
REPRESENTATION AND MANAGEMENT OF
MATHEMATICS IN THEOREMA 2.0

Wolfgang Windsteiger
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University Linz (JKU)

Minisymposium From Information to Knowledge Management
Salzburg, September 12, 2017

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

THE THEOREMA SYSTEM: OVERVIEW

� Theorema is a mathematical assistant system aiming at communication with users in
natural style.

� Theorema tries to support as many typical activities of a working mathematician as
possible (computation & proving).

� Natural style input: not only formulas but entire documents.

� General focus on automated proving.

� Natural style output: generate proofs in human-readable style.

� Developed on the basis of Mathematica, Theorema code is open source
GPL-licensed.

� User Interface: prepare mathematical document + support activities whose results get
incorporated into the document.

1/19

EXAMPLE (USER INTERFACE)

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

2/19

EXAMPLE (USER INTERFACE)

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

2/19

EXAMPLE (USER INTERFACE)

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

2/19

EXAMPLE (USER INTERFACE)

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

2/19

EXAMPLE (USER INTERFACE)

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

2/19

EXAMPLE (USER INTERFACE)

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

2/19

THEORY DEVELOPMENT

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

� file containing formulas only
� in a format that can be imported into Theorema again
� in other formats to be read by other systems, eg. MMT (Kohlhase/Rabe)

3/19

THEORY DEVELOPMENT

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

� file containing formulas only
� in a format that can be imported into Theorema again
� in other formats to be read by other systems, eg. MMT (Kohlhase/Rabe)

3/19

THEORY DEVELOPMENT

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

� file containing formulas only

� in a format that can be imported into Theorema again
� in other formats to be read by other systems, eg. MMT (Kohlhase/Rabe)

3/19

THEORY DEVELOPMENT

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

� file containing formulas only
� in a format that can be imported into Theorema again

� in other formats to be read by other systems, eg. MMT (Kohlhase/Rabe)

3/19

THEORY DEVELOPMENT

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

� file containing formulas only
� in a format that can be imported into Theorema again
� in other formats to be read by other systems, eg. MMT (Kohlhase/Rabe)

3/19

SUPPORT FOR THEORY DEVELOPMENT
Work in progress: Automatically maintain and display a formula graph such as

D1

L1

D2

D3

L2 D5

L3L4

D6

L5 L6

D7

L7 L8

Theorem(vickrey efficient)

D9

Theorem(vickrey dominant)

D8 D4

where

� vertices are formula labels and

� X → Y means: formula X is needed in the proof of formula Y .

4/19

SUPPORT FOR THEORY DEVELOPMENT

Features supported in the interactive graphical user interface (Theorema commander):

� Tooltip over label shows entire formula (see labels in proofs).

� Color-coding of labels indicates theory membership.

� Mouse-click on labels jumps to formula definition in the notebook.

� Zoom-out in order to switch to theory level, ie. vertices are theories and X → Y

means: some formula of X is needed in the proof of some formula in Y .

� Show/Hide theories via checkboxes.

� Apply graph algorithms in order to investigate theory structure.

5/19

SUPPORT FOR THEORY DEVELOPMENT

Features supported in the interactive graphical user interface (Theorema commander):

� Tooltip over label shows entire formula (see labels in proofs).

� Color-coding of labels indicates theory membership.

� Mouse-click on labels jumps to formula definition in the notebook.

� Zoom-out in order to switch to theory level, ie. vertices are theories and X → Y

means: some formula of X is needed in the proof of some formula in Y .

� Show/Hide theories via checkboxes.

� Apply graph algorithms in order to investigate theory structure.

5/19

SUPPORT FOR THEORY DEVELOPMENT

Features supported in the interactive graphical user interface (Theorema commander):

� Tooltip over label shows entire formula (see labels in proofs).

� Color-coding of labels indicates theory membership.

� Mouse-click on labels jumps to formula definition in the notebook.

� Zoom-out in order to switch to theory level, ie. vertices are theories and X → Y

means: some formula of X is needed in the proof of some formula in Y .

� Show/Hide theories via checkboxes.

� Apply graph algorithms in order to investigate theory structure.

