
Eingereicht von
DI Christoph Fürst

Angefertigt am
Research Institute for
Symbolic Computation

Erstbeurteiler
Univ. Prof.
DI Dr. Franz Winkler

Zweitbeurteiler
Univ. Prof.
Dr. Meng Zhou

Mitbetreuung
Dr. Günter Landsmann

December, 2016

JOHANNES KEPLER
UNIVERSITÄT LINZ
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Summary

In this doctoral thesis we treat modules over rings of difference- and differential oper-
ators. To that end, we use concepts of Gröbner bases, and generalize the well-known
notions to non-commutative ground domains.

While in recent literature concrete instances have been examined, we explicitly point
out the essential ingredients, for the computation of the multivariate Hilbert function.
The interplay of the considered rings already indicates that a common methodology is
applicable. Having the right definitions available, allowed us to unify the different ap-
proaches present, and to formulate them in the most general fashion.

In particular, for the ring of difference-differential operators, we take relative reduction,
for the ring of Ore-polynomials we have reduction with respect to several term orderings
and for the Weyl-algebra we can consider (x, ∂)-reduction as the appropriate specializa-
tion of our concepts. But not only the non-commutative case is of interest, also for the
usual commutative polynomial ring our concepts are applicable.

While the motives in the considered papers follow the same ideas, the details differ.
This is mainly due to the different nature of the underlying rings. After introducing
the notion of Gröbner Reduction and preparing the algebraic setup, we examine and
extend the papers having this topic, in particular, we point out the relation to Gröbner
reduction.

Finally, we present a Buchberger-type algorithm for computing Gröbner bases in multi-
filtered rings, and introduce the new concept of set-relative reduction. This reduction
provides a treatment for a wide class of rings.





Zusammenfassung

In dieser Dissertation betrachten wir Moduln über Ringe von Differenzen- und Differen-
tial Operatoren. Dafür verwenden wir die Konzepte von Gröbner Basen, and verallge-
meinern die wohlbekannten Notationen auf nicht kommutativer Grunddomäne.

Während in der aktuellen Literatur konkrete Instanzen untersucht wurden, betrachten
wir explizit die wesentlichen Bestandteile, die notwendig sind für die Berechnung der
multivariaten Hilbertfunktion. Das Zusammenspiel der betrachteten Ringe zeigt auf,
dass ein gemeinsamer Algorithmus anwendbar ist. Als wir die korrekten Definitionen
zur Verfügung hatten, waren wir in der Lage die verschiedenen Ansätze zu vereinen, und
in der allgemeinsten Formulierung zu präsentieren.

Insbesondere, für Differenz-Differential Operatoren betrachten wir Relative Reduktion,
für den Ring der Ore-Polynome Reduktion mit mehreren Termordnungen und für Weyl-
Algebren kann (x, ∂)-Reduktion als die angemessene Spezialisierung unserer Konzepte
betrachtet werden kann. Aber nicht nur der nicht-kommutative Fall ist interessant,
auch für den üblichen Ring von kommutativen Polynomen können unsere Überlegungen
spezialisiert and angewendet werden.

Obwohl die Motive in den betrachteten Arbeiten die gleichen sind, sind die Details
doch unterschiedlich, was sich hauptsächlich auf die verschiedenen Eigenschaften in den
konkreten Ringen zurückführen lässt. Nach Einführung der Definition von Gröbner Re-
duktion, und dem Vorbereiten des algebraischen Setups, betrachten und erweitern wir
die Arbeiten die dieses Thema haben. Insbesondere zeigen wir die Beziehung zu Gröbner
Reduktion auf.

Zum Abschluss präsentieren wir eine Formulierung des Buchberger-Algorithmus zur
Berechnung von Gröbnerbasen für multi-filtrierte Ringe, and präsentieren das neue
Konzept von Set-relativer Reduktion. Diese Reduktion stellt ein Verfahren für eine
große Klasse von Ringen dar.
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1. Basic Setting

The first part of this doctoral thesis is to clarify the general setting, that will guide the
reader through this thesis.

