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Abstract. In 1919 Ramanujan conjectured three infinite families of congru-
ences for the partition function modulo powers of 5, 7, and 11. In 1938 Watson
proved the 5-case and a corrected version of the 7-case. In 1967 Atkin proved
the remaining 11-family using a method significantly different from Watson’s.
Finally, in 1983 Gordon found a way to adapt Watson’s method for the 11-
family. We present a new proof for the 11-family by generalizing Watson’s
method in a direction different from Gordon’s. Until now the case 11 has been
viewed as substantially different from 5 and 7. We show that this is not the
case by proving the families for 5, 7 and 11 with the same new algorithmic
framework. In addition, we eliminate elements needed in the original proof
of Watson. Focusing on eta-quotient representations of modular functions in
the new setting, we derived new compact representations of Atkin’s basis func-
tions. This, for instance, gives a new simple witness identity for the divisibility
of the partition numbers p(11n+ 6) by 11.

1. Introduction

We start by quoting A.O.L. Atkin, a pioneer in the use of computers in number
theory [6, p. 14]: “Watson’s method of modular equations, while theoretically
available for the case p = 11, does not seem to be so in practice even with the
help of present-day computers.”

Atkin’s statement refers to infinite families of congruences for p(n), the number
of partitions of n, which were first considered by Ramanujan [28] in 1919 when
he conjectured that for ` ∈ {5, 7, 11} and α ≥ 1:

(1) p(`αn+ µα,`) ≡ 0 (mod `α), n ≥ 0;
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here µα,` is defined to be the smallest positive integer such that 24µα,` ≡ 1
(mod `α). Chowla [9] observed using a table by Gupta [16] that the conjecture
failed for ` = 7 and α = 3. In 1938 Watson [29] proved the conjecture for
` = 5 and all α, and a suitably modified form for ` = 7 and all α. However, it
should be noted that according to [7] the task of assigning credit for the proofs
for ` = 5, 7 poses an interesting historical challenge concerning the contribution
of Ramanujan. Regarding the case ` = 11 Watson states, “Da die Untersuchung
der Aussage über 11α recht langweilig ist, verschiebe ich den Beweis dieses Falles
auf eine spätere Abhandlung.”

In 1967 Atkin [6] proved (1) for ` = 11. Inspired by Lehner’s work [21, 20] he
uses an approach significantly different from Watson’s. The method has many
pieces linked together which makes the proof rather technical. Atkin ends with
the comment “We may observe finally that, in comparison with ` = 5 and ` = 7,
this proof is indeed “langweilig” as Watson suggested.”. In 1983 Gordon [14, p.
108, Thm. 2] proved a result which in a special case implies:

p(11αn+ µα,11) ≡ 0 (mod 11α+ε),

where ε is some integer. By following carefully the proof of Gordon one easily
can show that ε = 0. Consequently, Gordon in [14] provides another proof of (1)
for ` = 11. He concludes by saying that although his method contains a lot of
ideas from Atkin [6], it is more a generalization in the spirit of Watson’s method.
On pages 116 and 117 of [14] Gordon uses some recurrences which are too big to
be listed, but which are essential in the proof. Furthermore, in [14] and also in
the paper with Hughes [15, p. 112] he needs to compute the structure constants
of a certain algebra.

Restricting to modules with polynomial coefficient rings our method provides a
much simpler conceptual framework which avoids to deal in any way with struc-
ture constants related to multiplication. This feature comes close to Atkin’s
simplification of Watson’s proof for the powers of 5 and 7; Atkin made his un-
published work available to Knopp who published it in Chapter 8 of his book
[18]. Another streamlining of Watson’s proof was done by Andrews [2]. Be-
sides [7] another rich source concerning the history of Ramanujan’s congruences
is [8]. With regard to proofs not using modular function machinery in explicit
ways, Berndt [8, p. 374] remarks, “A more classically oriented proof for powers
of 5 was found by M.D. Hirschhorn and D.C. Hunt [17], while a proof in the same
vein for powers of 7 was given by F.G. Garvan [13].”

With respect to modular functions, an important new feature of our approach
concerns the use of different modular equations in comparison to those used
classically for 5 and 7, and also for 11. Our modular equation gives the action
of the U -operator on the basis elements in each of these cases—as in the other
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proofs. But using our equation this information is obtained in much more direct
fashion.

Despite its conceptual simplicity our setting has a strong algorithmic backbone
which computationally is somewhat demanding. But the arising complexity, in
view of the Atkin quote at the beginning of this introduction, is easily manage-
able for present-day computers. To prove the 11-case, our proof uses a modular
equation of degree 55 and needs 550 fundamental relations to set up the basis
for the induction. These 550 relations can be computed in about three days on
a standard workstation used in academic environment.

Exactly the same method works for ` = 5 and ` = 7: the modular equation is of
degree 5 in the 5-case and of degree 7 in the 7-case; for the induction basis we
need 10 fundamental relations for ` = 5 and 14 fundamental relations for ` = 7.
These relations can be computed in a couple of seconds; for further details see
Section 12.2.

At this point we want to stress two further aspects: (i) all these relations can
be (and were) obtained algorithmically; (ii) all the families of Ramanujan con-
gruences modulo powers of ` = 5, 7, and 11 in our setting are proved using one
uniform approach, which we feel is desirable, for instance, in view of the following
statement by Ahlgren and Ono [1, p. 981], “By contrast, the case of powers of
11 is much more difficult.”

To underline the uniform nature of our setting, we mention our Conjecture 8.1
which extrapolates the common structure of the modular equations for ` = 5, 7,
and 11 to all primes ` ≥ 5. More concretely, we conjecture lower bounds for the
`-adic valuation of the coefficients of the modular equation. For ` = 5, 7, and 11
this, in essence, is all what is needed to prove Ramanujan’s congruences.

Another uniform aspect concerns the module description of the algebra of modu-
lar functions for congruence subgroup Γ0(`). Namely, all the subalgebras needed
here can be represented as free modules 〈1, f1, . . . , fn`−1〉Z[z`] over the ring Z[z`]
with fixed modular functions fi and

z` =
(η(`τ)

η(τ)

) 24
gcd(`−1,24)

,

and where (n5, n7, n11) = (1, 1, 5).

Our article is structured as follows. In Section 2 and Section 3 we introduce basic
notions and provide the necessary modular functions background. In Section 4
we state the Main Theorem, Theorem 4.15, of our paper. It describes the action
of the U -operator on quotients of eta function products being crucial for proving
the Ramanujan congruences modulo powers of ` = 5, 7, 11; see Corollary 4.16.
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The rest of the main part of the paper deals with proving the Main Theorem.
In Section 5 we state and prove the Fundamental Lemma, Lemma 5.8, which
will play a key role in the proof of the Main Theorem presented in Section 6. In
Section 7 we prove Theorem 7.1 which implies the existence of the fundamental
polynomials F`(X, Y ) stated in Theorem 5.2. Section 8 concludes the main part
of the paper; here we state a conjecture on lower bounds for the `-adic valuation
of the coefficients of the modular equation for all primes ` ≥ 5.

Algorithmic aspects were a major driving force for the development of the ma-
terial of the main part of this paper. Nevertheless, for better readability we put
various constructions and results of algorithmic relevance in a separate part, the
Appendix. In fact, the main part up to Section 7 in its essence is independent
from the material in the Appendix with the only exception of Section 12 (Appen-
dix 4), where we describe the derivation and proof of the fundamental relations
needed to prove the crucial Lemma 6.5.

In Section 9, Appendix 1, we give a detailed description of the derivation of our
new representations of Atkin’s basis functions gi using an approach which is close
to an algorithm. To this end, we focus on properties of module generators, in
particular, the concept of an Atkin basis. In order to work with compact repre-
sentations of the modular functions involved, we make use of special instances of
a trace operator formula. Sections 10 and 11 (Appendix 2 and 3) are included for
the sake of completeness. Section 10 presents proofs of formulas for the modular
functions Fi, resp. Ji, arising in Section 9. In Section 11 we give an elementary
proof of the non-existence of a principal modular function (“Hauptmodul”) on
Γ0(11).

2. Basic Notions

Notational conventions used throughout are: For x ∈ R the symbol dxe (“ceiling”
of x) denotes the smallest integer greater or equal to x.

H := {τ ∈ C : Im(τ) > 0} and Ĉ := C ∪ {∞}. As usual, η denotes the Dedekind
eta function defined for τ ∈ H,

(2) η(τ) = q(τ/24)
∞∏
n=1

(1− q(τ)n) where q(τ) = exp(2πiτ).

Frequently we write q = q(τ). In general, we often suppress writing the argument
τ of functions f(τ) defined on the upper half plane. With regard to q we do this
also in view of the fact that, depending on the context, many infinite q-products
and q-series can be interpreted as formal power (resp. Laurent) series taking q as
an indeterminate.
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For k ∈ Z>0 the function ηk is defined by

(3) ηk(τ) := η(kτ), τ ∈ H.

Let f =
∑∞

n=N anq
n with N ∈ Z such that aN 6= 0. Then N =: ord f is the order

of f . More generally, if t =
∑∞

n≥1 bnq
n/w, w ∈ Z>0, and F = f ◦ t :=

∑∞
n=N ant

n,
then N =: ordt f is the t-order of f . For example, if N = ord f = −1 and
t = q2, then ordt F = −1 but ordF = −2; if N = ord f = −2 and t = q1/2, then
ordt F = −2 but ordF = −1.

The modular group SL2(Z) = {( a bc d ) ∈ Z2×2 : ad − bc = 1} acts on H by
( a bc d ) τ := aτ+b

cτ+d
; this action is inherited by the congruence subgroups

Γ0(`) := {( a bc d ) ∈ SL2(Z) : `|c} ,
where ` ∈ Z>0. Note that Γ0(1) = SL2(Z). These subgroups have finite index in
SL2(Z):

(4) [SL2(Z) : Γ0(`)] = `
∏

prime p|`

(
1 +

1

p

)
, ` ≥ 2;

see the standard literature on modular forms like [11] or [10]. Particularly related
to our context are [18] and [26].

The action of SL2(Z) on H extends to an action on meromorphic functions f :

H → Ĉ. With regard to the action of the W = ( 0 −1
11 0 ) operator, we define

the slightly more general action of the general linear group GL2(Z): for all τ ∈
( a bc d ) ∈ GL2(Z),

(f | γ)(τ) := f(γτ) = f

(
aτ + b

cτ + d

)
.

3. Modular Functions

To make this article as much self-contained as possible, in this section we recall
some facts about modular functions.

In this article a modular function for Γ0(`) is: (i) a holomorphic function f :
H→ C such that (ii) for all ( a bc d ) ∈ Γ0(`),

f
(aτ + b

cτ + d

)
= f(τ), τ ∈ H,

and (iii) if ( a bc d ) ∈ SL2(Z) then f
(
aτ+b
cτ+d

)
admits a Laurent series expansion in

powers of qgcd(c2,`)/` with finite principal part. We will use the notation w`(c) :=
`/ gcd(c2, `), and M(`) for the set of modular functions for Γ0(`).
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By (iii) with ( a bc d ) = ( 1 0
0 1 ), any f ∈ M(`) admits a Laurent series expansion in

powers of q with finite principal part; i.e.,

(5) f(τ) =
∞∑

n=−N

fnq
n.

Hence one can extend f to H ∪ {∞} by defining f(∞) := ∞, if N > 0, and
f(∞) := f0, otherwise. Subsequently, a Laurent expansion of f as in (5) will be
also called q-expansion of f at infinity.

Given γ = ( a bc d ) ∈ SL2(Z) and f ∈ M(`), consider the Laurent series expansion
of f(γτ) in powers of q1/w`(c),

(6) f(γτ) =
∞∑

n=−M

gnq
n/w`(c).

In view of γ∞ = limIm(τ)→∞ γτ = a/c, we say that (6) is the q-expansion of f at
a/c. Understanding that a/0 =∞, this also covers the definition of q-expansions
at ∞. Concerning uniqueness of such expansions, let γ′ ∈ SL2(Z) be such that
γ′∞ = γ∞ = a/c. Then the q-expansion of f(γ′τ) differs from that of f(γτ)
only by a root-of-unity factor in the coefficients. Namely, then γ′ = γ

( ±1 m
0 ±1

)
for

some m ∈ Z, which implies

f(γ′τ) =
∞∑

n=−M

gn
(
e2πim/w`(c)

)n
qn/w`(c).

As a consequence, one can extend f from H to Ĥ := H ∪ {∞} ∪ Q by defining
f(a/c) := (f ◦ γ)(∞) where γ ∈ SL2(Z) is chosen such that γ∞ = a/c. Another
consequence is that the q-expansions of f at ∞ are uniquely determined owing
to

(7) γ∞ =∞⇔ γ =
( ±1 m

0 ±1

)
and w`(0) = 1.

In the next step, the action of SL2(Z), and thus of Γ0(`), is extended in an obvious

way to an action on Ĥ. The orbits of the Γ0(`) action are denoted by

[τ ]` := {γτ : γ ∈ Γ0(`)}, τ ∈ Ĥ.

In many cases, ` will be clear from the context and we will write [τ ] instead of
[τ ]`. The set of all such orbits is denoted by

X0(`) := {[τ ]` : τ ∈ Ĥ}.

The Γ0(`) action maps Q ∪ {∞} to itself, and owing to (4) each Γ0(`) produces
only finitely many orbits [τ ]` with τ ∈ Q ∪ {∞}; such orbits are called cusps of
X0(`).
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Lemma 3.1. For any prime p:

X0(p) has two cusps, [∞]p and [0]p;(1)

X0(p2) has p+ 1 cusps, [∞]p2 , [0]p2 , and [k/p]p2 , k = 1, . . . , p− 1.(2)

Proof. This fact can be found in many sources; a detailed description of how to
construct a set of representatives for the cusps of Γ0(`), for instance, is given in
[27, Lemma 5.3]. �

Suppose the domain of f ∈ M(`) is extended from H to Ĥ as described above.
Then the resulting function f (using the same notation for the extended function)

gives rise to a function f ∗ : X0(`)→ Ĉ, which is defined as follows:

f ∗([τ ]`) := f(τ), τ ∈ Ĥ.
The fact that f ∗ is well-defined follows from our previous discussion. We say that
f ∗ is induced by f .

As described in detail in [11], X0(`) can be equipped with the structure of a
compact Riemann surface. This analytic structure turns the induced functions
f ∗ into meromorphic functions on X0(`) having possible poles only at the cusps of
X0(`). The following classical lemma [22, Thm. 1.37], a Riemann surface version
of Liouville’s theorem, is crucial for zero recognition of modular functions:

Lemma 3.2. Let X be a compact Riemann surface. Suppose that g : X → C is
an analytic function on all of X. Then g is a constant function.

