

Wolfgang Windsteiger Research Institute for Symbolic Computation (RISC) Johannes Kepler University Linz (JKU)

Minisymposium From Information to Knowledge Management Salzburg, September 12, 2017

Theorema is a mathematical assistant system aiming at communication with users in natural style.

- Theorema is a mathematical assistant system aiming at communication with users in natural style.
- Theorema tries to support as many typical activities of a working mathematician as possible (computation & proving).

- Theorema is a mathematical assistant system aiming at communication with users in natural style.
- Theorema tries to support as many typical activities of a working mathematician as possible (computation & proving).
- Natural style input: not only formulas but entire documents.

- Theorema is a mathematical assistant system aiming at communication with users in natural style.
- Theorema tries to support as many typical activities of a working mathematician as possible (computation & proving).
- Natural style input: not only formulas but entire documents.
- General focus on automated proving.

- Theorema is a mathematical assistant system aiming at communication with users in natural style.
- Theorema tries to support as many typical activities of a working mathematician as possible (computation & proving).
- Natural style input: not only formulas but entire documents.
- General focus on automated proving.
- Natural style output: generate proofs in human-readable style.

- Theorema is a mathematical assistant system aiming at communication with users in natural style.
- Theorema tries to support as many typical activities of a working mathematician as possible (computation & proving).
- Natural style input: not only formulas but entire documents.
- General focus on automated proving.
- Natural style output: generate proofs in human-readable style.
- Developed on the basis of Mathematica, Theorema code is open source GPL-licensed.

- Theorema is a mathematical assistant system aiming at communication with users in natural style.
- Theorema tries to support as many typical activities of a working mathematician as possible (computation & proving).
- Natural style input: not only formulas but entire documents.
- General focus on automated proving.
- Natural style output: generate proofs in human-readable style.
- Developed on the basis of Mathematica, Theorema code is open source GPL-licensed.
- User Interface: prepare mathematical document + support activities whose results get incorporated into the document.

Alice prepares lecture notes for Linear Algebra.

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document. Text will also contain definitions and theorems (should appear in a familiar style). Document should contain example computations.

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

Alice prepares lecture notes for Linear Algebra.

She writes structured text (sections, subsections, etc.) into her mathematical document.

Text will also contain definitions and theorems (should appear in a familiar style).

Document should contain example computations.

Document should contain proofs.

ALL IN ONE DOCUMENT

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

■ file containing formulas only

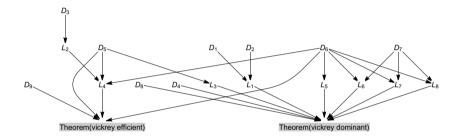
Theorema Theory = Theorema notebook + Theorema archive

Theorema notebook: mathematical document (see above).

Theorema archive:

- file containing formulas only
- in a format that can be imported into Theorema again

Theorema Theory = Theorema notebook + Theorema archive


Theorema notebook: mathematical document (see above).

Theorema archive:

- file containing formulas only
- in a format that can be imported into Theorema again
- in other formats to be read by other systems, eg. MMT (Kohlhase/Rabe)

Work in progress: Automatically maintain and display a formula graph such as

where

vertices are formula labels and

 $\blacksquare X \to Y \text{ means: formula } X \text{ is needed in the proof of formula } Y.$

J⊻U

Features supported in the interactive graphical user interface (Theorema commander):

Tooltip over label shows entire formula (see labels in proofs).

- **Tooltip over label** shows entire formula (see labels in proofs).
- Color-coding of labels indicates theory membership.

- **Tooltip over label** shows entire formula (see labels in proofs).
- Color-coding of labels indicates theory membership.
- Mouse-click on labels jumps to formula definition in the notebook.

- **Tooltip over label** shows entire formula (see labels in proofs).
- Color-coding of labels indicates theory membership.
- Mouse-click on labels jumps to formula definition in the notebook.
- **Zoom-out** in order to switch to theory level, i.e. vertices are theories and $X \rightarrow Y$ means: some formula of X is needed in the proof of some formula in Y.

- **Tooltip over label** shows entire formula (see labels in proofs).
- Color-coding of labels indicates theory membership.
- Mouse-click on labels jumps to formula definition in the notebook.
- **Zoom-out** in order to switch to theory level, i.e. vertices are theories and $X \rightarrow Y$ means: some formula of X is needed in the proof of some formula in Y.
- Show/Hide theories via checkboxes.

