
ACM Communications in Computer Algebra, TBA

An efficient procedure deciding positivity for a class of
holonomic functions

Veronika Pillwein, Miriam Schussler ∗

RISC
Johannes Kepler University

Linz, Austria, A-4040
vpillwei@risc.jku.at mschussl@risc.jku.at

Abstract

We present an efficient decision procedure for positivity on a class of holonomic sequences
satisfying recurrences of arbitrary order.

1 Introduction

In 2005, Gerhold and Kauers [2] proposed a method that is applicable to proving inequalities con-
cerning sequences that satisfy recurrence equations of a very general type. The basic idea is to
prove the inequalities by induction and their method consists of constructing a sequence of poly-
nomial sufficient conditions that would imply the non-polynomial inequality under consideration.
The truth of these conditions is tested using Cylindrical Algebraic Decomposition (CAD) [1]. If
the inequality does not hold, then the method terminates after a finite number of steps and returns
a counterexample. If the inequality holds, then either the program terminates and returns True
or it may fail to detect this and run forever. Besides termination not being guaranteed another
drawback of using a method based on CAD is that it is computationally expensive. In [4] and [5]
a main goal was to find termination conditions. Fortunately the proof produced in [5] to extend
the domain where termination can be proven indicates a more efficient procedure for determining
positivity on a restricted set of holonomic sequences. The work presented here freely uses proofs
and follows notation found in [4, 5].

2 Preliminaries

A sequence f : N→ K where K is a computable subfield of C is P-finite (or holonomic) of order
d if there exist polynomials p0, . . . , pd ∈ K[x], not all zero, such that

p0(n)f(n) + p1(n)f(n+ 1) + ...+ pdf(n+ d) = 0.
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We also refer to the recurrence as P-finite. If all the coefficients in the recurrence are constant,
then we call the sequence C-finite. A P-finite recurrence is called balanced if deg p0 = deg pd and
deg pi ≤ deg p0 (i = 1, . . . , d). We will often find it more useful here to write the recurrence with
rational function coefficients in a form equal to f(n+ d):

f(n+ d) = rd−1(n)f(n+ d− 1) + · · ·+ r0(n)f(n). (1)

The characteristic polynomial of a balanced recurrence is defined as:

χ(x) = lcy(p0(y) + p1(y)x+ p2(y)x2 + · · ·+ pd(y)xd). (2)

Its roots α0, ..., αs are called the eigenvalues of the recurrence. Here the αi are distinct and the
sum of their multiplicities is equal to d. An eigenvalue αi is called dominant if |αj| ≤ |αi| for all
j = 1, . . . , d. In what follows we consider P-finite recurrences with one positive dominant eigenvalue.
The task is, given a P-finite sequence f(n) from its recurrence coefficients and sufficiently many
initial values, decide if f(n) ≥ 0 for all n ∈ N. For recurrences where αi 6= 1 we may scale our
recurrences and without loss of generality consider only sequences with dominant eigenvalue equal
to 1 (because g(n) = f(n)/αni ≥ 0⇔ f(n) ≥ 0).

3 Method

Relevant here is a variant (introduced in [5]) of the original algorithm. In this variant, in order to
prove positivity for a particular sequence f(n), we consider the shifted subsequence f(n + m) for
some m > d. That is, we seek to prove that

f(n) ≥ 0 ∧ f(n+ 1) ≥ 0 ∧ · · · ∧ f(n+ d− 1) ≥ 0⇒ f(n+m) ≥ 0, (3)

for n ≥ n0, for some lower bound n0. For any m ≥ d, repeated application of the given recurrence
allows us to compute f(n+m) from d consecutive sequence elements.

f(n+m) = Rd−1(m,n)f(n+ d− 1) + · · ·+R0(m,n)f(n), (4)

where the Rk(m, ·) are rational functions. If for some fixed m0 all the Rk(m0, ·) are eventually
positive, then the implication in (3) is trivially true for n greater than some lower bound n0.

Let χ(x) = xd− cd−1xd−1−· · ·− c1x− c0 be the characteristic polynomial of the given sequence.
Then [5] for every fixed m0, we have that limn→∞Rk(m0, n) = γk(m0), where each γk(m) is the
C-finite sequence defined by the recurrence

γk(m+ d) =cd−1γk(m+ d− 1) + ...+ c0γk(m) (5)

with initial values γk(j) = δk,j for j = 0, 1, ..., d − 1 (where δk,j denotes the Kronecker delta). The
solution of each recurrence can be explicitly computed in closed form as a linear combination of
the sequence (1)m≥0 and sequences of the form αm,mαm, . . . ,me−1αm where α is an eigenvalue and
e denotes its multiplicity. Let ζk be the coefficient of the eigenvalue 1 in this closed form, then
limm→∞ γk(m) = ζk. Furthermore, for each fixed m, limn→∞Rk(m,n) = γk(m). If all the limits
ζk are positive, then it remains to determine an m0 and n0 such that Rk(m0, n) > 0, for n > n0.
Checking positivity of f(0), . . . , f(n0 +m0) concludes the proof of positivity of f(n).



With these notations and considerations at hand we now proceed to use the proof-idea of [5] for
a method to prove positivity directly, avoiding the use of CAD.

