COMPUTING AN ORDER COMPLETE BASIS FOR $M^{\infty}(N)$ AND APPLICATIONS

MARK VAN HOEIJ ${ }^{\dagger}$ AND CRISTIAN-SILVIU RADU ${ }^{\dagger}$

Abstract

This paper gives a quick way to construct all modular functions for the group $\Gamma_{0}(N)$ having only a pole at $\tau=i \infty$. We assume that we are given two modular functions f, g for $\Gamma_{0}(N)$ with poles only at $i \infty$ and coprime pole orders. As an application we obtain two new identities from which one can derive that $p(11 n+6) \equiv 0(\bmod 11)$, here $p(n)$ is the usual partition function.

1. Description of the Problem

For basic notions about modular functions used in this paper we refer to [14]. In this paper we show how to obtain an order complete basis for $M^{\infty}(N)$ with an application to the case $N=11$. We use this basis to obtain two new Ramanujan type identities for $\sum_{n=0}^{\infty} p(11 n+6) q^{n}$. Such bases have also been constructed by other authors $[1,2,4,7,8,9,11,12]$ by using various tricks to produce sufficiently many new modular functions $f_{1}, f_{2}, \ldots \in M^{\infty}(N)$ until $\mathbb{C}\left[f_{1}, f_{2}, \ldots\right]$ becomes equal to $M^{\infty}(N)$. The advantage of our approach is that we need only two functions in $t, f \in M^{\infty}(N)$. Then $\mathbb{C}[t, f]$ will generally be a proper subset of $M^{\infty}(N)$, but instead of searching for more modular functions, we fill this gap with a normalized integral basis.

Let t and f be modular functions for the group $\Gamma_{0}(N)$ with poles only at $\tau=i \infty$, in other words, let $t, f \in M^{\infty}(N)$. Suppose that the pole orders are n and m respectively, and that $\operatorname{gcd}(n, m)=1$, such functions always exist [13, Example 2.3]. Then there exists an irreducible polynomial $p=p(x, y) \in \mathbb{C}[x, y]$ with $p(t, f)=0$, $\operatorname{deg}_{x}(p)=m$, and $\operatorname{deg}_{y}(p)=n$ by [21, Lemma 1]. One can compute p from the q-expansions of t and f by making an Ansatz for the unknown coefficients of p and solving a system of equations where each equation is a coefficient in the q-expansion of $p(t, f)$. We use p to compute in the function field $\mathbb{C}(t, f) \cong \mathbb{C}(x)[y] /(p)$.

The function field $\mathbb{C}(t, f)$ contains $M^{\infty}(N)$ see [13, Prop 4.3], here $M^{\infty}(N)$ is the set of all modular functions for the group $\Gamma_{0}(N)$ with a pole only at $i \infty$. Obtaining all modular functions for the group $\Gamma_{0}(N)$ having a pole only at $i \infty$ is equivalent to finding all modular functions $h \in \mathbb{C}(t, f)$ that are integral over $\mathbb{C}[t]$ (which means there is a monic polynomial $g(X) \in \mathbb{C}[t][X]$ for which $g(h)=0)$. Thus, one starts by computing an integral basis, which is a basis $b_{1}, \ldots, b_{n} \in \mathbb{C}(t, f)$ of the $\mathbb{C}[t]$-module of all $h \in \mathbb{C}(t, f)$ that are integral over $\mathbb{C}[t]$. There are several algorithms to compute an integral basis [5, 20] and implementations in several computer algebra systems. Then every h that is integral over $\mathbb{C}[t]$ can be written as $h=p_{1}(t) b_{1}+\cdots+p_{n}(t) b_{n}$ for some polynomials p_{1}, \ldots, p_{n}. Given the q-expansions of h and b_{1}, \ldots, b_{n} the algorithm described in $\left[16, \mathrm{Alg}\right.$. MW] can find p_{1}, \ldots, p_{n} provided that $\operatorname{ord}_{i \infty}\left(b_{1}\right)<$ $\operatorname{ord}_{i \infty}\left(b_{2}\right)<\cdots<\operatorname{ord}_{i \infty}\left(b_{n}\right)$. We call such an integral basis order complete.

