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Abstract. RISCAL is a language for describing mathematical algo-
rithms and formally specifying their behavior with respect to user-defined
theories in first-order logic. This language is based on a type system that
constrains the size of all types by formal parameters; thus a RISCAL
specification denotes an infinite class of models of which every instance
has finite size. This allows the RISCAL software to fully automatically
check in small instances the validity of theorems and the correctness of
algorithms. Our goal is to quickly detect errors respectively inadequa-
cies in the formalization by falsification in small model instances before
attempting actual correctness proofs for the whole model class.
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1 Introduction

The application of formal methods in computer science and computer mathe-
matics is hampered by the fact that typically most time and effort in proving
theorems (such as the verification conditions of a computer program) are wasted
in vain: because of errors in the formalizations, proof attempts are often a priori
doomed to fail (because the conditions do not hold) or pointless (because the
conditions do not express the required intentions).

The RISC Algorithm Language (RISCAL) [3,5] attempts to detect such er-
rors quickly by making algorithms and theorems fully checkable. For this pur-
pose, all (program and logical) variables are restricted to finite types whose sizes
are parameterized by formal parameters. For each assignment of concrete val-
ues to these parameters, the state space in which algorithms execute and the
domain in which first-order formulas are interpreted are finite; this allows to
check the correctness of algorithms and the validity of formulas. In RISCAL al-
gorithms may be formulated in a very abstract way including non-deterministic
constructions (choices of values satisfying certain conditions). The RISCAL soft-
ware implements the denotational semantics of programs and formulas in order
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to perform the checks; in particular, formulas are proved/disproved by “brute-
force” evaluation to their truth values. We may thus quickly validate/falsify the
correctness of theorems and algorithms in small model instances before turning
to their proof-based verification for the full class of models. While [5] gives an
extensive overview on (an earlier version) of RISCAL, this paper focuses on its
practical use for the purpose of computer mathematics.

Various other modeling languages support checking respectively counterex-
ample generation [2], differing from RISCAL mainly in the application domain
of the language and/or the exhaustiveness of the analysis. For instance, the
specification language of Alloy is based on a relational logic designed for mod-
eling the states of abstract systems and the executions of such systems; given
bounds for state sizes and execution lengths, the Alloy Analyzer finds all execu-
tions leading to states satisfying/violating given properties. On the other hand,
the counterexample generator Nitpick [1] for the proof assistant Isabelle/HOL
supports classical predicate logic but may (due to the presence of unbounded
quantifiers) fail to find counterexamples; in an “unsound mode” quantifiers are
artificially bounded, but then invalid counterexamples may be reported.

While Alloy and Nitpick are based on SAT-solving techniques, RISCAL’s
implementation is actually closer to that of the test case generator Smallcheck [4].
This system generates for the parameters of a Haskell function in an exhaustive
way argument values up to a certain bound; the results of the corresponding
function applications may be checked against properties expressed in first-order
logic (encoded as executable higher-order Haskell functions). However, unlike
RISCAL, the value generation bound is specified by global constants rather
than by the types of parameters and quantified variables such that separate
mechanisms have to be used to restrict searches for counterexamples.

RISCAL differs from these approaches in that it combines a rich language
that is suitable for specifying and implementing mathematical algorithms (in-
cluding implicitly specified functions and non-deterministic choices) with a fully
checkable semantics, all of which is integrated in a single easy to use specifica-
tion and validation framework (see Figure 1 for its GUI). RISCAL is intended
primarily for educational purposes [6]; it is open source and freely available [3]
with extensive documentation and examples.

2 Checking Theorems and Algorithms

We demonstrate the use of RISCAL by a small example adapted from [5].

