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1 Introduction

Let (K, o) be a difference field. We define the set of constants by const K = {c € K | o(c) = ¢}. A II¥*-extension of
K is a field of rational functions K (¢) over K together with an extension of o to K (t) given by either o(t) = at (II
case) or o(t) =t+b (X* case) for some non-zero a or b € K such that const K (¢) = const K holds. See, for example,
[8, 9] for more details on IT¥X*-extensions.

In this work, we consider coupled systems of recurrence equations of the form

Aso®(y)+ ...+ Ajo(y) + Aoy = b (1)

where Ag,..., A, € K(t)™*™ are matrices and b € K ()™ is a vector. Our goal is to find rational solutions, that
is, all y € K(t)™ which satisfy the system. A first step is to find a nonzero polynomial d € K[t] such that dy has
only polynomial entries for all possible solutions y. This polynomial is known as denominator bound or universal
denominator.

Most existing algorithms as for instance [3, 1] work by translating the higher order system to a first order system.
We only know of one method, [4], dealing directly with higher order systems. Our algorithm is similar to that
later work; however, we expand it in several points: 1. Most importantly, we address the problem for general IIX*
extensions instead of concentrating on the case const K = K and the shift operator ¢t — ¢ + 1. 2. In addition our
method does not require the system matrices to be square or their rows to be linearly independent.

2 Results

The special case of a scalar recurrence (m = 1) for a IIX*-extension (K (¢),0) of (K, o) has been treated in [6, 10].
The derived algorithm generalises Abramov’s denominator bounding algorithm [2] that has been introduced for the
rational case, i.e., for the situation that const(K) = K and o(t) =t + 1. Exploiting the observation that Abramov’s
algorithm can be formulated in a straightforward fashion [7] enables us to tackle the denominator bounding problem
for the general case m > 1 in a given II¥*-extension.

More precisely, in this poster we present a way to derive the denominator bound for the “aperiodic” part directly
from the highest and lowest coefficient matrix A, and Ag for the case that both matrices are regular. It is convenient
to consider two cases.

For the ¥*-case we show that for any solution y = 5 € K(t)" (p € K[t]™ \ {0}, d € K[t]\ {0} and gcd(p,d) = 1)
of the system of (1) the denominator d fulfils
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where 77 is the denominator of A, "', j is the denominator of A;" and D is the dispersion of ¢~¢(1n) and p. Here the
dispersion of a,b € K[t] is defined by

disp(a, b) = max{n > 0| gcd(a, o™ (b)) # 1}
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with the convention that max @ = —1; and the denominator of a matrix means the least common multiple of the
denominators of its entries. It is important to note that for any a,b € K|[t] \ {0} the dispersion disp(a,b) is finite;
for details see [6, 9]. This implies in particular that the products in our formula (2) are well defined.

For the II-case the situation is slightly more complicated. For any a,b € K[t]\ {0} the dispersion disp(a, b) is finite
if and only if ¢ { a or ¢ { b; see again [6, 9]. Using this extra insight, we show that for any solution y = £ € K(t)™
(r>0,pe K[t]™\{0}, d € K[¢]\{0} with t { d and ged(p,dt") = 1) of the system (1) the factor d of the denominator
fulfils (2) where m and p are defined as above but where the possibly occurring factors ¢ are removed. In the II
case, what is left of a polynomial after removing factors of ¢ is usually known as its aperiodoc part within the ITX*
setting; that is, we are computing the so-called aperiodic denominator bound here. Again this construction implies
that D = disp(c—*(1n), p) in (2) is finite.

Moreover, we provide a discussion on how to deal with systems where the leading or trailing coefficient matrices
are singular. Here, we have to preprocess the system using so-called row and column reduction—see, for example,
[5]. In brief, this method considers the system matrix A = A,0f + ...+ Aj0 + Ag as a matrix over the operator ring
K (t)[o] and uses elementary row or column transformations in order to make the leading matrix A, regular. A slight
modification of the method can be used to work on the trailing matrix Ay as well. Thus we obtain two equivalent
systems from which we get a similar denominator bound to (2).

For the II-case we also provide some preliminary results on the missing “periodic” denominator bound ¢" for some
r > 0. Here we focus on the special case that const K = K.
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