As already mentioned, possible poles of f ∗ can only sit at cusps. More precisely,
owing to the definition of induced functions f ∗, all possible poles of f ∗ can be
spotted by checking whether f ∗([a/c]) = f(a/c) =∞ for a/c ∈ Q∪{∞}. Because
of (4), Q ∪ {∞} splits only into a finite number of cusps,

Q ∪ {∞} = [a1/c1]` ∪ · · · ∪ [ak/ck]`.

Hence knowing all the cusps [aj/cj] reduces the task of finding all possible poles
to the inspection of q-expansions of f at aj/cj; i.e., of q-expansions of f(γjτ) as
in (6) with γj ∈ SL2(Z) such that γj∞ = aj/cj. We call these expansions also
local q-expansions of f ∗ at the cusps [aj/cj]`; w`(cj) is called the width of the
cusp [aj/cj]`. It is straightforward to show that it is independent of the choice of
the respresentative aj/cj of the cusp [aj/cj]`, and that w`(cj) = `/ gcd(c2

j , `) for
relatively prime aj and cj. Note that [∞]` = [1/0]`.

The order ord[a/c]` f
∗ of f ∗ at a cusp [a/c]` is defined to be the q1/w`(c)-order of a

local q-expansion of f ∗ at [a/c]`; i.e.,

ord[a/c]` f
∗ := ordq1/w`(c)(f | γ) where γ = ( a bc d ) ∈ SL2(Z).

It is straightforward to verify that ord[a/c] f
∗ is well-defined.
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Example 3.3. [18, Ch. 7, Thm. 1] Consider

(8) z5(τ) :=
(η(5τ)

η(τ)

)6

= q
∞∏
j=1

(1− q5j

1− qj
)6

= q + 6q2 + 27q3 + 98q4 + · · · .

Observing that 5 · ( a bc d ) τ =
(

a 5b
c/5 d

)
(5τ) together with a straightforward appli-

cation of the η transformation formula [3, Thm. 3.4] shows that z5(γτ) = z5(τ)
for all γ ∈ Γ0(5) and

(9) z5(Tτ) = z5

(
− 1

τ

)
=

5−3

z5(τ/5)
=

1

53

( 1

q1/5
− 6 + 9q1/5 + 10q2/5 − . . .

)
,

where T = ( 0 −1
1 0 ). For p a prime, X0(p) has exactly two cusps [∞]p and [0]p with

widths 1 and 5, respectively; see [18, Ch. 2, Sect. 2]. Hence (8) and (9) are the
local q-expansions of z∗5 at these cusps with

(10) ord[∞]5 z
∗
5 = ordq z5 = 1 and ord[0]5 z

∗
5 = ordq1/5 z5(−1/τ) = −1.

Obviously, z5 has no zero in H. Consequently, the orders in (10) tell that z∗5 has
its only zero of order 1 at [∞]5 and its only pole, also of order 1, at [0]5. This
is also in accordance with Lemma 3.4 which says that, with regard to counting
orders, induced functions f ∗ have exactly as many zeroes as poles:

Lemma 3.4. For any f ∈M(`) the induced function f ∗ : X0(`)→ Ĉ is surjective
and ∑

[τ ]`

ord[τ ]` f
∗ = 0,

where the sum runs over all cusps of X0(`).

The lemma is implied by another fundamental fact from compact Riemann sur-
faces; see, for instance, [22, Prop. 4.12].

The functions z5 are embedded in a general class of modular functions treated in
detail in [18, Ch. 7, Thm. 1]. In our setting we need a subclass defined as

(11) z`(τ) :=
(η(`τ)

η(τ)

) 24
gcd(`−1,12)

, ` a prime ≥ 5.

Lemma 3.5. Let ` ≥ 5 be a prime,

z` ∈M(`);(1)

ord[∞]` z
∗
` =

`− 1

gcd(`− 1, 12)
= − ord[0]` z

∗
` ;(2)

z`

(
− 1

τ

)
z`

(τ
`

)
= `−

12
gcd(`−1,12) .(3)

Proof. [18, Ch. 7, Thm. 1]. �
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We note that

ord[∞]5 z
∗
5 = ord[∞]7 z

∗
7 = 1, whereas ord[∞]11 z

∗
11 = 5.

Obviously, the modular functions in M(`) form a C-algebra; i.e., a commutative
ring with 1 which is also a vector space over C. In our context, the subalgebras
MZ(`), resp. MQ(`), of modular functions in M(`) with integer, resp. rational,
coefficients in their q-expansions at ∞, which by (7) are uniquely determined,
will be relevant too. Other important subrings are those having a pole only at 0,

M0(`) := {f ∈M(`) : ord[∞]` f
∗ ≥ 0},

and those having a pole only at ∞,

M∞(`) := {f ∈M(`) : ord[0]` f
∗ ≥ 0}.

When we want to focus on subalgebras with functions having q-expansions at ∞
with coefficients from R := Z or R := Q we use the notation

M0
R(`) := M0(`) ∩MR(`), resp. M∞

R (`) := M∞(`) ∩MR(`).

Example 3.6. By Lemma 3.5: z` ∈M0
Z(`) for ` a prime.

Despite the naturally given ring structure of these function domains, inspired by
Atkin [6], Gordon [14], and Newman [24] and [25] we will make fundamental use
of representing these rings as freely generated modules.

Example 3.7. For ` = 5 and ` = 7 the module structure for M0
Z(`) boils down to

the naturally given ring structure. Namely, because of ord[0]5 z
∗
5 = ord[0]7 z

∗
7 = −1,

together with the fact that z5 and z7 are analytic in H, it is easily verified that

M0
Z(5) = {p(z5) : p(z5) ∈ Z[z5]} = Z[z5] and M0

Z(7) = Z[z7].

This means, M0
Z(`) for ` = 5 and ` = 7 is a module over the ring Z[z`] with one

module generator, the constant function 1. In other words, M0
Z(5) and M0

Z(7) are
polynomials rings in z5 and z7, respectively, with integer coefficients.

Example 3.8. Let Z[z11] denote the ring of polynomials in z11 with integer coef-
ficients. Atkin [6, Lem. 3] proved that M0

Z(11) can be represented as a Z[z11]-
module which is freely generated by modular functions g2, g3, g4, and g6 ∈M0

Z(11)
where the gi are as in [6], resp. (100) below. Notationally,

M0
Z(11) =

{
p0(z11) + p2(z11)g2 + p3(z11)g3(12)

+ p4(z11)g4 + p6(z11)g6 : pi(z11) ∈ Z[z11]
}

=: 〈1, g2, g3, g4, g6〉Z[z11].

Atkin [6] defined the functions gi in a skillful manner by following Newman [23].
It turns out that using “summing the even part”,

U2

∞∑
k=N

a(k)qk :=
∞∑

k=dN/2e

a(2k)qk,
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the special case m = 2 of the U -operator in Definition 4.2, the gi can be repre-
sented in a simple and compact manner:

Theorem 3.9. Let

(13) f2(τ) := q−2

∞∏
n=1

(1− qn)(1− q2n)3

(1− q11n)3(1− q22n)

and

(14) f3(τ) := q−3

∞∏
n=1

(1− qn)3(1− q2n)

(1− q11n)(1− q22n)3
.

Then

(15) g2 = U2
1

f2

− 1

f3

, g3 =
4

11
U2

1

f3

− 1

11

1

f2

, g4 = −1

2
g3 +

1

2
U2

1

f 2
2

+
1

f 2
3

,

and

(16) g6 = z11 −
8

112
g4 +

8

112
U2

1

f 2
3

+
1

112

1

f 2
2

.

In the Appendix we prove this theorem; see Theorem 9.8 together with (100).
More generally, in Section 9 of the Appendix we describe how to derive these
representations using an approach which is close to an algorithm. This derivation
among other things also explains that in the choice of (16) there is some freedom.
For instance, one could omit the summand z11 there.

4. The Main Theorem

To state the main theorem of this paper, Theorem 4.15, we need some prepara-
tions.

Notation. It will be convenient to use the following shorthand (as in Lemma 9.6)
for the multiplicative inverse of functions:

f̄ :=
1

f
.

For a prime ` ≥ 5 one of the key players will be the following modular function
and its multiplicative inverse,

(17) u`(τ) :=
η(τ)

η(`2τ)
.
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Lemma 4.1. For any prime ` ≥ 5,

u` ∈M∞
Z (`2) and ū` ∈M0

Z(`2);(1)

ord[∞]`2
u∗` = −`

2 − 1

24
= − ord[0]`2

u∗` and(2)

ord[k/`]`2
u∗` = 0, k = 1, . . . , `− 1.

Proof. The statements are implied by [26, Thms. 1.64 and 1.65]. �

We will use the U -operator in its usual definition:

Definition 4.2. For f : H→ C and m ∈ Z>0 we define Um(f) : H→ C by

Um(f)(τ) :=
1

m

m−1∑
λ=0

f
(τ + λ

m

)
, τ ∈ H.

If f has period 1 and a q-expansion with principal part involving only finitely
many q-powers, then one has:

(18) f(τ) =
∞∑
k=N

a(k)qk ⇒ (Umf)(τ) =
∞∑

k=dN/me

a(mk)qk,

and for any g : H→ C,

(19) Um(f(mτ)g(τ)) = f(τ)Um(g(τ)).

Example 4.3.

U11(ū11) = U11
η(112τ)

η(τ)
=
∞∏
j=1

(1− q11j)U11

( ∞∑
k=0

p(k)qk+5
)

=
∞∏
j=1

(1− q11j)U11

( ∞∑
k≥5

p(k − 5)qk
)

=
∞∏
j=1

(1− q11j)
∞∑

k=d5/11e

p(11k − 5)qk

= q

∞∏
j=1

(1− q11j)
∞∑
k=0

p(11k + 6)qk.

Obviously Um is linear (over C); in addition, it is easy to verify that

(20) Umn = Um ◦ Un = Un ◦ Um, m, n ∈ Z>0.

The U -operator turns modular functions for the full modular group into functions
from M(p), p a prime; but more is true:
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Lemma 4.4. For any prime p:

(1) f ∈M(1)⇒ Up(f) ∈M(p).

If p | N ∈ Z>0:

(2) f ∈M(N)⇒ Up(f) ∈M(N).

If p2 | N ∈ Z>0:

(3) f ∈M(N)⇒ Up(f) ∈M
(N
p

)
.

Proof. For instance, [4, p. 138, Lem. 7]. �

Example 4.5. By Lemma 4.4(3), U11(ū11) ∈M0
Z(11); by Lemma 4.4(2), U2

11(ū11) ∈
M0

Z(11). By (20) and (19),

U2
11(ū11) = U112

η(112τ)

η(τ)
=
∞∏
j=1

(1− qj)
∞∑

k=d5/112e

p(112k − 5)qk

= q
∞∏
j=1

(1− qj)
∞∑
k=0

p(112k + 116)qk.

In view of the congruences (1) the following explicit expressions for the numbers
µα,` are easily verified.

Lemma 4.6. For ` ∈ {5, 7, 11} and β ∈ Z>0:

µ2β−1,` =
1 + (24− `) · `2β−1

24
and µ2β,` =

1 + 23 · `2β

24
.

Definition 4.7. Let ` ∈ {5, 7, 11} and u` as in (17). For f : H → C we define

U
(1)
` (f), U

(2)
` (f) : H→ C by

U
(1)
` (f) := U` (ū`f) and U

(2)
` (f) := U`(f).

Definition 4.8. For ` ∈ {5, 7, 11} we define L0,` := 1 and for all β ∈ Z>0:

L2β−1,` := U
(1)
` (L2β−2,`) and L2β,` := U

(2)
` (L2β−1,`).

In view of the Examples 4.3 and 4.5, which give the base cases L1,11 and L2,11,
the proof of the following lemma is an easy induction exercise.

Lemma 4.9. For ` ∈ {5, 7, 11} and β ∈ Z>0 we have:

(21) L2β−1,` = q
∞∏
n=1

(1− q`n)
∞∑
n=0

p(`2β−1n+ µ2β−1,`)q
n ∈M0

Z(`)
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and

(22) L2β,` = q
∞∏
n=1

(1− qn)
∞∑
n=0

p(`2βn+ µ2β,`)q
n ∈M0

Z(`).

Example 4.10. Example 4.3 gives the q-expansion of L11 = U11(ū11) ∈ M0
Z(11).

Atkin’s functions gi are module generators which satisfy (12). Hence one can
apply the reduction strategy as described in Section 9.3 and finds, as Atkin [6,
p. 26], that

(23) L1,11 = 114z11 + 11g2 + 2 · 112g3 + 113g4.

By Theorem 3.9 this turns into

(24) L11 = 113
( 1

f 2
3

+
1

2
U2

1

f 2
2

)
+ 11 · 7

2

( 1

f2

− 4U2
1

f3

)
− 11

( 1

f3

−U2
1

f2

)
+ 114z11.

This is Atkin’s (23) in the clothes of a new witness identity for 11 | p(11n + 6)
involving only eta quotients and the U2-operator (“summing the even part”)
acting on eta quotients.

To state the Main Theorem 4.15 of the paper, we introduce convenient shorthand
notation.

Definition 4.11. A map a : Z → Z is called a discrete function if it has finite
support. A map a : Z× Z→ Z is called discrete array if for each i ∈ Z the map
a(i,−) : Z→ Z, j 7→ a(i, j) is a discrete function.

Definition 4.12. For ` ∈ {5, 7, 11} and s ∈ {1, 2} define numbers ξ
(s,`)
i via maps

ξ(s,`) : {0, . . . , n` − 1} → Z, i 7→ ξ
(s,`)
i as follows:

(ξ
(1,11)
0 , . . . , ξ

(1,11)
4 ) := (−5,−1, 1, 2, 6) and ξ

(2,11)
j := ξ

(1,11)
j + 1, j ∈ {0, . . . , 4};

ξ
(1,7)
0 := −7 and ξ

(2,7)
0 := −10;

ξ
(1,5)
0 := −6 and ξ

(2,5)
0 := −5.

Definition 4.13. For the sake of uniform treatment we define

(25) J0,5 = J0,7 = J0,11 := 1, and Ji,11 := gi for i = 2, 3, 4, 6,

where the gi are the Atkin generators from (100).

With the help of these numbers together with

(26) A` :=
12

gcd(`− 1, 12)

`

`+ 1
,

we define specific sets of modular functions which by Examples 3.8 and 3.7 are
in M0

Z(`):
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Definition 4.14. With Ji,` as in Def. 4.13 and ξ
(s,`)
i as in Def. 4.12:

X(s,`) :=
{ n`−1∑

i=0

Ji,`

∞∑
j=0

`

⌈
A`
`

(
`j+ξ

(s,`)
i

)⌉
ai(j)z

j
` :

the ai are discrete functions with a0(0) = 0
}
⊆M0

Z(`).