[^0]After computing an integral basis, we can find an order complete basis by using normalization at infinity from Trager's PhD thesis [19, Chapter 2, Section 3], see Section 1.2 for details.

1.1. Notations.

$K=\mathbb{C}(x)[y] /(p)$ where $p \in \mathbb{C}[x, y]$ is irreducible.
O_{K} is ring of all elements of K that are integral over $\mathbb{C}[x]$.
R_{∞} is the ring of all $h \in \mathbb{C}(x)$ that have no pole at $x=\infty$.
O_{∞} is ring of all elements of K that are integral over R_{∞}.
To compute a basis of O_{∞} as R_{∞}-module, first substitute $x \mapsto 1 / \tilde{x}$, then compute a local integral basis at $\tilde{x}=0$ (most integral basis implementations allow the option of computing a local integral basis). After that, replace \tilde{x} by $1 / x$.
1.2. Normalize an integral basis at infinity. The process of normalizing an integral basis at infinity was introduced in [19] in order to compute a RiemannRoch space that was needed for integrating algebraic functions. For completeness we will describe this process:

Algorithm: Normalize an integral basis at infinity.
(1) Let b_{1}, \ldots, b_{n} be a basis of O_{K} as $\mathbb{C}[x]$-module.
(2) Let $b_{1}^{\prime}, \ldots, b_{n}^{\prime}$ be a basis of O_{∞} as R_{∞}-module.
(3) Write $b_{i}=\sum_{j=1}^{n} r_{i j} b_{i}^{\prime}$ with $r_{i j} \in \mathbb{C}(x)$.
(4) Let $D \in \mathbb{C}[x]$ be a non-zero polynomial for which $a_{i j}:=D r_{i j} \in \mathbb{C}[x]$ for all i, j. Now $D b_{i}=\sum_{j=1}^{n} a_{i j} b_{i}^{\prime}$.
(5) For each $i \in\{1, \ldots, n\}$, let m_{i} be the maximum of the degrees of $a_{i 1}, \ldots, a_{i n}$. Now let $V_{i} \in \mathbb{C}^{n}$ be the vector whose j 'th entry is the $x^{m_{i}}$-coefficient of $a_{i j}$. Let $d_{i}:=m_{i}-\operatorname{deg}_{x}(D)$.
(6) If V_{1}, \ldots, V_{n} are linearly independent, then return b_{1}, \ldots, b_{n} and d_{1}, \ldots, d_{n} and stop.
Otherwise, take $c_{1}, \ldots, c_{n} \in \mathbb{C}$, not all 0 , for which $c_{1} V_{1}+\cdots c_{n} V_{n}=0$.
(7) Among those $i \in\{1, \ldots, n\}$ for which $c_{i} \neq 0$, choose one for which d_{i} is maximal. For this i, do the following
(a) Replace b_{i} by $\sum_{k=1}^{n} c_{k} x^{d_{i}-d_{k}} b_{k}$.
(b) Replace $a_{i j}$ by $\sum_{k=1}^{n} c_{k} x^{d_{i}-d_{k}} a_{k j}$ for all $j \in\{1, \ldots, n\}$.
(8) Go back to step 5 .

The b_{1}, \ldots, b_{n} remain a basis of O_{K} throughout the algorithm because the new b_{i} in step 7a can be written as a nonzero constant times the old b_{i} plus a $\mathbb{C}[x]$-linear combination of the $b_{j}, j \neq i$. When we go back to step 5 the non-negative integer d_{i} decreases while the $d_{j}, j \neq i$ stay the same. Hence the algorithm must terminate.