The first section starts this thesis with the basic setting in differential algebra. The
theory of differential algebra was, amongst many contributors, essentially established
by Ritt and Kolchin [Rit50, Kol73]. They contributed the notion of characteristic sets
as a tool to describe (radical) differential ideals. With characteristic sets they were in
the position to prove the existence of (univariate) differential dimension polynomials, to
describe the size of a differential field extension.

Choosing the right notation is depending on the point of view, and not rigorously con-
sistent throughout literature. We have decided to use the one presented in this chapter.
We want to fix some standard assumptions, as well as more specialized conventions that
are used throughout. We neglect concrete application for the moment, as we will return
to it in subsequent chapters (with the exception, that we present generating function
identities, to get a feeling how the size of a difference-differential field could be measured).

A major topic in this thesis is the theory of Gröbner bases in modules over non-
commutative rings. To that end, we sketch considerations of Gröbner bases over modules
in section 1.2. We recall the theory of relative Gröbner bases over difference-differential
modules. In the upcoming chapters, we want to set up a general theory on Gröbner
bases over filtered rings and extend the work of [ZW06, Lev07, ZW08b, Dön12].

The relations between the rings are sketched in section 1.4. At the heart of our con-
siderations, we consider modules of difference-differential operators, Ore operators and
degenerate versions of this rings, like differential operators (with polynomial coefficients),
difference-operators and the usual commutative polynomial ring.

By taking differential and difference algebra as special case, results from the difference-
differential algebra carry over and prove (implicit) theorems in differential and difference
algebra.

1.1. Introduction

Throughout this thesis we shall denote by N the natural numbers including zero, Z
the ring of integers, Q resp. R the field of rational resp. real numbers. The letter R
shall always denote a (not necessarily commutative) ring with one, containing a field
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K as a subring, i.e. K ⊆ R. We assume that the field K contains a subfield that has
characteristic zero.

Definition 1 (Derivation).
Let R be a commutative ring. An R-map δ : R → R is called a derivation on R if and
only if it satisfies for all a, b in R:

δ(a+ b) = δ(a) + δ(b), (Linearity)

δ(ab) = aδ(b) + bδ(a). (Leibniz rule)

The set of derivations on R is denoted by Der(R).

Note the difference to the notion of skew-derivation as introduced on page 35.

Lemma 1 (Elementary Properties of Derivations).
If δ is a derivation on R, then for a, b ∈ R it holds:

• δ(0) = δ(1) = 0;

• δ(ak) = kak−1δ(a) where k > 0;

• δ(a−1) = −δ(a)/a2 for a 6= 0;

• For k > 0 we have

δk(ab) =

k∑
i=0

(
k

i

)
δk−i(a)δi(b) (General Leibniz rule)

• δ(a/b) = (bδ(a)− aδ(b))/b2 for b 6= 0.

Definition 2 (Differential Ring).
Starting from the commutative ring R, we adjoin a fixed set of pairwise commutative
derivations on R,

∆ := {δ1, . . . , δm}, δk ∈ Der(R).

We call (R,∆) a (partial) differential ring . If m = 1 it is called an ordinary differential
ring . The commutative semigroup Θm of formal products (which we call monomials) in
a differential ring is defined by

Θm := {θ := δk11 . . . δkmm : (k1, . . . , km) ∈ Nm}, (1.1)

elements in Θm are called derivation monomials or differential monomials.

We define the order of a derivation monomial θ by

ordΘm(θ) := ordΘm(δk11 . . . δkmm ) = k1 + . . .+ km, θ ∈ Θm.

2



The subsets Θm(s) and Θ=
m(s) of Θm are the set of bounded derivation monomials, i.e.

the set of differential monomials of order less or equal to s, resp. of order exactly s

Θm(s) := {θ ∈ Θm : ordΘm(θ) ≤ s}, Θ=
m(s) := {θ ∈ Θm : ordΘm(θ) = s}.

