D-Finite Functions
DD-Finite and Beyond

Antonio Jiménez Pastor (DK15)
Supervisor: Veronika Pillwein

Known Results on D-Finite Functions

Definition. Let K be a field and $f \in K[[x]]$. We say that f is D-Finite if, for some polynomials $p_{0}(x), \ldots, p_{d}(x)$, it satisfies the linear differential equation

$$
p_{0}(x) f(x)+p_{1}(x) f^{\prime}(x)+\ldots+p_{d}(x) f^{(d)}(x)=0 .
$$

Closure properties on D-Finite Functions[2, 3]

- Addition: if f, g are D-Finite, then $f+g$ is D-Finite.
- Product: if f, g are D-Finite, then $f g$ is D-Finite.
- Derivative: if f is D-Finite, then $f^{\prime}(x)$ is D-Finite.
- Antiderivative: if $g^{\prime}(x)=f(x)$ and f is D-Finite, then g is D-Finite.
- Algebraic: if $f(x)$ is algebraic over $K(x)$, then f is D-Finite.
- Algebraic substitution: let $f(x)$ be D-Finite and $a(x)$ an algebraic function with $a(0)=0$. Then $f(a(x))$ is D-Finite.

Examples of D-Finite Functions

$$
\begin{aligned}
e^{x} & \longrightarrow\left(e^{x}\right)^{\prime}-e^{x}=0 \\
\sin (x) & \longrightarrow \sin ^{\prime \prime}(x)+\sin (x)=0 \\
J_{n}(x) & \longrightarrow x^{2} J_{n}^{\prime \prime}(x)+x J_{n}^{\prime}(x)+\left(x^{2}-n^{2}\right) J_{n}(x)=0
\end{aligned}
$$

Examples of non D-Finite Functions

$e^{e^{x}-1}$	because $\quad e^{x}$ is not algebraic
$\tan (x)$	because $\tan (x)$ is not algebraic
$\Gamma(x+1)$	because has too many singularities

New Theory: Differentially Definable Functions

Definition

Let R be a differential subring of $K[[x]]$. We say that $f(x) \in K[[x]]$ is differentially definable over R if, for some elements $r_{0}(x), \ldots, r_{d}(x)$ in R, f satisfies the linear differential equation:

$$
r_{0}(x) f(x)+r_{1}(x) f^{\prime}(x)+\ldots+r_{d}(x) f^{(d)}(x)=0
$$

- $\mathrm{DD}(R)$: the set of all $f(x)$ differentially definable over R.
- $\operatorname{ord}_{R}(f)$: the minimal order of equations that f satisfies with coefficients in R.

$$
\begin{aligned}
& \text { Characterization Theorem [1] Let } R \text { be a differential subring of } K[[x]], F \text { its } \\
& \text { field of fractions and } f(x) \in K[[x]] \text {. It is equivalent: } \\
& \text { 1. } f(x) \in \mathrm{DD}(R) \text {. } \\
& \text { 2. There are } r_{0}(x), \ldots, r_{d}(x) \in R \text { and } g \in \mathrm{DD}(R) \text { such that } f(x) \text { satisfies the inho- } \\
& \text { mogeneous linear differential equation } \\
& \qquad r_{0}(x) f(x)+r_{1}(x) f^{\prime}(x)+\ldots+r_{d}(x) f^{(d)}(x)=g(x) .
\end{aligned}
$$

3. The F-vector space generated by $\left\{f(x), f^{\prime}(x), f^{\prime \prime}(x), \ldots\right\}$ has finite dimension.
[^0]
A Particular Case: DD-Finite Functions

Definition

Let K be a field and $f \in K[[x]]$. We say that f is DD-Finite if, for some D-Finite Functions $g_{0}(x), \ldots, g_{d}(x)$, it satisfies the linear differential equation

$$
g_{0}(x) f(x)+g_{1}(x) f^{\prime}(x)+\ldots+g_{d}(x) f^{(d)}(x)=0
$$

Polynomials \longrightarrow D-Finite \longrightarrow DD-Finite

$$
K[x] \quad \longrightarrow \mathrm{DD}(K[x]) \longrightarrow \mathrm{DD}(\mathrm{DD}(K[x]))
$$