A Theory The following specification introduces a domain Formula of proposi-
tional formulas with n variables in conjunctive normal form:

val n: N;
type Literal = Z[-n,n] with value 6= 0;
type Clause = Set[Literal] with ∀l∈value. ¬(-l∈value);
type Formula = Set[Clause];
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Fig. 1. The RISCAL Graphical User Interface

A formula is represented as a set of clauses where a clause is a set of non-
conflicting literals; a literal is a non-zero integer in the interval [−n, n] (in a
type definition, value denotes the parameter of the predicate constraining the
values of the type). A formula valuation has the same representation as a clause:
positive literals in the clause receive the value “true” while negative literals
receive the value “false”. Based on this representation, we can define a predi-
cates satisfies(v,f) denoting the relation “valuation v satisfies formula f ”,
satisfiable(f) denoting “f is satisfiable”, and valid(f) denoting “f is valid”:
type Valuation = Clause;
pred satisfies(v:Valuation, f:Formula) ⇔ ∀c∈f. ∃l∈c. l∈v;
pred satisfiable(f:Formula) ⇔ ∃v:Valuation. satisfies(v,f);
pred valid(f:Formula) ⇔ ∀v:Valuation. satisfies(v,f);

Then we introduce the negation not(f) of formula f and formulate a theorem
that states that f is valid if and only if its negation is not satisfiable:
fun not(f:Formula):Formula = { c | c:Clause with ∀d∈f. ∃l∈d. -l∈c };
theorem notValid(f:Formula) ⇔ valid(f) ⇔ ¬satisfiable(not(f));

In RISCAL, a theorem is a predicate that shall be true for all possible arguments.
We can quickly check its validity for n = 2 by selecting in the RISCAL user
interface the operation notValid and pressing the “Start Execution” button:
Executing notValid(Set[Clause]) with all 512 inputs.
Execution completed for ALL inputs (103 ms, 512 checked, 0 inadmissible).

Since the number of formulas grows double-exponentially with the number of
literals, we modify the definition of Clause (leaving all other definitions un-
changed) to consider only clauses with up to cn literals:
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val cn: N;
type Clause = Set[Literal] with |value| ≤ cn ∧ ∀l∈value. ¬(-l∈value);

Using n = 3 and cn = 2 and selecting the “Multi-Threaded” option in the user
interface we can check the correctness of the theorem for a large number of inputs
in a still quite manageable amount of time:

Executing notValid(Set[Clause]) with all 524288 inputs.
PARALLEL execution with 4 threads (output disabled).
...
Execution completed for ALL inputs (17445 ms, 524288 checked, 0 inadmissible).

However, the checking of an invalid “theorem”

theorem notValidDual(f:Formula) ⇔ satisfiable(f) ⇔ ¬valid(not(f));

produces the expected failure:

ERROR in execution of notValidDual({{-3},{-2},{-1}}): evaluation of
notValidDual

at line 42 in file sat2.txt:
theorem is not true

In order to demonstrate the reason of failures, formulas may be annotated such
that the values of subexpressions are printed during evaluation/checking; more
elaborate explanation features are planned for the future.

An Algorithm We now consider an algorithm for determining whether a for-
mula f is satisfiable. As a prerequisite, we introduce two operations to determine
the set of literals occurring in f and to give a literal l in f the value “true”:

fun literals(f:Formula):Set[Literal] = { l | l:Literal with ∃c∈f. l∈c };
fun substitute(f:Formula,l:Literal):Formula = { c\{-l} | c∈f with ¬(l∈c) };

Now a simple recursive algorithm solving our problem can be defined as follows:

multiple pred DPLL(f:Formula)
ensures result ⇔ satisfiable(f);
decreases |literals(f)|;
⇔

if f = ∅[Clause] then
>

else if ∅[Literal] ∈ f then
⊥

else
choose l∈literals(f) in
DPLL(substitute(f,l)) ∨ DPLL(substitute(f,-l));

This algorithm is annotated by the ensures clause with the postcondition that
the result of the algorithm has to satisfy: it must be “true” if and only if the
formula f is satisfiable. Indeed this condition will be checked in all executions
and any violations will be reported. Furthermore, the decreases clause indicates
a measure that is decreased in every recursive invocation but does not become
negative: the number of literals in f . Also these constraints will be checked in
all executions such that non-termination can be ruled out.
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In the recursive case, the algorithm chooses an arbitrary literal l in f and
calls itself recursively twice, once with setting l to “true”, once with setting l to
“false”. The RISCAL language has generally a nondeterministic semantics: if in
the user interface the option “Nondeterminism” is chosen, the algorithm will be
executed with all possible choices of l. With n = 2, we thus get output:
Executing DPLL(Set[Clause]) with all 512 inputs.
Execution completed for ALL inputs (884 ms, 512 checked, 0 inadmissible).

