
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Rewriting Logic from a ρLog Point of View

Mauricio Ayala-Rincón

Department of Computer Science
University of Brasilia, Brazil

Besik Dundua

Ilia Vekua Institute of Applied Mathematics
Ivane Javakhishvili Tbilisi State University, Georgia

Temur Kutsia

Research Institute for Symbolic Computation
Johannes Kepler University Linz, Austria

Mircea Marin

Department of Computer Science
West University of Timişoara, Romania

Abstract

Rewriting logic is a well-known logic that emerged as an adequate logical and semantic framework for the
specification of languages and systems. ρLog is a calculus for rule-based programming with labeled rules.
Its expressive power stems from the usage of a fragment of higher-order logic (e.g., sequence variables,
and function variables) to express atomic formulas. Its adequacy as a computational model for rule-based
programming is derived from theoretical results concerning E-unification and E-matching in the fragment
of logic adopted by ρLog.
In this paper we choose a fragment of the ρLog calculus and argue that it can be used to perform deduction
in rewriting logic. More precisely, we define a mapping between the entailment systems of rewriting logic
and ρLog for which the conservativity theorem holds. It implies that, like rewriting logic, ρLog also can be
used as a logical and semantic framework.

1 Introduction

Rewriting logic [19] emerged as a simple computational logic based on the use of

rewrite theories to represent with great generality (1) various models of computation

(concurrency, programming languages, etc.), and (2) logical deduction. For compu-

tation, it represents states by equivalence classes in an equational theory, and local

concurrent transitions by rewrite rules. For deductive purposes, it can represent

formula-based data structures (e.g., sequents or sets of formulas) by terms, and the

inference rules of the logic by conditional rewrite rules. The rewrite theories, which

c©2017 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

are at the core of this logic, provide an adequate representation for a wide variety of

applications, including automated deduction, software and hardware specification

and verification, security, real-time and cyber-space systems, probabilistic systems,

bioinformatics, and chemical systems. (See [19] for a convincing account.) Rewrit-

ing logic is the theoretical basis of Maude [3], a powerful reflective language with

wide range of applications.

In [15], the authors described rewriting logic as a logical and semantic framework.

They showed that it has a flexibility to represent in a natural way many other logics,

maintaining the direct correspondence between proofs in object logics and proofs in

rewriting logic (as the framework logic). This correspondence is often conservative,

given by means of maps of logics, so that an implementation of the object logic is

directly supported by an implementation of rewriting logic. Besides, the authors

explored similarities of rewriting logic with Milner’s CCS, concurrent object-oriented

programming, and structural operational semantics.

An interesting refinement of rewriting logic, inspired by the use of rewriting logic

as a logical framework for deduction, was to make a clear separation of concerns

between the specification of the inference system and the heuristics which guide the

way in which rules are applied. This point of view introduced the usage of strategy

languages to define theory transformations parameterized by strategy modules [16].

ρLog [13,14] is a system for rule-based programming with labeled rules based

on a calculus which makes all the ingredients of rewriting logic explicit. Terms,

conditional rewrite rules, and strategies that specify the heuristics which guide the

way in which rules are applied, can all be explicitly represented in its syntax. A

novelty of ρLog is its definition in a fragment of logic with sequence variables, func-

tion variables, context variables, and membership constraints for their bindings in

the rewrite process. These capabilities make the rule-based specifications of ρLog

natural and concise. The calculus served as the basis for a strategy-based program-

ming tool [12,7] and has found applications in constraint logic programming [5],

XML transformation and Web reasoning [4], modeling rewriting strategies [6], in

extraction of frequent patterns from data mining workflows [20], and for automatic

derivation of multiscale models of arrays of micro- and nanosystems [2].

In this paper we choose a fragment of the ρLog calculus and argue that it

can be used to perform deduction in rewriting logic. More precisely, we define a

mapping between the entailment systems of rewriting logic and ρLog for which the

conservativity theorem holds. It implies that, like rewriting logic, ρLog also can be

used as a logical and semantic framework.

The paper is organized as follows: In Section 2 we review syntax and semantics

of rewriting logic. ρLog is introduced in Section 3. Section 4 is the main part of the

paper, where the mapping between the entailment systems of these two formalisms

is defined. Section 5 concludes.

2 Syntax and Inference System of Rewriting Logic

In this section, we mainly follow the description of rewriting logic as it is given

in [18]. The syntax of rewriting logic is given by signatures, which are pairs pF,Eq
of a set of ranked function symbols F and a set of equations E. Given a countable

2

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

set of variables V, terms over F and V are defined in the usual way:

t ::“ x | fpt1, . . . , tnq,

where x P V and f P F is n-ary. The set of terms over F and V is denoted by

T pF,Vq. The letters t, r, s and u are used to denote its elements, while x, y, z stand

for variables.

The equivalence class of a term t modulo E is denoted by rtsE. The subscript E
is usually omitted, when it causes no confusion. The set of E-equivalence classes of

terms from T pF,Vq is denoted by TEpF,Vq.
Given a signature pF,Eq, the considered sentences are sequents rts ÝÑ rrs.

A substitution σ is a mapping from variables to terms such that all but finitely

many variables are mapped to themselves. Each substitution σ is represented as a

finite set of pairs tx1 ÞÑ σpx1q, . . . , xn ÞÑ σpxnqu where the x’s are all the variables

for which σpxiq ‰ xi.