Let b_{1}, \ldots, b_{n} and d_{1}, \ldots, d_{n} be the output of the algorithm. By construction, the number d_{i} in the algorithm is the smallest integer for which $b_{i} \in x^{d_{i}} O_{\infty}$. If $\beta \in O_{K}$ with $\beta \neq 0$ then we can write $\beta=c_{1} b_{1}+\cdots+c_{n} b_{n}$ for some $c_{1}, \ldots, c_{n} \in \mathbb{C}[x]$. Denote d_{β} as the maximum of $\operatorname{deg}_{x}\left(c_{j}\right)+d_{j}$ taken over all j for which $c_{j} \neq 0$. Then $\beta \in$ $x^{d_{\beta}} O_{\infty}$ by construction. Since the vectors V_{1}, \ldots, V_{n} in the algorithm are linearly independent when the algorithm terminates, there can not be any cancellation, which means that d_{β} is the smallest integer for which $\beta \in x^{d_{\beta}} O_{\infty}$. Because of this, we get the following:

If d is a positive integer, then the set $B_{d}:=\left\{x^{j} b_{i} \mid 0 \leq j \leq d-d_{i}, 1 \leq i \leq n\right\}$ is a basis of $O_{K} \bigcap x^{d} O_{\infty}$ as \mathbb{C}-vector space.

Note that B_{d} is a basis of the Riemann-Roch space of the pole-divisor of x^{d}. So computing B_{d} can be interpreted as (i): a direct application of a normalized integral basis, or (ii): a special case of algorithms [3, 6] for Riemann-Roch spaces. The two interpretations are equivalent because the first step in computing Riemann-Roch spaces is to compute a normalized integral basis.

We can take q-expansions for each of the elements of B_{d}, and then make a change of basis so that the new basis B_{d}^{REF} will have q-expansions in Reduced Echelon Form. This means that if $b \in B_{d}^{\mathrm{REF}}$ and $b=a_{r} q^{r}+a_{r+1} q^{r+1}+\cdots$ with $a_{r} \neq 0$ then $a_{r}=1$ and all other basis elements have a zero coefficient at q^{r}. Then B_{d}^{REF}, for suitable d, is an order complete basis. For an implementation and two examples see: www.math.fsu.edu/~hoeij/files/OrderComplete

2. New Identities

We will give two identities of Ramanujan type found using our algorithm (the second one is only on our website). Let $p(n)$ be the partition function. Define

$$
t:=q^{-5} \prod_{n=1}^{\infty}\left(\frac{1-q^{n}}{1-q^{11 n}}\right)^{12}
$$

and

$$
h:=q t \prod_{n=1}^{\infty}\left(1-q^{11 k}\right) \sum_{n=0}^{\infty} p(11 n+6) q^{n}
$$

and

$$
f:=(d t / d q) \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{-2}\left(1-q^{11 n}\right)^{-2} .
$$

Both h and t are modular functions in $M^{\infty}(11)$, see [14, Lemma 3.1].
To prove that f is in $M^{\infty}(11)$ as well, first note that by [10, Prop. 3.1.1]

$$
b(\tau):=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{2}\left(1-q^{11 n}\right)^{2}, \quad q=e^{2 \pi i \tau}
$$

satisfies

$$
\begin{equation*}
b\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{2} b(\tau) \tag{1}
\end{equation*}
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(11)$. Since $t \in M^{\infty}(11)$, we have

$$
t\left(\frac{a \tau+b}{c \tau+d}\right)=t(\tau)
$$

The derivative with respect to τ is:

$$
\begin{equation*}
(c \tau+d)^{-2} t^{\prime}\left(\frac{a \tau+b}{c \tau+d}\right)=t^{\prime}(\tau) \tag{2}
\end{equation*}
$$

Multiplying (2) by $(c \tau+d)^{2}$ and dividing by (1) gives

$$
\left(t^{\prime} / b\right)\left(\frac{a \tau+b}{c \tau+d}\right)=\left(t^{\prime} / b\right)(\tau)
$$

Since $\frac{d}{d \tau}=2 \pi i q \frac{d}{d q}$, it follows that $t^{\prime} / b=2 \pi i f$. Therefore

