an element of list l .

1
By ‘first occurrences’ of a variable in a rule we mean all its occurrences in the

expression from the sequence (stg, s ), cond1, . . . , condn , t where it occurs first.

"subset": l →
”subset”

s holds if s is subset of set l .
(2) Composite strategies, built from other strategies with combi-

nators. The following strategy combinators are predefined:

1) s →stg
1
◦stg

2

t holds if s →stg
1

u →stg
2

t for some u.
2) s →stg

1
|stg

2

t holds if either s →stg
1

t or s →stg
2

t .
3) s →stg∗ t holds if either s →”Id”

t or there exist u1, . . . ,un
such that s →stg u1 →stg . . . →stg un →stg t .

4) s →
Fst[stg

1
, ...,stgn ] t holds if there exists 1 ≤ i ≤ n such

that s →stgi t and s ↛stgj t hold for 1 ≤ j < i .

5) s →
NF[stg] t holds if both s →stg∗ t and t ↛stg _ hold.

(3) Parametric strategies, defined by rules of the form

s →
sId[s1, ...,sm ]

t/; cond1 ∧ . . . ∧ condn

where sId is the strategy identifier (a string) and s1, . . . , sm are

its parameters. The parameters provide syntactic material to

be used in the conditional part of the rule. A useful predefined

strategy is "fmap": f [s1, . . . , sn] →”fmap”[stg] f [t1, . . . , tn]
holds if si →stg ti for 1 ≤ i ≤ n.

The command to add a rule rule to the current program of a ρLog
session is DeclareRule[rule].

Queries are requests of the form
Request[cond1∧. . .∧condn] or RequestAll[cond1∧. . .∧condn]

They instruct ρLog to compute one (resp. all) substitution(s) for the

variables in the formula cond1 ∧ . . .∧condn for which it holds with

respect to the current program. For example, if the current program

contains the previous definition of "sw", and we want to compute

the substitution(s) for which {3, 2, 1} →
”sw” x holds, we can call

Request[{3, 2, 1} →
”sw” x_] or RequestAll[{3, 2, 1} →

”sw” x_]

The answer to the first query will be {x→ {2, 3, 1}}, and that to the
second one is {{x→ {2, 3, 1}}, {x→ {1, 2, 3}}, {x→ {3, 1, 2}}}.

Another use of ρLog is to compute a reduct of a term with

respect to a strategy. The request ApplyRule[stg, s] instructs ρLog
to compute one (if any) reduct of s with respect to strategy stg,
that is, a term t such that formula s →stg t holds. ρLog reports

"no solution found." if there is no reduct of s with stg. ρLog
can also be instructed to find all reducts of a term with respect to a

strategy, with ApplyRuleList[stg, s].
More information about ρLog can be found at

http://staff.fmi.uvt.ro/~mircea.marin/rholog/

3 ABACα

ABACα [3] is a formalmodel of ABACwith aminimal set of features

to configure the traditional models DAC, MAC, and RBAC. Its core

components are entities of three kinds: users, subjects, and objects.

Users represent human beings who create and modify subjects,

and access resources through subjects. Subjects represent processes

created by users to perform some actions in the system. Objects

represent system entities that should be protected.

Every kind of entity has a fixed set of attributes. Every attribute

has a type, scope, and range of possible values. The sets of attributes

specific to each kind of entity, together with their type, scope, and

range, are specified in a configuration type of ABACα : there will
be one configuration type for DAC, and others for MAC, RBAC, etc.

In ABACα , the type of an attribute is either atomic or set. The

scope of each attribute at is a finite set SCOPE(at ) of values. If at



is of atomic type, then it can assume any value from SCOPE(at ),
otherwise it can assume any subset of values from SCOPE(at ).
Formally, this means that the range Range(at ) of possible values of

at is SCOPE(at ) if at is of atomic type, and 2
SCOPE(at )

otherwise.

User creation, attribute value assignment of user at creation

time, user deletion and modification of a user’s attribute values are

operations done by the security administrator and are outside the

scope of ABACα . Therefore, in a running configuration of ABACα ,

the setU of existing users is fixed, but the sets S of existing subjects

and O of existing objects may change. The identity of every user is

specified by the value of a special attribute "id" of atomic type.