5/19

SUPPORT FOR THEORY DEVELOPMENT

Features supported in the interactive graphical user interface (Theorema commander):

� Tooltip over label shows entire formula (see labels in proofs).

� Color-coding of labels indicates theory membership.

� Mouse-click on labels jumps to formula definition in the notebook.

� Zoom-out in order to switch to theory level, ie. vertices are theories and X → Y

means: some formula of X is needed in the proof of some formula in Y .

� Show/Hide theories via checkboxes.

� Apply graph algorithms in order to investigate theory structure.

5/19

SUPPORT FOR THEORY DEVELOPMENT

Features supported in the interactive graphical user interface (Theorema commander):

� Tooltip over label shows entire formula (see labels in proofs).

� Color-coding of labels indicates theory membership.

� Mouse-click on labels jumps to formula definition in the notebook.

� Zoom-out in order to switch to theory level, ie. vertices are theories and X → Y

means: some formula of X is needed in the proof of some formula in Y .

� Show/Hide theories via checkboxes.

� Apply graph algorithms in order to investigate theory structure.

5/19

SUPPORT FOR THEORY DEVELOPMENT

Features supported in the interactive graphical user interface (Theorema commander):

� Tooltip over label shows entire formula (see labels in proofs).

� Color-coding of labels indicates theory membership.

� Mouse-click on labels jumps to formula definition in the notebook.

� Zoom-out in order to switch to theory level, ie. vertices are theories and X → Y

means: some formula of X is needed in the proof of some formula in Y .

� Show/Hide theories via checkboxes.

� Apply graph algorithms in order to investigate theory structure.

5/19

FORMULA DEPENDENCIES

Prerequisite for dynamically maintaining the formula graph: tracking of formula
dependencies.

Input to an automated prover: proof goal G, knowledge base (k1, . . . , kn), etc.

Naive approach: Add edges (k1, G), . . . , (kn, G) to the formula graph.

But: It is not guaranteed, that all of the k1, . . . , kn are really required for proving G.

Solution:

PROOF SIMPLIFICATION.

6/19

FORMULA DEPENDENCIES

Prerequisite for dynamically maintaining the formula graph: tracking of formula
dependencies.

Input to an automated prover: proof goal G, knowledge base (k1, . . . , kn), etc.

Naive approach: Add edges (k1, G), . . . , (kn, G) to the formula graph.

But: It is not guaranteed, that all of the k1, . . . , kn are really required for proving G.

Solution:

PROOF SIMPLIFICATION.

6/19

FORMULA DEPENDENCIES

Prerequisite for dynamically maintaining the formula graph: tracking of formula
dependencies.

Input to an automated prover: proof goal G, knowledge base (k1, . . . , kn), etc.

Naive approach: Add edges (k1, G), . . . , (kn, G) to the formula graph.

But: It is not guaranteed, that all of the k1, . . . , kn are really required for proving G.

Solution:

PROOF SIMPLIFICATION.

6/19

FORMULA DEPENDENCIES

Prerequisite for dynamically maintaining the formula graph: tracking of formula
dependencies.

Input to an automated prover: proof goal G, knowledge base (k1, . . . , kn), etc.

Naive approach: Add edges (k1, G), . . . , (kn, G) to the formula graph.

But: It is not guaranteed, that all of the k1, . . . , kn are really required for proving G.

Solution:

PROOF SIMPLIFICATION.

6/19

FORMULA DEPENDENCIES

Prerequisite for dynamically maintaining the formula graph: tracking of formula
dependencies.

Input to an automated prover: proof goal G, knowledge base (k1, . . . , kn), etc.

Naive approach: Add edges (k1, G), . . . , (kn, G) to the formula graph.

But: It is not guaranteed, that all of the k1, . . . , kn are really required for proving G.

Solution:

PROOF SIMPLIFICATION.