Obviously we have the inclusions on the set Θm

Θm(s) ⊆ Θm(t), for s ≤ t. (1.2)

A differential ring gives rise to the associated ring of differential operators. Let K be a
subring of R, a differential operator is a K-linear combination of derivation monomials

f =
∑
θ∈Θm

aθθ, aθ ∈ K,

where at most finitely many aθ are not zero. The order of a differential operator is given
by

ordΘm(f) = ordΘm

 ∑
θ∈Θm

aθθ

 := max{ordΘm(θ) : aθ 6= 0}.

Remark. Aistleitner [Ais10] pointed out that derivation monomials, as well as differential
operators might be derivations themselves, but don’t need to be.

The product of a differential operator with an element in a ring is given by(
n∑
k=0

akδ
k

)
· x = a0 · x+

n∑
k=1

ak · δk−1 · (x · δ + δ(x)), n > 0, x ∈ R,

and iterated application of the Leibniz rule. The rule for θ ∈ Θm for a partial differential
ring is similar.

For a differential ring, we will next describe the number of differential monomials of
certain order. Obviously, the sets Θm(s) and Θ=

m(s) are related by

Θm(s) =
s⋃

k=0

Θ=
m(k), s ∈ N.

This correspondence can be translated into a correspondence between the sequences
|Θ(s)| and |Θ=(s)|. In fact, we can apply the analogous construction to difference-
differential rings and difference-rings, that will appear later in this section.

Let M be a set of monomials, and let the map v : M→ N be a functional describing the
monomials (such as deg(·), ordΘm(·), . . .). For s ∈ N, let

M(s) := {m ∈M : v(m) ≤ s}, M=(s) := {m ∈M : v(m) = s},

and suppose that |M(0)| = |M=(0)| = 1. Then,

|M(s)| =
s∑

k=0

|M=(k)|, s ≥ 0. (1.3)
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A Few Words on Generating Functions

In the following part, we will consider certain sequences, that describe the number of
monomials (’power products’) in a ring. An adequate way of mathematically describing
a sequence is, to view it as a function from the non-negative integers to the field of real
numbers. This is closely related to the study of generating functions. But what exactly
is meant by a generating function? Quoting the reference book [Wil06],

A generating function is a clothesline on which
we hang up a sequence of numbers for display.

Let be given a sequence (ak)k≥0 ∈ RN. We can assign to the sequence (ak)k≥0 its
ordinary generating function which is given by

G : RN → RJxK

(ak)k≥0 7→ G ((ak)k≥0) :=

∞∑
k=0

akx
k,

the infinite formal power series, where the element ak is the coefficient of xk for all k.
So far, this is only a fancy rewriting of the input sequence. But the power of generating
functions lies in the fact, that by giving an appropriate definition of addition and multi-
plication, we can turn this structure into a ring, called the ring of formal power series.

So, let RJxK be formally defined by

RJxK :=
{

(a0, a1, . . .) ∈ RN
}
,

and define the operation + for two sequences (ak)k≥0 and (bk)k≥0 by

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) := (a0 + b0, a1 + b1, a2 + b2, . . .)

and the multiplication × by

(a0, a1, a2, . . .)×(b0, b1, b2, . . .) := (c0, c1, c2, . . .) = (a0b0, a0b1+a1b0, a2b0+a1b1+a0b2, . . .),

i.e. the coefficient ck in the product is given by the Cauchy product

ck := a0bk + a1bk−1 + . . .+ akb0 =

k∑
i=0

aibk−i, k ≥ 0.

With this operations, the tuple (RJxK,+,×) forms a commutative ring with one. But
more can be said.

Lemma 2. The ring of formal power series form an integral domain.
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Based on that result, we could continue and construct the quotient field of RJxK, to
obtain the field of (formal) Laurent series R((x)). As a short outlook to Theorem 5, we
want to remark right now, that the sequence (ak)k≥0 is a polynomial in k if and only if
the generating function of (ak)k≥0 is a rational function. However, we won’t need formal
Laurent series in the upcoming chapters, and therefore skip it. Also, we will skip the
notion of limit in RJxK, that is defined different compared to analytic functions. We
refer the interested reader to [Wil06, KP11, Sta13]. Instead, we continue by looking at
the possible analytic interpretation of generating functions.