In our system, configuration types are declared as follows:

DeclareCfgType[typeId,{"UA"→ {uAt1, . . . ,uAtm },
"SA"→ {sAt1, . . . , sAtn },"OA"→ {oAt1, . . . ,oAtp },
"Scope"→ {at1 → •[sId1,τ1], . . . ,atr → •[sIdr ,τr ]}}]

Such a declaration specifies a configuration type with unique iden-

tifier typeId (a string), where: {uAt1, . . . ,uAtm }, {sAt1, . . . , sAtn },
and {oAt1, . . . , oAtp } are the sets of attributes for users, subjects, and
objects, respectively; {at1, . . . ,atr } is their union; the scope of every
attribute ati (a string) is the set bound to identifier sIdi in a particu-

lar configuration (see below), and its type isτi∈{"elem","subset"},
where "elem" stands for atomic and "subset" for set.

For example, the configuration type of the discretionary access

model (DAC) is given by

DeclareCfgType["DAC",{"UA"→{"id"},"SA"→{"id"},
"OA"→{"id","r","w"},"Scope"→{"id"→•["UId","elem"],

"r"→ •["UId","subset"],"w"→ •["UId","subset"]}}]

We represent the system entities as first-order terms of the form

•U[uAt1[v1], . . . ,uAtm[vm]] (* users *)

•S[sAt1[v1], . . . , sAtn[vn]] (* subjects *)

•O[oAt1[v1], . . . ,oAtp [vp ]] (* objects *)

where vi are the corresponding attribute values.

Every user has a unique ID, which is the string value of its "id"
attribute. Subjects keep track of the ID of their creator in the value

of their "id" attribute. We will assume without loss of generality

that uAt1 = sAt1 = "id", and that there is a function UId[e] which
returns the value of the attribute "id" of e ∈ U ∪ S .

A configuration of ABACα is an instance of a configuration

type, which specifies (1) the configuration type which it instantiates;

(2) the sets of values for the identifiers sIdi from the specification of

the configuration type, and (3) the initial setsU , S , andO of entities

(users, subjects, objects) in the configuration. In our system, the

declaration of a concrete configuration of ABACα has the syntax

DeclareConfiguration[cId,
{"CfgType"→typeId,
"Users"→{uId1→u1, . . . ,uIdm→um},
"Range"→{"UId"→{uId1, . . . ,uIdm},

sId2 → SCOPE[at2], . . . , sIdr → SCOPE[atr ]},
"Subjects"→{s1, . . . , sn},"Objects"→{o1, . . . ,oq}}]

Its side effect is to instantiate some globally visible entries:

CfgType[cId] with typeId, Users[cId] with the set of users {u1,
. . . , um }, every User[cId,uIdi ] with user ui , Subjects[cId] with
the set of subjects {s1, . . . , sn }, Objects[cId] with the set of objects
{o1, . . . ,oq }. For example, the following is a declaration of a DAC

configuration:

DeclareConfiguration["Cfg-01",{"CfgType"→"DAC",
"Users"→{"u1"→ •U["id"["u1"]],"u2"→ •U["id"["u2"]],

"u3"→ •U["id"["u3"]]},
"Range"→{"UId"→{"u1","u2","u3"}},
"Subjects"→{•S["id"["u1"]],•S["id"["u3"]]},
"Objects"→{
•O["id"["u1"],"r"[{"u1","u3"}],"w"[{"u1","u2"}]],
•O["id"["u1"],"r"[{"u1","u3"}],"w"[{"u2","u3"}]]}}]

This configuration specifies an initial system state with three users

identified by strings "u1", "u2", "u3"; two subjects; and two objects.
The first object grants read access to subjects created by users "u1",
"u3" and write access to subjects created by users "u1", "u2". The
second object grants read access to subjects created by users "u1",
"u3" and write access to subjects created by users "u2", "u3".

4 A STATE TRANSITION SYSTEM FOR ABACα

A system with an initial configuration cId is a state transition sys-

tem: states are triples {U , S,O } consisting of the users (U ), subjects

(S), and objects (O) that exist at that moment in the system and

are compatible with the specifications of cId and its configuration

type (stored in CfgType[cId]); and transitions correspond to the

operations from the functional specification of ABACα . The state

componentsU , S,O are assumed to be multisets because the entities

of ABAC are identity-less: their behavior is uniquely determined

by the values of their attributes. For this reason, different entities

may assume the same term representation in our framework.

