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1 Introduction
Let (K,σ) be a difference field. We define the set of constants by constK = {c ∈ K | σ(c) = c}. A ΠΣ∗-extension of
K is a field of rational functions K(t) over K together with an extension of σ to K(t) given by either σ(t) = at (Π
case) or σ(t) = t+ b (Σ∗ case) for some non-zero a or b ∈ K such that constK(t) = constK holds. See, for example,
[8, 9] for more details on ΠΣ∗-extensions.

In this work, we consider coupled systems of recurrence equations of the form

Asσ
s(y) + . . .+A1σ(y) +A0y = b (1)

where A0, . . . , As ∈ K(t)m×n are matrices and b ∈ K(t)m is a vector. Our goal is to find rational solutions, that
is, all y ∈ K(t)n which satisfy the system. A first step is to find a nonzero polynomial d ∈ K[t] such that dy has
only polynomial entries for all possible solutions y. This polynomial is known as denominator bound or universal
denominator.

Most existing algorithms as for instance [3, 1] work by translating the higher order system to a first order system.
We only know of one method, [4], dealing directly with higher order systems. Our algorithm is similar to that
later work; however, we expand it in several points: 1. Most importantly, we address the problem for general ΠΣ∗

extensions instead of concentrating on the case constK = K and the shift operator t 7→ t + 1. 2. In addition our
method does not require the system matrices to be square or their rows to be linearly independent.

2 Results
The special case of a scalar recurrence (m = 1) for a ΠΣ∗-extension (K(t), σ) of (K,σ) has been treated in [6, 10].
The derived algorithm generalises Abramov’s denominator bounding algorithm [2] that has been introduced for the
rational case, i.e., for the situation that const(K) = K and σ(t) = t+ 1. Exploiting the observation that Abramov’s
algorithm can be formulated in a straightforward fashion [7] enables us to tackle the denominator bounding problem
for the general case m ≥ 1 in a given ΠΣ∗-extension.

More precisely, in this poster we present a way to derive the denominator bound for the “aperiodic” part directly
from the highest and lowest coefficient matrix A` and A0 for the case that both matrices are regular. It is convenient
to consider two cases.

For the Σ∗-case we show that for any solution y = p
d ∈ K(t)m (p ∈ K[t]m \ {0}, d ∈ K[t] \ {0} and gcd(p, d) = 1)

of the system of (1) the denominator d fulfils

d
∣∣∣ gcd

( D∏
j=0

σ−`−j(m̃),

D∏
j=0

σj(p̃)
)

(2)

where m̃ is the denominator of A−1
` , p̃ is the denominator of A−1

0 and D is the dispersion of σ−`(m̃) and p̃. Here the
dispersion of a, b ∈ K[t] is defined by

disp(a, b) = max{n > 0| gcd(a, σn(b)) 6= 1}

1



Title of your paper TBA

with the convention that max∅ = −1; and the denominator of a matrix means the least common multiple of the
denominators of its entries. It is important to note that for any a, b ∈ K[t] \ {0} the dispersion disp(a, b) is finite;
for details see [6, 9]. This implies in particular that the products in our formula (2) are well defined.

For the Π-case the situation is slightly more complicated. For any a, b ∈ K[t]\{0} the dispersion disp(a, b) is finite
if and only if t - a or t - b; see again [6, 9]. Using this extra insight, we show that for any solution y = p

d tr ∈ K(t)m

(r ≥ 0, p ∈ K[t]m\{0}, d ∈ K[t]\{0} with t - d and gcd(p, d tr) = 1) of the system (1) the factor d of the denominator
fulfils (2) where m̃ and p̃ are defined as above but where the possibly occurring factors t are removed. In the Π
case, what is left of a polynomial after removing factors of t is usually known as its aperiodoc part within the ΠΣ∗

setting; that is, we are computing the so-called aperiodic denominator bound here. Again this construction implies
that D = disp(σ−`(m̃), p̃) in (2) is finite.

Moreover, we provide a discussion on how to deal with systems where the leading or trailing coefficient matrices
are singular. Here, we have to preprocess the system using so-called row and column reduction—see, for example,
[5]. In brief, this method considers the system matrix A = A`σ

` + . . .+A1σ+A0 as a matrix over the operator ring
K(t)[σ] and uses elementary row or column transformations in order to make the leading matrix A` regular. A slight
modification of the method can be used to work on the trailing matrix A0 as well. Thus we obtain two equivalent
systems from which we get a similar denominator bound to (2).

For the Π-case we also provide some preliminary results on the missing “periodic” denominator bound tr for some
r ≥ 0. Here we focus on the special case that constK = K.
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