Theorem 4.15 (“Main Theorem”). For ` ∈ {5, 7, 11} and β ∈ Z>0 there exist
f2β−1 ∈ X(1,`) and f2β ∈ X(2,`) such that

L2β−1,` = `p`(2β−1)f2β−1(27)

and

L2β,` = `p`(2β)f2β,(28)

where for n ∈ Z>0,

p`(n) :=

{
n, if ` ∈ {5, 11},⌈
n+1

2

⌉
, if ` = 7.

The next two sections are devoted to proving the Main Theorem by mathematical
induction on β. To this end we need to investigate the algebra underlying the
induction step.

We conclude this section by proving the Ramanujan congruences modulo powers
of ` for ` ∈ {5, 7, 11}.

Corollary 4.16. Let ` ∈ {5, 7, 11}, then for α ∈ Z>0 and µα,` as in Lemma 4.6:

p(`αn+ µα,`) ≡ 0 (mod `p`(α)), n ≥ 0.

Proof. The statement is immediate by applying Lemma 4.9 to (27) and (28). �

5. The Fundamental Lemma

In this section we state and prove the Fundamental Lemma, Lemma 5.8, which
will play a key role in the proof of the Main Theorem presented in Section 6.
Besides the z` ∈ M0

Z(`) and the u` ∈ M∞
Z (`2), resp. ū` ∈ M0

Z(`2), further crucial
functions, ` ≥ 5 a prime, are

t`(τ) :=
( η(τ)

η(`τ)

)ν`
= z̄`(τ) ∈M∞

Z (`) and

T`(τ) := t`(`τ) =
( η(`τ)

η(`2τ)

)ν`
= u`(τ)ν`z`(τ) ∈M∞

Z (`2),
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where

(29) ν` =
24d`

(`− 1)`
with d` :=

(`− 1)`

gcd(`− 1, 12)
.

Lemma 5.1. For any prime ` ≥ 5,

t`, t̄` ∈MZ(`) (and thus in MZ(`2)), and T`, T̄` ∈MZ(`2);(1)

ord[∞]`2
t̄∗` =

d`
`
, ord[0]`2

t̄∗` = −d`, and(2)

ord[k/`]`2
t̄∗` =

d`
`
, k = 1, . . . , `− 1;

ord[∞]`2
T̄ ∗` = d`, ord[0]`2

T̄ ∗` = −d`
`
, and(3)

ord[k/`]`2
T̄ ∗` = −d`

`
, k = 1, . . . , `− 1.

Proof. The statements are implied by [26, Thms. 1.64 and 1.65]. �

The Fundamental Lemma owes its existence to the following theorem.

Theorem 5.2. For any prime ` ≥ 5 and ν` as in (29) there exists a polynomial
F`(X, Y ) ∈ Q[X, Y ] which is irreducible over C and which is monic in x of degree
d` = ν`(`− 1)`/24 such that

F`(t̄`, T̄`) = F
((η(`τ)

η(τ)

)ν`
,
(η(`2τ)

η(`τ)

)ν`)
= 0.

Remark 5.3. Being monic and having polynomial coefficients the modular relation
F`(X, Y ) is of particular algorithmic importance. Therefore we give a detailed
proof of its existence in Section 7. Nevertheless, for a fixed prime ` ≥ 5 the
polynomial F`(X, Y ) can be computed explicitly as in the proof of Theorem 5.4.
In other words, for our proof of the Ramanujan congruences (Cor. 4.16) one does
not need Theorem 5.2, respectively the proofs presented in Section 7.

Theorem 5.4. For ` ∈ {5, 7, 11} the uniquely determined polynomials as in
Theorem 5.2 are of the form

F`(X, Y ) = Xdl +

d`−1∑
i=0

a
(`)
i (Y )X i

where

F5(X, Y ) = X5 + a
(5)
4 (Y )X4 + · · ·+ a

(5)
1 (Y )X + a

(5)
0 (Y ) = X5

− (512Y 5 + 6 · 510Y 4 + 63 · 57Y 3 + 52 · 55Y 2 + 63 · 52Y )X4

− (59Y 4 + 6 · 57Y 3 + 63 · 54Y 2 + 52 · 52Y )X3(30)

− (56Y 3 + 6 · 54Y 2 + 63 · 5Y )X2 − (53Y 2 + 6 · 5Y )X − Y ;
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F7(X,Y ) = X7 +
6∑
i=0

a
(7)
i (Y )Xi = X7

(31)

− (82 · 72Y + 176 · 74Y 2 + 845 · 75Y 3 + 272 · 77Y 4

+ 46 · 79Y 5 + 4711Y 6 + 712Y 7)X6

− (176 · 72Y + 845 · 73Y 2 + 272 · 75Y 3 + 46 · 77Y 4 + 4 · 79Y 5 + 710Y 6)X5

− (845 · 7Y + 272 · 73Y 2 + 46 · 75Y 3 + 4 · 77Y 4 + 78Y 5)X4

− (272 · 7Y + 46 · 73Y 2 + 4 · 75Y 3 + 76Y 4)X3 − (46 · 7Y + 4 · 73Y 2 + 74Y 3)X2

− (4 · 7Y + 72Y 2)X − Y ;

and

(32) F11(X, Y ) = X55 +
54∑
i=0

a
(11)
i (Y )X i,

where the polynomials a
(11)
i (Y ) are listed explicitly at

https://www.risc.jku.at/people/sradu/powers11

Remark 5.5. We prove our claim by invoking a reduction algorithm. Its steps have
been described in the proof of Lemma 9.6; its strategy is used at various other
places in this article. We stress the following aspect: By running the reduction
algorithm for ` = 5, 7, 11 one detects that the principal parts indeed reduce to
zero, which is sufficient to prove Theorem 5.4. But the guaranty that this always
happens (not only for ` = 5, 7, 11 but also for all primes ` ≥ 5) is provided by
Theorem 5.2. Before entering the algorithmic reduction argument, we begin the
proof of Theorem 5.4 by making this existence aspect explicit.

Proof of Theorem 5.4. By Theorem 5.2 there exist polynomials a
(`)
i (Y ) ∈ Q[Y ]

such that F`(t̄`, T̄`) = 0 for

(33) F`(X, Y ) := Xd` + a
(`)
d`−1(Y )Xd`−1 + · · ·+ a

(`)
1 (Y )X + a

(`)
0 (Y );

in addition, F`(X, Y ) ∈ Q[X, Y ] is irreducible in C[X, Y ]. To compute the a
(`)
i (Y )

recall Lemma 5.1 which implies that t`T` = q−(d`+d`/`) + O(q−(d`+d`/`)+1) and
T` = q−d` + O(q−d`+1) have their only pole at ∞ with multiplicity d` + d`/`,
respectively d`. Hence, analogously to the proof of Theorem 5.2, Theorem 7.1

implies that there exist polynomials p
(`)
j (Y ) ∈ Q[Y ] such that

(34) (t`T`)
d` + p

(`)
1 (T`)(t`T`)

d`−1 + · · ·+ p
(`)
d`

(T`) = 0.

Define

(35) G`(X, Y ) := Xd` + p
(`)
1 (Y )Xd`−1 + · · ·+ p

(`)
d`

(Y ) ∈ Q[Y ][X].
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Rewrite

G`(t`T`, T`) = (t`T`)
d`
(

1 +
p

(`)
1 (T`)

T`
t̄` +

p
(`)
2 (T`)

T 2
`

t̄2` + · · ·+
p

(`)
d`

(T`)

T d``
t̄d``

)
=

(t`T`)
d`

T̄m`

( 1

Tm`
+
p

(`)
1 (T`)

Tm+1
`

t̄` +
p

(`)
2 (T`)

Tm+2
`

t̄2` + · · ·+
p

(`)
d`

(T`)

Tm+d`
`

t̄d``

)
,

where m ≥ 0 is such that ym is the maximal non-negative power of y occuring in

the summands of the Laurent polynomials p
(`)
i (y)/yi, i = 1, . . . , d`; if all occuring

powers of y are negative, set m := 0. Owing to the choice of m, the p
(`)
i (y)/ym+i

are polynomials in 1/y over Q. Hence by the irreducibility of F`(X, Y ) there
exists a c ∈ Q such that

(36) ai(Y ) = c · Y m+ip
(`)
i (1/Y ), i = 1, . . . , d` − 1, and a0(Y ) = c · Y m.

As a consequence, to compute F`(X, Y ) it is sufficient to determine the polynomial
G`(X, Y ) which can be computed by iterated reduction until the principal part
vanishes.

The reduction procedure. For instance, for ` = 5 the first reduction step is

(t5T5)5 − T 6
5 = −30q−29 + 405q−28 − 3190q−27 +O(q−26).

For the next step one determines non-negative integers a = 4, b = 1 such that

6 a+ 5 b = 29.

Then

(t5T5)5 − T 6
5 + 30(t5T5)4T 1

5 = −315q−28 + 4370q−27 − 28500q−26 +O(q−26).

One finds a = 3, b = 2 such that

6 a+ 5 b = 28;

resulting in the reduction,

(t5T5)5 − T 6
5 + 30(t5T5)4T 1

5 + 315(t5T5)3T 2
5 = −1300q−27 +O(q−26).

By iterating this reduction and setting S := t5T5 and T := T5, one arrives at

G5(X, Y ) = X5 + p
(5)
1 (Y )X4 + · · ·+ p

(5)
4 (Y )X + p

(5)
5 (Y )

= X5 + (53 + 5 · 6 · Y )X4 + (56 + 54 · 6 · Y + 5 · 63 · Y 2)X3

+ (59 + 57 · 6 · Y + 54 · 63 · Y 2 + 52 · 52 · Y 3)X2

+ (512 + 510 · 6 · Y + 57 · 63 · Y 2 + 55 · 52 · Y 3 + 52 · 63 · Y 4)X − Y 6;

i.e., d5 = 5, m = 1 and c = −1. By (36),

(37) a
(5)
0 (Y ) = −Y, and a

(5)
i (Y ) = −Y 1+ip

(5)
i (1/Y ) for i = 1, 2, 3, 4,

which gives F5(X, Y ) as in (30). The cases ` = 7 and ` = 11 work analogously. �
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By inspection we have

Corollary 5.6. Let ` ∈ {5, 7, 11}. With A` as in (26) and ν` as in (29), the

polynomials a
(`)
i (Y ) in Theorem 5.4 are of the form

(38) a
(`)
i (Y ) =

d`
`

+i∑
k=
⌈
d`−i
`

⌉ s`(i, k)`

⌈
A`
`

(k`+i−d`)
⌉
Y k

where the s`(i, k) are integers.

Remark 5.7. Writing a
(`)
j (Y ) as in (38) to reveal divisibility by powers of ` of its

coefficients is of help in the proof of Lemma 6.3 and is inspired by [5].

Lemma 5.8 (“Fundamental Lemma”). Let ` ∈ {5, 7, 11}, d` as in (29), and

a
(`)
i (Y ) as in (38). Then for any w : H→ C and arbitrary j ∈ Z:

U`(w t̄
j
`) = −

d`−1∑
i=0

a
(`)
i (t̄`)U`(w t̄

j+i−d`
` ).

Proof. Let λ ∈ {0, . . . , `−1}. Theorem 5.4, after substituting τ 7→ τ+λ
`

and using
t̄`(τ + λ) = t̄`(τ), implies

t̄`

(τ + λ

`

)d`
+

d`−1∑
i=0

a
(`)
i (t̄(τ)) t̄`

(τ + λ

`

)i
= 0.

Now, after multiplying both sides with w
(
τ+λ
`

)
t̄`
(
τ+λ
`

)j−d` , summation over all
λ from {0, . . . , `− 1} completes the proof of the lemma. �

6. Proving the Main Theorem

Throughout this section we assume that ` is a fixed prime chosen from {5, 7, 11}.
We need to prepare with some lemmas.

Lemma 6.1. Let d` be as in (29) and w : H → C. Suppose for some l ∈ Z and

all k with l ≤ k ≤ l+d`−1 there exist Laurent polynomials p
(0)
k (X), . . . , p

(r)
k (X) ∈

Z[X,X−1], functions v0, . . . , vr : H→ C, and integers σ0, . . . , σr such that

(39) U`(wt̄
k
` ) =

r∑
i=0

vip
(i)
k (t̄`)

where

(40) ordt̄`

(
p

(i)
k (t̄`)

)
≥
⌈k + σi

`

⌉
, i ∈ {0, . . . , r}.



A UNIFIED ALGORITHMIC FRAMEWORK FOR RAMANUJAN’S CONGRUENCES 19

For each i = 0, . . . , r extend {p(i)
k (X)}l≤k≤l+d`−1 to the infinite set {p(i)

k (X)}k≥l
by defining for successive N and starting with N = l + d`:

(41) p
(i)
N (X) := −

d`−1∑
j=0

a
(`)
i (X) p

(i)
N+j−d`(X) ∈ Z[X,X−1].

Then

(39) and (40) hold for all k ≥ l and i = 0, . . . , r.

Remark 6.2. The definition (41) is a natural consequence of extending the set

{p(i)
k (X)}l≤k≤l+d`−1 by inductive use of the action of the U -operator. For example,

if N = `+ d` then by (39) and Lemma 5.8:

U`(wt̄
N) = −

d`−1∑
j=0

a
(`)
j (t̄`)U`(w t̄

N+j−d`
` ) = −

d`−1∑
j=0

a
(`)
j (t̄`)

r∑
i=0

vip
(i)
N+j−d`(t̄`)

= −
r∑
i=0

vi

d`−1∑
j=0

a
(`)
j (t̄`) p

(i)
N+j−d`(t̄`) =

r∑
i=0

vip
(i)
N (t̄`),(42)

where the last equality is by (41).