In this paper we take for granted the functional specification of

ABACα given in [1]. It consists of six operations:

subject creation: user u ∈ U can create a new subject s if formula

ConstrS[u, s] holds. This formula belongs to the instance of

the common policy language (CPL) that makes use of the

attribute values of u and s .
subject deletion: u ∈ U is free to delete any subject s ∈ S it created

before, that is, a subject s for which UId[u] = UId[s].
object creation: s ∈ S can create a new object o if boolean formula

ConstrO[s,o] holds. This formula belongs to the instance of

CPL that uses the attribute values of entities s and o.
subject modification: u ∈ U can change a subject s ∈ S into s ′ if

UId[u] = UId[s] = UId[s ′] and ConstrModS[u, s, s ′] holds.
This formula belongs to the instance of CPL that uses the

attribute values of u, s , and s ′.
object modification: s ∈ S can change o ∈ O into o′ if formula

ConstrModO[s,o,o′] holds. This formula belongs to the in-

stance of CPL that uses the attribute values of s , o, and o′.
authorized access: s ∈ S can exercise a permission p ∈ P on o ∈

O if Auth[p, s,o] holds. P is a finite set of permission IDs

(strings) and, for every p ∈ P , formula Auth[p, s,o] is from
the instance of CPL that uses the attribute values of s and o.

Configuration-specific rules. CPL [3] is the common policy language

part for the languages used to express the boolean formulas that

constrain the operations of the functional specification of ABACα .

CPL describes a fragment of first-order logic where quantified for-

mulas must be of the form ∃x ∈ set.φ or ∀x ∈ set.φ with set a finite
set of values. The host language of ρLog is Mathematica, which is

rich enough to express and decide the quantifier-free constraints

of CPL. Moreover, we can eliminate all variable occurrences by



repeated applications of the following reductions:

∃x ∈ set.φ =
∨
v ∈set

φ[x 7→ v] ∀x ∈ set.φ =
∧
v ∈set

φ[x 7→ v]

Every configuration type typeId has its own formulas that con-

strain the functionality of ABACα . These formulas are expressed

in instances of CPL. Therefore, we can write rule-based definitions

of these conditions, which are specific to every typeId:

ConstrS[•U[. . .],•S[. . .]] →typeId True/;φ1.
ConstrO[•S[. . .],•O[. . .]] →typeId True/;φ2.
ConstrModS[•U[. . .],•S[. . .],•S[. . .]] →typeId True/;φ3.
ConstrModO[•S[. . .],•O[. . .],•O[. . .]] →typeId True/;φ4.
Auth[p1, •S[. . .], •O[. . .]] →typeId True/;φ5,1.
. . .

Auth[pr , •S[. . .], •O[. . .]] →typeId True/;φ5,r .

where φ1,φ2,φ3,φ4,φ5,1, . . . , φ5,r are formulas expressed in CPL.

Auxiliary functions and strategies. Subject and object creation are

nondeterministic operations: they can be implemented by guessing

the entity, and then creating it if the condition described by the cor-

responding CPL-formula holds. This process can be implemented

in two steps. First, we define the functions sSeed[cId] which yields

•S[sAt1[SCOPE(sAt1),τ1], . . . , sAtn[SCOPE(sAtn ),τn]]

and oSeed[cId] which yields the term

•O[oAt1[SCOPE(oAt1),τ1], . . . ,oAtn[SCOPE(oAtp ),τp ]]

For example, sSeed["Cfg-01"] yields

•S["id"[{"u1","u2","u3"},"elem"]]

and oSeed["Cfg-01"] yields the term

•O["id"[S,"elem"],"r"[S,"subset"],"w"[S,"subset"]]

where S is {"u1","u2","u3"}.
Next, we use these terms as seeds from which we can produce

any subject (resp. object) that may be created. In rule-based think-

ing, an entity E[at1[v1], . . . ,atk [vk ]] can be produced from the

seed term E[at1[scope1,τ1], . . . ,atk [scopek ,τk ]] if and only if the

reducibility formulas scopei →τi vi hold. Incidentally, the attribute
type identifiers τi ∈ {"elem", "subset"} are also built-in atomic

strategies of ρLog which guarantee the correctness of this rule-

based thinking. Its implementation in ρLog is straightforward: If
we define the strategy "setAt" with

att_[scope_,type_]→
”setAt”att[v]/;(scope→typev_).

