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Abstract

We present an efficient decision procedure for positivity on a class of holonomic sequences
satisfying recurrences of arbitrary order.

1 Introduction

In 2005, Gerhold and Kauers [2] proposed a method that is applicable to proving inequalities con-
cerning sequences that satisfy recurrence equations of a very general type. The basic idea is to
prove the inequalities by induction and their method consists of constructing a sequence of poly-
nomial sufficient conditions that would imply the non-polynomial inequality under consideration.
The truth of these conditions is tested using Cylindrical Algebraic Decomposition (CAD) [1]. If
the inequality does not hold, then the method terminates after a finite number of steps and returns
a counterexample. If the inequality holds, then either the program terminates and returns True
or it may fail to detect this and run forever. Besides termination not being guaranteed another
drawback of using a method based on CAD is that it is computationally expensive. In [4] and [5]
a main goal was to find termination conditions. Fortunately the proof produced in [5] to extend
the domain where termination can be proven indicates a more efficient procedure for determining
positivity on a restricted set of holonomic sequences. The work presented here freely uses proofs
and follows notation found in [4, 5].

2 Preliminaries

A sequence f:N — K where K is a computable subfield of C is P-finite (or holonomic) of order
d if there exist polynomials py, ..., pq € K|x], not all zero, such that

po(n)f(n) + pr(n)f(n+1) + ... + paf(n+d) = 0.
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We also refer to the recurrence as P-finite. If all the coefficients in the recurrence are constant,
then we call the sequence C-finite. A P-finite recurrence is called balanced if degpy, = deg py and
degp; < degpo (i = 1,...,d). We will often find it more useful here to write the recurrence with
rational function coefficients in a form equal to f(n + d):

fin+d)=rea(n)f(n+d—1)+---+ro(n)f(n). (1)
The characteristic polynomial of a balanced recurrence is defined as:

X(@) = ley(po(y) + p1(y)x + p2(y)2® + - - - + pa(y)a?). (2)

Its roots ay, ..., a, are called the eigenvalues of the recurrence. Here the «; are distinct and the
sum of their multiplicities is equal to d. An eigenvalue «; is called dominant if |a;| < || for all
j=1,...,d. In what follows we consider P-finite recurrences with one positive dominant eigenvalue.
The task is, given a P-finite sequence f(n) from its recurrence coefficients and sufficiently many
initial values, decide if f(n) > 0 for all n € N. For recurrences where a; # 1 we may scale our
recurrences and without loss of generality consider only sequences with dominant eigenvalue equal
to 1 (because g(n) = f(n)/al? > 0< f(n) >0).

3 Method

Relevant here is a variant (introduced in [5]) of the original algorithm. In this variant, in order to
prove positivity for a particular sequence f(n), we consider the shifted subsequence f(n + m) for
some m > d. That is, we seek to prove that

f(n)>0Af(n+1)>0AN---ANf(n+d—1)>0= f(n+m) >0, (3)

for n > nyg, for some lower bound ny. For any m > d, repeated application of the given recurrence
allows us to compute f(n + m) from d consecutive sequence elements.

f(n+m) =Ry 1(m,n)f(n+d—1)+---+ Ro(m,n)f(n), (4)

where the Ry(m,-) are rational functions. If for some fixed mg all the Rj(my,-) are eventually
positive, then the implication in (3) is trivially true for n greater than some lower bound ny.

Let x(z) = 22— c4_ 127 — -+ — 17 — ¢g be the characteristic polynomial of the given sequence.
Then [5] for every fixed mg, we have that lim, ., Rg(mg,n) = yx(mo), where each ~vx(m) is the

C-finite sequence defined by the recurrence
Ye(m + d) =cq_1y(m+d—1) + ... + coye(m) (5)

with initial values v, (j) = 0x,; for 7 =0,1,...,d — 1 (where J; ; denotes the Kronecker delta). The
solution of each recurrence can be explicitly computed in closed form as a linear combination of
the sequence (1),,>0 and sequences of the form o™, ma™, ..., m* 'a™ where « is an eigenvalue and
e denotes its multiplicity. Let (; be the coefficient of the eigenvalue 1 in this closed form, then
lim,, 00 Y(Mm) = (. Furthermore, for each fixed m, lim, , Ri(m,n) = ~,(m). If all the limits
(k are positive, then it remains to determine an my and ng such that Ry(mg,n) > 0, for n > ny.
Checking positivity of f(0),..., f(ng+ mg) concludes the proof of positivity of f(n).



With these notations and considerations at hand we now proceed to use the proof-idea of [5] for
a method to prove positivity directly, avoiding the use of CAD.