Proof of Lemma 6.1. In view of (42) the definition of the p
(i)
k is such that (39)

is satisfied also for all k ≥ ` + d`. To show (40), we proceed by mathematical
induction assuming that N is an integer with N > l+ dp− 1. Moreover, suppose
that (40) holds for l ≤ k ≤ N − 1 and

p
(i)
k (X) =

∑
n≥d k+σi` e

ci(k, n)Xn, l ≤ k ≤ N − 1,

with integers ci(k, n). Then,

− p(i)
N (X) =

d`−1∑
j=0

a
(`)
i (X) p

(i)
N+j−d`(X) =

d`−1∑
j=0

a
(`)
i (X)

∑
n≥
⌈
N+j−d`+σi

`

⌉ ci(N + j − d`, n)Xn

=

d`−1∑
j=0

a
(`)
j (X)

∑
n−
⌈
d`−j
`

⌉
≥
⌈
N+j−d`+σi

`

⌉ ci
(
N + j − d`, n−

⌈d` − j
`

⌉)
X
n−
⌈
d`−j
`

⌉

=

d`−1∑
j=0

a
(`)
j (X)X

−
⌈
d`−j
`

⌉ ∑
n≥
⌈
d`−j
`

⌉
+
⌈
N+j−d`+σi

`

⌉ ci
(
N + j − d`, n−

⌈d` − j
`

⌉)
Xn
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Finally, recall that a
(`)
j (X)X

−
⌈
d`−j
`

⌉
for 0 ≤ j ≤ d` − 1 is a polynomial in X

(Corollary 5.6). Hence, owing to dxe + dy − xe ≥ dye, the Laurent polynomials

p
(i)
N (X) satisfy (40) for all N ≥ l. �

Lemma 6.3. Let dp be as in (29) and w : H→ C. Suppose for some l ∈ Z and

all k with l ≤ k ≤ l+d`−1 there exist Laurent polynomials p
(0)
k (X), . . . , p

(r)
k (X) ∈

Z[X,X−1] and functions v0, . . . , vr : H→ C such that

(43) U`(wt̄
k
` ) =

r∑
i=0

vip
(i)
k (t̄`)

and

(44) p
(i)
k (X) =

∑
n

ci(k, n)`

⌈
A`
`

(`n+γi−k)
⌉
Xn for integers ci(k, n) and γi,

where A` is as in (26). For each i = 0, . . . , r extend {p(i)
k (X)}l≤k≤l+d`−1 to the

infinite set {p(i)
k (X)}k≥l by defining for successive N and starting with N = l+d`:

(45) p
(i)
N (X) := −

d`−1∑
j=0

a
(`)
i (X) p

(i)
N+j−d`(X) ∈ Z[X,X−1].

Then
(43) and (44) hold for all k ≥ l and i = 0, . . . , r.

Proof. In view of (42) the definition of the p
(i)
k is such that (43) is satisfied also

for all k ≥ `+d`. To show (44), we proceed by mathematical induction assuming
that N is an integer with N > l+ dp − 1. Then using (45), (38), and (44) as the
induction hypothesis,

−p(i)
N (X) =

d`−1∑
j=0

a
(`)
j (X) p

(i)
N+j−d`(X)

=

d`−1∑
j=0

d`+j∑
k=1

s`(j, k)`

⌈
A`
`

(k`+j−d`)
⌉
Xk

×
∑
n

ci(N + j − d`, n)`

⌈
A`
`

(`n+γi−N−j+d`)
⌉
Xn

=

d`−1∑
j=0

d`+j∑
k=1

∑
n

s`(j, k)ci(N + j − d`, n− k)

× `
⌈
A`
`

(`(n−k)+γi−N−j+d`)
⌉
+
⌈
A`
`

(`k+j−d`)
⌉
Xn.

The induction proof of (44) is completed by bounding the exponent of ` from
below with y :=

⌈
A`
`

(`n+ γi −N)
⌉
, again using dy − xe+ dxe ≥ dye. �
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Before proving the Main Theorem, Theorem 4.15, we need three more lemmas
and the integers,

(46) n` :=
`− 1

gcd(`− 1, 12)
=
d`
`
, ` = 5, 7, 11.

In addition, for the next lemma we need to define integer maps.

Definition 6.4. For ` ∈ {5, 7, 11} and s ∈ {1, 2} define integer maps µs,`, νs,` :
{0, . . . , n` − 1}2 → Z as follows: For s = 1,

µ1,5(0, 0) := −3, µ1,7(0, 0) := −6, and ν1,5(0, 0) := 1, ν1,7(0, 0) := 2, and

µ1,11 0 1 2 3 4
0 -3 1 3 5 9
1 -3 1 3 4 8
2 -3 1 2 4 8
3 -3 0 2 4 8
4 -3 0 2 4 7

, and

ν1,11 0 1 2 3 4
0 1 -1 -3 -5 -7
1 2 -1 -3 -5 -7
2 2 0 -3 -5 -7
3 2 0 -2 -5 -7
4 2 0 -2 -4 -7

.

For example, µ1,11(1, 2) = 3. For s = 2,

µ2,`(i, j) := µ1,`(i, j) +
`

2A`
, and ν2,`(i, j) := ν1,`(i, j)−

`

2A`
,

where A` is as in (26).

For our convention for Ji,` recall Definition 4.13. Also recall that t̄` = z` with z`
as in (11). For the rest of this section we prefer to use z`.

Lemma 6.5. Let ` ∈ {5, 7, 11} and n` as in (46). Then for (s,m, k) ∈ {1, 2} ×
{0, . . . , n` − 1} × Z≥0 there exist discrete arrays a

(s,`)
m,k such that

(47) U
(s)
` (Jm,`z

k
` ) =

n`−1∑
i=0

Ji,`
∑

j≥N(s,`)
m,k (i)

a
(s,`)
m,k (i, j)`M

(s,`)
m,k (i,j)zj` ,

where

(48) N
(s,`)
m,k (i) =

⌈k + νs,`(m, i)

`

⌉
and M

(s,`)
m,k (i, j) =

⌈A`
`

(`j − k + µs,`(m, i))
⌉

with νs,` and µs,` as in Definition 6.4.

Remark 6.6. In particular, if s = 1,

N
(1,5)
m,k (i) = N

(1,5)
0,k (0) =

⌈k + 1

5

⌉
, N

(1,7)
m,k (i) = N

(1,7)
0,k (0) =

⌈k + 2

7

⌉
,

and,

N
(1,11)
m,k (i) =

⌈k + ν1,11(m, i)

11

⌉
≥
⌈k − 7

11

⌉
, m, i ∈ {0, . . . , 4}.
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If s = 2,

N
(2,5)
m,k (i) = N

(2,5)
0,k (0) =

⌈k
5

⌉
, N

(2,7)
m,k (i) = N

(2,7)
0,k (0) =

⌈k
7

⌉
,

and,

N
(2,11)
m,k (i) =

⌈k − 1 + ν1,11(m, i)

11

⌉
≥
⌈k − 8

11

⌉
, m, i ∈ {0, . . . , 4}.

Sketch of Proof of Lemma 6.5. For a fixed s ∈ {1, 2} let

(49) p
(i)
k (X) :=

∑
j≥N(s,`)

m,k (i)

a
(s,`)
m,k (i, j)`M

(s,`)
m,k (i,j)zj` , i = 0, . . . , n` − 1.

Recall that U
(1)
` (Jm,`z

k
` ) = U`(ū`Jm,`z

k
` ) and U

(2)
` (Jm,`z

k
` ) = U`(Jm,`z

k
` ). Con-

sequently, for either choice of s ∈ {1, 2} the conditions (47) and (48) fit the
pattern of (39) and (40), and (43) and (44) with vi := Ji,`. Thus to prove the
properties claimed by Lemma 6.5 we can invoke Lemma 6.1 and Lemma 6.3.
Concretely, to complete the proof of Lemma 6.5 one only has to verify that in

the given setting there exist Laurent polynomials p
(i)
k (X) ∈ Z[X,X−1] of the

form as in (49) which satisfy the conditions (47) and (48) for all (s,m, k) ∈
{1, 2} × {0, . . . , n` − 1} × {−d` + 1, . . . , 0}. To this end we compute explicity
all such relations and check the conditions (47) and (48) by inspection. This
procedure proves Lemma 6.5; details are given in Section 12.2 (Appendix). �

Definition 6.7. For m ∈ Z \ {0} and any prime p let vp(m) ≥ 0 be the p-adic
valuation of m; i.e., the maximal non-negative integer power of p arising as a
factor of m.

Lemma 6.8. Let ` ∈ {5, 7, 11}, n` as in (46), and r ∈ {0, . . . , n` − 1}. Let
f ∈M0

Z(`) be of the form

f =

n`−1∑
m=0

Jm,`

∞∑
n=0

b(m,n)`

⌈
A`
`

(`n+εm,`)
⌉
zn`

with fixed εm,` ∈ Z and where b is a discrete array with b(m, 0) = 0 for 0 ≤ m ≤ r.

Then U
(s)
` (f), s ∈ {1, 2}, is of the form

U
(s)
` (f) =

n`−1∑
i=0

Ji,`

∞∑
j=0

c(s,`)(i, j)zj` ,

where c(s,`) is a discrete array with c(s,`)(0, 0) = 0. Moreover, for the given r:

v`(c
(s,`)(i, j)) ≥ min

m∈{0,...,r}
m′∈{r+1,...,n`−1}

(
M

(s,`)
m,1 (i, j) +

⌈A`
`

(`+ εm,`)
⌉
,M

(s,`)
m′,0(i, j) +

⌈A`
`
εm′,`

⌉)
,

using the notation from (48).
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Proof. Utilizing Lemma 6.5 we write U (s)(f) as

U
(s)
` (f) =

n`−1∑
m=0

∞∑
n=0

n`−1∑
i=0

∑
j≥N(s,`)

m,n (i)

c(s,`)
m,n (i, j)Ji,`z

j
`

with

c(s,`)
m,n (i, j) = a(s,`)

m,n (i, j)b(m,n)`

⌈
A`
`

(`n+εm,`)
⌉
+M

(s,`)
m,n (i,j)

.

Splitting the sum with respect to the given r, and noticing that b(0, 0) = 0, gives
rise to summation bounds as follows:

U
(s)
` (f) = J0,`

∞∑
j=1

zj`

r∑
m=0

∞∑
n=1

c(s,`)
m,n (0, j) +

n`−1∑
i=1

Ji,`

∞∑
j=0

zj`

r∑
m=0

∞∑
n=1

c(s,`)
m,n (i, j)

+ J0,`

∞∑
j=1

zj`

n`−1∑
m=r+1

∞∑
n=0

c(s,`)
m,n (0, j) +

n`−1∑
i=1

Ji,`

∞∑
j=0

zj`

n`−1∑
m=r+1

∞∑
n=0

c(s,`)
m,n (i, j).

From this representation the lemma follows immediately by inspection. �

Lemma 6.9. For ` ∈ {5, 7, 11} and X(s,`) as in Definition 4.12 we have

(50) f ∈ X(1,`) implies `−1U (2)(f) ∈ X(2,`)

and

(51) f ∈ X(2,`) implies `χ(`)`−1U (1)(f) ∈ X(1,`),

where (χ(5), χ(7), χ(11)) := (0, 1, 0).

Proof. Recall the map ξ(s,`) from Definition 4.12. Applying Lemma 6.8 with

r = 0, s = 2 and εi,` := ξ
(1,`)
i we obtain

v`(c
(2,`)(i, j)) ≥

⌈A`
`

(`j + ξ
(2,`)
i )

⌉
+ 1.

Similarly, applying Lemma 6.8 with r = 0, s = 1 and εi,` = ξ
(2,`)
i we obtain

v`(c
(1,`)(i, j)) ≥

⌈A`
`

(`j + ξ
(1,`)
i )

⌉
+ 1− χ(`).

�

Now we are ready for the proof of the Main Theorem.

Proof of Theorem 4.15 (“Main Theorem”). We proceed by mathematical induc-
tion on β. For β = 1 the statement is settled by the fundamental relations
providing representations of U1

11(1):

L1,5 = U
(1)
5 (1) = 5 z5 J0,5, L1,7 = U

(1)
7 (1) = 7(z7 + 7z2

7)J0,7
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and
L1,11 = U

(1)
11 (1) = 11(113z11J0,11 + J1,11 + 2·11J2,11 + 112J3,11).

These identites are entries of the tables in Section 12.2 (Appendix); there it is
also explained how to obtain them algorithmically. The induction step will be
carried out as follows: In the first step we show that the correctness of (27) for
N = 2β − 1, β ∈ Z>0, implies (28) for N + 1 = 2β, which in the second step is
shown to imply the correctness of (27) for N + 2 = 2β + 1.

For the first step we recall (20). Assuming the induction hypothesis (27) and
applying (50) from Lemma 6.9 we obtain

U
(2)
` (L2β−1,`) = `p`(2β−1)U

(2)
` (f2β−1) = `p`(2β−1) · `f2β

for some f2β ∈ X(2,`). Next we assume (28) and apply (51) in Lemma 6.9 to
obtain

U
(1)
` (L2β, `) = `p`(2β)U

(1)
` (f2β) = `p`(2β) · `1−χ(`)f2β+1

for some f2β+1 ∈ X(1,`). This completes the proof of the Main Theorem on the
basis of having established the fundamental relations for Lemma 6.5 which is
done in Section 12.2 (Appendix). �

7. The Fundamental Polynomials

In this section we prove Theorem 7.1 which, as shown below, implies the existence
of the fundamental polynomials F`(X, Y ) stated in Theorem 5.2. To this end we
need to recall a couple of notions from Riemann surfaces; see for instance [12].

We let M(S) denote the field of meromorphic functions f : S → Ĉ on a Riemann
surface S.1 Let f ∈ M(S) be non-constant: then for every neighborhood U
of x ∈ S there exist neighborhoods Ux ⊆ U of x and V of f(x) such that the
set f−1(v) ∩ Ux contains exactly k elements for every v ∈ V \ {f(x)}. This
number k is called the multiplicity of f at x; notation: k = multx(f). If S

is compact, f ∈ M(S) is surjective and each v ∈ Ĉ has the same number of
preimages, say n, counting multiplicities; i.e., n =

∑
x∈f−1(v) multx(f); see, e.g.,

[12, Thm. 4.24]. This number n is called the degree of f ; notation: n = Deg(f).
RamiPts(f) := {x ∈ S : multx(f) ≥ 2 denotes the set of ramification points of

f ; BranchPts(f) := f(RamiPts(f)) ⊆ Ĉ denotes the set of branch points of f .

Theorem 7.1. Given a compact Riemann surface S, let G ∈ M(S) be non-
constant with n := Deg(G). Let F ∈M(S) be such that for p ∈ S:

(52) p a pole of F ⇒ p a pole of G.

1In this context Ĉ := C ∪ {∞} is understood to be a compact Riemann surface isomorphic
to the Riemann sphere.
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Then there exist polynomials c1, . . . , cn ∈ C[Y ] such that

(53) F n + c1(G)F n−1 + · · ·+ cn(G) = 0.

Remark 7.2. Without the pole condition (52) this theorem is folklore. In this
case the cj are rational functions ; see for instance [12, §8.2 and §8.3] and also
Lemma 7.3 below. The given version where condition (52) forces the cj to be
polynomials is algorithmically relevant, but it seems to be less known. A special
instance of Theorem 7.1 where F is allowed to have poles only at one point is
used in [30].