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=f(\tau)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma_{0}(11)$. Furthermore, since $b(\tau)$ has no zeros in the upper half plane and $t(\tau)$ is holomorphic in the upper half plane it follows that f is holomorphic in the upper half plane. Hence the first condition of being a modular function for $\Gamma_{0}(11)$ according to the definition in [14] is satisfied. The second condition is equivalent to showing that for $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ we have an expansion of the form

$$
\begin{equation*}
f\left(\frac{a \tau+b}{c \tau+d}\right)=\sum_{n=m(\gamma)}^{\infty} a_{\gamma}(n) q^{\frac{\operatorname{gcd}\left(c^{2}, n\right) n}{N}} \tag{3}
\end{equation*}
$$

As seen in [14], if this property hold for $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$, then it also holds for $\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right)$, if there exists $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma_{0}(11)$ such that $\frac{A \frac{a}{c}+B}{C \frac{a}{c}+D}=\frac{a^{\prime}}{c^{\prime}}$. So we need to find representatives of the orbits of the action of $\Gamma_{0}(11)$ on $\mathbb{Q} \cup\{i \infty\}$, that is, the cusps of $\Gamma_{0}(N)$. From [17] we find that these representatives are 0 and $i \infty$. Then it suffices to show (3) for two cases: $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. The first case holds because f is a q-series. For the second case we need to show that $f(-1 / \tau)$ is a Laurent series in $q^{1 / 11}$ with finite principal part. By [15] we have

$$
\eta(-1 / \tau)=(-i \tau)^{1 / 2} \eta(\tau)
$$

This implies

$$
\begin{equation*}
t(-1 / \tau)=t^{-1}\left(\frac{\tau}{11}\right) \tag{4}
\end{equation*}
$$

and

$$
b(-1 / \tau)=-\frac{1}{11} b\left(\frac{\tau}{11}\right) \tau^{2}
$$

The derivative of (4) is

$$
\tau^{-2} t^{\prime}(-1 / \tau)=\frac{1}{11} t^{-2}\left(\frac{\tau}{11}\right) t^{\prime}\left(\frac{\tau}{11}\right)
$$

which is equivalent to

$$
t^{\prime}(-1 / \tau)=\frac{1}{11} \tau^{2} t^{-2}\left(\frac{\tau}{11}\right) t^{\prime}\left(\frac{\tau}{11}\right)
$$

This implies

$$
\left(t^{\prime} / b\right)(-1 / \tau)=-\left(t^{\prime} / b\right)\left(\frac{\tau}{11}\right) t^{-2}\left(\frac{\tau}{11}\right)
$$

Hence

$$
f(-1 / \tau)=-f(\tau / 11) t^{-2}(\tau / 11)=5 q^{4 / 11}+O\left(q^{5 / 11}\right)
$$

So the last condition for f being a modular function for $\Gamma_{0}(11)$ is verified. In order for f to be in $M^{\infty}(11)$ we need the order of f to be nonnegative at all cusps except $i \infty$. That only leaves the cusp 0 where the order is 4 . This shows $f \in M^{\infty}(11)$.

We want to express h as an element of $\mathbb{C}(t, f)$. The pole orders of t and f are 5 and 6 so $p(x, y)=\sum_{i=0}^{6} \sum_{j=0}^{5} a_{i j} x^{i} y^{j}$ is an Ansatz for the algebraic relation $p(t, f)=0$. Solving linear equations coming from q-expansions gives

$$
p(x, y)=y^{5}+170 x y^{4}+9345 x^{2} y^{3}+167320 x^{3} y^{2}+\left(5^{5} x^{2}-7903458 x+5^{5} 11^{6}\right) x^{4}
$$