6/19

PROOF SIMPLIFICATION

1. Eliminate unnecessary paths in the proof tree

2. Eliminate unnecessary formulas in each node

−→

7/19

PROOF SIMPLIFICATION

1. Eliminate unnecessary paths in the proof tree

2. Eliminate unnecessary formulas in each node

−→

7/19

PROOF SIMPLIFICATION

1. Eliminate unnecessary paths in the proof tree

2. Eliminate unnecessary formulas in each node

−→

7/19

PROOF SIMPLIFICATION

1. Eliminate unnecessary paths in the proof tree

2. Eliminate unnecessary formulas in each node

−→

7/19

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info)

Proof tree node (detail): proof info + proof situation

Proof info: contains information necessary for displaying proof in human-readable form,
eg. formulas needed to perform the proof step.

Proof info cannot be extracted automatically, it has to be specified when implementing the
prover.

8/19

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info)

Proof tree node (detail): proof info + proof situation

Proof info: contains information necessary for displaying proof in human-readable form,
eg. formulas needed to perform the proof step.

Proof info cannot be extracted automatically, it has to be specified when implementing the
prover.

8/19

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info)

Proof tree node (detail): proof info + proof situation

Proof info: contains information necessary for displaying proof in human-readable form,
eg. formulas needed to perform the proof step.

Proof info cannot be extracted automatically, it has to be specified when implementing the
prover.

8/19

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info)

Proof tree node (detail): proof info + proof situation

Proof info: contains information necessary for displaying proof in human-readable form,
eg. formulas needed to perform the proof step.

Proof info cannot be extracted automatically, it has to be specified when implementing the
prover.

8/19

PROOF INFO: EXAMPLE

Proof Step: Reduce proof goal g by knowledge ki to new goal g′.

Node Proof Situation Proof Info

N ,

↓ ↓

child of N , (k1, . . . , ki, . . . , kn)

Proof info allows to generate text:

“In order to prove g, because of ki, it is sufficient to prove g′.”

9/19

PROOF INFO: EXAMPLE

Proof Step: Reduce proof goal g by knowledge ki to new goal g′.

Node Proof Situation Proof Info

N g, (k1, . . . , ki, . . . , kn)

↓ ↓

child of N g′, (k1, . . . , ki, . . . , kn)

Proof info allows to generate text:

“In order to prove g, because of ki, it is sufficient to prove g′.”

9/19

PROOF INFO: EXAMPLE

Proof Step: Reduce proof goal g by knowledge ki to new goal g′.

Node Proof Situation Proof Info

N g , (k1, . . . , ki , . . . , kn)

↓ ↓ .

child of N g′ , (k1, . . . , ki, . . . , kn) Formulas needed: g, ki, g′

Proof info allows to generate text:

“In order to prove g, because of ki, it is sufficient to prove g′.”

9/19

PROOF INFO: EXAMPLE

Proof Step: Reduce proof goal g by knowledge ki to new goal g′.

Node Proof Situation Proof Info

N g, (k1, . . . , ki, . . . , kn)

↓ ↓ .

child of N g′, (k1, . . . , ki, . . . , kn) Formulas needed: g, ki, g′

Proof info allows to generate text:

“In order to prove g, because of ki, it is sufficient to prove g′.”

9/19

PROOF INFO: FORMULAS NEEDED

Instead of plain list (f1, . . . , fn)

−→ ((u1, . . . , um), (g1, . . . , gm))

where

ui are sets of formulas used and

gi are sets of formulas generated in a node, st.

all formulas in ui are needed to generate the formulas in gi.

Example above: (({g, ki}), ({g′})).

10/19

PROOF INFO: FORMULAS NEEDED

Instead of plain list (f1, . . . , fn)

−→ ((u1, . . . , um), (g1, . . . , gm))

where

ui are sets of formulas used and

gi are sets of formulas generated in a node, st.

all formulas in ui are needed to generate the formulas in gi.

Example above: (({g, ki}), ({g′})).

10/19

PROOF INFO: FORMULAS NEEDED

Instead of plain list (f1, . . . , fn)

−→ ((u1, . . . , um), (g1, . . . , gm))

where

ui are sets of formulas used and

gi are sets of formulas generated in a node, st.

all formulas in ui are needed to generate the formulas in gi.

Example above: (({g, ki}), ({g′})).