A rewrite theory R is a 4-tuple R :“ pF,E, L,Rq, where F and E are sets of

function symbols, L is a set of labels, and R is a set of conditional rewrite rules.

The latter are defined as pairs of a label and a nonempty sequence of pairs of

E-equivalence classes of terms from T pF,Vq. Usually, a rewrite rule of the form

pl, prt0s, rr0sqprt1s, rr1sq ¨ ¨ ¨ prtns, rrnsqq is written as

l : rt0s Ñ rr0s if rt1s Ñ rr1s ^ ¨ ¨ ¨ ^ rtns Ñ rrns,

where rt1s Ñ rr1s ^ . . .^ rtns Ñ rtns is called the condition of the rule.

A rewrite theory R entails a sequent rts ÝÑ rrs, written R $ rts ÝÑ rrs, iff

rts ÝÑ rrs can be proved by finite application of the following four inference rules:

Reflexivity: For each rts P TEpF,Vq,

rts ÝÑ rts
.

Congruence: For each t1, . . . , tn, r1, . . . , rn P TEpF,Vq and f P F with the arity

n ě 1,

rt1s ÝÑ rr1s ¨ ¨ ¨ rtns ÝÑ rrns

rfpt1, . . . , tnqs ÝÑ rfpr1, . . . , rnqs
.

Replacement: For each rule l : rt0s Ñ rr0s if rt1s Ñ rr1s ^ ¨ ¨ ¨ ^ rtns Ñ rrns P R
and for each terms s1, . . . , sk, u1, . . . , uk P TEpF,Vq.

rs1s ÝÑ ru1s ¨ ¨ ¨ rsks ÝÑ ruks rt1σs ÝÑ rr1σs ¨ ¨ ¨ rtnσs ÝÑ rrnσs

rt0σs ÝÑ rr0ϑs
,

where the set of variables occurring in the rule is tx1, . . . , xku, and the substi-

tutions are σ “ tx1 ÞÑ s1, . . . , xk ÞÑ sku and ϑ “ tx1 ÞÑ u1, . . . , xk ÞÑ uku.

Transitivity: For each rts, rrs, rss P TEpF,Vq:

rts ÝÑ rss rss ÝÑ rrs

rts ÝÑ rrs
.

3

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

The entailment relation R $ rts ÝÑ rrs is defined to model the concurrent

rewriting of rts to rrs, using the rewrite rules of R. When rts is used to specify

the rules of change in a concurrent system, an entailed sequent rts ÝÑ rrs has the

intended reading “rts becomes rrs.” Concurrent rewriting, as it was shown in [18],

actually coincides with deduction in rewriting logic.

The version of rewriting logic described above does not contain sorts for simplic-

ity. What we are interested in this paper, however, is rewriting logic with ordered

sorts. The notions defined above are easily transferred to the order-sorted case, pro-

vided that the signature satisfies a simple technical property called pre-regularity,

which guarantees the existence of the least sort for each term. We briefly recall the

main notions of ordered signatures and theories here, slightly adjusting them to our

terminology. For details one can see, e.g., [8].

In order-sorted setting, in the role of F we have an alphabet, a triple pB,ď,Sq,
where B is called the set of basic sorts, S is a B˚ ˆ B-sorted set of sets of function

symbols tFw,b | w P B˚, b P Bu, B is partially ordered by the ordering ď, and the

function symbols satisfy the following monotonicity condition:

f P Fw1,b1 X Fw2,b2 and w1ďw2 imply b1ďb2.

When f P Fw,b, we say that w is the arity of f and b is the result sort of f.
When w is the empty word, then f is called a constant. The monotonicity condition

excludes overloaded constants.

We assume that the set of variables is also sorted, which means that V “ tVb |

b P Bu is a family of disjoint sets Vb of variables for each b P B. The set of order-

sorted terms of sort b P B over F “ pB,ď, Sq, denoted TbpF,Vq, is defined as the

least set satisfying the following properties:

‚ Vb Ď TbpF,Vq.
‚ Let λ be the empty word of sorts. Then Fλ,b Ď TbpF,Vq.
‚ Tb1pF,Vq Ď TbpF,Vq if b1ďb.

‚ If f P Fw,b where w “ b1 ¨ ¨ ¨ bn ‰ λ and ti P TbipF,Vq for all 1 ď i ď n, then

fpt1, . . . , tnq P TbpF,Vq.

The terms defined in this way might have different, even incomparable sorts. It

has some unpleasant consequences (e.g., the generated term algebra is not initial,

see [8]). However, with the above mentioned property of pre-regularity this problem

disappears. The alphabet pB,ď, Sq is called pre-regular iff the following property

is satisfied: Let w0 P B˚. Then for any w1 P B˚ with w0ďw1 and f P Fw1,b1 , there

is a least sort b P B such that w0ďw1 and f P Fw,b for some w P B˚. Goguen and

Meseguer in [8] proved that any term built over a pre-regular alphabet has the least

sort. Sides of equalities are assumed to belong to a set of terms of the same sort.

We write f : wÑ b if f P Fw,b.