- **Tooltip over label** shows entire formula (see labels in proofs).
- Color-coding of labels indicates theory membership.
- Mouse-click on labels jumps to formula definition in the notebook.
- **Zoom-out** in order to switch to theory level, i.e. vertices are theories and $X \rightarrow Y$ means: some formula of X is needed in the proof of some formula in Y.
- Show/Hide theories via checkboxes.
- Apply graph algorithms in order to investigate theory structure.

Prerequisite for dynamically maintaining the formula graph: tracking of formula dependencies.

Prerequisite for dynamically maintaining the formula graph: tracking of formula dependencies.

Input to an automated prover: proof goal G, knowledge base (k_1, \ldots, k_n) , etc.

Prerequisite for dynamically maintaining the formula graph: tracking of formula dependencies.

Input to an automated prover: proof goal G, knowledge base (k_1, \ldots, k_n) , etc.

Naive approach: Add edges $(k_1, G), \ldots, (k_n, G)$ to the formula graph.

Prerequisite for dynamically maintaining the formula graph: tracking of formula dependencies.

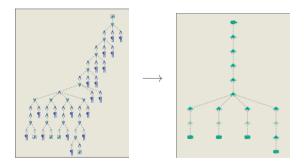
Input to an automated prover: proof goal G, knowledge base (k_1, \ldots, k_n) , etc.

Naive approach: Add edges $(k_1, G), \ldots, (k_n, G)$ to the formula graph.

But: It is not guaranteed, that all of the k_1, \ldots, k_n are really required for proving G.

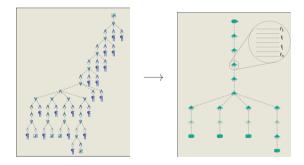
Prerequisite for dynamically maintaining the formula graph: tracking of formula dependencies.

Input to an automated prover: proof goal G, knowledge base (k_1, \ldots, k_n) , etc.

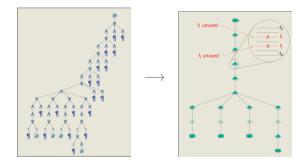

Naive approach: Add edges $(k_1, G), \ldots, (k_n, G)$ to the formula graph.

But: It is not guaranteed, that all of the k_1, \ldots, k_n are really required for proving *G*. Solution:

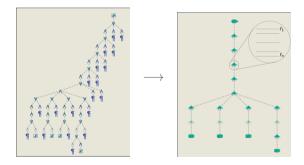
PROOF SIMPLIFICATION.



1. Eliminate unnecessary paths in the proof tree



- 1. Eliminate unnecessary paths in the proof tree
- 2. Eliminate unnecessary formulas in each node



- 1. Eliminate unnecessary paths in the proof tree
- 2. Eliminate unnecessary formulas in each node

- 1. Eliminate unnecessary paths in the proof tree
- 2. Eliminate unnecessary formulas in each node

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info)

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info) Proof tree node (detail): proof info + proof situation

DETECTION OF UNNECESSARY FORMULAS

Proof tree node: proof situation (proof goal + knowledge base + additional prover info) Proof tree node (detail): proof info + proof situation

Proof info: contains information necessary for displaying proof in human-readable form, eg. formulas needed to perform the proof step.

DETECTION OF UNNECESSARY FORMULAS

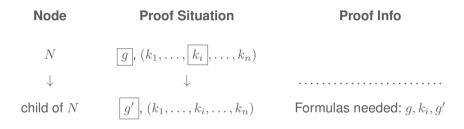
Proof tree node: proof situation (proof goal + knowledge base + additional prover info)

Proof tree node (detail): proof info + proof situation

Proof info: contains information necessary for displaying proof in human-readable form, eg. formulas needed to perform the proof step.

Proof info cannot be extracted automatically, it has to be specified when implementing the prover.

Proof Step: Reduce proof goal g by knowledge k_i to new goal g'.



Proof Step: Reduce proof goal g by knowledge k_i to new goal g'.

Node	Proof Situation	Proof Info
N	$g, (k_1, \ldots, k_i, \ldots, k_n)$	
\downarrow	\downarrow	
child of N	$g', (k_1, \ldots, k_i, \ldots, k_n)$	

Proof Step: Reduce proof goal g by knowledge k_i to new goal g'.

Proof Step: Reduce proof goal g by knowledge k_i to new goal g'.

Node	Proof Situation	Proof Info
N	$g, (k_1, \ldots, k_i, \ldots, k_n)$	
\downarrow	\downarrow	
child of N	$g', (k_1, \ldots, k_i, \ldots, k_n)$	Formulas needed: g, k_i, g'

Proof info allows to generate text:

"In order to prove g, because of k_i , it is sufficient to prove g'."