We use $p(x, y)$ to compute in $\mathbb{C}(t, f) \cong \mathbb{C}(x)[y] /(p)$. We compute B_{d}^{REF} from the previous section with $d=1$ and obtain $b_{0}, b_{2}, b_{3}, b_{4}, b_{5}$ where $b_{0}=1$ and $b_{i}=$
$q^{-i}+c_{i} q^{-1}+O\left(q^{1}\right)$ for $i=2, \ldots, 5$ for some constants c_{i}. Since h has a pole of order 4 , we can write it as a linear combination of $b_{0}, b_{2}, b_{3}, b_{4}$. We have $b_{0}=1$ and

$$
\begin{aligned}
& b_{2}=12+\frac{5 t}{22}\left(\frac{t-11^{3}}{f+47 t}-\frac{(42 t+f)\left(t+11^{3}\right)}{f^{2}+89 f t+1424 t^{2}}\right)=q^{-2}+2 q^{-1}+5 q+8 q^{2}+O\left(q^{3}\right) \\
& b_{3}=12+\frac{5 t}{22}\left(3 \frac{t-11^{3}}{f+47 t}-\frac{(16 t+3 f)\left(t+11^{3}\right)}{f^{2}+89 f t+1424 t^{2}}\right)=q^{-3}+q^{-1}+2 q+2 q^{2}+O\left(q^{3}\right) \\
& b_{4}=12+\frac{5 t}{22}\left(-3 \frac{t-11^{3}}{f+47 t}-\frac{(28 t+19 f)\left(t+11^{3}\right)}{f^{2}+89 f t+1424 t^{2}}\right)=q^{-4}-2 q^{-1}+6 q+3 q^{2}+O\left(q^{3}\right) .
\end{aligned}
$$

Like in $[16$, Alg. MW], we use

$$
h=11 q^{-4}+165 q^{-3}+748 q^{-2}+1639 q^{-1}+3553+O(q)
$$

to find

$$
h-11 b_{4}-165 b_{3}-748 b_{2}-3553 b_{0}=O(q)
$$

This expression in $M^{\infty}(11)$ has no poles and a root at $\tau=i \infty($ at $q=0)$ hence it is the zero function. Therefore

$$
h=11 b_{4}+165 b_{3}+748 b_{2}+3553 b_{0} .
$$

Replacing $b_{0}, b_{2}, b_{3}, b_{4}$ with their corresponding expressions in terms of t and f gives $h=q t \prod_{n=1}^{\infty}\left(1-q^{11 k}\right) \sum_{n=0}^{\infty} p(11 n+6) q^{n}=11^{4}+55 t\left(5 \frac{t-11^{3}}{f+47 t}-\frac{2(71 t+3 f)\left(t+11^{3}\right)}{f^{2}+89 f t+1424 t^{2}}\right)$.

This implies $p(11 n+6) \equiv 0(\bmod 11)$. Other expressions for h that prove this congruence were already in [1, 9], however, our expression in terms of t, f is novel.

For our second example, take t and h be as before and let

$$
E_{4}:=1+240 \sum_{n=1}^{\infty} \frac{n^{3} q^{n}}{1-q^{n}}
$$

be the usual Eisenstein series. Let

$$
\Delta:=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}
$$

Let $J:=E_{4}^{3} / \Delta=q^{-1}+\cdots$ and

$$
f:=J t^{3} .
$$

Next we show that $f \in M^{\infty}(11)$. From the last chapter of [18] we find

$$
E_{4}\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{4} E_{4}(\tau)
$$

and

$$
\Delta\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{12} \Delta(\tau)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. These two identities imply

$$
J\left(\frac{a \tau+b}{c \tau+d}\right)=J(\tau)
$$

for all $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$. Since $\mathrm{SL}_{2}(\mathbb{Z})$ has only one cusp, $i \infty$, and since J is a q-series it follows that J is a modular function on $\mathrm{SL}_{2}(\mathbb{Z})$ and thus on $\Gamma_{0}(11)$.

Since $t(\tau)$ is already a modular function on $\Gamma_{0}(11)$, it follows that f is a modular function on $\Gamma_{0}(11)$. To show that f is in $M^{\infty}(11)$ it suffices to show that the order
of f at the cusp 0 is nonnegative. Since $J(-1 / \tau)=\left(q^{-1 / 11}\right)^{11}+O(1)$ the order of J at 0 is -11 . The order of t at 0 is 5 , so the order of f at the cusp 0 is $-11+3 \cdot 5=4 \geq 0$. This shows $f \in M^{\infty}(11)$.