Proof of Theorem 7.1. The meromorphic function G ∈ M(S) can be viewed as
a holomorphic map between Riemann surfaces which, by the compactness of
S, is also proper.2 Hence one can apply the Theorems 8.2 and 8.3 from [12]

which imply the existence of c1, . . . , cn ∈ M(Ĉ) such that (53). Namely, G
being a non-constant proper holomorphic map implies that G is an n-sheeted
covering map. This means, for each x ∈ Ĉ\BranchPts(G) the set G−1(x) contains
exactly n elements, say G−1(x) = {a1, . . . , an} for a fixed x; moreover, there
exist neighborhoods Uj of the aj, containing no pole of G with the possible
exception of aj itself, and a neighborhood V of x containing no branch point of
G, such thatG−1(V ) = ∪nj=1Uj as a disjoint union, and where the local restrictions
G|Uj → V are bi-holomorphic maps. Using the elementary symmetric functions
ej(X1, . . . , Xn), 1 ≤ j ≤ n, in n variables, for v ∈ V the cj are defined as

cj(v) := (−1)jej(F ◦ (G|U1)−1(v), . . . , F ◦ (G|Un)−1(v)).

These locally defined cj are glued together to define global meromorphic functions

cj : Ĉ \ BranchPts(G) → Ĉ. By applying Riemann’s Removable Singularity
Theorem [12, Thm. 1.8] and the Identity Theorem [12, Thm. 1.11] one can show
that these functions can be extended meromorphically also to the branch points
of G; i.e., to meromorphic functions cj : Ĉ→ Ĉ, j = 1, . . . , n. Classical complex

analysis tells that M(Ĉ) = C(z), the field of rational functions. To show that

the cj are indeed polynomials, consider x ∈ Ĉ such that c`(x) = ∞ for some
` ∈ {1, . . . , n} and G−1(x) = {a1, . . . , ak}.3

Case A: x 6∈ BranchPts(G). In this case we have n = k and

∞ = c`(x) = (−1)`e`(F (a1), . . . , F (an)).

Hence F (aj) =∞ for some j ∈ {1, . . . , n}, which by (52) implies∞ = G(aj) = x.
This means, the only pole of c` is at x =∞.

2A continuous mapping f : X → Y between two locally compact spaces is called proper if
the preimage of every compact set is compact.

3n =
∑k
j=1 multaj (G); if x is no branch point of G then all multaj (G) = 1 and n = k.
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Case B: x ∈ BranchPts(G). Suppose all values F (a1), . . . , F (ak) are in C. Then
F is bounded in neighborhoods Yj of aj, j = 1, . . . , k, and again owing to G
being non-constant, proper and holomorphic, there is a neighborhood W of x,
containing no further branch point of G, such that G−1(W ) ⊆ Y1 ∪ · · · ∪ Yk.
Consequently, for v ∈ W \ {x} the values

|c`(v)| = |e`(F ◦ (G|U1)−1(v), . . . , F ◦ (G|Un)−1(v))|
have a common bound; recall that as described above the cj are defined locally
as functions on suitable neighborhoods V ⊆ W of v together with neighborhoods
Uj of the n preimages of v. The bound for |c`(v)| on W \ {x} is a contradiction
to c`(x) =∞. Hence as in Case A the only pole of c` is at x =∞.

Summarizing, we have proven that for j = 1, . . . , n the only possible poles of the
cj : Ĉ→ Ĉ are at ∞. Hence the cj are polynomials. �

Lemma 7.3. Given a compact Riemann surface S, let G ∈M(S) and F ∈M(S)
be non-constant meromorphic functions with n := Deg(G) and m := Deg(F ). If
gcd(m,n) = 1 then there exists a polynomial

p(X, Y ) = Xn + c1(Y )Xn−1 + · · ·+ cn(Y ) ∈ C(Y )[X]

which is irreducible over C(Y ), and where the cj(Y ) are rational functions in C(Y )
such that p(F,G) = 0.

Proof. See for instance [30, p. 485, Lem. 1]. �

Proof of Theorem 5.2. To determine Deg(f) of a meromorphic function f one can
count the number of its poles, alternatively its zeros, with their multiplicities. By
Lemma 5.1, t̄ = t̄` and T̄ = T̄` can be viewed as meromorphic functions F := t̄∗

and G := T̄ ∗ on the compact Riemann surface X0(`2). They are both holomorphic
and non-zero at all points of [τ ] ∈ X0(`2) with τ ∈ H. At the `+ 1 cusps Lemma
5.1 gives:4

ord[∞] t̄
∗ = n`, ord[∞] T̄

∗ = d`,
ord[0] t̄

∗ = −d`, ord[0] T̄
∗ = −n`,

ord[k/`] t̄
∗ = n`, ord[k/`] T̄

∗ = −n`.
Consequently, we see that the pole condition (52) of Theorem 7.1 is fulfilled.
The resulting algebraic relation between t̄∗ and T̄ ∗ on X0(`2) induces on H the
relation:

(54) t̄n + c1(T̄ )t̄n−1 + · · ·+ cn(T̄ ) = 0

for some cj(Y ) ∈ C[Y ] where n := Deg(T̄ ∗) = d`, the number of zeros of T̄ ∗ in
X0(`2). We still need to verify that the cj(Y ) are polynomials in Q[Y ] and not

4Recall n` := d`
` = `−1

gcd(`−1,12) from (46).
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in C[Y ]. But this is straightforward by using the same induction argument as in
the proof of Lemma 9.7.

Finally we prove that the polynomial

F`(X, Y ) := Xn + c1(Y )Xn−1 + · · ·+ cn(Y ) ∈ Q[Y ][X]

is indeed irreducible in C[X, Y ]. To this end, we apply Theorem 7.1 again, now
with F := (t∗T ∗)` − (T ∗)`+1 and G := T ∗.5 From the ord[∗]-scheme above we
see that both F and G have poles only at [∞]. A simple calculation shows that
m := Deg(F ) = − ord[∞] F = (` + 1)d` − 1 and n := Deg(G) = − ord[∞] G = d`.
Hence Theorem 7.1 implies the existence of a polynomial

p`(X, Y ) = Xd` + γ1(Y )Xd`−1 + · · ·+ γd`(Y ) ∈ C[Y ][X]

such that p`(F,G) = 0. Owing to gcd(m,n) = 1, Lemma 7.3 implies that p`(X, Y )
is irreducible over C(Y ). Hence [C(F,G) : C(G)] = d` or, equivalently, [C(t̄`, T̄ ) :
C(T̄ )] = d`. Since C(t̄, T̄ ) ⊇ C(t̄`, T̄ ) it follows that

(55) [C(t̄, T̄ ) : C(T̄ )] ≥ d`.

But now, owing to (54), we must have equality in (55). This proves the irre-
ducibility of F`(X, Y ) ∈ Q[Y ][X] as a polynomial in X over C(Y ). As such the
polynomial F`(X, Y ) is monic; this means, it has 1 as leading coefficient. Conse-
quently, F`(X, Y ) is irreducible also in C[X, Y ]; i.e., it has no proper non-trivial
factor in C[x, y]. �

8. Conclusion

As pointed out in the introduction, algorithmic aspects were a major driving
force for the development of the framework presented in the main part of this
paper. Despite new results like the derivation of new compact representations of
Atkin’s basis functions gi in Section 9, for the sake of better readability we put
various constructions and propositions of algorithmic relevance in a separate part,
the Appendix, starting with Section 9. In fact, the main part up to Section 7
in its essence is independent from the material in the Appendix with the only
exception of Section 12, where we describe the algorithmic derivation and proof
of the fundamental relations needed to prove the crucial Lemma 6.5.

We conclude the main part of this paper with a conjecture on lower bounds for
the `-adic valuation of the coefficients of the modular equation for all primes
` ≥ 5.

5Note that ¯̄f = f .
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Conjecture 8.1. Write

(56) F`(X, Y ) = Xd` +

d`−1∑
i=0

a
(`)
i (Y )X i

for the unique polynomials F`(X, Y ) ∈ Q[Y ][X] determined by Theorem 5.2.
Then the statement of Corollary 5.6 is valid not only for ` ∈ {5, 7, 11} but for all
primes ` ≥ 5.

9. Appendix 1: New representations of Atkin’s generators

In this section we prove Theorem 3.9; see Theorem 9.8 together with (100). More-
over, we give a detailed description of the derivation of our new representations
of Atkin’s basis functions gi using an approach which is close to an algorithm. To
this end, we focus on properties of module generators, in particular, the concept
of an Atkin basis in Definition 59 of Section 9.1.

In order to work with compact representations of the modular functions involved,
starting with (65) from Section 9.2 we make use of special instances of a trace
operator formula; see, e.g., [19, (1)]. In Section 9.3 we describe a classical reduc-
tion procedure to obtain relations between modular functions. This reduction
strategy is applied at various places in this article, in particular, in Section 12
to obtain the fundamental relations. Finally, Section 9.4 completes the “recon-
struction” of Atkin’s gi. Besides proving Theorem 3.9, we explain that there is
some freedom in the choice of (16). For instance, one could omit the summand
z11 there.

9.1. General construction strategy. First, we recall that the Fricke involution
WN := ( 0 −1

N 0 ) which normalizes Γ0(N); i.e., WNΓ0(N)W−1
N = W−1

N Γ0(N)WN =
Γ0(N). In particular, for all f ∈M(N),

(57) (f | WN) | γ = f | WN for all γ ∈ Γ0(N), and

(58) ord[0]N (f | WN)∗ = ord[∞]N f
∗ and ord[∞]N (f | WN)∗ = ord[0]N f

∗.

For the case N = 11 the short hand notation W := W11 will be convenient.

Example 9.1. Recall that ord[∞]11 z
∗
11 = 5. By Lemma 3.5(3) we have that (z11 |

W )(τ) = 11−6z11(τ)−1. Hence ord[0]11 z
∗
11 = ord[∞]11(z11 | W )∗ = −5.

Definition 9.2. We say that the functions φ2, φ3, φ4, φ6 ∈M0
Z(11) form an Atkin

basis iff the following three conditions hold:

(59) M0
Z(11) = 〈1, φ2, φ3, φ4, φ6〉Z[z11];

(60) (ord[∞]11 φ
∗
2, ord[∞]11 g

∗
φ, ord[∞]11 φ

∗
4, ord[∞]11 φ

∗
6) = (1, 2, 3, 4);
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(61) (ord[0]11 φ
∗
2, ord[0]11 φ

∗
3, ord[0]11 φ

∗
4, ord[0]11 φ

∗
6) = (−2,−3,−4,−6).

We note that ord[0]11 φ
∗
i = ord[∞]11(φi | W )∗. Moreover, owing to (60), M0

Z(11) is
a Z[z11]-module which is freely generated by the basis elements φi.

Example 9.3. Atkin’s functions gi from Example 3.8 form an Atkin basis. In [6]
Atkin uses the notation gi | W = 11−iGi, i = 2, 3, 4, 6; the first terms of the
q-expansions of the gi and Gi are given explicitly in Table 1 of [6, Appendix].6

Inspecting the orders in (61) one observes that the minimal pole order at 0 is 2.
Indeed, as a consequence of Riemann surface theory one can prove that there is
no f ∈ M(11) having exactly one pole of order 1. An elementary proof is given
in the Appendix, Section 11.

Atkin [6] defined the functions gi in a skillful manner by following Newman [23].
In this section we present a method to find these functions which is more close to
an algorithm. More precisely, in a first step and in view of (61) we will construct
modular functions Ji ∈M0

Q(11) such that

(62) M0(11) = 〈1, J2, J3, J4, J6〉C[z11] with ord[0]11 J
∗
i = −i, i = 2, 3, 4, 6.

Subsequently, using these Ji we construct an Atkin basis (h2 | W,h3 | W,h4 |
W,h6 | W ) and relate it to Atkin’s gi in (100).

A first natural choice to choose such Ji is an ansatz in the form of eta quotients∏
δ|N ηδ(τ)rδ(i). Newman [25] gave a criterion for membership of such quotients

in M(N); see also [27, Thm. 5.1]. For N = 11 this criterion translates into
the following linar system of Diophantine equations: r1(i) + r11(i) = 0, r1(i) +
11r11(i) = 24a(i), 11r1(i)+r11(i) = 24b(i), and r11(i) even. In addition, Ligozat’s
order formula, e.g., [27, Lemma 5.2], translates ord[0]11 J

∗
i = −i into 11r1(i) +

r11(i) = −24i. For i = 2, 3, 4, 6 the resulting linear Diophantine system has
no integer solutions. For i = 5 there is exactly one solution z11, because then
r1(5) = −12, r11(5) = 12 with a(5) = 5, b(5) = −5, and c(5) = 6. As a
consequence, to construct the desired Ji we try as the next nearest choice N = 22.
The heuristical fundament for proceeding like this is

Conjecture 9.4 (Newmann’s Conjecture, modified version). Let N be divisible
by two distinct primes. Then each modular function from M(N) can be written
as a linear combination of eta quotients of the form

∏
δ|N η(δτ)rδ where (rδ)δ|N is

an integer sequence indexed by the positive divisors δ of N .

6Atkin uses x instead of q.
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Invoking the index formula [SL2(Z) : Γ0(N)] = N
∏

p|N

(
1 + 1

p

)
for N = 11 and

N = 22 implies the existence of a decomposition into three disjoint cosets such
that

(63) Γ0(11) = Γ0(22)γ0 ∪ Γ0(22)γ1 ∪ Γ0(22)γ2.

As a concrete choice we take γ0 = ( 1 0
0 1 ), γ1 := V and γ2 := V 2 where V :=

( 1 1
11 12 ). This coset decomposition together with a coset decomposition of Γ0(11)

in SL2(Z), for example as in [18, Ch. 1, Cor. 7], implies that X0(22) has the four
cusps [∞]22, [0]22, [1/2]22, and [1/11]22 with widths 1, 22, 11, and 2, respectively.

In a first step, in view of (58), for i = 2, 3, 4, 6 we will construct

(64) Fi ∈M∞
Q (11) such that ord[0]11 F

∗
i ≥ 0 and ord[∞]11 F

∗
i = −i.

Then the functions Ji := Fi | W ∈M0
Q(11) will have the desired properties (62).

9.2. Constructing the Fi, resp. Ji. As an ansatz for the construction we con-
sider traces

(65) Fi := fi + fi | V + fi | V 2.

For any fi ∈M(22) the decomposition (63) implies that Fi ∈M(11). The Fi are
also in M(22), and the cusp orders of the Fi in Γ0(22) connect to those in Γ0(11)
by the following relations which are also straightforward to prove.