PROOF INFO: FORMULAS NEEDED

Instead of plain list (f_1, \ldots, f_n)

PROOF INFO: FORMULAS NEEDED

Instead of plain list (f_1, \ldots, f_n)

$$\longrightarrow$$
 $((u_1,\ldots,u_m),(g_1,\ldots,g_m))$

where

 u_i are sets of formulas used and

 g_i are sets of formulas generated in a node, st.

all formulas in u_i are needed to generate the formulas in g_i .

PROOF INFO: FORMULAS NEEDED

Instead of plain list (f_1, \ldots, f_n)

$$\longrightarrow$$
 $((u_1,\ldots,u_m),(g_1,\ldots,g_m))$

where

 u_i are sets of formulas used and

 g_i are sets of formulas generated in a node, st.

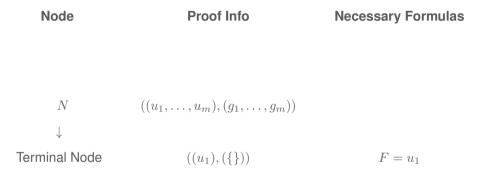
all formulas in u_i are needed to generate the formulas in g_i .

Example above: $((\{g, k_i\}), (\{g'\}))$.

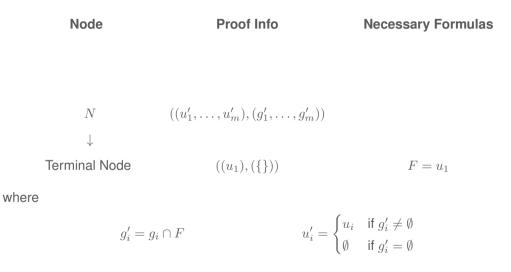
Node

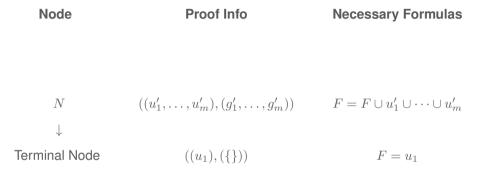
Proof Info

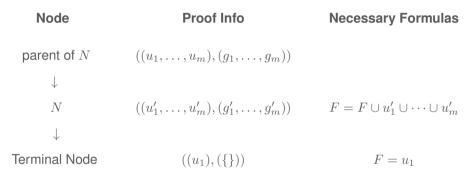
Necessary Formulas

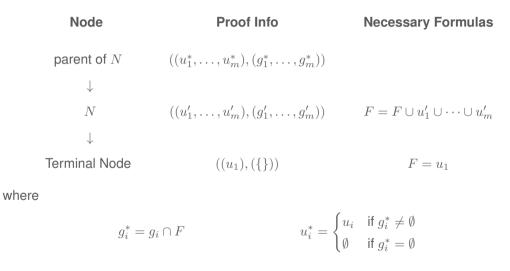

Terminal Node

 $((u_1), (\{\}))$

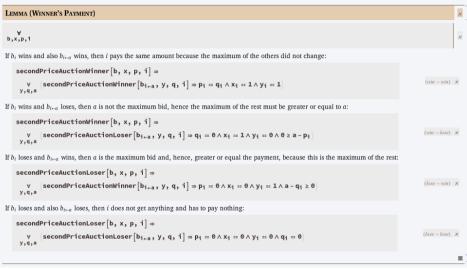

 $F = u_1$



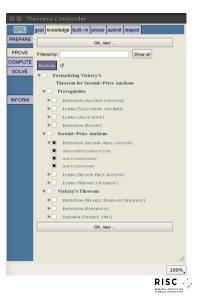


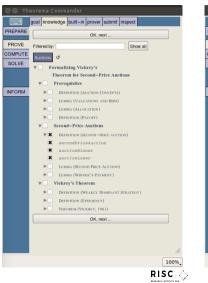


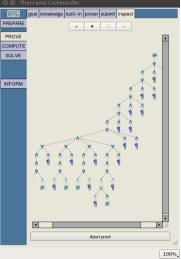
Node	Proof Info	Necessary Formulas
parent of N	$((u_1^*,\ldots,u_m^*),(g_1^*,\ldots,g_m^*))$	$F = F \cup u_1^* \cup \dots \cup u_m^*$
\downarrow		
N	$((u_1',\ldots,u_m'),(g_1',\ldots,g_m'))$	$F = F \cup u'_1 \cup \dots \cup u'_m$
\downarrow		
Terminal Node	$((u_1), (\{\}))$	$F = u_1$