Given a scaled balanced P-finite recurrence and initial values we will decide if an m0 (not unique)
exists for which the implication in (3) holds with m = m0 and n large. If so we will check a sufficient
number of initial values to prove or disprove positivity.

The first task is to determine the characteristic polynomial, eigenvalues and a closed form for
each of the C-finite sequences γk as defined in (5). These are elementary procedures. From the
closed form we check that each ζk is positive. If we find any ζk < 0 we revert to the CAD based
approach. Otherwise we proceed.

We do not require our choice of m0 to be minimal in any sense, only that for each k it satisfies
|γk(m)−ζk| ≤ ζk

2
for m > m0. Let Bk(x) be an upper bound for |γk(x)−ζk|. A sufficient requirement

for m0 ∈ N is that for each k it satisfy Bk(x) ≤ ζk
2

for x > m0. We use Bk(x) = υkα
xtkx

e−1 where
υk and α are respectively the maximum absolute values of the coefficient of any term in the closed
form of γk other than 1m and all eigenvalues other than 1, and tk and e are the number of terms in
the closed form and maximum multiplicity of any eigenvalue.

Note that Bk(x) was constructed in a way to make it easy to determine the maximum used in
the following choice for m0:

m0 = dmax{0, x | ∃k ∈ {0, . . . , d− 1} : Bk(x) = ζk/2}e

and to ensure that Bk(x) < ζk/2 for all x > m0. Therefore also |γk(m)− ζk| < ζk/2 for all m > m0.
Having set m0, we now find an n0 ≥ 0 such that |Rk(m0, n)− ζk| < ζk/2 for each k and all

n > n0. Through iteration of the original recurrence we find R0(m0, ·), . . . , Rd−1(m0, ·) such that

f(n+m0) = Rd−1(m0, n)f(n+ d− 1) + ...+R0(m0, n)f(n).

For each k, Rk(m0, x)−γk(m0) is rational, and limx→∞Rk(m0, x)−γk(m0) = 0. These two facts
allow us to set

n0 =
⌈
max{0, x | ∃k ∈ {0 . . . d− 1} : |Rk(m0, x)− γk(m0)| = ζk

2
}
⌉
.

Then for each k we have

|Rk(m0, n)− ζk| = |Rk(m0, n)− γk(m0)|+ |γk(m0)− ζk|
< ζk/2 + ζk/2 = ζk, ∀n > n0.

ensuring that all the rational function coefficients of f(n+m0) are positive for n > n0. If we check
the first n0 + m0 values and find they are positive we have a proof that f(n) is a positive valued
sequence.

Example 1 We use the new method to show positivity of a sequence defined by a P-finite recurrence
with eigenvalues outside the previously proven termination bounds for the CAD based approach. Let
f(n) be defined by

(8n− 17)f(n+ 3)− (4n− 14)f(n+ 2)− (8− 3n)f(n+ 1)− (7n+ 11)f(n) = 0,

with initial values f(0) = 9, f(1) = 3, f(2) = 7.
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The scaled characteristic polynomial is χ(x) = x3 − 1
2
x2 + 3

8
x − 7

8
, the eigenvalues are α0 = 1,

α1,2 = 1
4
(−1± i

√
13), and so α = max{|α1|, |α2|} =

√
7/8.

The related C-finite recurrence is γk(m+ 3)− 1
2
γk(m+ 2) + 3

8
γ(m+ 1)− 7

8
γ(m) = 0. We com-

pute the closed form for γ0(m), γ1(m) and γ2(m) with initial values {1, 0, 0}, {0, 1, 0}, and {0, 0, 1}
respectively:

γ0(m) = 7
19
− 6

√
13−8i

19
√
13
αm1 + 6

√
13+8i

19
√
13
αm2

γ1(m) = 4
19
− 2

√
13−28i

19
√
13

αm1 + 2
√
13−28i

19
√
13

αm2

γ2(m) = 8
19
− 4

√
13+20i

19
√
13

αm1 + −4
√
13+20i

19
√
13

αm2

¿From the closed form we get υ0 =
√

28
247
, υ1 =

√
44
247
, υ2 =

√
32
247

; ζ0 = 7
19
, ζ1 = 4

19
, ζ2 = 8

19
;

t0 = t1 = t2 = 3; e = 1 With those values we construct Bk(x) = υkα
xtkx

e−1 for each k,

B0(x) =
√

28
247

(
7
8

)x/2
B0(x) =

√
44
247

(
7
8

)x/2
B0(x) =

√
32
247

(
7
8

)x/2
.

Then, as defined above, we set m0 = dmax{0, x | ∃k : Bk(x) = ζk/2}e = 32, and compute the
Rk(32, n) with the original recurrence:

(8n− 17)R3(k + 3, n)− (4n− 14)R2(k + 2, n)− (8− 3n)R(k + 1, n)− (7n+ 11)R0(k, n) = 0

to determine n0 = dmax{0, x | ∃k : |Rk(32, x) − γk(m0)| = ζk/2}e = 117. The first m0 + n0 = 149
values are indeed positive which completes our proof that f(n) > 0 for all n ∈ N.

This result took approximately 8 seconds with our method vs. almost 96 seconds for the original
algorithm using the implementation in SumCracker [3].
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