Example 2.1 Let R “ pF,E, L,Rq be an order-sorted rewrite theory with two basic

sorts Nat and Tree, ordered as Nat ă Tree. The signature F contains sorted function

symbols 0 : λ Ñ Nat, ` : Nat Nat Ñ Nat, suc : Nat Ñ Nat, rev : Tree Ñ Tree, and

’: Tree TreeÑ Tree. The set of equations E contains the commutativity axiom for

`, In L there are the labels l1, l2, l3, l4, and the set R consists of the following four

4

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

rules:

l1 : rxs ` r0s Ñ rxs.

l2 : rsucpxq ` sucpyqs Ñ rsucpsucpx` yqqs.

l3 : rrevpxqs Ñ rxs.

l4 : rrevpx ’ yqs Ñ rrevpyq ’ revpxqs.

3 The ρLog Calculus

In this section we describe a fragment of ρLog calculus [13] that is relevant for our

goal: to express the deduction system of rewriting logic.

The ρLog signature F consists of unranked function symbols. The symbols

f, g, h, a, b, and c are used to denote them. The countably infinite set of variables

V is split into three disjoint subsets: individual variables VInd, whose elements are

denoted by letters x, y, z; sequence variables VSeq, denoted by x, y, z; and function

variables VFun, usually written as X,Y, Z. As usual, it is assumed that F XV “ H.

Definition 3.1 The set of terms over F and V, denoted by T pF ,Vq, and the set

of term sequences over F and V, denoted by SpF ,Vq, are the least sets satisfying

the properties:

‚ VInd Ď T pF ,Vq.
‚ ε P SpF ,Vq, where ε denotes the empty sequence of terms and sequence vari-

ables.

‚ s1, . . . , sn P SpF ,Vq, 1 n ě 1, if si P T pF ,Vq Y VSeq for each 1 ď i ď n.

‚ fps1, . . . , snq P T pF ,Vq, if s1, . . . , sn P SpF ,Vq.
‚ Xps1, . . . , snq P T pF ,Vq, if s1, . . . , sn P SpF ,Vq.

Note that T pF ,Vq Ď SpF ,Vq. In other words, we do not distinguish between a

term and a singleton term sequence. Terms of the form apεq are abbreviated with

a. For readability, we may write sequences within parentheses, usually when there

is more than one element in the sequence.

We denote terms by t, r, terms or sequence variables by s, u, and sequences (of

terms or sequence variables) by s̃, ũ.

If s̃ “ ps1, . . . , snq and ũ “ pu1, . . . , umq, n,m ě 0, we slightly overload the

comma, writing ps̃, ũq for the sequence ps1, . . . , sn, u1, . . . , umq. Obviously, when

n “ 0, i.e., when s̃ “ ε, then ps̃, ũq “ ũ. Similarly, for ũ “ ε we have ps̃, ũq “ s̃.

The set of variables of a sequence s̃ is denoted by varps̃q. We call s̃ ground if

varps̃q “ H. These notions extend to sets of term sequences, etc.

3.1 Substitutions and Matching Problems

A substitution σ is a mapping σ : V Ñ SpF ,Vq Y F Y VFun such that the following

properties are satisfied:

1 Note that s1, . . . , sn P SpF ,Vqmeans that the sequence s1, . . . , sn of terms and sequence variables belongs
to SpF ,Vq. It should not be read as s1 P SpF ,Vq, . . . , sn P SpF ,Vq.

5

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

‚ for all x P VInd, σpxq P T pF ,Vq,
‚ for all x P VSeq, σpxq P SpF ,Vq,
‚ for all X P VFun, σpXq P F Y VFun, and

‚ all but finitely many variables are mapped to themselves.

Substitutions are denoted by lowercase Greek letters σ, ϑ, and ε, where ε stands

for the identity substitution. A substitution σ can apply to a term t or a sequence

s̃ and result in the instances (under σ): tσ of t and s̃σ of s̃. They are defined as

xσ “ σpxq, fps̃qσ “ fps̃σq, Xps̃qσ “ σpXqps̃σq, xσ “ σpxq and ps1, . . . , snqσ “

ps1σ, . . . , snσq. For instance, if σ “ tx ÞÑ pgpaq, yq, y ÞÑ ε, z ÞÑ a,X ÞÑ fu, then

px,Xpx, zq, b, y, zqσ “ pgpaq, y, fpgpaq, y, aq, b, aq.

The notion of substitution composition is defined in the standard way. (See,

e.g., [1].) We use juxtaposition σϑ for composition of σ with ϑ

Matching with sequence variables is finitary, see, e.g., [9,10]. For instance, if

t “ tfpx, b, yq and r “ fpb, fpa, cq, bqu, then the complete set of matchers of t

to r consists of the following two solutions: σ1 “ tx ÞÑ ε, y ÞÑ pfpa, cq, bqu and

σ2 “ tx ÞÑ pb, fpa, cqq, y ÞÑ εu. If f is orderless (a generalization of commutativity

for unranked function symbols), then we have more solutions: σ3 “ tx ÞÑ ε, y ÞÑ

pb, fpa, cqqu, σ4 “ tx ÞÑ pfpa, cq, bq, y ÞÑ εu, σ5 “ tx ÞÑ b, y ÞÑ fpa, cqu, and σ6 “

tx ÞÑ fpa, cq, y ÞÑ bu. These six substitutions form the complete set of matchers

modulo the orderless theory for f .