then the set of entities that can be generated from a seed term st is
the set of all e for which reducibility formula st →"fmap"["setAt"] e
holds. Continuing this line of reasoning, we can argue that:

• user u can create new subject s iff u→"createS"[cId] s holds, where
this parametric strategy is defined by the rule

u_→
”createS”[cId

]

s/;(sSeed[cId]→
”fmap”[”setAt”]s_)∧

(UId[u]≡UId[s])∧(ConstrS[u,s]→CfgType[cId]True).

• subject s can create object o iff s→"createO"[cId] o holds, where
this parametric strategy is defined by the rule

s_→
”createO”[cId

]

o/;(oSeed[cId]→
”fmap”[”setAt”]o_)∧

(ConstrO[s,o]→CfgType[cId]True).

• subject s can modify its attribute values and become sN iff its

user creator u is in set U of existing users and is capable to change
s to sN. We express this as the validity of the reducibility formula

{U, s} →"modSA"[cId] sN, where this strategy is defined by the rule

{U_,s_}→
”modSA”[cId

]

sN/;
(User[cId,UId[s]]≡u_)∧MemberQ[U,u]∧
(sSeed[cId]→

”fmap”[”setAt”]sN_)∧(UId[s]≡UId[sN])∧
(ConstrModS[u,s,sN]→CfgType[cId]True).

If the creator of s is an existing user, then the admissible changes

of s into sN are defined by the rule

s_→
”modSA”[cId

]

sN/;(sSeed[cId]→
”fmap”[”setAt”]sN_)∧

(UId[s]≡UId[sN])∧(User[cId,UId[s]]≡u_)∧
(ConstrModS[u,s,sN]→CfgType[cId]True).

• subject s can change the attributes of object o to become object

oN iff {s, o} →"modOA"[cId] oN holds, where

{s_,o_}→
”modOA”[cId

]

oN/;(oSeed[cId]→
”fmap”[”setAt”]oN_)

∧(ConstrModO[s,o,oN]→CfgType[cId]True).

The transition system. Except for authorized access, the other five

operations from the functional specification of ABACα determine

state transitions in its model. Their rule-based specifications are:

{{a___,u_,b___},S_,O_}→
”createSubj”[cId

]

{{a,u,b},Prepend[S,s],O}/;(u→
”createS”[cId]s_)∧

Not[MemberQ[S,s]].
{{a___,u_,b___},{x___,s_,y___},O_}→

”deleteSubj”[cId
]

{{a,u,b},{x,y},O}/;(UId[u]≡UId[s]).
{U_,{a___,s_,b___},O_}→

”createObj”[cId
]

{U,{a,s,b},Prepend[O,o]}/;(s→
”createO”[cId] o_)∧

Not[MemberQ[O,o]].
{U_,{a___,s_,b___},O_}→

”modifySubj”[cId
]

{U,{a,sN,b},O}/;({U,s}→
”modSA”[cId]sN_).

{U_,{a___,s_,b___},{x___,o_,y___}}→
”modifyObj”[cId

]

{U,{a,s,b},{x,oN,y}}/;({s,o}→
”modOA”[cId]oN).

In the state transitions defined by these rules, the entity matched

by s_ is the selected subject, and the one matched by o_ is the

selected object. Subjects may be created, and selected subjects are

deleted or modified. Objects may be created, and selected objects

are modified. To keep track of the attribute values of a subject or

object in a particular state, we define its descendant with respect

to a sequence Π of state transitions.

Suppose {U , S,O } is a state for a configuration identified by cId,
and s ∈ S,o ∈ O . Also, let π : {U , S,O } →stgId[cId] {U , S

′,O ′} be a
state transition step. The descendants descπ (s ) and descπ (o) of s
and o with respect to π are defined as follows:

• descπ (s ) := ⊥ if π : {U , S,O } →
”deleteSubj”[cId]{U , S

′,O } and
the selected subject from S is s
• descπ (s ) := s

′
if π : {U , S,O } →

”modSA”[cId]{U , (S−{s})∪{s
′},O }

• descπ (o) := o
′
if π : {U , S,O } →

”modOA”[cId]{U , S, (O−{o})∪{o
′}}

• In the unspecified situations we have descπ (e ) := e .