The only pole of f is at $i \infty$, it has order 16 . We compute the algebraic relation $p(t, f)=0$ with the Ansatz method, and use p to compute B_{d}^{REF}. Then we express h in terms of the t and the new f. This relation, and the Maple file that computes it, are given at www.math.fsu.edu/~hoeij/files/OrderComplete.

References

[1] A. O. L. Atkin. Proof of a Conjecture of Ramanujan. Glasgow Mathematical Journal, 8:14-32, 1967.
[2] F. G. Garvan. Some Congruences for Partitions that are p-Cores. Proceedings of the London Mathematical Society, 66:449-478, 1993.
[3] F. Hess. Computing riemannroch spaces in algebraic function fields and related topics. Journal of Symbolic Computation, 33:425-445, 2002.
[4] K. Hughes. Ramanujan Congruences for $p_{-k}(n)$ Modulo Powers of 17. Canadian Journal of Mathematics, 43:506-525, 1991.
[5] E. Nart J. Guàrdia, J. Montes. Higher newton polygons in the computation of discriminants and prime ideal decomposition in number fields. J. Théor. Nombres Bordeaux, 23:667-696, 2011.
[6] K. Khuri-Makdisi. Linear algebra algorithms for divisors on an algebraic curve. Mathematics of Computation, 73:333-357, 2004.
[7] O. Kolberg. An Elementary discussion of Certain Modular Forms. UNIVERSITET I BERGEN ARBOK Naturvitenskapelig rekke, 16, 1959.
[8] O. Kolberg. Congruences Involving the Partition Function for the Moduli 17, 19, and 23. UNIVERSITET I BERGEN ARBOK Naturvitenskapelig rekke, 15, 1959.
[9] J. Lehner. Ramanujan Identities Involving the Partition Function for the Moduli 11^{α}. American Journal of Mathematics, 65:492-520, 1943.
[10] G. Ligozat. Courbes modulaires de genre 1. Mémoires de la S.M.F, 43:5-80, 1975.
[11] M. Newman. Construction and Application of a Class of Modular Functions. Proceedings London Mathematical Society, 3(7), 1957.
[12] M. Newman. Construction and Application of a Class of Modular Functions 2. Proceedings London Mathematical Society, 3(9), 1959.
[13] P. Paule and C.-S. Radu. A Proof of the Weierstrass Gap Theorem not using the Riemann-Roch Formula. Available from http://www3.risc.jku.at/publications/download/ risc_5928/corrections_to_pp_final_Jan31.pdf.
[14] P. Paule and C.-S. Radu Radu. A new witness identity for $11 \mid p(11 n+6)$. In Analytic number theory, modular forms and q-hypergeometric series, volume 221 of Springer Proc. Math. Stat., pages 625-639. Springer, Cham, 2017.
[15] H. Rademacher. The Ramanujan Identities Under Modular Substitutions. Transactions of the American Mathematical Society, 51(3):609-636, 1942.
[16] C.-S. Radu. An Algorithmic Approach to Ramanujan-Kolberg Identities. Journal of Symbolic Computations, 68:225-253, 2015.
[17] C.-S. Radu. An algorithm to prove algebraic relations involving eta quotients. Annals of Combinatorics, 22:377-391, 2018.
[18] J. P. Serre. A Course in Arithmetic. Springer, 1996.
[19] B. Trager. Integration of algebraic functions. PhD thesis, Dept. of EECS, MIT, 1984.
[20] M. van Hoeij. An algorithm for computing an integral basis in an algebraic function field. J. Symbolic Comput., 18(4):353-363, 1994.
[21] Y. Yang. Defining Equations of Modular Curves. Advances in Mathematics, 204:481-508, 2006.

[^0]: † Supported by NSF 1618657.
 \dagger Supported by grant SFB F50-06 of the Austrian Science Fund (FWF)..