3.2 Definite Fragment of ρLog

ρLog atoms are triples ps, t̃, r̃q, usually written as a labeled rule s :: t̃ñ r̃, where s

is called a strategy term, and t̃ and r̃ are term sequences. The intuition is that s

denotes a transformation of t̃ into r̃.

In this paper we consider only definite ρLog programs (no negative literals in-

volved) that are sets of nonnegative Horn clauses, constructed from ρLog atoms.

The clauses are written as usual, e.g., s0 :: t̃0 ñ r̃0 if s1 :: t̃1 ñ r̃1, . . . , sn :: t̃n ñ r̃n,

n ě 0. Goals are conjunctions of atoms, e.g., s1 :: t̃1 ñ r̃1, . . . , sn :: t̃n ñ r̃n. We

often use the term rule when we refer to a ρLog clause. We also say that a clause

defines the strategy in its head (i.e., the clause above defines the strategy s0).

The inference system of our fragment of ρLog consists of two rules: one is

resolution, and the other one is for the special strategy id (which, intuitively, denotes

the identity transformation of a sequence to itself). Given a program P and a set

of equations E, these rules are defined as follows (they should be read bottom up:

To prove the query in the lower part, prove the query in the upper part.)

Resolution:

ps1 :: t̃1 ñ r̃1, . . . , sn :: t̃n ñ r̃n, id :: r̃0 ñ ũ, Qqσ
s :: t̃ñ ũ, Q,

where s0 :: t̃0 ñ r̃0 if s1 :: t̃1 ñ r̃1, . . . , sn :: t̃n ñ r̃n is a clause from P, s ‰ id,

and s0σ “E s, t̃0σ “E t̃.

6

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

Identity:

Qσ
id :: t̃ñ ũ, Q,

where ũσ “E t̃.

Here we look at these inference rules as logical deduction rules.

There are some predefined ρLog strategies with fixed meaning, which are useful

in the next section for the mapping from Rewriting Logic to ρLog:

‚ If s is a strategy term, then the strategy mappsq :: pt1, . . . , tnq ñ pr1, . . . , rnq

succeeds iff each strategy s :: ti ñ ri, 1 ď i ď n, succeeds.

‚ If s1, . . . , sn are strategy terms, then the strategy choiceps1, . . . , snq :: t̃ ñ r̃

succeeds iff at least one of the strategies si :: t̃ñ r̃, 1 ď i ď n succeeds.

Note that map, when realized as an extra inference rule for ρLog, can be used

to perform transformations in parallel. It can also be specified within ρLog as a

clause, doing transformations sequentially. Such an “internalization” of map is, in

fact, pretty simple:

mappzq :: εñ ε.

mappzq :: px, xq ñ py, yq if z :: xñ y, mappzq :: xñ y.

Similarly, it is also rather straightforward to specify the choice strategy as ρLog

clauses:

choicepz, zq :: xñ y if z :: xñ y.

choicepz, zq :: xñ y if choicepzq :: xñ y.

The semantics of ρLog can be defined in the same way as it is done in logic

programming, see, e.g., [11].

4 From Rewriting Logic to ρLog: Mapping Entailment
Systems

The goal of this section is to illustrate that, via an appropriate mapping, deduction

in rewriting logic can be modeled by deduction in ρLog. In other words, our goal is

to define a mapping between what is called entailment systems [17] of rewriting logic

and ρLog. By an entailment system of a logic one understands a triple consisting of

the signature, set of sentences, and the entailment relation $ that satisfies certain

properties (reflexivity, monotonicity, transitivity, and $-translation). The inference

systems of both rewriting logic and the definite fragment of ρLog we consider here

provide the entailment relation that satisfies those properties.

Hence, the goal is to define an entailment system mapping Φ from rewriting

logic to ρLog such that the conservativity theorem holds. This theorem, formulated

at the end of this section, states that a sequent is provable in rewriting logic with

respect to a rewrite theory iff the image of the sequent under Φ is provable in ρLog

with respect to a program obtained from the rewrite theory by Φ.

7

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

Hence, we start defining Φ for a rewrite theory R “ pF,E, L,Rq. We assume

that F is split into five disjoint countable sets of symbols FF, FV, FS, FL, and Fρ,
such that Φ for rewriting logic function symbols, variables, basic sorts, and labels

is defined as follows:

‚ For each f P F we have a symbol f P FF, and

Φpfq “ f.

‚ For each x P V there is a symbol cx P FV, and

Φpxq “ rlvpcxq,

where rlv is a function symbol from Fρ. Hence, rewriting logic variables are

mapped to ρLog ground terms tagged by the function symbol rlv .

‚ For each rewriting logic basic sort a there is a symbol a P FS, and

Φpaq “ rlspaq,

where rls is a function symbol from Fρ. Hence, rewriting logic sort symbols

are mapped to ρLog ground terms tagged by the function symbol rls.

‚ For each l P L there is a symbol l P FL, and

Φplq “ l.

The symbols from Fρ will be also used in ρLog programs below.

Since ρLog is unsorted, we need to encode sort definitions and the subsort rela-

tion explicitly as clauses. This is done in the following way:

‚ For each pair of basic sorts a, b, related by the subsort relation ď, Φ gives a

clause

subsort basic :: rlspaq ñ rlspbq.

Then the subsort relation is defined as follows:

subsort :: rlspxq ñ rlspxq.

subsort :: rlspxq ñ rlspyq if

subsort basic :: rlspxq ñ rlspzq, subsort :: rlspzq ñ rlspyq.