Let Π : {U , S,O } →∗ {U , S ′,O ′} be a sequence of n ≥ 0 transition

steps and s ∈ S , o ∈ O . If n = 0 then descΠ (s ) := s and descΠ (o) :=
o. Otherwise, let π be the first transition step of Π, and Π′ the
sequence of remaining transition steps. In this case descΠ (o) :=

descΠ′ (descπ (o)) and

descΠ (s ) :=

{
⊥ if descπ (s ) = ⊥,
descΠ′ (descπ (s )) otherwise.

More generally, we define the set of descendants of e ∈ S ∪O
from a state Σ := {U , S,O } as follows:



DescΣ (e ) := {e ′ | e ′ , ⊥ and e ′ = descΠ (e ) for some sequence Π
of state transitions starting with Σ}.

5 SAFETY OF ABACα

The safety problem for configurations of ABACα is:

Given a state {U , S,O } for an ABACα configuration identified by

cId, entities s ∈ S , o ∈ O , and a permission p ∈ P ,
Decide if there exists a sequence of state transitions

Π : {U , S,O } →stg
1

{U , S1,O1} . . . →stgn {U , Sn ,On }

abbreviated Π:{U , S,O }→∗{U , Sn ,On }, such that descΠ (s ) ,
⊥ and Auth[p,descΠ (s ),descΠ (o)]→CfgType[cId]True holds.

We start by pointing out a few properties of ABACα that allow us

to make some simplifying assumptions.

The five kinds of transitions are influenced only by the selected

entities, at most two, and affect only one entity; the other entities

of the system state are not affected. In particular:

(1) Objects can only participate at changing their own attributes.

Since the presence of objects from O − {o} plays no role in
deciding whether Auth[p,descΠ (s ),descΠ (o)] holds for some

Π, it is harmless to assume that the initial state is {U , S, {o})
and Π has no object creation steps.

(2) If {U , S,O } →stg {U , S
′,O ′} then {U , S∪S ′′,O ′} →stg {U , S∪

S ′′,O ′} holds too, because we can choose the same partic-

ipating entities to perform the transition. Therefore, it is

harmless to assume that Π has no subject deletion steps.

Thus, it is harmless to assume that (1) Π has no transition steps

of the strategies "deleteSubj"[cId] and "createObj"[cId], and
(2) the given state is of the form {U , S, {o}}.

From now on we assume that Σ := {U , S, {o}} is a state for an
ABACα configuration identified by cId, and that s ∈ S and p ∈ P .

Lemma 1. Let s ′ ∈ DescΣ (s ) and o′ ∈ DescΣ (o). There exists a
derivation Π : Σ→∗ {U , S ′, {o′}} such that s ′ = descΠ (s ).

Proof. Let u be the creator of s . o′ ∈ DescΣ (o) implies the exis-

tence of Π1 : Σ →
∗ {U , S ′′, {o′}}. If s ′ ∈ S ′′ then the lemma holds

for Π = Π1. Note that, if u < U , then s can not change its attribute

values, thus DescΣ (s ) = {s} ⊆ S ′′ and the lemma holds for Π = Π1.

The only case left to analyse is when u ∈ U and s ′ < S ′′. In this

case, there exists a derivation u →"createS"[cId] s0 →
∗
"modSA"[cId] s .

s ′ ∈ DescΣ (s ) implies the existence of a derivation s →∗"modSA"[cId] s
′
.

By concatenating these two derivations we obtain

u →"createS"[cId] s0 →
∗
"modSA"[cId] s

′.

Therefore, if s0 < S
′′
then Π1 can be extended as follows:

Π : Σ→∗ {U , S ′′, {o′}} →"createSubj"[cId]

{U , S ′′ ⊎ {s0}, {o
′}} →∗"modifySubj"[cId] {U , S

′′ ⊎ {s ′},O ′}.