Lemma 9.5. Let Fi ∈M∞(11) such that (64). Then Fi ∈M∞(22) and

ord[∞]22 F
∗
i = ord[∞]11 F

∗
i = −i;

ord[1/11]22 F
∗
i = 2 ord[∞]11 F

∗
i = −2i;

ord[0]22 F
∗
i = 2 ord[0]11 F

∗
i ≥ 0;

ord[1/2]22 F
∗
i = ord[0]11 F

∗
i ≥ 0.

When choosing the fi as eta quotients
∏

δ|22 η
rδ
δ , for fixed integers rδ Ligozat’s

lemma, e.g. [27, Lemma 5.2], tells the orders of the fi at the cusps. We set

a(i) := ord[∞]22 f
∗
i , b(i) := ord[0]22 f

∗
i , c(i) := ord[1/11]22 f

∗
i , d(i) := ord[1/2]22 f

∗
i .

From (65) one obtains

ord[∞]22 F
∗
i ≥ min{a(i), c(i)/2}, with equality if a(i) < c(i)/2;(66)

ord[1/11]22 F
∗
i ≥ min{2 a(i), c(i)}, with equality if a(i) < c(i)/2;(67)

ord[0]22 F
∗
i ≥ min{b(i), 2 d(i)}, with equality if 2d(i) < b(i);(68)

ord[1/2]22 F
∗
i ≥ min{b(i)/2, d(i)}, with equality if 2d(i) < b(i).(69)
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As consequence of (66) to (69) and Lemma 9.5, without loss of generality we can
restrict to choosing eta quotients fi ∈M∞

Z (22) such that

a(i) = ord[∞]22 f
∗
i = −i and c(i) = ord[1/11]22 f

∗
i ≥ −2i.

Constructing the fi, respectively the Fi: To find such fi computationally, similarly
to above one solves the linear system of Diophantine equations and inequalities
determined by Newman [27, Thm. 5.1] and Ligozat [27, Lemma 5.2]. For i = 2
one finds

(70) f2(τ) :=
η(τ)η2(τ)3

η11(τ)3η22(τ)
=

1

q2
− 1

q
− 4 + 3q + 3q2 + · · · ∈M∞

Z (22)

with

a(2) = −2, b(2) = 2, c(2) = −3, and d(2) = 3.

Consequently, (66) to (69) and Lemma 9.5 give ord[∞]11 F
∗
2 = −2 and ord[0]11 F

∗
2 ≥

min{1, 3/2} ≥ 0, as desired. For i = 3 one obtains

(71) f3(τ) :=
η(τ)3η2(τ)

η11(τ)η22(τ)3
=

1

q3
− 3

q2
− 1

q
+ 8− q − · · · ∈M∞

Z (22)

with

a(3) = −3, b(3) = 3, c(3) = −2, and d(3) = 2.

Here (66) to (69) and Lemma 9.5 give ord[∞]11 F
∗
3 = −3 and ord[0]11 F

∗
3 ≥

min{3/2, 2} ≥ 0, as desired. Finally,

f4(τ) := f2(τ)2 ∈M∞
Z (22) and f6(τ) := f3(τ)2 ∈M∞

Z (22)

give ord[∞]11 F
∗
4 = −4 and ord[0]11 F

∗
4 ≥ 2, resp. ord[∞]11 F

∗
6 = −6 and ord[0]11 F

∗
6 ≥

2, as desired. The fact that the coefficients of the Fi are integers for i = 2, 3, 6,
resp. half-integers for i = 4, is immediate from the following representations being
more explicit than (65):

F2(τ) = f2(τ)− (U2f3)(τ) = q−2 + 2q−1 − 12 + 5q + 8q2 + . . . ;(72)

F3(τ) = f3(τ)− 4(U2f2)(τ) = q−3 − 3q−2 − 5q−1 + 24− 13q − . . . ;(73)

F4(τ) = f2(τ)2 +
1

2
(U2f

2
3 )(τ) = q−4 − 3

2
q−3 − 7

2
q−2 − 21

2
q−1 + 48− . . . ;(74)

F6(τ) = f3(τ)2 + 8(U2f
2
2 )(τ) = q−6 − 6q−5 + 7q−4 + 22q−3 − 41q−2 + . . . .(75)

These representations, which invoke the U -operator (see Def. 4.2), can be derived
in a straightforward manner by applying the modular transformation properties
of the eta function. Nevertheless, from a more general point of view we remark
that they are special instances of a trace operator formula; see, e.g., [19, (1)]. A
proof of (72) along this line is given in Section 10.1 (Appendix); the proofs of the
other formulas work analogously.
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Another advantage of invoking the formula [19, (1)] is that it facilitates (we leave
the details to the reader) the application of the W -operator to finally obtain the
desired module generators Ji := Fi | W ∈M0

Q(11) satisfying (62):

J2(τ) = −112
( 1

f3

− U2
1

f2

)
(τ) = 112(q + 5q2 + . . . );(76)

J3(τ) = −112
( 1

f2

− 4U2
1

f3

)
(τ) = 112(11q2 + 99q3 + . . . );(77)

J4(τ) = 114
( 1

f 2
3

+
1

2
U2

1

f 2
2

)
(τ) = 114

(1

2
q2 +

11

2
q3 + . . .

)
;(78)

J6(τ) = 114
( 1

f 2
2

+ 8U2
1

f 2
3

)
(τ) = 114(8q3 + 233q4 + . . . ).(79)

All these equalities are obtained as direct consequences of the formula [19, (1)].
A proof of (76) along this line is given in Section 10.1 (Appendix); the proofs of
the other formulas work analogously.

9.3. Module property of the Fi, resp. Ji. For later it is important to note
that the first coefficients of the q-expansion in (77) suggest that

(80) 11
∣∣∣( 1

f2

− 4U2
1

f3

)
,

meaning that 11 divides each coefficient in the q-expansion. This divisibility is
immediate from a relation already used by Atkin [6, (56)]; namely,

(81) J3 = 113F3 z11.

This relation cannot only be proved but also derived algorithmically. To this end
we introduce an elementary but useful

Lemma 9.6. For z̄11 = 1/z11,

(82) M∞(11) = 〈1, F2, F3, F4, F6〉C[z̄11].

Proof. The non-trivial direction is to show that every non-constant function F ∈
M∞(11) can be represented in the form

(83) F = P0(z̄11) + P2(z̄11)F2 + P3(z̄11)F3 + P4(z̄11)F4 + P6(z̄11)F6

for some polynomials Pi(X) ∈ C[X]. Suppose that F (τ) = c q−n + O(q−n+1) for
some c ∈ C. Recall that there exists no principal modular function (“Haupt-
modul”) in M(11) (Section 11), hence n = 5j + i ≥ 2 with j ≥ 0 and i ∈
{0, 2, 3, 4, 6}. Owing to ord[0]11 z̄

∗
11 = −5 one can reduce F with z̄j11Fi; more

concretely,

F (τ)− c z̄11(τ)jFi(τ) = d q−n+1 +O(q−n+2) for some d ∈ C.
Consequently, owing to Lemma 3.2, by iterated reduction F finds a representation
of the form (83) for some polynomials Pi(X) ∈ C[X]. �
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Proof of (81). The only pole of J3 is at 0 of multiplicity 3 = − ord[0]11 J
∗
3 =

− ord[∞]11(J3 | W )∗ = − ord[∞]11 F
∗
3 ; in addition, J3 has a zero at infinity of mul-

tiplicity 2 = ord[∞]11 J
∗
3 . The only pole of z̄11 is at infinity of multiplicity 5; in

addition, z̄11 has a zero at 0 of multiplicity 5 = ord[0]11 z̄
∗
11 = ord[∞]11(z̄11 | W )∗ =

ord[∞]11(116z11)∗. Hence 11−3J3z̄11 has its only pole at infinity of multiplicity
3 which is confirmed by 11−3J3z̄11 = q−3 − 3q−2 − 5q−1 + 24 − · · · ∈ M∞(11).
Thus (82) implies that 11−3J3z̄11 ∈ 〈1, F2, F3, F4, F6〉C[z̄11]. To derive the corre-
sponding representation, we can apply the reduction strategy as described in the
proof of Lemma 9.6. Already the first reduction step gives

11−3J3(τ)z̄11(τ)− F3(τ) = 0 + 0 · q + 0 · q2 + . . . ,

which by Lemma 3.2 proves (81). �

The Ji we constructed satisfy the requirements of (62): By construction the Ji are
in M0

Q(11) with ord[0]11 J
∗
i = ord[∞]11(Ji | W )∗ = ord[∞]11 F

∗
i = −i for i = 2, 3, 4, 6.

To show also the first part of (62); i.e., that every function f ∈ M0(11) can be
represented in the form

(84) f = p0(z11) + p2(z11)J2 + p3(z11)J3 + p4(z11)J4 + p6(z11)J6

for some polynomials pi(X) ∈ C[X], one proceeds as follows: For any non-
constant f ∈ M0(11) the only pole sits at 0 with some multiplicity n; i.e.,
(f | W )(τ) = c q−n + O(q−n+1) ∈ M∞(11) for some c ∈ C. Hence by Lemma 9.6
f | W finds a representation of the form

f | W = P0(z̄11) + P2(z̄11)F2 + P3(z̄11)F3 + P4(z̄11)F4 + P6(z̄11)F6.

for some polynomials Pi(X) ∈ C[X]. Using z̄11 | W = 116z11 (Lemma 3.5) and
Fi | W = Ji this relation turns into one as in (84).

From complex to rational numbers coefficients. If we want to show that every
function f ∈M0

Q(11) can be represented in the form

(85) f = p0(z11) + p2(z11)J2 + p3(z11)J3 + p4(z11)J4 + p6(z11)J6

for some polynomials pi(X) ∈ Q[X], it would be sufficient to have

(86) ord[∞]11 J
∗
2 = 1, ord[∞]11 J

∗
3 = 2, ord[∞]11 J

∗
4 = 3, and ord[∞]11 J

∗
6 = 4.

Because then mathematical induction would show that the pi(z11) := Pi(z̄11 | W )
must have coefficients in Q; i.e., pi(X) ∈ Q[X].

The same induction argument would apply to showing that every function f ∈
M0

Z(11) can be represented in the form

(87) f = p0(z11) + p2(z11)J2 + p3(z11)J3 + p4(z11)J4 + p6(z11)J6

for some polynomials pi(X) ∈ Z[X], provided we would have

Ji(τ) = qi−1 +O(qi) ∈M0
Z(11) for i = 2, 3, 4, and J6(τ) = q4 +O(q5) ∈M0

Z(11).
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We summarize these observations:

Lemma 9.7. Let h2, h3, h4, h6 ∈M∞(11) be such that

(88) ord[∞]11 h
∗
i = −i for i = 2, 3, 4, 6,

and

(hi | W )(τ) = qi−1 +O(qi) ∈M0
Z(11) for i = 2, 3, 4, and(89)

(h6 | W )(τ) = q4 +O(q5) ∈M0
Z(11).

Then the functions φi := hi | W , i = 2, 3, 4, 6, form an Atkin basis.

Proof. The order properties of the φi are clear by their definition and (58). The
remaining non-trival part of the proof is to show that any function f ∈ M0

Z(11)
can be represented in the form

(90) f = p0(z11) + p2(z11)φ2 + p3(z11)φ3 + p4(z11)φ4 + p6(z11)φ6

for some polynomials pi(X) ∈ Z[X]. Since f | W ∈ M∞(11), using the same
argument as in the proof of Lemma 9.6, one has that

(91) f | W = P0(z̄11) + P2(z̄11)h2 + P3(z̄11)h3 + P4(z̄11)h4 + P6(z̄11)h6

for some polynomials Pi(X) ∈ C[X]. Using z̄11 | W = 116z11 this implies that

f = p0(z11) + p2(z11)φ2 + p3(z11)φ3 + p4(z11)φ4 + p6(z11)φ6

for polynomials pi(X) := Pi(116X) ∈ C[X]. We show that all pi(X) ∈ Z[X]:

For i = 0, 2, 3, 4, 6 suppose pi(X) = ai+biX+ciX
2 + . . . with ai, bi, ci ∈ C. Then

f(τ) = (a0 + b0z11(τ) + . . . )

+ (a2 + b2z11(τ) + . . . )(q +O(q2)) + (a3 + b3z11(τ) + . . . )(q2 +O(q3))

+ (a4 + b4z11(τ) + . . . )(q3 +O(q4)) + (a6 + b6z11(τ) + . . . )(q4 +O(q5)).

Since f ∈ M0
Z(11), one has f(τ) =

∑∞
n=0 fnq

n with all fn ∈ Z. Because of
z11(τ) = q5 +O(q5) coefficient comparison implies a0, a2, a3, a4, a6 ∈ Z. Hence

(f−a0 − a2φ2 − a3φ3 − a4φ4 − a6φ6)z̄11 = (b0 + c0z11(τ) + . . . )

+ (b2 + c2z11(τ) + . . . )(q +O(q2)) + (b3 + c3z11(τ) + . . . )(q2 +O(q3))

+ (b4 + c4z11(τ) + . . . )(q3 +O(q4)) + (b6 + c6z11(τ) + . . . )(q4 +O(q5)).

The left hand side is again in M0
Z(11), hence b0, b2, b3, b4, b6 ∈ Z. Iterating this

argument proves pi(X) ∈ Z[X]. �
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9.4. Atkin’s functions reconstructed. The functions h2 := F2/112 and h3 :=
F3/113 are in M∞(11) and satisfy all properties requested in Lemma 9.7; in
particular,

(92) (h2 | W )(τ) = J2(τ)/112 = q + q5 + · · · ∈M0
Z(11)

and

(93) (h3 | W )(τ) = J3(τ)/113 = q2 + 9q3 + · · · ∈M0
Z(11).

The fact that these functions are in M0
Z is owing to the representations (76)

and (77) in terms of the U2-operator and to (80). In the next step we try to
determine a, b, c ∈ Q such that

a
J4(τ)

114
+ b

J3(τ)

113
+ c

J2(τ)

112
= c q +

(a
2

+ b+ 5c
)
q2 +

(11a

2
+ 9b+ 19c

)
q3 + . . .

= q3 +O(q4) ∈M0
Z(11).

The linear system c = 0, a/2 + b + 5c = 0, and 11a/2 + 9b + 19c = 1 has a
unique solution a = 1, b = −(1/2), and c = 0. Looking at further terms in the
q-expansion

J4

114
− 1

2

J3

113
= q3 + 14q4 + 102q5 + 561q6 + 2563q7 + 10285q8 + 37349q9 + . . .

supports to conjecture that

(94)
J4

114
− 1

2

J3

113
∈M0

Z(11).