‚ For each function symbol f : a1 ¨ ¨ ¨ an Ñ b, Φ gives a clause

sort def :: fpx1, . . . , xnq ñ rlspbq if

sort :: x1 ñ rlspa1q, . . . , sort :: xn ñ rlspanq,

where the strategy sort is defined as

sort :: xñ rlspyq if

sort def :: xñ rlspzq, subsort :: rlspzq ñ rlspyq.

8

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

‚ We define a strategy is sorted for terms:

is sorted :: xñ true if sort :: xñ rlspyq,

where true is a function symbol. This clause says that a term is sorted if it

has a sort.

Further, Φ is extended in a straightforward way to a mapping from T pF,Vq-
terms, equations, and substitutions into T pF ,Vq-terms, equations, and individual

variable substitutions, respectively We define Φprtsq “ Φptq.

For the set of rewrite rules R, the mapping Φ is defined as follows:

ΦpRq :“ tΦpruleq | rule P RuY

trwl choice :: xñ y if choicepΦpl1q, . . . ,Φplmqq :: xñ yu.

where l1, . . . , lm are all the labels of the rules in R, and Φ for the rules is defined

below.

Before saying what the image of a rule l : rt0s Ñ rr0s if rt1s Ñ rr1s ^ ¨ ¨ ¨ ^ rtns Ñ
rrns under Φ is, we assume that Φplq “ l, Φprtisq “ ti, and Φprrisq “ ri for 0 ď i ď n.

Besides, let x1, . . . , xm be all rewriting logic variables in r0 and for each 1 ď i ď m,

let cxi be the corresponding symbol from FV. Then, by the definition of Φ, r0

contains rlvpcxiq in place of xi. Let c1, . . . , cm be symbols from Fρ that are fresh in

the context, and denote by r10 the term obtained from r0 by replacing each rlvpcxiq,

1 ď i ď m, by ci. Then:

Φpl : rt0s Ñ rr0s if rt1s Ñ rr1s ^ ¨ ¨ ¨ ^ rtns Ñ rrnsq :“

l :: y0 ñ pc1 ãÑ s1, . . . , cm ãÑ sm, r
1
0q if

match :: t0 ! y0 ñ zσ0 ,

apply substpzσ0 q :: t1 ñ t11, apply substpzσ0 q :: r1 ñ r11,

rwl inf :: t11 ñ y1,

match :: r11 ! y1 ñ zσ1 ,

apply substpzσ0 , z
σ
1 q :: t2 ñ t12, apply substpzσ0 , z

σ
1 q :: r2 ñ r12,

. . . ,

rwl inf :: t1n ñ yn,

match :: r1n ! yn ñ zσn,

apply substpzσ0 , . . . , z
σ
nq :: rlvpcx1q ñ s1,

. . . ,

apply substpzσ0 , . . . , z
σ
nq :: rlvpcxmq ñ sm,

where ãÑ is a function symbol from Fρ, used to model replacement pairs. Obviously,

if r0 is a ground term, then the sequence c1 ãÑ rlvpcx1q, . . . , cn ãÑ rlvpcxnq is empty

and r10 “ r0. rwl inf is the strategy that corresponds to the inference in rewriting

logic and is defined below.

The translation of r0 into the sequence pc1 ãÑ rlvpcx1q, . . . , cn ãÑ rlvpcxnq, r
1
0q is a

trick that will play its role with the Replacement inference rule, where the instances

of variables in the right hand side of a rule are reduced. The intuition behind this

9

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

sequence is similar to the let construct in programming, and below (in the definition

of the Replacement Rule) we will define a strategy that has a similar effect.

So far we have not taken into account the equational part of rewrite theories, i.e.,

the set E. Its translation can be dealt with in various ways. For instance, we can

assume that it is incorporated into the matching mechanism of ρLog as a matching

algorithm modulo E. This approach is feasible when matching modulo E is decidable

and finitary. Or, if E induces a convergent rewrite system, then its image under Φ

can be a set of ρLog rules, obtained in the similar way as ΦpRq, but grouped under

the name of one strategy (e.g., reduce by equalities) and in the inference step (i.e., in

the strategy rwl inf below) the terms before and after reduction by inference rules

are brought to the normal form with respect to the strategy reduce by equalities.

One can also consider a mixed variant (which is implemented in Maude), where

matching modulo some equational theories are built-in, and the remaining set of

equalities is convergent.

Basically, with this we have Φ defined for rewrite theories. In whatever way one

deals with the rewriting logic equalities, we always need syntactic matching for the

expressions translated in ρLog. Since the rewriting logic variables are mapped to

ρLog ground terms, matching should be implemented explicitly:

match :: px ! yq ñ x if

change tagprlv ÞÑ temp tagq :: y ñ z,

nfpfirst onepfinish, solved equation, variable elim, decompositionqq ::

pmppx ! zq, substq ñ substpzq,

change tagptemp tag ÞÑ rlvq :: substpzq ñ substpxq.

The code above corresponds to the variant of matching algorithm when variables

in the right hand side of the matching problem are replaced by temporary constants,

then the matching rules are fired (first applicable, as long as possible), and in

the computed matcher the introduced constants are mapped back to the original

variables they replaced. The constructor function symbol for the matching problem

is mp, and for the substitution subst.