Otherwise, S ′′ = {s0} ⊎ S
′′′

and Π1 can be extended as follows:

Π : Σ→∗ {U , {s0}⊎S
′′′, {o′}} →∗

"modifySubj"[cId]
{U , {s ′}⊎S ′′′, {o′}}.

□

Theorem 1. There is a derivation Π : Σ→∗ {U , S ′, {o′}} such that
descΠ (s ) , ⊥ and Auth[p,descΠ (s ),o′]→CfgType[cId]True holds, if
and only if Auth[p, s ′,o′]→CfgType[cId]True holds for some s ′ ∈
DescΣ (s ) and o′ ∈ DescΣ (o).

Proof. If Π exists then o′ ∈ DescΣ (o) and we can choose s ′ :=
descΠ (s )∈Desc

Σ (s ) such that Auth[p, s ′,o′]→CfgType[cId]True holds.
Conversely, if Auth[p, s ′,o′]→CfgType[cId] True holds for some

s ′ ∈ DescΣ (s ) and o′ ∈ DescΣ (o) then, according to Lemma 1, there

exists a derivation Π : Σ→∗ {U , S ′, {o′}} such that s ′ = descsΠ (s ).
Therefore, Auth[p,descΠ (s ),o

′]→CfgType[cId]True holds too. □

According to Theorem 1, we can proceed in two steps:

(1) look at all possible descendants s ′ of s ; decide UNSAFE if any

of them gets permission p on o, otherwise computeDescΣ (s ),
(2) look at all possible descendants o′ of o; decide UNSAFE if

any s ′ ∈ DescΣ (s ) can exercise permission p on some o′,
otherwise decide SAFE.

It remains to figure out how to compute DescΣ (s ) and DescΣ (o),
and how to check if Auth[p, s ′,o′]→CfgType[cId] True holds for some

s ′ ∈ DescΣ (s ) and o′ ∈ DescΣ (o). For this purpose, we define three
strategies:

{{___,s_,___},{___,o_,___}}→
”auth?”[p_,ct_] True/;

(Auth[p, s, o]→ctTrue).
{___,s_,___}→

”newModS”[c_,U_,S_]sN/;
({U, s} →

”modSA”[c] sN)∧Not[MemberQ[S,sN]].
{{___,s_,___},{___,o_,___}}→

”newModO”[c_,O_]oN/;
({s, o} →

”modOA”[c] oN_)∧Not[MemberQ[O,oN]].

If S ′, S ′′ are sets of subjects and O ′,O ′′ are sets of objects, then:
1) ApplyRule["auth?"[p,CfgType[cId]],{S ′,O ′}] returns True
iff some s ′ ∈ S ′ can exercise permission p on some o′ ∈ O ′.
2) ApplyRuleList["newModS"[cId,U , S ′′], S ′] returns all descen-
dants of elements from S ′ which are not in S ′′.
3) ApplyRuleList["newModO"[cId,O ′′], {S ′,O ′}] returns all de-
scendants of elements from O ′ produced by some subject from S ′,
which are not in O ′′.

Step 1. In this step we accumulate the value ofDescΣ (s ) in a variable
sDESC while checking if some s ′ ∈ sDESC has the authority to

exercise permission p on o. If the creator of s is not a user in the

given configuration then the only descendant of s is s , and we only

have to check if Auth[p, s,o]→CfgType[cId]True holds or not. If yes,
we decide UNSAFE, otherwise we set sDESC := {s}.

Otherwise, the creator of s is in U and DescΣ (s ) =
⋃∞
k=0 Sk

where S1 := {s} and

Sk+1 := {s ′′ <
⋃k
i=1 Si | ∃s

′ ∈ Sk .s
′ →"modSA"[cId] s

′′}

= ApplyRuleList[”newModS”[cId,U ,
⋃k
i=1 Si ], Sk ]

Based on this observation, we can interleave the incremental ac-

cumulation in sDESC of the elements of Sk with the detection of

unsafety when Auth[p, s ′,o] holds for some s ′ ∈ Sk :

ct := CfgType[cId];
if ApplyRule["auth?"[p,ct],{{s},{o}}]==True
return UNSAFE;

sDESC := {s}; sN := ∅;

if User[cId,UId[s]]∈ U
sN := ApplyRuleList["newModS"[cId,U ,sDESC],{s}];
while sN , ∅ do