Given a scaled balanced P-finite recurrence and initial values we will decide if an mg (not unique)
exists for which the implication in (3) holds with m = my and n large. If so we will check a sufficient
number of initial values to prove or disprove positivity.

The first task is to determine the characteristic polynomial, eigenvalues and a closed form for
each of the C-finite sequences v, as defined in (5). These are elementary procedures. From the
closed form we check that each (j is positive. If we find any (, < 0 we revert to the CAD based
approach. Otherwise we proceed.

We do not require our choice of mg to be minimal in any sense, only that for each k it satisfies
y(m) =G| < & for m > myg. Let By(z) be an upper bound for |yx(z) — (x| A sufficient requirement
for my € N is that for each k it satisfy By(z) < %’“ for x > my. We use By(z) = va®tpz®~! where
v and « are respectively the maximum absolute values of the coefficient of any term in the closed
form of 7, other than 1™ and all eigenvalues other than 1, and ¢, and e are the number of terms in
the closed form and maximum multiplicity of any eigenvalue.

Note that By(z) was constructed in a way to make it easy to determine the maximum used in
the following choice for my:

mo = [max{0,z | Ik € {0,...,d — 1}: Br(z) = (x/2}]

and to ensure that By(x) < (/2 for all x > mg. Therefore also |yx(m) — (x| < (/2 for all m > my.
Having set mg, we now find an ny > 0 such that |Ry(mo,n) — (x| < (x/2 for each k and all
n > ng. Through iteration of the original recurrence we find Rg(mo, ), ..., R4_1(my, ) such that

f(n+mg) = Rg_1(mg,n)f(n+d—1)+ ... + Ry(mog,n) f(n).

For each k, Ry(mo, x) — v (my) is rational, and lim, . Rg(mg, x) —yk(mo) = 0. These two facts
allow us to set

no = [max{0,z | 3k € {0...d — 1}: |Ry(mo, ) — ve(mo)| = £} .
Then for each k& we have

| Ri(mo, ) — G| = |Ri(mo, n) — ve(mo)| + |[7r(m0) —
<<k/2+Ck/2:Ck; Vn > nyg.

ensuring that all the rational function coefficients of f(n +my) are positive for n > ny. If we check
the first ng + mgo values and find they are positive we have a proof that f(n) is a positive valued
sequence.

Example 1 We use the new method to show positivity of a sequence defined by a P-finite recurrence
with eigenvalues outside the previously proven termination bounds for the CAD based approach. Let

f(n) be defined by
Bn—17f(n+3)—(4n—14)f(n+2)— (8 =3n)f(n+1) — (Tn+ 11) f(n) = 0,

with initial values f(0) =9, f(1) =3, f(2) =T.
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The scaled characteristic polynomial is x(z) = x° — %12 + %m — g, the eigenvalues are g = 1,

a1 = 1(—1£iV13), and so a = max{|o|, ||} = 1/7/8.

The related C-finite recurrence is ye(m + 3) — sy(m +2) + 2y(m + 1) — Iy(m) = 0. We com-
pute the closed form for vo(m),v1(m) and v2(m) with initial values {1,0,0},{0,1,0}, and {0,0,1}
respectively:

_ T 6v13-8i .m | 6v13+8i . m
Yo(m) = 19 10viz M + 19\/% X2

_ 4 2/13-28i .m | 2/13-28i .m
m(m) = 19 Toviz + T0viz 2

_ 8 4V/I3+20i . m | —4V/I34+20i .m
Y2(m) = 19 Toviz 1 + 1913 2

) /28 a4 _ 32 . _ 7 _ 4 _ 8.
¢From the closed form we get vo = /57,01 = \/57V2 = \/5557 C0 = 75,61 = 75:$2 = 197

to =t; =ty = 3;¢ = 1 With those values we construct By(x) = vipa®tpz®! for each k,

Bofw) = /2 (2)""* Bofr) = /8 (1) Bola) = /2 ()7

Then, as defined above, we set mg = [max{0,x | Jk: Br(x) = (/2}] = 32, and compute the
Ry(32,n) with the original recurrence:

(8n —17)R3(k+3,n) — (4n — 14)Ry(k +2,n) — (8 = 3n)R(k + 1,n) — (Tn + 11)Ry(k,n) =0

to determine ng = [max{0,z | Ik: |Rk(32,2) — ye(mo)| = (x/2}] = 117. The first mg + ng = 149
values are indeed positive which completes our proof that f(n) > 0 for all n € N.

This result took approrimately 8 seconds with our method vs. almost 96 seconds for the original
algorithm using the implementation in SumCracker [3].
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