The strategy finish below says that if the matching problem is empty, then

the computed substitution should be returned. This corresponds to the success of

matching. The other three strategies implement the standard matching rules.

finish :: pmp, xq ñ x.

solved equation :: pmppx ! x, xq, substpyqq ñ pmppxq, substpyqq.

variable elim :: pmpprlvpxq ! y, xq, substpyqq ñ

pmppx1q, substprlvpxq ÞÑ y, y1qq if

apply substprlvpxq ÞÑ yq :: mppxq ñ mppx1q,

apply substprlvpxq ÞÑ yq :: substpyq ñ substpy1q.

decomposition :: pmppF px1q ! F px2q, yq, xq ñ pmppz, yq, xq if

zip :: pF px1q, F px2qq ñ z.

The remaining strategies are auxiliary ones used in the rules or in the algorithm

10

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

control above:

zip :“ first onepzip nonempty , zip emptyq.

zip nonempty :: pF px1, x1q, F px2, x2qq ñ px1 ! x2, yq if

zip :: pF px1q, F px2qq ñ y.

zip empty :: pF, F q ñ ε.

apply substpxq :“ first onepapply subst basicpxq, apply subst recpxqq.

apply subst basicpx, rlvpxq ÞÑ y, yq :: rlvpxq ñ y.

apply subst recpxq :: F pyq ñ F pzq if mappapply substpxqq :: y ñ z.

change tagpF1 ÞÑ F2q :“

first onepchange tag basicpF1 ÞÑ F2q, change tag recpF1 ÞÑ F2qq.

change tag basicppF1 ÞÑ F2qq :: F1pxq ñ F2pxq.

change tag recpF1 ÞÑ F2q :: F pyq ñ F pzq if

mappchange tagpF1 ÞÑ F2qq :: y ñ z.

One could easily extend this algorithm to work, for instance, with commuta-

tive matching symbols. We would need to add only one rule, called commutative

decomposition:

commutative decomposition :: pmppF px1, y1q ! F px2, y2q, yq, xq ñ

pmppx1 ! y2, x2 ! y1, yq, xq if

is commutative :: F ñ true.

(The strategy is commutative is assumed to be defined for each commutative func-

tion symbol, and it is a part of the translation of commutativity equations from

E.) To make this rule work in the matching algorithm, we will need to replace

the occurrence of decomposition in match above by the choice between commuta-

tive decomposition and decomposition.

In a similar way, one could easily incorporate into ρLog equational matching

algorithms in some other common theories, such as associativity, associativity-

commutativity or their combinations with the unit element. (These are theories

for which Maude also provides built-in matching algorithms.)

The final step in the construction of the mapping Φ is to define it for the inference

rules of rewriting logic. They are translated into a set of ρLog as follows:

Reflexivity Rule in ρLog:

rwl refl :: xñ x if is sorted :: xñ true.

Congruence Rule in ρLog:

rwl cong :: Xpxq ñ Xpyq if mapprwl inf q :: xñ y.

Replacement Rule in ρLog:

rwl repl :: xñ y if

11

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

rwl choice :: xñ py, zq,

mappreduceãÑq :: y ñ z,

letpzq :: z ñ y.

The strategy reduceãÑ is defined as

reduceãÑ :: x ãÑ y ñ x ãÑ z if rwl inf :: y ñ z.

The strategy let is defined as

letpzq :: xñ y if first onepreplacepzq, idq :: xñ y.

replacepz1, x ãÑ y, z2q :: xñ y.

replacepzq :: Xpxq ñ Xpyq if mappletpzqq :: xñ y.

Transitivity Rule in ρLog:

rwl trans :: xñ y if

rwl inf :: xñ z, rwl inf :: z ñ y.

The main strategy is rwl inf , which encodes the fact that an inference step in

rewriting logic is made by the above mentioned inference rules (and guaranteeing

well-sortedness of the involved terms):

Inference:

rwl inf :: xñ y if

is sorted :: xñ true,

choiceprwl refl , rwl cong , rwl repl , rwl transq :: xñ y,

is sorted :: y ñ true.

Hence, we constructed the translation mapping Φ from a rewriting logic theory

R to the ρLog set of definite clauses ΦpRq, and translated the inference rules of

rewriting logic into ρLog definite clauses as well.

While the clauses for rwl refl , rwl cong , rwl trans directly imitate the behavior

of the corresponding inference rules of rewriting logic (and vice versa), the rwl repl

rule needs more explanation. For this purpose, we read the Replacement inference

on page 3 bottom-up and see how proving the ρLog atom rwl repl :: t0Φpσq ñ

r0Φpϑq corresponds exactly to proving the rewriting logic sequent rt0σs ÝÑ rr0ϑs
by the Replacement inference, where σ and ϑ are substitutions from that rule.

Proving rwl repl :: t0σ ñ r0ϑ requires proving atoms in the body of the clause

that defines rwl repl . The first of them (call it A1), with the strategy rwl choice,

corresponds to finding a rule for the rewrite theory: It should be the one that has t0
(or a term that equals t0 modulo the set of equalities ΦpEq) in its left hand side, and

has the construction that corresponds to r0 (or a term that is ΦpEq-equal to r0) in

its right hand side. The construction consists of (i) a sequence of correspondences

between fresh function symbols and Φpσq-instances of variables of r0 (this sequence

is consumed by y in the clause and consists of terms of the form cxi ãÑ si), and (ii)

the term r10 which is obtained from r0 by replacing variables by those fresh atoms.