(* test if Auth[p, s ′,o] holds for some s ′ ∈ sN *)
if ApplyRule["auth?"[p,ct],{sN,{o}}]==True
return UNSAFE;

sDESC := sDESC ∪ sN;



sN := ApplyRuleList["newModS"[cId,U ,sDESC],sN];

Note that, before entering the k-th loop of while, the values of

sDESC and sN are

⋃k
i=1 Si and Sk+1. The while loop will terminate

because sDESC is finite, therefore Sn = ∅ for some n ∈ N.

Step 2. In this step we accumulate the descendants of o in a vari-

able oDESC and report UNSAFE as soon as we detect that formula

{sDESC,oDESC}→
”auth?”[p,CfgType[cId]]True holds.

First, we must figure out how to compute oDESC. The only sub-

jects which may change the attribute values of (descendants) of o
from Σ are those from

{
s ′′ | ∃s ′ ∈ S ∪ sNew.s ′ →∗"modSA"[cId] s

′′
}

where sNew is the set of subjects that may be created by users from

U . sALL can be computed incrementally as follows:

sNew :=
⋃
u ∈U ApplyRuleList[u, "createS"[cId]];

sALL := ∅; sN := S ∪ sNew;
while sN , ∅ do

sALL := sALL ∪ sN;
sN := ApplyRuleList["newModS"[cId,U ,sALL],sN];

In every loop of while we compute the elements of a nonempty

subset sN ⊆
⋃
s ∈S∪sNew Desc

Σ (s ) which are not yet accumulated

in sALL, and accumulate them in sALL. The loop will terminate

because the set

⋃
s ∈S∪sNew Desc

Σ (s ) is finite.
It is easy to see that DescΣ (o) coincides with

⋃∞
k=1Ok where

O0 := {o} and

Ok+1 := {o′′ <
⋃k
i=1Oi | ∃s

′ ∈ sALL.∃o′ ∈ Ok .

{s ′,o′} →
”modOA”[cId] o

′′}

= ApplyRuleList[”newModO”[cId,
⋃k
i=1Oi ], {sALL, Ok}]

Based on this observation, we can iterate the computation of Ok
together with the test if Auth[p, s ′,o′] holds for some s ′ ∈ sDESC
and o′ ∈ Ok . This iterative process stops when we reach a k with

Ok = ∅, and this will eventually happen because DescΣ (o) is finite.

oDesc := ∅; oN := {o};
while oN , ∅ do

if ApplyRule["auth?"[p,ct],{sDESC,oN}]==True
return UNSAFE;

oDESC := oDESC ∪ oN;
oN := ApplyRuleList["newModO"[cId,oDESC],{sALL,oN}];

The final algorithm. By putting together the rule-based algorithms

for steps 1 and 2, we obtain the algorithm illustrated in Figure 1.

6 CONCLUSIONS
We proved that the safety problem of ABACα can be reduced

to checking if Auth[p, s ′,o′] holds for some s ′ ∈ DescΣ (s ) and
o′ ∈ DescΣ (o), and solved it by identifying a rule-based algorithm

that interleaves the detection of unsafety with the incremental

computation of DescΣ (s ) and DescΣ (o).
Our algorithm is parametric with respect to the configurations

of ABACα . Therefore, whenever we want to check that, for a given

configuration, a subject s never gets authorization to exercise per-

mission p on an object o, it is enough to do the following: (1) specify

the configuration and its type, and (2) call the method

CheckSafety[cId,s,o,p]

which runs our safety check algorithm. It returns SAFE if s never gets
authorization to exercise permission p on o, and UNSAFE otherwise.

ct := CfgType[cId];
U := Users[cId]; S := Subjects[cId];
if ApplyRule["auth?"[p,ct],{{s},{o}}]==True
return UNSAFE;

(* start accumulating the elements of DescΣ (s ) in sDESC *)

sDESC := {s}; sN := ∅;

if User[cId,UId[s]]∈ U
sN:=ApplyRuleList["newModS"[cId,U ,sDESC],{s}];
while sN , ∅ do

if ApplyRule["auth?"[p,ct],{sN,{o}}]==True
return UNSAFE;

sDESC := sDESC ∪ sN;
sN := ApplyRuleList["newModS"[cId,U ,sDESC],sN];

sNew :=
⋃
u ∈U ApplyRuleList[u, "createS"[cId]];

sALL := ∅;