In analysis, we have for all |x| < 1 in RJxK the equality

∞∑
k=0

xk =
1

1− x
. (1.4)

More precisely, consider two maps:

l : (−1, 1)→ R r : R\{1} → R

x 7→
∞∑
k=0

xk = lim
N→∞

N∑
k=0

xk x 7→ 1

1− x
.

Then (1.4) means the equality l(x) = r(x) holds for all x ∈ (−1, 1).

From that viewpoint, if we take the sequence (ak)k≥0 with ak = 1 for all k ≥ 0, we assign

(1, 1, 1, . . .) 7→
∞∑
k=0

xk =
1

1− x
= (1− x)−1, (1.5)

the element (1 − x)−1 is identified as multiplicative inverse of the generating function
1− x = (1,−1, 0, . . .). therefore, we could formally write

(1, 1, 1, . . .) = (1,−1, 0, . . .)−1 ⇒ (1, 1, 1, . . .) × (1,−1, 0, . . .) = (1, 0, 0, . . .)(
1

1− x

)
= (1− x)−1 ⇒

(
1

1− x

)
× (1− x) = 1.

Hence, we can either manipulate the sequence ak with the definitions of addition and
multiplication, or the generating function G(ak). At generating function level, we might
are more flexible, by defining further operations, such as

d

dx

( ∞∑
k=0

akx
k

)
:=

∞∑
k=0

(k + 1)ak+1x
k,

which reminds to the theory of holomorphic functions, but without its analytic inter-
pretation. Here, we concentrate on the formal treatment of certain sequences, hence, we
could have a look at the product(

1

1− x

)
×
(

1

1− x

)
=

1

(1− x)2
=

d

dx

(
1

1− x

)
=

d

dx

( ∞∑
k=0

xk

)
=
∞∑
k=0

(k+1)xk, |x| < 1,
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which could be confirmed by direct calculation, as we have

(ak)k≥0× (bk)k≥0 = (1, 1, 1, . . .)× (1, 1, 1, . . .) = (1, 2, 3, . . .), ck =

k∑
i=0

aibk−i = k+ 1.

Our first application is to prove a Lemma on Cauchy product at the ring of formal power
series.

Lemma 3 (Partial sum Cauchy product). For any real sequence (ak)k≥0, in the ring of
formal power series RJxK, we have:

1

1− x

∞∑
k=0

akx
k =

∞∑
n=0

(
n∑
k=0

ak

)
xn (1.6)

Proof. In the preceding discussion, we’ve already encountered

n∑
k=0

xk =
1

1− x
, |x| < 1.

Therefore, the left hand side of (1.6) is interpreted as

1

1− x

( ∞∑
k=0

akx
k

)
=

( ∞∑
k=0

xk

)( ∞∑
k=0

akx
k

)
=

∞∑
n=0

(
n∑
k=0

ak

)
xn

where the last step is the Cauchy product.

The proof strategy will consist of applying (1.3) and Lemma 3 to |M=(s)| and |M(s)|,
where M is specialized to the set of monomials in the concrete ring. This will allow us, to
prove the upcoming Lemma 4 and Lemma 5, as well as Theorem 1 and Theorem 2, and
Theorem 3 and Theorem 4 “pairwise”, i.e. just proving the generating function identity
for the sequence |M=(s)|, and passing to |M(s)| by application of the last Lemma. At
the proof of Lemma 5 we will demonstrate this in more detail.

Lemma 4 (Number of differential monomials in Θm(s)).
Let (R,∆) be a differential ring with m derivations. The number of differential mono-
mials contained in Θm(s) is

|Θm(s)| =
(
m+ s

s

)
, (1.7)

the generating function of |Θm(s)| is given by

∞∑
s=0

|Θm(s)|xs =
1

(1− x)m+1
|x| < 1. (1.8)
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Proof. Identity (1.7) is proven by a combinatorial argument, for the generating function
identity we use the binomial coefficient identity(

m+ s

s

)
=

(
m+ s− 1

s− 1

)
+

(
m+ s− 1

s

)
, m, s ≥ 0.