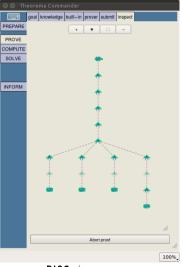
Node	Proof Info	Necessary Formulas
parent of N	$((u_1^*, \dots, u_m^*), (g_1^*, \dots, g_m^*))$	$F = F \cup u_1^* \cup \dots \cup u_m^*$
\downarrow		
N	$((u_1',\ldots,u_m'),(g_1',\ldots,g_m'))$	$F = F \cup u'_1 \cup \dots \cup u'_m$
\downarrow		
Terminal Node	$((u_1), (\{\}))$	$F = u_1$


Upon termination: *F* contains all necessary formulas!


Root node proof info: $((\{\}), (K^*))$ where K^* contains just those formulas of the original knowledge base that were actually needed.



▼ Ø Proof of (lose			-win) #4 :	<u>Show</u> pro	<u>oof</u>
		knowledge	built-in	prover	Restore settings
		secondPriceA	uction, au	ctionWinne	r, auctionLoser



Silo Edit Insert Comet Coll Graphics Evaluation Palettos Window Holo 🔗 🗇 Theorema Proof - Wolfram Mathematica 11.1	
File Edit Insert Format Cell Graphics Evaluation Palettes Window Help	
Proof Simplification	
We prove:	1 🖻
$ \begin{array}{l} \forall \text{secondPriceAuctionLoser}(b, \ x, \ p, \ i) \Rightarrow \\ b_i x_i p_i \end{array} $	
$\left(\bigvee_{y,q,\sigma} \texttt{secondPriceAuctionWinner} \{ b_{i=a}, y, q, i \} \Rightarrow ((p_i = 0) \land (x_i = 0) \land (y_i = 1) \land ((a - q_i) \ge 0)) \right)$	(lese-win)
under the assumptions:	
\mathbf{v} secondPriceAuction $[b,\ x,\ p,\ n]$:=> bid[b, n] ^ allocation $[x,\ n]$ ^ payment[p, n] ^ b	1
	(secondPriceAuction)
$\left[\underbrace{\underset{j \in 1_{i-1}, i}{3}}_{j \in i} \text{ secondPriceAuctionWinner}[b, x, p, i] \land \left[\underbrace{\underset{j \in 1_{i-1}, i}{3}}_{j \in i} \text{ secondPriceAuctionLoser}[b, x, p, j] \right] \right],$	
$ \begin{array}{l} \forall secondPriceAuctionWinner\left[b \ , \ x \ , \ p \ , i \right] \ iee \ \left(b_i = \max\left\{b\right\}\right) \land \left(x_i = 1\right) \land \left(p_i = \max\left\{b_{ie}\right\}\right) \ , \\ b_j x_i \ p_j i \end{array}$	(anetionWinner)
$\forall \texttt{secondPriceAuctionLoser}[b, x, p, i] : \Longleftrightarrow (x_i = 0) \land (b_i \le \max\{b_{i+1}\}) \bullet (b_i \le \max\{b_$	(auctionLoser)
We have several alternatives to continue the proof.	
For proving (lose=win) we choose b, x, p, and i arbitrary but fixed and show	
secondPriceAuctionLoser[b , x , p , i] \Rightarrow	
$\left(\bigvee_{y \in q, a} \texttt{secondPriceAuctionWinner} \left[b_{i+a}, y, q, i \right] \Rightarrow \left(\left(p_i = 0 \right) \land \left(x_i = 0 \right) \land \left(y_i = 1 \right) \land \left(\left(a - q_i \right) \ge 0 \right) \right) \right).$	(G#0)
We have several alternatives to continue the proof.	
a Alternative 1:	
In order to prove (G#0) we assume	
<pre>secondPriceAuctionLoser[b, x, p, /]</pre>	(A#2)
(()
RISC 🖒	100%
THREE COMPLEX.	