If this option is not selected, the algorithm will be only executed for one choice,
which increases for larger n the speed of the check considerably; e.g., using n = 3
and cn = 2, we get:
Executing DPLL(Set[Clause]) with all 524288 inputs.
PARALLEL execution with 4 threads (output disabled).
...
Execution completed for ALL inputs (196219 ms, 524288 checked, 0 inadmissible).
Not all nondeterministic branches may have been considered.

An algorithm may be also formulated in an imperative style as a state-based
procedure, again (by the use of a choose command) with a non-deterministic
semantics. In such procedures, loops may be annotated by invariants and termi-
nation measures; also these are checked by all executions of the algorithm. See [5]
for more details on the command language for writing state-based procedures.

Validating Specifications As shown above, we may check that the application
of a RISCAL procedure p to every argument x that satisfies the procedure’s
precondition P (x) generates a result y that satisfies the postcondition Q(x, y).
However, this check is meaningless if the specification formalized by P and Q
does not really express our informal intentions. As a first possibility to validate
the adequacy of the formal specification, RISCAL generates from it an implicitly
defined function:
_pSpec(x) requires P(x) = choose y with Q(x,y);

This function can be executed for given x by enumerating all possible values
of y (in the result domain) and checking if Q(x, y) holds. Its execution in non-
deterministic mode thus produces for every input x constrained by P (x) every
value y allowed by Q(x, y); the results of this execution are displayed and may
be inspected to confirm the correspondence of the specification to our intentions.

Furthermore, RISCAL automatically generates from P and Q various the-
orems whose validity may be checked to ensure that the specification satisfies
various (usually) expected properties:

– Is precondition satisfiable? (∃x. P (x))
– Is precondition not trivial? (∃x. ¬P (x))
– Is postcondition always satisfiable? (∀x. P (x)⇒ ∃y. Q(x, y))
– Is postcondition always not trivial? (∀x. P (x)⇒ ∃y. ¬Q(x, y))
– Is postcondition at least sometimes not trivial? (∃x. P (x) ∧ ∃y. ¬Q(x, y))
– Is result unique? (∀x, y1, y2. P (x) ∧Q(x, y1) ∧Q(x, y2)⇒ y1 = y2)

RISCAL determines the validity of also these formulas by their evaluation.
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3 Current and Further Work

For checking a procedure, a loop may be annotated with invariants whose validity
is checked before and after every iteration. However, while checking may reveal
that an invariant is too strong (it is violated by some loop iteration), it cannot
reveal that it is too weak to carry a proof-based verification of the procedure’s
correctness. Therefore, currently work is under way to generate in RISCAL also
verification conditions whose validity (with respect to the whole model class)
implies the general correctness of the procedure; these conditions can be falsified
by checks (in individual instances of the class). If we are not able to falsify these
conditions, our confidence in their validity is increased and we may subsequently
attempt their proof-based verification (for this we later plan to integrate RISCAL
with an external proof assistant).

As for its application in education, so far RISCAL has been used in a fourth
year’s master course on “Formal Methods in Software Development” in order to
make students familiar with the semantics and pragmatics of program specifica-
tions before exposing them to proof-based tools; this has indeed helped students
to develop adequate program specifications and annotations as a basis for general
verification. In the next year, we plan to use RISCAL also in a first semester’s
introductory course on “Logic” to train students by small exercises in the practi-
cal use of first-order logic and in an introductory course on “Formal Modeling” to
develop logic-based formal models of problem domains. Our long-term goal is to
develop (with the help of students) a collection of educational resources in vari-
ous areas of computer science and mathematics; we have started to cover selected
topics in discrete mathematics, computer algebra, and fundamental algorithms.
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