12

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

Note that proving A1, if the body of its clause is not empty, requires proving

the Φpσq-instance of that body, that is nothing else than the task of proving the

sequents obtained from the σ-instance of the condition of the selected rule with the

label l, i.e., those rtiσs ÝÑ rriσs sequents in the upper part of the Replacement

inference.

Next atom maps rwl inf on the sequence y, which means that rwl inf :: cxi ãÑ

si ñ rhs i should be proved for all elements cxi ãÑ si in the sequence. However, due

to the fact that ãÑ does not appear in the left hand side of rules and cxi ’s were fresh,

the rhs i’s should have a form cxi ãÑ ui for some ui’s. But this corresponds to the

proof of the sequent rsis ÝÑ ruis in the Replacement rule.

Finally, the strategy let puts each ui in place of cxi in r10, obtaining r0Φpϑq. It

corresponds to the application of the substitution ϑ to r0 in the Replacement rule.

The following result, called the conservativity theorem, connects deductions in

rewriting logic to those in ρLog:

Theorem 4.1 Given a rewrite theory R, a sequent rts ÝÑ rrs is provable in rewrit-

ing logic from R iff the atom rwl inf :: Φptq ñ Φprq is provable in ρLog from

ΦpRq.

Proof. (Sketch) First, assume that the equational part of R is empty, i.e., we

have the syntactic equality. We need to show that terms, sorts, subsort relation,

equalities, rules, and inferences of rewriting logic are adequately represented in

ρLog, but it follows directly from the construction of Φ. For instance, it can be

immediately seen that b is a sort of a term t of rewriting logic iff sort :: Φptq ñ Φpbq
is proved in ρLog. The specification of matching in ρLog directly follows the rules

of the algorithm. Based on the adequacy of sortedness and matching, we can see

that adequacy is straightforward for the reflexivity, congruence, and transitivity

inference rules. For the replacement rule, the proof is based on the reasoning above

for rwl repl .

As for non-empty equational theories, the result holds when equational matching

can be effectively represented in ρLog. Essentially, it means that a terminating

finitary algorithm should be available. In this case, we can reason similarly to the

case when matching is syntactic. l

Example 4.2 At the end of this section, we see how the rewriting logic theory from

Example 2.1 is translated into ρLog clauses. (The general part such as commutative

matching and inference rules are the same as above.)

l1 :: z ñ pa ãÑ s, aq if

match :: rlvpaxq ` 0 ! z ñ zσ,

apply substpzσq :: rlvpaxq ñ s.

l2 :: z ñ pa1 ãÑ s1, a2 ãÑ s2, sucpsucpa1 ` a2qqq if

match :: sucprlvpaxqq ` sucprlvpayqq ! z ñ zσ,

apply substpzσq :: rlvpaxq ñ s1,

apply substpzσq :: rlvpayq ñ s2.

l3 :: z ñ pa ãÑ s, aq if

match :: revprlvpaxqq ! z ñ zσ,

13

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

apply substpzσq :: rlvpaxq ñ s.

l4 :: z ñ pa1 ãÑ s1, a2 ãÑ s2, revpa2q ’ revpa1qq if

match :: revprlvpaxq ’ rlvpayqq ! z ñ zσ,

apply substpzσq :: rlvpaxq ñ s1,

apply substpzσq :: rlvpayq ñ s2.

subsort basic :: rlspaN q ñ rlspaT q.

sort def :: x1 ` x2 ñ rlspaN q if

sort :: x1 ñ rlspaN q,

sort :: x2 ñ rlspaN q.

sort def :: x1 ’ x2 ñ rlspaT q if

sort :: x1 ñ rlspaT q,

sort :: x2 ñ rlspaT q.

sort def :: sucpxq ñ rlspaN q if

sort :: xñ rlspaN q.

sort def :: revpxq ñ rlspaT q if

sort :: xñ aT .

5 Conclusion

We showed how rewriting logic (RWL) and ρLog calculus can be related, defining

a fragment of ρLog, into which rewriting logic can be encoded by a provability pre-

serving mapping. The mapping, denoted by Φ, actually, relates entailment systems

of these two formalisms. Given a theory of rewriting logic, consisting of an alphabet,

equations, labels and rewrite rule, Φ maps

‚ each RWL constant to a constant in the language of ρLog,

‚ each RWL variable to a ground ρLog term, whose head indicates that it is an

encoding of an RWL variable and the argument is a constant corresponding to

the variable,

‚ each RWL basic sort to a ground ρLog term, whose head indicates that it is

an encoding of an RWL sort and the argument is a constant corresponding to

the sort,

‚ each RWL rule label into a ρLog constant,

‚ RWL sort definitions, subsort relation, rewrite rules, inference rules, inference

control, and the matching mechanism into ρLog clauses.

‚ RWL sequents are mapped into ρLog atoms.

RWL equations are either considered to be represented in the implementation

of equational matching of ρLog, or they are translated as rules if they induce a

convergent rewrite system. Those rules then serve for normalization of terms before

and after reduction. A mixed approach is also possible.