Examples of DD-Finite Functions

- Tangent: the tangent function $(\tan (x))$ is DD-Finite:
$\cos ^{2}(x)(\tan (x))^{\prime \prime}-2 \tan (x)=0$.
- Rational powers: let $f(x)$ be D-Finite and $\alpha \in \mathbb{Q}$. Then $g(x)=f^{\alpha}(x)$ is DD-Finite:

$$
f(x) g^{\prime}(x)-\alpha f^{\prime}(x) g(x)=0 .
$$

- Mathieu's functions: let $a, q \in K$. Then any solution $w(x)$ of the following equation is DD-Finite:
$w^{\prime \prime}(x)+(a-q \cos (2 x)) w(x)=0$.

> Unique Representation: Initial Values Computer Representation $\longrightarrow\left\{\begin{array}{c}\text { Differential Equation } \\ + \\ \text { Initial Values }\end{array}\right.$ $\begin{array}{cl}f^{\prime \prime}(x)+f(x) & \longrightarrow 2 \text { initial values: } f(0), f^{\prime}(0) \\ x f^{\prime \prime}(x)+f^{\prime}(x)+x f(x) \longrightarrow 1 \text { initial value: } f(0) \\ x f^{\prime}(x)-n f(x) & \longrightarrow 1 \text { initial value: } f^{(n)}(0)\end{array}$

Problem: Initial Values

- Problem: given a linear differential equation with coefficients in $K[[x]]$, determine how many and which initial values are needed to define a unique solution.
- Solution: go to the sequence level:

$$
g(x) \in K[[x]] \longrightarrow g(x)=\sum_{n \geq 0} g_{n} x^{n} \longrightarrow \mathbf{g}=\left(g_{n}\right)_{n \geq 0}
$$

Let $f(x), r_{0}(x), \ldots, r_{d}(x) \in K[[x]]$. Then:
$r_{0}(x) f(x)+r_{1}(x) f^{\prime}(x)+\ldots+r_{d}(x) f^{(d)}(x)=0, \quad \forall x$

$$
\sum_{k=0}^{n+d} \underbrace{\left(\sum_{l=\max \{0, k-n\}}^{\min \{d, k\}} k^{l} r_{l ; n-k+l}\right)}_{m_{n, k}} f_{k}=0, \quad \forall n \in \mathbb{N}
$$

Theorem [1]

Let $r_{0}(x), \ldots, r_{d}(x) \in K[[x]]$ such that $r_{i}(0) \neq 0$ for some i. There are $d_{0} \in\{0, \ldots, d\}$ and $n_{0} \in \mathbb{N}$ (both computable) such that the dimension of the solution space for the equation induced by $r_{0}(x), \ldots, r_{d}(x)$ is the dimension of the right nullspace of:

$$
M=\left(m_{n, k} k_{0}^{0 \leq k \leq n_{0}+d_{0}} 0 \leq n \leq n_{0}\right.
$$

[^1]
References

${ }^{[3]}$ C. Mallinger. Agorithmic Manipulations and Transormations of Univariate Holonomic Functions and Sequereces. Masters thesis, RISC, J. Kepler Univesity, Augut 1996

[^0]: Theorem (Closure Properties)[1]
 Let R be a differential subring of $K[[x]]$ and $F=Q(R)$ its field of fractions. Then

 - Addition: if $f, g \in \mathrm{DD}(R)$, then $(f+g) \in \mathrm{DD}(R)$.
 - Product: if $f, g \in \mathrm{DD}(R)$, then $(f g) \in \mathrm{DD}(R)$.
 - Derivative: if $f \in \mathrm{DD}(R)$, then $f^{\prime}(x) \in \mathrm{DD}(R)$.
 - Antiderivative: if $g^{\prime}(x)=f(x)$ and $f \in \mathrm{DD}(R)$, then $g \in \mathrm{DD}(R)$.
 - Algebraic: if $f(x)$ is algebraic over F, then $f \in \mathrm{DD}(R)$.
 - Division: if $f \in R$ and $f(0) \neq 0$, then $1 / f \in \mathrm{DD}(R)$.

[^1]: ## Software

 The closure properties can be executed entirely automatically. I have developed and implemented these algorithms in SAGE, a free open-source mathematics software system.

