

Der Wissenschaftsfonds.

Extensions of Algorithms for D-Finite Functions DD-Finite and Beyond

Antonio Jiménez Pastor (DK15) Supervisor: Veronika Pillwein

Known Results on D-Finite Functions

Definition. Let K be a field and $f \in K[[x]]$. We say that f is D-Finite if, for some polynomials $p_0(x), ..., p_d(x)$, it satisfies the linear differential equation

 $p_0(x)f(x) + p_1(x)f'(x) + \dots + p_d(x)f^{(d)}(x) = 0.$

A Particular Case: *DD-Finite* Functions

Definition

Let K be a field and $f \in K[[x]]$. We say that f is DD-Finite if, for some D-Finite Functions $g_0(x), ..., g_d(x)$, it satisfies the linear differential equation

 $g_0(x)f(x) + g_1(x)f'(x) + \dots + g_d(x)f^{(d)}(x) = 0.$

Closure properties on D-Finite Functions[2, 3]

- Addition: if f, g are D-Finite, then f + g is D-Finite.
- *Product:* if f, g are D-Finite, then fg is D-Finite.
- *Derivative:* if f is D-Finite, then f'(x) is D-Finite.
- Antiderivative: if g'(x) = f(x) and f is D-Finite, then g is D-Finite.
- Algebraic: if f(x) is algebraic over K(x), then f is D-Finite.

• Algebraic substitution: let f(x) be D-Finite and a(x) an algebraic function with a(0) = 0. Then f(a(x)) is D-Finite.

Examples of D-Finite Functions

 $e^x \longrightarrow (e^x)' - e^x = 0$ $\sin(x) \longrightarrow \sin''(x) + \sin(x) = 0$ $J_n(x) \longrightarrow x^2 J_n''(x) + x J_n'(x) + (x^2 - n^2) J_n(x) = 0$

Examples of non D-Finite Functions

because e^x is not algebraic tan(x) because tan(x) is not algebraic $\Gamma(x+1)$ because has too many singularities Polynomials \longrightarrow D-Finite \longrightarrow DD-Finite $K[x] \longrightarrow DD(K[x]) \longrightarrow DD(DD(K[x]))$

Examples of DD-Finite Functions

• **Tangent:** the tangent function (tan(x)) is DD-Finite:

 $\cos^2(x)(\tan(x))'' - 2\tan(x) = 0.$

• Rational powers: let f(x) be D-Finite and $\alpha \in \mathbb{Q}$. Then $g(x) = f^{\alpha}(x)$ is DD-Finite:

 $f(x)g'(x) - \alpha f'(x)g(x) = 0.$

• Mathieu's functions: let $a, q \in K$. Then any solution w(x) of the following equation is DD-Finite:

 $w''(x) + (a - q\cos(2x))w(x) = 0.$

Unique Representation: Initial Values

Computer Representation \longrightarrow

Differential Equation Initial Values

New Theory: Differentially Definable Functions

Definition

Let R be a differential subring of K[[x]]. We say that $f(x) \in K[[x]]$ is differentially definable over R if, for some elements $r_0(x), ..., r_d(x)$ in R, f satisfies the linear differential equation:

$r_0(x)f(x) + r_1(x)f'(x) + \dots + r_d(x)f^{(d)}(x) = 0.$

- DD(R): the set of all f(x) differentially definable over R.
- \bullet ord_R(f): the minimal order of equations that f satisfies with coefficients in R.

Characterization Theorem [1] Let R be a differential subring of K[[x]], F its field of fractions and $f(x) \in K[[x]]$. It is equivalent: $1. f(x) \in \mathrm{DD}(R).$

2. There are $r_0(x), ..., r_d(x) \in R$ and $g \in DD(R)$ such that f(x) satisfies the inhomogeneous linear differential equation

 $r_0(x)f(x) + r_1(x)f'(x) + \dots + r_d(x)f^{(d)}(x) = g(x).$

 $f''(x) + f(x) \longrightarrow 2$ initial values: f(0), f'(0) $xf''(x) + f'(x) + xf(x) \longrightarrow 1$ initial value: f(0) $xf'(x) - nf(x) \longrightarrow 1$ initial value: $f^{(n)}(0)$

Problem: Initial Values

• **Problem:** given a linear differential equation with coefficients in K[[x]], determine how many and which initial values are needed to define a unique solution. • **Solution:** go to the sequence level:

 $g(x) \in K[[x]] \longrightarrow g(x) = \sum_{n \ge 0} g_n x^n \longrightarrow \mathbf{g} = (g_n)_{n \ge 0}$

Let $f(x), r_0(x), ..., r_d(x) \in K[[x]]$. Then:

Theorem [1]

3. The F-vector space generated by $\{f(x), f'(x), f''(x), ...\}$ has finite dimension.

Theorem (Closure Properties)[1] Let R be a differential subring of K[[x]] and F = Q(R) its field of fractions. Then

- Addition: if $f, g \in DD(R)$, then $(f + g) \in DD(R)$.
- *Product:* if $f, g \in DD(R)$, then $(fg) \in DD(R)$.
- Derivative: if $f \in DD(R)$, then $f'(x) \in DD(R)$.
- Antiderivative: if g'(x) = f(x) and $f \in DD(R)$, then $g \in DD(R)$.
- Algebraic: if f(x) is algebraic over F, then $f \in DD(R)$.
- **Division:** if $f \in R$ and $f(0) \neq 0$, then $1/f \in DD(R)$.

Let $r_0(x), ..., r_d(x) \in K[[x]]$ such that $r_i(0) \neq 0$ for some *i*. There are $d_0 \in \{0, ..., d\}$ and $n_0 \in \mathbb{N}$ (both computable) such that the dimension of the solution space for the equation induced by $r_0(x), ..., r_d(x)$ is the dimension of the right nullspace of:

 $M = (m_{n,k})_{0 \le n \le n_0}^{0 \le k \le n_0 + d_0}.$

Software

The closure properties can be executed entirely automatically. I have developed and implemented these algorithms in SAGE, a free open-source mathematics software system.

References

- [1] A. Jiménez-Pastor and V. Pillwein. A computable extension for holonomic functions: DD-Finite functions. In preparation, 2017
- and P. Paule. The Concrete Tetrahedron: Symbolic Sums, Recurrence Equations, Generating Functions, Asymptotic Estimates. Springer Publishing Company, Incorporated, 1st edition, 2011
- [3] C. Mallinger. Algorithmic Manipulations and Transformations of Univariate Holonomic Functions and Sequences. Master's thesis, RISC, J. Kepler University, August 1996.