The range of Φ is the definite (negation-free) fragment of ρLog, but the rich

strategy language of this formalism helps to imitate some kind of behavior which is

14

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

usually modeled with the help of negation-as-failure (or the cut) in logic program-

ming. An example of such a strategy is first one, which stops evaluation after one

answer of the first applicable strategy is computed.

The important property of the mapping Φ is that it is conservative: provability

of a rewriting logic sequent from a rewrite theory is equivalent to the provability

of the Φ-image of the sequent from an Φ-image of the theory in ρLog. It shows

the expressive power of ρLog: This formalism, like rewriting logic, can be used as a

logical and semantic framework.

Acknowledgments

This research has been partially supported by the Brazilian National Council for Sci-

entific and Technological Development CNPq under grant CsF/BJT 401319/2014-8,

by the Rustaveli National Science Foundation under the grants FR/508/4-120/14

and YS15 2.1.2 70, and by the Austrian Science Fund (FWF) under the project P

28789-N32.

References

[1] Franz Baader and Wayne Snyder. Unification theory. In Alan Robinson and Andrei Voronkov, editors,
Handbook of Automated Reasoning, pages 445–532. Elsevier BV., 2001.

[2] Walid Belkhir, Alain Giorgetti, and Michel Lenczner. A symbolic transformation language and its
application to a multiscale method. J. Symb. Comput., 65:49–78, 2014.

[3] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet, José Meseguer,
and Carolyn L. Talcott, editors. All About Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in Computer
Science. Springer, 2007.

[4] Jorge Coelho, Besik Dundua, Mário Florido, and Temur Kutsia. A rule-based approach to XML
processing and Web reasoning. In Pascal Hitzler and Thomas Lukasiewicz, editors, RR 2010, volume
6333 of LNCS, pages 164–172. Springer, 2010.

[5] Besik Dundua. Programming with Sequence and Context Variables: Foundations and Applications.
PhD thesis, Department of Computer Science, University of Porto, 2014.

[6] Besik Dundua, Temur Kutsia, and Mircea Marin. Strategies in PρLog. In Maribel Fernández, editor,
9th Int. Workshop on Reduction Strategies in Rewriting and Programming, WRS 2009, volume 15 of
EPTCS, pages 32–43, 2009.

[7] Besik Dundua, Temur Kutsia, and Klaus Reisenberger-Hagmayer. An overview of PρLog. In Yuliya
Lierler and Walid Taha, editors, Practical Aspects of Declarative Languages - 19th International
Symposium, PADL 2017, Paris, France, January 16-17, 2017, Proceedings, volume 10137 of Lecture
Notes in Computer Science, pages 34–49. Springer, 2017.

[8] Joseph A. Goguen and José Meseguer. Order-sorted algebra I: equational deduction for multiple
inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci., 105(2):217–273, 1992.

[9] Temur Kutsia. Solving and Proving in Equational Theories with Sequence Variables and Flexible Arity
Symbols. RISC Report Series 02-09, Research Institute for Symbolic Computation (RISC), University
of Linz, Schloss Hagenberg, 4232 Hagenberg, Austria, May 2002. PhD Thesis.

[10] Temur Kutsia and Mircea Marin. Matching with regular constraints. In Geoff Sutcliffe and Andrei
Voronkov, editors, LPAR, volume 3835 of Lecture Notes in Computer Science, pages 215–229. Springer,
2005.

[11] John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.

[12] Mircea Marin and Temur Kutsia. On the implementation of a rule-based programming system and some
of its applications. In Boris Konev and Renate Schmidt, editors, Proceedings of the 4th International
Workshop on the Implementation of Logics (WIL’03), pages 55–68, Almaty, Kazakhstan, 2003.

[13] Mircea Marin and Temur Kutsia. Foundations of the rule-based system ρLog. Journal of Applied
Non-Classical Logics, 16(1-2):151–168, 2006.

15

M. Ayala-Rincón, B. Dundua, T. Kutsia, M. Marin

[14] Mircea Marin and Florina Piroi. Deduction and Presentation in ρLog. ENTCS, 93:161–182, 2004.

[15] Narciso Mart́ı-Oliet and José Meseguer. Rewriting logic as a logical and semantic framework. In
Dov M. Gabbay and F. Guenthner, editors, Handbook of Philosophical Logic, volume 9, pages 1–87.
Kluwer Academic Publishers, 2002.

[16] Narciso Marti-Oliet, Jose Meseguer, and Alberto Verdejo. A Rewriting Semantics for Maude Strategies.
ENTCS, 238(3):1–18, 2009.

[17] José Meseguer. General logics. Studies in Logic and the Foundations of Mathematics, 129:275–329,
1989.

[18] José Meseguer. Conditioned rewriting logic as a united model of concurrency. Theor. Comput. Sci.,
96(1):73–155, 1992.

[19] Jose Meseguer. Twenty years of rewriting logic. The Journal of Logic and Algebraic Programming,
81(7):721 – 781, 2012.

[20] Phong Nguyen. Meta-mining: a meta-learning framework to support the recommendation, planning
and optimization of data mining workflows. PhD thesis, Department of Computer Science, University
of Geneva, 2015.

16

	Introduction
	Syntax and Inference System of Rewriting Logic
	The Log Calculus
	Substitutions and Matching Problems
	Definite Fragment of Log

	From Rewriting Logic to Log: Mapping Entailment Systems
	Conclusion
	References