Denoting the generating function

Fm(x) :=
∞∑
s=0

|Θm(s)|xs =
∞∑
s=0

(
m+ s

s

)
xs =

∞∑
s=0

(
m+ s− 1

s− 1

)
xs +

∞∑
s=0

(
m+ s− 1

s

)
xs

= x ·

( ∞∑
s=1

|Θm(s− 1)|xs−1

)
+

∞∑
s=0

|Θm−1(s)|xs = x · Fm(x) + Fm−1(x),

it is possible to derive the functional equation

Fm(x) =
1

1− x
Fm−1(x), m > 0.

The initial value F0(x) reduces to a simple geometric series

F0(x) =

∞∑
s=0

|Θ0(s)|xs =
1

1− x
, |x| < 1,

proving the generating function identity (1.8).

Lemma 5 (Number of differential monomials in Θ=
m(s)).

In the setting of Lemma 4, we have

|Θ=
m(s)| =

(
m+ s− 1

s

)
, (1.9)

the generating function of |Θ=
m(s)| is given by

∞∑
s=0

|Θ=
m(s)|xs =

1

(1− x)m
|x| < 1.

Proof. Formula (1.9) is shown by a combinatorial argument. By (1.3) and Lemma 3 we
can view

1

(1− x)m+1
=

∞∑
s=0

|Θm(s)|xs =

∞∑
s=0

(
s∑

k=0

|Θ=
m(k)|

)
xs =

1

1− x

∞∑
s=0

|Θ=
m(s)|xs,

and therefore
∞∑
s=0

|Θ=
m(s)|xs =

1

(1− x)m

7



Based on a Differential Ring, we can next consider the notion of Difference-Differential
Ring.

Definition 3 (Difference-Differential Ring).
Consider a differential ring R with set of derivations ∆ := {δ1, . . . , δm}. If we adjoin a
set of unitary R-automorphisms,

Σ := {σ1, . . . , σn}, σj ∈ Aut(R),

on R, which are pairwise commutative (i.e. α◦β = β ◦α for all α, β ∈ ∆∪Σ), we obtain
the difference-differential ring (R,∆,Σ). The commutative group Γn of Σ consists of
formal expressions of the form

Γn := {γ := σl11 . . . σ
ln
n : (l1, . . . , ln) ∈ Zn}. (1.10)

The commutation rule of an automorphism with elements in the ring R is now given by

σl · x = σl(x)σl, l ∈ Zn, x ∈ R.

A difference-differential ring gives rise to the associated ring of difference-differential
operators . In the difference-differential ring (R,∆,Σ) we fix the field K ⊆ R as coefficient
domain for difference-differential operators.

General Assumption 1. Throughout this thesis, we consider the difference-differential
ring (R,∆,Σ). We denote by D the ring of difference-differential operators over the field
K ⊆ R, with set of derivations ∆ and set of unitary automorphisms Σ, given by

∆ := {δ1, . . . , δm}, Σ := {σ1, . . . , σn},

all elements in ∆ ∪ Σ are pairwise commutative. Monomials in a difference-differential
ring are of the form θγ, where θ ∈ Θm, γ ∈ Γn (the sets Θm and Γn as defined by (1.1)
and (1.10)), and therefore are formal expressions of the form

Λm,n := {δkσl = δk11 . . . δkmm σl11 . . . σ
ln
n , k = (k1, . . . , km) ∈ Nm, l = (l1, . . . , ln) ∈ Zn},

(1.11)
the ring elements are K-linear combination of monomials of this form1.