In Section 10.2 (Appendix) we prove that this is indeed the case. Thus we can
define

h4(τ) :=
F4(τ)

114
− 1

2

F3(τ)

113
∈M∞

Q (11)(95)

=
1

114

(
q−4 + 4q−3 − 20q−2 − 38q−1 + 180− 86q − . . .

)
,

which then has the properties requested in Lemma 9.7. In particular,

(96) h4 | W =
F4 | W

114
− 1

2

F3 | W
113

=
J4

114
− 1

2

J3

113
= q3 +O(q4) ∈M0

Z(11).

Finally, proceeding analogously to above, we try to find a, b, c, d ∈ Q such that

a
J6(τ)

114
+ b

J4(τ)

114
+ c

J3(τ)

113
+ d

J2(τ)

112
= d q +

( b
2

+ c+ 5d
)
q2

+
(

8a+
11b

2
+ 9c+ 19d

)
q3 +

(
233a+

77b

2
+ 49c+ 63d

)
q4 + . . .

= q4 +O(q5) ∈M0
Z(11).
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The linear system d = 0, b/2 + c + 5d = 0, 8a + (11b)/2 + 9c + 19d = 0 and
233a + (77b)/2 + 49c + 63d = 1 has a unique solution a = 11−2, b = −8/11−2,
c = 4/11−2, and d = 0. Looking at further terms in the q-expansion

J6

116
− 8

J4

116
+ 4

J3

115
= q4 + 18q5 + 179q6 + 1310q7 + 7853q8 + . . .

supports to conjecture that

(97)
J6

116
− 8

J4

116
+ 4

J3

115
∈M0

Z(11).

In Section 10.2 (Appendix) we prove that this is indeed the case. Thus we can
define

h6(τ) :=
F6

116
− 8

F4

116
+ 4

F3

115
∈M∞

Q (11)(98)

=
1

116

(
q−6 − 6q−5 − q−4 + 78q−3 − 145q−2 − 206q−1 + 864− . . .

)
,

which then has the properties requested in Lemma 9.7. In particular,

h6 | W =
F6 | W

116
− 8

F4 | W
116

+ 4
F3 | W

115

=
J6

116
− 8

J4

116
+ 4

J3

115
= q4 +O(q5) ∈M0

Z(11).

New representations of the Atkin functions. We summarize in the form of a
theorem.

Theorem 9.8. The functions hi, i = 2, 3, 4, 6, constructed above satisfy

11ihi ∈M∞
Z (11);(i)

hi | W ∈M0
Z(11);(ii)

the hi | W form an Atkin basis.(iii)

We have seen that following the framework set up by Lemma 9.7 one is forced
to define h2, h3, and h4 as we did. With h6 the situation is slightly different; its
definition is up to adding constant multiples of powers of z̄11 = q−5 + O(q−4) ∈
M∞

Z . For example, for m ∈ Z:

H6(τ) := h6(τ) +
m

116
z̄11(τ) =

1

116

(
q−6 − (6−m)q−5 + . . .

)
with 116H6 ∈M∞

Z (11), and by using again (106) and z11 = q5 +O(q6),

(H6 | W )(τ) = (h6 | W )(τ) +
m

116
(z̄11 | W )(τ) = (h6 | W )(τ) +mz11

= (h6 | W )(τ) +mq5 +O(q6) = q4 +O(q5) ∈M0
Z(11).
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In fact, Atkin’s setting [6] corresponds to the choice m = 1; concretely, instead
of using (h2, h3, h4, h6) he worked with

(99)
(
h2, h3, h4, h6 +

z̄11

116

)
=:
(G2

112
,
G3

113
,
G4

114
,
G6

116

)
,

with the Gi being the notation used by Atkin. Consequently, instead of the Atkin
basis hi | W , i = 2, 3, 4, 6, Atkin worked with the slightly different Atkin basis

(100) (h2 | W,h3 | W,h4 | W,h6 | W + z11) =: (g2, g3, g4, g6).

Subsequently we will work with this Atkin basis; moreover, we will use Atkin’s
notation gi as in (100).

10. Appendix 2: Proofs of Formulas for Fi, resp. Ji

In Subsection 10.1 we prove the formulas (72) and (76) for F2 and J2, respec-
tively. The proofs of the other formulas in these families work analogously. In
Subsection 10.2 we prove that the modular functions in (94) and (97) involving
Ji have integer coefficients in their q-expansions.

10.1. Proofs of (72) and (76). The following lemma states a special instance
of formula [19, (1)] adapted to our situation.

Lemma 10.1. Let Γ0(11) = Γ0(22)γ0 ∪ Γ0(22)γ1 ∪ Γ0(22)γ2 with γi ∈ Γ0(11) be
a decomposition of Γ0(11) into disjoint cosets. Then the trace map

tr : M(22)→M(11), f 7→ tr(f) := f | γ0 + f | γ1 + f | γ2

can be written as

(101) tr(f)(τ) = f(τ) + 2 U2

(
(f | V )(2τ)

)
with V = ( 1 1

11 12 ) .

Relevant for our applications are the following actions of V and W = ( 0 −1
11 0 )

which are straightforward consequences of the transformation formula for the η
function.

Lemma 10.2. For f2, f3 ∈M∞
Z (22) as in (70) and (71):

(102) (f2 | V )(2τ) = −1

2
f3(τ) and (f3 | V )(2τ) = −2f2(τ),

and

(103) (f2 | W )(2τ) =
112

2

1

f2(τ)
and (f3 | W )(2τ) = 2 · 112 1

f3(τ)
.

Proof of (72). In (63) we used γ0 = ( 1 0
0 1 ), γ1 = V , and γ2 = V 2. Hence by (102),

F2 = tr(f2) = f2 + 2 U2

(
(f2 | V )(2τ)

)
= f2 − U2f3;

this is (72). �
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The representations (73), (74), and (75) are derived analogously.

Proof of (76). Consider

J2(τ) = (F2 | W )(τ) = (f2 | W )(τ) + (f2 | VW )(τ) + (f2 | V 2W )(τ).

From the functions on the right side, using the rules of Lemma 10.2, the first and
the third evaluate to functions in the argument τ/2. For the remaining function
these rules give

(f2 | VW )(τ) = −1

2
f3

(Wτ

2

)
= −1

2
· 2 · 112 1

(f3 | W )(Wτ)
= −112 1

f3(τ)
.

This motivates to express the f2 | W trace as a ϕ := −112/f3 trace. To this end,
observing that VW = WX for X =

(
12 −1
−11 1

)
one rewrites

f2 | V 2W = f2 | VW | X = ϕ | X and f2 | W = f2 | VW | X−1 = ϕ | X−1.

Consequently,
J2 = ϕ+ ϕ | X + ϕ | X−1.

Since Γ0(11) = Γ0(22) ∪ Γ0(22)X ∪ Γ0(22)X−1 is a decomposition into disjoint
cosets, formula (101) gives

J2(τ) = ϕ(τ) + 2 U2

(
(ϕ | V )(2τ)

)
= − 112

f3(τ)
− 2 · 112U2

1

(f3 | V )(2τ)

= − 112

f3(τ)
+ 112U2

1

f2(τ)
;

the last equality is by (102). This completes the proof of (76). �

The representations (77), (78), and (79) are derived analogously.

10.2. Proofs of (94) and (97). The proofs are straightforward; they are included
for the sake of completeness.

Proof of (94). The functions J3 and J4 from (77) and (78), respectively, are
in M0

Q(11) and have their only pole at 0 with multiplicity i = − ord[0]11 J
∗
i =

− ord[∞]11(Ji | W )∗ = − ord[∞]11 F
∗
i , i = 3, 4. The only pole of z̄11 is at infinity

of multiplicity 5; in addition, z̄11 has a zero at 0 of multiplicity 5 = ord[0]11 z̄
∗
11 =

ord[∞]11(z̄11 | W )∗ = ord[∞]11(116z11)∗. Hence (J4/114 − 1
2
J3/113)z̄11 ∈ M∞(11)

has its only pole at infinity of multiplicity 3 as given by the q-expansion(J4(τ)

114
− 1

2

J3(τ)

113

)
z̄11 = q−2 + 2q−1 − 12 + 5q + 8q2 + . . .

Now (82) implies that (J4/114 − 1
2
J3/113)z̄11 ∈ 〈1, F2, F3, F4, F6〉C[z̄11]. To de-

rive the corresponding representation, we can apply the reduction strategy as
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described in the proof of Lemma 9.6. As in the proof of (81), already the first
reduction step gives

(104)
(J4(τ)

114
− 1

2

J3(τ)

113

)
z̄11 − F2(τ) = 0 + 0 · q + 0 · q2 + . . . ,

which by Lemma 3.2 proves (94) because F2 ∈M∞
Z (11). �

Proof of (97). The functions J3, J4, J6 ∈ M0
Q(11) from (77), (78), and (79), re-

spectively, have their only pole at 0 with multiplicities 3, 4, and 6, respectively.
E.g., 6 = − ord[0]11 J

∗
6 = − ord[∞]11(J6 | W )∗ = − ord[∞]11 F

∗
6 . We follow the same

strategy as in the proof of (94) where using z̄11 we modified the expression in
question such to express it as a linear combination of Fi. Recall that the only pole
of z̄11 is at infinity of multiplicity 5 and its only zero at 0 also with multiplicity
5. Hence (J6/116− 8J4/116 + 4J3/115)z̄2

11 ∈M∞(11) has its only pole at infinity
with multiplicity 6 as given by the q-expansion( J6

116
− 8

J4

116
+ 4

J3

115

)
z̄2

11 = q−6 − 6q−5 − q−4 + 78q−3 − 145q−2 − 206q−1 + . . . .

Now (82) implies that (J6/116 − 8J4/116 + 4J3/115)z̄2
11 ∈ 〈1, F2, F3, F4, F6〉C[z̄11].

To derive the corresponding representation, we can apply the reduction strategy
as described in the proof of Lemma 9.6. The first reduction step gives( J6

116
− 8

J4

116
+ 4

J3

115

)
z̄2

11 − F6 = −8q−4 + 56q−3 − 104q−2 − 136q−1 + . . .

The second reduction step results in( J6

116
− 8

J4

116
+ 4

J3

115

)
z̄2

11 − F6 + 8F4 = 44q−3 − 132q−2 − 220q−1 + 1056− . . .

Finally,( J6

116
− 8

J4

116
+ 4

J3

115

)
z̄2

11 − F6 + 8F4 − 44F3 = 0 + 0 · q + 0 · q2 + . . . ,

which, by Lemma 3.2, proves( J6

116
− 8

J4

116
+ 4

J3

115

)
z̄2

11 = F6 − 8F4 + 44F3.

Finally observe that F6 is in M∞
Z (11), owing to its definition, respectively to

the property of the U2-operator. Finally, also −8F4 + 44F3 is in M∞
Z (11) since

applying the W -operator to both sides of (104) gives

(105) F4(τ)− 11

2
F3(τ) =

1

112
z̄11J2(τ) ∈M∞

Z (11).

Here one uses again the fact

(106) z̄11 | W = 116z11

from Lemma 3.5(3). This completes the proof of (97). �



40 PETER PAULE AND SILVIU RADU

11. Appendix 3: There is no prinicpal modular function on Γ0(11)

As announced in Section 9 we give an elementary proof of the non-existence of
a principal modular function (“Hauptmodul”) on Γ0(11). By (57) and (58) it is
sufficient to prove the following version.

Lemma 11.1. There exists no modular function on Γ0(11) which has only one
single pole at the cusp [∞]11 and no pole at [0]11.

Proof. Suppose there exists a modular function g ∈ M(11) having a pole only
at infinity with pole order 1; i.e., ordq g = ord[∞]11 g

∗ = −1 and ord[0]11 g
∗ =

ord[∞]11(g | W )∗ ≥ 0 for W =
(

0
11
−1
0

)
, where we recall (58). Using g we will

construct a non-zero modular form h of weight 2 on SL2(Z) which cannot exist;
see e.g. [3, Thm. 6.4]. To this end, consider the following group action of GLn(Z)
on meromorphic functions defined on H: for γ =

(
a
c
b
d

)
∈ GLn(Z), k ∈ Z,

(f |k γ)(τ) := det(γ)k/2(cτ + d)−kf
(aτ + b

cτ + d

)
.

For f(τ) := (η(τ)η(11τ))2, using the standard η transformation formula, one can
verify that f |2 W = −f and f |2 γ = f for all γ ∈ Γ0(11). The latter invariance

holds also for fg. The Atkin-Lehner operator
(

11
11

α
11β

)
with 11β − α = 1 can be

written as the product of
(
−α
−11β

1
1

)
∈ Γ0(11) with W . Hence the trace operator (1)

from [19] applied to fg gives

h := fg + U11(fg |2 W ) such that h |2 γ = h for all γ ∈ SL2(Z).

Owing to ordq(fg) = −1 + ordq f = 0, and ordq(fg | W ) ≥ 1 which implies
ordq U11(fg | W ) ≥ 1, we obtain the desired contradiction; i.e., the modular form
h of weight 2 on SL2(Z) is non-zero. �

12. Appendix 4: The Fundamental Relations for Lemma 6.5

In order to compute the fundamental relations to prove Lemma 6.5, we need
two q-expansions at 0 derived in Section 12.1. The usage of these expansions is
described in Section 12.2.

12.1. Expansions at zero. The first q-expansion at 0 is proven in [21, (8.81)]:

Lemma 12.1. For any prime p ∈ {5, 7, 11} and f ∈M(p):

(107) (Upf)
(−1

pτ

)
= (Upf)(pτ)− 1

p
f(τ) +

1

p
f
(−1

p2τ

)
.
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Because of U
(1)
p (f) := Up(ūpf) we need a second q-expansion formula at 0. For

the rest of this section we use the abbreviations u := up and ū := ūp;
(
n
p

)
denotes

the Jacobi symbol.

Lemma 12.2. For any prime p ≥ 5 and f ∈M(p) with f(τ) =
∑∞

n=m b(n)qn:

Up(uf)
(−1

pτ

)
=

1

p2
u(τ)f

(−1

p2τ

)
+

1

p

(
−3

p

) ∞∏
k=1

(1− qk)
∞∑
n=m

a(n)
(24n− 1

p

)
qn(108)

where the a(n) are defined from the q-expansion of f and the partition generating
function:

∞∑
n=m

a(n)qn :=
∞∑
n=m

b(n)qn ×
∞∑
n=0

p(n)qn.