10/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

↓

↓

Terminal Node ((u1), ({})) F = u1

where

= gi ∩ F =

{
ui if 6= ∅
∅ if = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

↓

N ((u1, . . . , um), (g1, . . . , gm))

↓

Terminal Node ((u1), ({})) F = u1

where

= gi ∩ F =

{
ui if 6= ∅
∅ if = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

↓

N ((u′1, . . . , u
′
m), (g′1, . . . , g

′
m))

↓

Terminal Node ((u1), ({})) F = u1

where

g′i = gi ∩ F u′i =

{
ui if g′i 6= ∅
∅ if g′i = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

↓

N ((u′1, . . . , u
′
m), (g′1, . . . , g

′
m)) F = F ∪ u′1 ∪ · · · ∪ u′m

↓

Terminal Node ((u1), ({})) F = u1

where

= gi ∩ F =

{
ui if 6= ∅
∅ if = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

parent of N ((u1, . . . , um), (g1, . . . , gm))

↓

N ((u′1, . . . , u
′
m), (g′1, . . . , g

′
m)) F = F ∪ u′1 ∪ · · · ∪ u′m

↓

Terminal Node ((u1), ({})) F = u1

where

= gi ∩ F =

{
ui if 6= ∅
∅ if = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

parent of N ((u∗1, . . . , u
∗
m), (g∗1 , . . . , g

∗
m))

↓

N ((u′1, . . . , u
′
m), (g′1, . . . , g

′
m)) F = F ∪ u′1 ∪ · · · ∪ u′m

↓

Terminal Node ((u1), ({})) F = u1

where

g∗i = gi ∩ F u∗i =

{
ui if g∗i 6= ∅
∅ if g∗i = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

parent of N ((u∗1, . . . , u
∗
m), (g∗1 , . . . , g

∗
m)) F = F ∪ u∗1 ∪ · · · ∪ u∗m

↓

N ((u′1, . . . , u
′
m), (g′1, . . . , g

′
m)) F = F ∪ u′1 ∪ · · · ∪ u′m

↓

Terminal Node ((u1), ({})) F = u1

where

= gi ∩ F =

{
ui if 6= ∅
∅ if = ∅

11/19

DELETING UNNECESSARY FORMULAS

Node Proof Info Necessary Formulas

parent of N ((u∗1, . . . , u
∗
m), (g∗1 , . . . , g

∗
m)) F = F ∪ u∗1 ∪ · · · ∪ u∗m

↓

N ((u′1, . . . , u
′
m), (g′1, . . . , g

′
m)) F = F ∪ u′1 ∪ · · · ∪ u′m

↓

Terminal Node ((u1), ({})) F = u1

Upon termination: F contains all necessary formulas!

Root node proof info: (({}), (K∗)) where K∗ contains just those formulas of the original
knowledge base that were actually needed.

where

= gi ∩ F =

{
ui if 6= ∅
∅ if = ∅

11/19

DEMO: PROOF SIMPLIFICATION

12/19

DEMO: PROOF SIMPLIFICATION

13/19

DEMO: PROOF SIMPLIFICATION

13/19

DEMO: PROOF SIMPLIFICATION

14/19

DEMO: PROOF SIMPLIFICATION

15/19

DEMO: PROOF SIMPLIFICATION

16/19

DEMO: PROOF SIMPLIFICATION

17/19

DEMO: PROOF SIMPLIFICATION

18/19

CONCLUSION

� Theory exploration/development is an important aspect of knowledge/information
management.

� Formula dependency graph is a nice/valuable tool for theory exploration/development.

� Proof simplification is a necessary requirement, if we want to automatically maintain a
formula dependency graph.

19/19

CONCLUSION

� Theory exploration/development is an important aspect of knowledge/information
management.

� Formula dependency graph is a nice/valuable tool for theory exploration/development.

� Proof simplification is a necessary requirement, if we want to automatically maintain a
formula dependency graph.

19/19

CONCLUSION

� Theory exploration/development is an important aspect of knowledge/information
management.

� Formula dependency graph is a nice/valuable tool for theory exploration/development.

� Proof simplification is a necessary requirement, if we want to automatically maintain a
formula dependency graph.

19/19