(* accumulate in sALL the elements of

{s ′′ | ∃s ′ ∈ S ∪ sNew.s ′ →∗"modSA"[cId] s
′′} *)

sN := S ∪ sNew;
while sN , ∅ do

sALL := sALL ∪ sN;
sN := ApplyRuleList["newModS"[cId,U ,sALL],sN];

oDESC := ∅; oN := {o};
while oN , ∅ do

if ApplyRule["auth?"[p,ct],{sDESC,oN}]==True
return UNSAFE;

oDESC := oDESC ∪ oN;
oN := ApplyRuleList["newModO"[cId,oDESC],{sALL,oN}];

return SAFE;

Figure 1: The safety check algorithm for ABACα .

7 ACKNOWLEDGMENTS
This work was supported by Shota Rustaveli National Science Foun-

dation of Georgia under the grant no. FR17_439, and partially sup-

ported by the Austrian Science Fund (FWF), Project P 28789-N32.

REFERENCES
[1] T. Ahmed and R. Sandhu. 2017. Safety of ABACα is Decidable. In Network and

System Security, Z. Yan, R. Molva, W. Mazurczyk, and R. Kantola (Eds.). Springer

International Publishing, 257–272.

[2] M. A. Harrison, W. L. Ruzzo, and J. D. Ullman. 1976. Protection in operating

systems. Commun. ACM 19, 8 (Aug. 1976), 461–471.

[3] X. Jin. 2014. Attribute-Based Access Control Models and Implementation in Cloud
Infrastructure as a Service. Ph.D. Dissertation. University of Texas at San Antonio.

[4] X. Jin, R. Krishnan, and R. Sandhu. 2012. A unified attribute-based access control

model covering DAC, MAC and RBAC. In Data and Applications Security and
Privacy XXVI, N. Cuppens-Boulahia, F. Cuppens, and J. Garcia-Alfaro (Eds.).

LNCS, Vol. 7371. Springer, Berlin, Heidelberg, 41–55.

[5] T. Kutsia. 2004. Solving equations involving sequence variables and sequence

functions. In Proceedings of AISC 2004, B. Buchberger and J. A. Campbell (Eds.).

LNCS, Vol. 3249. Springer, 157–170.

[6] T. Kutsia. 2007. Solving equationswith sequence variables and sequence functions.

JSC 42, 3 (2007), 352–388.

[7] T. Kutsia and M. Marin. 2005. Can context sequence matching be used for

querying XML?. In Proceedings of UNIF’05, L. Vigneron (Ed.). IEEE Computer

Society, Nara, Japan, 77–92.

[8] M. Marin and T. Ida. 2005. Rule-Based Programming with ρLog. In Proceedings of
SYNASC’05, D. Zaharie, D. Petcu, V. Negru, T. Jebelean, G. Ciobanu, A. Cicortas,
A. Abraham, and M. Paprzycki (Eds.). IEEE Computer Society, 31–38.

[9] M. Marin and T. Kutsia. 2006. Foundations of the rule-based system ρLog. Journal
of Applied Non-Classical Logics 16, 1-2 (2006), 151–168.



[10] M. Marin and F. Piroi. 2004. Deduction and presentation in ρLog. ENTCS 93

(2004), 161–182.

[11] J. Park and R. Sandhu. 2004. The UCONABC Usage Control Model. ACM Trans-
actions on Information and System Security (TISSEC) 7, 1 (2004), 161–182.

[12] P. V. Rajkumar and R. Sandhu. 2016. Safety decidability for pre-authorization

usage control with finite attribute domains. IEEE Transactions on Dependable and
Secure Computing 13, 5 (2016), 582–590.

[13] S. Wolfram. 2003. The Mathematica Book (5th ed.). Wolfram Media.


	Abstract
	1 Introduction
	2 The Log system
	3 ABAC
	4 A state transition system for ABAC
	5 Safety of ABAC
	6 Conclusions
	7 Acknowledgments
	References