Proof.

pUp(uf)(τ) =

p−1∑
λ=0

η(p(τ + λ))

η
(
τ+λ
p

) f
(τ + λ

p

)

=

p−1∑
λ=0

η(pτ)

η
(
τ+24λ
p

)f(τ + 24λ

p

)(109)

Next we note that for any integers x and y such that 242λy − px = 1,

24λτ − 1

pτ
= Aλ

τ − 24y

p
where Aλ =

(
24λ

p

x

24y

)
∈ Γ0(p).
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Using this together with the standard η-transformation formula we find that

pUp(uf)
(−1

τ

)
=
η(−1/(τ/p))

η(−1/pτ)
f
(−1

pτ

)
+

p−1∑
λ=1

η(−1/(τ/p))

η
(

24λτ−1
pτ

) f
(24λτ − 1

pτ

)

=
1

p

η(τ/p)

η(pτ)
f
(−1

pτ

)
+

p−1∑
λ=1

(−i(τ/p))1/2η(τ/p)

ε(24λ, x, p, 24y)(−iτ)1/2η
(
τ−24y
p

)f(τ − 24y

p

)

=
1

p

η(τ/p)

η(pτ)
f
(−1

pτ

)
+
e(p−1)iπ/4

√
p

p−1∑
λ=1

η(τ/p)

η
(
τ−24y
p

)(24y

p

)
f
(τ − 24y

p

)

=
1

p

η(τ/p)

η(pτ)
f(
(−1

pτ

)
+
e(p−1)iπ/4

√
p

p−1∑
λ=1

η(τ/p)

η
(
τ−24λ
p

)(24λ

p

)
f
(τ − 24λ

p

)
.

(110)

The second last equality follows from a classical formula for ε(a, b, c, d); e.g., [18,
Ch. 4, Thm. 2]. The last equality follows from the following observation: For
1 ≤ λ ≤ p − 1 let (x, y) = (x(λ), y(λ)) be such that 242λy − px = 1, then
{y(1), . . . , y(p − 1)} ≡ {1, . . . , p − 1} (mod p). Finally, by Lemma 12.3, using
that eπi(p−1)/2 = (−1)(p−1)/2 =

(−1
p

)
, we obtain

pUp(uf)
(−1

τ

)
=

1

p

η(τ/p)

η(pτ)
f
(−1

pτ

)
+

(
−3

p

)
η(τ/p)

eπiτ/(12p)

∞∑
n=m

a(n)

(
24n− 1

p

)
e

2πinτ
p .

Substituting τ with pτ gives the desired result. �

Lemma 12.3. Let g(τ) = q−1/24
∑∞

n=m a(n)qn where q = e2πiτ . Then for any
prime p ≥ 5,

p−1∑
λ=0

g

(
τ − 24λ

p

)(
24λ

p

)
=
√
p

(
3

p

)
e
πi(p−1)

4 e−
πiτ
12p

∞∑
n=m

a(n)

(
24n− 1

p

)
e

2πinτ
p .

Proof.

p−1∑
λ=0

g

(
τ − 24λ

p

)(
24λ

p

)
=

p−1∑
λ=0

g

(
τ + 24λ

p

)(
−24λ

p

)

=

p−1∑
λ=0

e−
πi
12
τ+24λ
p

∞∑
n=m

a(n)e2πin τ+24λ
p

(
−24λ

p

)

= e−
πiτ
12p

∞∑
n=m

a(n)e
2πinτ
p s(n, p),
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where

(111) s(n, p) :=

p−1∑
λ=0

(
−24λ

p

)
e

2πiλ
p

(24n−1).

For p - (24n − 1), under transformation of equivalent residue systems, the sum
s(n, p) rewrites to a classical Gauss sum:(
−24

p

)(
24n− 1

p

)
s(n, p) =

p−1∑
λ=0

(
λ(24n− 1)

p

)
e

2πiλ(24n−1)
p =

p−1∑
λ=0

(
λ

p

)
e

2πiλ
p .

It is convenient to represent the evaluation of the Gauss sum in the form

p−1∑
λ=0

(
λ

p

)
e

2πiλ
p =

√
p

(
−2

p

)
e
πi(p−1)

4 ,

which immediately implies

(112) s(n, p) = e
πi(p−1)

4
√
p

(
3

p

)(
24n− 1

p

)
.

Because of
∑p−1

λ=0

(
λ
p

)
= 0, the s(n, p) sum as defined in (111) evaluates to 0 if

p | (24n− 1). Hence (112) is valid also in this case. Substitution of this formula
for s(n, p) completes the proof. �

12.2. How to derive the fundamental relations. In this section we explain
how one computes the fundamental relations needed for the proof of Lemma 6.5.
As pointed out in the “Sketch of Proof of Lemma 6.5”, the task to prove the exis-
tence of the infinitely many relations of type (47) can be restricted to computing
only finitely many of them. More precisely, if ` = 5 then n5 = 1 and one needs
to compute two times d5 = 5 relations: for each k ∈ {−4, . . . , 0} and with s = 1,
and another 5 relations for the same k but with s = 2. If ` = 7 then n7 = 1 and
one needs to compute two times d7 = 7 relations: for each k ∈ {−6, . . . , 0} and
with s = 1, and another 7 relations for the same k but with s = 2.

Fundamental relations, ` = 5 and ` = 7 in Lemma 6.5: Since ` = 7 works
completely analogously, we restrict to discuss ` = 5. For −4 ≤ k ≤ 0 we have to
derive relations of the form,

U
(1)
5 (zk5 ) = U5(ū5z

k
5 ) = J0,5

∑
j≥N(1,5)

0,k (0)

a
(1,5)
0,k (0, j)5M

(1,5)
0,k (0,j)zj5

=
∑

j≥d k+1
5
e

a
(1,5)
0,k (0, j)5d

1
2

(5j−k−3)ezj5,
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and

U
(2)
5 (zk5 ) = U5(zk5 ) = J0,5

∑
j≥N(2,5)

0,k (0)

a
(2,5)
0,k (0, j)5M

(2,5)
0,k (0,j)zj5

=
∑
j≥d k

5
e

a
(2,5)
0,k (0, j)5d

1
2

(5j−k−2)ezj5.

Because of ū5, z
k
5 ∈ M0

Z(52), Lemma 4.4(3) and (18) give U
(s)
5 (zk5 ) ∈ M0

Z(5). By
inspection one sees that for −4 ≤ k ≤ 0 and j = 0, 1:

ord[∞]5 U5(ūj5z
k
5 )∗ =

{
1, if (j, k) = (1, 0),

0, otherwise.

As a consequence, since U
(s)
5 (zk5 ) is analytic on H, the only possible pole of

U
(s)
5 (zk5 )∗ must sit at 0 with some multiplicity. Consequently, to derive the desired

relation we first compute the q-expansion at 0, using (108) if s = 1 and (107)
if s = 2. Next, in view of ord[∞]5 z̄

∗
5 = −1 and of Lemma 3.2, we reduce the

obtained q-expansion (i.e., the sum of sufficiently many terms) with respect to
powers of z̄5 until the principal part is 0. Finally, using Lemma 3.5(3) we trans-
late the computed relation which, as we note, is presented at − 1

5τ
instead at τ ,

into the desired relation.

Example 12.4. With (108) we compute

U
(1)
5 (z−2

5 )
(−1

5τ

)
= U5(ū5z

−2
5 )
(−1

5τ

)
= −1

5
q−2 +

1

5
q−1 − 43

5
− 11

5
q − 11

5
q2 + . . .

First reduction step:

U
(1)
5 (z−2

5 )
(−1

5τ

)
+

1

5
z̄5(τ)2 = −11

5
q−1 +

11

5
− 99

5
q − 22q2 + . . .

Next reduction step:

U
(1)
5 (z−2

5 )
(−1

5τ

)
+

1

5
z̄5(τ)2 +

11

5
z̄5(τ) = −11 + 0 · q + 0 · q2 + . . .

This proves that

U
(1)
5 (z−2

5 )
(−1

5τ

)
= −1

5
z̄5(τ)2 − 11

5
z̄5(τ)− 11.

To obtain the desired relation one applies the W -operator to both sides which,
using Lemma 3.5(3), gives

U
(1)
5 (z−2

5 )(τ) = −11− 11 · 52z5(τ)− 55z5(τ)2.

This relation matches the pattern

(113) U
(1)
5 (zk5 ) =

∑
j≥d k+1

5
e

a
(1,5)
0,k (0, j)5d

1
2

(5j−k−3)ezj5
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predicted for k = −2 by Lemma 6.5.

Below the 5 times 2 relations for ` = 5, and the 7 times 2 relations for ` = 5 are
listed explicitly. All these relations have been computed in the same manner as
in Example 12.4.

Fundamental relations, ` = 11 in Lemma 6.5: If ` = 11 then n11 = 5 and more
work has to be done. In particular, one has to be careful with the domain for k.
For ` = 5, 7 we could use k ∈ {−d` + 1, . . . , 0} owing to ord[0]` U`(ū

j
`z
k
` )∗ ≥ 0 for

k from this domain and j = 0, 1. But, in contrast, if j ∈ {0, 1}:
ord[0]11 U11(ūj11z

k
11)∗ ≥ 0 only for k ≥ −2.

For example, for j = 0, using (107) one can compute

ord[0]11 U11(z−3
11 )∗ = −15.

In addition,
ord[∞]11 U11(z−3

11 )∗ = −1.

As a consequence, one runs into functions having poles both at 0 and ∞. To
avoid special treatment of these cases we choose {0, . . . , 54} as the domain for
k. More precisely, to settle the s = 1 case of (47), we compute d11 = 55 times
5 relations: for each k ∈ {0, . . . , 54} and with varying m ∈ {0, . . . , 4}. The
same number of relations result from the s = 2 case of (47). Despite the larger
number of fundamental relations for ` = 11, the algorithmic derivation works as
straightforward and along the same lines as for ` = 5, 7. These 550 relations,
partitioned into five groups according to m ∈ {0, . . . , 4}, are presented at the
web page

https://www.risc.jku.at/people/sradu/powers11

Notation used there: u := ū11, t := z11 =: J [0], J [1] := g2 = J2,11, J [2] := g3 =
J3,11, J [3] := g4 = J4,11, and J [4] := g6 = J6,11.

To illustrate the computation, we restrict to one example. Because of the size
of the relations for k ≥ 0, we present an example with k = −2; in this case the
function under consideration still has a pole only at 0. The computations for
k ≥ 0 work entirely the same.

Example 12.5. We derive the relation

(114) U
(2)
11 (J3.11z

−2
11 ) = −9204J0,11 − 117z11J1,11.

We note that this matches the requirements of Lemma 6.5 with

N
(2,11)
3,−2 (i) =

⌈−2 + ν2,11(3, i)

11

⌉
=
⌈−3 + ν1,11(3, i)

11

⌉
= 0 for i = 0, 1, 2, 3, 4,

and

M
(2,11)
3,−2 (i, j) =

⌈1

2
(11j + 2 + µ2,11(3, i))

⌉
=
⌈1

2
(11j + 3 + µ1,11(3, i))

⌉
,
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which for the 11-power in question gives M
(2,11)
3,−2 (1, 1) = 7.

To derive the right side of (114) we apply (107) with f = J3,11z̄
2
11,

U
(2)
11 (f)

(−1

11τ

)
= (U11f)

(−1

11τ

)
= (U11f)(11τ)− 1

11
f(τ) +

1

11
f
( −1

112τ

)
= − 1

11
q−7 +

10

11
q−6 − 18

11
q−5 − 169

11
q−4 +O(q−3).

To expand f(−1/(112τ)) we use the relation

f | W = (g4 | W )(z̄11 | W )2 = 1112 h4 z
2
11,

which is by (106) and (100). The first reduction step already gives

U
(2)
11 (f)

(−1

11τ

)
+ 11 z̄11h2 = −9204 + 0 · q + 0 · q2 + · · · = 0.

Applying the W -operator to both sides, and using again (106) and (100), results
in

U
(2)
11 (f)(τ) = −9204− 117z11J1,11.

which is (114).

12.3. The Fundamental Relations for ` = 5. U
(1)
5 (zk) = U5(ū5z

k) represen-
tations, z := z5 and k ∈ {−4, . . . , 0}:

U
(1)
5 (1) = 5z,

U
(1)
5 (z−1) = 1,

U
(1)
5 (z−2) = −11− 11·52z − 55z2,

U
(1)
5 (z−3) = 119 + 51·53z + 34·55z2 + 58z3,

U
(1)
5 (z−4) = −253·5− 759·53z − 92·56z2 + 511z4.

U
(2)
` (zk) = U5(zk) representations, z := z5 and k ∈ {−4, . . . , 0}:

U
(2)
5 (1) = 1,

U
(2)
5 (z−1) = −52t− 6,

U
(2)
5 (z−2) = −55t2 + 54,

U
(2)
5 (z−3) = −58t3 − 102 · 5,

U
(2)
5 (z−4) = −511t4 + 966 · 5.
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12.4. The Fundamental Relations for ` = 7. U
(1)
7 (zk) = U7(ū7z

k) represen-
tations, z := z7 and k ∈ {−6, . . . , 0}:

U
(1)
7 (1) = 7z + 72z2,

U
(1)
7 (z−1) = −7z,

U
(1)
7 (z−2) = 1 + 72z,

U
(1)
7 (z−3) = −11− 7·11z + 11·73z2 + 75z3,

U
(1)
7 (z−4) = 90− 20·72z − 90·73z2 + 77z4,

U
(1)
7 (z−5) = −627 + 209·72z − 74·19z2 − 38·76z3 − 38·77z4 − 79z5,

U
(1)
7 (z−6) = 3795− 667·72z + 1955·74z2 + 874·76z3 + 874·77z4 + 46·79z5 + 711z6.

U
(2)
7 (zk) = U7(zk) representations, z := z7 and k ∈ {−6, . . . , 0}:

U
(2)
7 (1) = 1

U
(2)
7 (z−1) = −4− 7z,

U
(2)
7 (z−2) = 20− 73z2,

U
(2)
7 (z−3) = −88− 75z3,

U
(2)
7 (z−4) = 260− 77z4,

U
(2)
7 (z−5) = 68·7− 79z5,

U
(2)
7 (z−6) = −2392·7− 711z6.

12.5. The Fundamental Relations for ` = 11. The representations for

U
(1)
11 (Jm,11t

k) = U11(ū11Jm,11t
k) and U

(2)
11 (Jm,11t

k) = U11(Jm,11t
k), m ∈ {0, . . . , 4},

and k ∈ {0, . . . , 54} are displayed at
https://www.risc.jku.at/people/sradu/powers11

At this web page these 550 relations are partitioned into five groups according
to m ∈ {0, . . . , 4}. Notation used there: u := ū11, t := z11 =: J [0], J [1] := g2 =
J2,11, J [2] := g3 = J3,11, J [3] := g4 = J4,11, and J [4] := g6 = J6,11.
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