J⊼∩

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help Proof Simplification Eliminate failing/pending branches K Eliminate superfluous steps × Eliminate unused formulae We prove: x secondPriceAuctionLoser(h, x, n, i) = v secondPriceAuctionWinner[$b_{i=a}$, y, q, i] \Rightarrow ($(p_i = 0) \land (x_i = 0) \land (y_i = 1) \land ((a - q_i) \ge 0))$ under the assumptions: y secondPriceAuction(b, x, p, n) t⇔ bid(b, n) ∧ allocation(x, n) ∧ payment(p, n) ∧ ∃ secondPriceAuctionWinner[b, x, p, i] ∧ v secondPriceAuctionLoser(b, x, p, i) . y secondPriceAuctionWinner[b, x, p, i] :⇔ $(b_i = \max\{b\}) \land (x_i = 1) \land (p_i = \max\{b\}_i, 1)$, ∀ secondPriceAuctionLoser(b_i , x_i , p_i , i] :⇔ ($x_i = 0$) ∧ ($p_i = 0$) ∧ ($b_i \le \max\{b_{i_n}\}$). We have several alternatives to continue the proof. Alternative 1: For proving (lose=win) we choose b, x, p, and i arbitrary but fixed and show secondPriceAuctionLoser [b, x, p, I] \Rightarrow ∀ secondPriceAuctionWinner[b_{ieq} , y, q, i] ⇒ (($p_i = 0$) ∧ ($x_i = 0$) ∧ ($y_i = 1$) ∧ (($a - q_i$) ≥ 0)). We have several alternatives to continue the proof 1 a la RISC @ 100%

J⊻U

J⊻U

8						ematica 11.							
File	<u>E</u> dit	Insert	Format	<u>C</u> ell	Graphics	E <u>v</u> aluation	Palettes	Window	Help				
•	Proof	Simpli	ficatior	1				Tim	e spent for	simplifyi	ng the p	roof: 0.0187	791s
	We p	ove:											1
		∀ se	condPrie	eAuc	tionLoser	b, x, p, i]							P.
			secondPr	iceAu	ıction₩inn	er[b _{i+a} , y,	q , $i] \Rightarrow$					dose-wito	
		(($p_i = 0) \land$	$\{x_i =$	$0) \land (y_i = 1$	$) \land ((a - q_i))$	≥ 0))						
	under	the ass	umptions										
	b	$, \pi, p, i$				[b, x, p, i	1.000				(81	(tionWinner)	
					$1 \rangle \land (p_i =)$								
	ь	v se	condPrie	eAuc	tionLoser	b, x, p, i]	1 em (x _i =)	a) ∧ (p _i =	0) ∧ (b _i ≤	max [b _{i+-}]). (suctionLoser)	
	For pr	roving (Le	<u>se=win</u>) W	e cho	ose b, x, p,	and i arbitra	ry but fixed	and show	,				
	s	econdPr	iceAuct	ionLo	ser[b, x,	$\rho, i] \Rightarrow \begin{pmatrix} \forall \\ y, q \end{pmatrix}$	secondPr	iceAucti	onWinner	[<i>b</i> _{iea} , y,	<i>q</i> , <i>i</i>] ⇒		
						$) \land ((a - q_i))$						(G#0)	
	In ord	er to pro	ve (<u>G#0</u>) v	ve ass	sume								
	s	econdPr	iceAuct	ionLo	ser[b, x,	p, /]						(A#2)	
	and th	nen prov	Ð										
	y	v sec	ondPrice	Aucti	onWinner[b _{i+a} , y, q,] ⇒					(Ge3)	
		((p) =	= 0) ^ (X)	= 0)	$(y_{1} = 1)$	$((a - q_i) \ge$	8)).					(010)	
	For pr	roving (G	#3) we ch	loose	y, q, and a	arbitrary but	fixed and s	how					
	s	econdPr	iceAuct	ionWi	nner [b _{i+a} ,	$y, q, i] \Rightarrow ($	$(p_i = 0) \land$	$(x_i = 0) \land$	$(y_i = 1) \land$	$((a - q_i))$	≥ 0)).	(G#7)]	
	In ord	er to pro	ve (<u>G#7</u>) v	ve ass	sume								
	s	econdPr	iceAuct	ionWi	nner[b _{i⊷a} ,	y,q,/]						(A#11)]	
		nen prov											
	0	p; = 0) /	$(x_i = 0)$	$\land (y_i$	= 1) AR(1	S.C 🌼						(G#12)	
					110/10	COMPUTATION							•
												1	005

J⊻U

Theory exploration/development is an important aspect of knowledge/information management.

- Theory exploration/development is an important aspect of knowledge/information management.
- Formula dependency graph is a nice/valuable tool for theory exploration/development.

- Theory exploration/development is an important aspect of knowledge/information management.
- Formula dependency graph is a nice/valuable tool for theory exploration/development.
- Proof simplification is a necessary requirement, if we want to automatically maintain a formula dependency graph.