We distinguish the identity elements θid ∈ Θm and σid ∈ Γn, as well as the difference-
differential operators λid ∈ Λm,n, whose exponents are all zero, defined by

θid := δ0
1 . . . δ

0
m, σid := σ0

1 . . . σ
0
n, λid = θidσid = δ0

1 . . . δ
0
m · σ0

1 . . . σ
0
n,

1Previously, at the ring of differential operators, we’ve considered K-linear combinations (where K
is a commutative subring of R). In principle, we could require the coefficient domain to be a subring
as well. However, in applications it will turn out being a useful assumption, to consider only K-linear
combinations, due to the existence of multiplicative inverse elements in the coefficient domain. Obviously,
a commutative field K is a ring, hence we could also define the ring D as the free K-module with set of
generators Λm,n.
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that act as multiplicative neutral element to ring elements, by satisfying the commutation
rule

∀x ∈ D : αid · x = x · αid = x, α ∈ {θ, σ, λ}.

Obviously, we obtain

Θm(0) = Θ=
m(0) = {θid}, Γn(0) = Γ=

n (0) = {γid}, Λm,n(0) = Λ=
m,n(0) = {λid},

in particular, the assumption |M(0)| = |M=(0)| = 1 (where M is a set of monomials),
from (1.3) is fulfilled at this examples.

Lemma 6 (Non-Commutative Multiplication in a ∆-Σ-Ring).
The product of a difference-differential operator with an element a ∈ D is given by

λ ·a = δkσ` ·a = δk ·a ·σ` =
∑
S⊆[|k|]

(∏
i∈S

δ[i](a)

)
·

 ∏
j∈[|k|]\S

δ[j]σ`

 , k ∈ Nm, ` ∈ Zn,

where we abbreviate

δk = δk11 . . . δkmm , σ` = σl11 . . . σ
ln
n , [|k|] = {1, . . . , k1 + . . .+ km}.

The element a is computed by a = σ`(a).

Remark on Notation. The differential monomial δk = δk11 . . . δkmm in its expanded form is
the product

δk = δ1 . . . δ1︸ ︷︷ ︸
k1−times

· δ2 . . . δ2︸ ︷︷ ︸
k2−times

· . . . · δm . . . δm︸ ︷︷ ︸
km−times

,

of |k| = k1 + . . .+ km (non-distinct) derivations. So we associate the indices 1 ≤ i ≤ k1

to δ1, the indices k1 + 1 ≤ i ≤ k1 + k2 to δ2 and so on. In particular, we have

δ[i] :=


δ1, 1 ≤ i ≤ k1;

δ2, k1 + 1 ≤ i ≤ k1 + k2;
...

δm, k1 + . . .+ km−1 + 1 ≤ i ≤ k1 + . . .+ km.

By writing ∏
i∈S

δ[i](ā),

we mean that we apply2 the derivation δj associated to δ[i] with i ∈ S to ā. Consider
for instance three derivations δ1, δ2, δ3, and the monomial δ3

1δ
2
2δ3. The set [|k|] is given

by {1, 2, 3, 4, 5, 6}. If we choose for example the set S := {1, 3, 5, 6}, the above symbol
can be re-written to ∏

i∈{1,3,5,6}

δ[i](ā) = δ1(δ1(δ2(δ3(ā)))).

2Recall that the derivations are pairwise commutative, making the product well defined.
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The subset [|k|]\S ⊆ [|k|] holds “the complement of S”, so in this case, we would get
{1, 2, 3, 4, 5, 6}\{1, 3, 5, 6} = {2, 4}. This gives as one summand δ1(δ1(δ2(δ3(ā))))δ1δ2.

The number of subsets of an m-element set is given by 2m, so the sum contains at most
2m terms, and exactly 2m terms if and only if δi(ā) 6= 0 for all i.

To make it even more obvious, we state an example before we give the proof.

Example 1. Let R = Q(x, y, z) be the field of rational functions in {x, y, z}, endowed
with the sets ∆ and Σ given by

∆ :=

{
δk :=

d

dk
: k ∈ {x, y, z}

}
, Σ := {σk := k 7→ k + 1 : k ∈ {x, y, z}} .

By that choice, the tuple (R,∆,Σ) forms a difference-differential ring. Consider a ra-
tional function a := r(x, y, z)/s(x, y, z), suppose we want to compute the product

δxδyδzσxσ
2
yσ
−1
z · a = δxδyδz ·

r(x+ 1, y + 2, z − 1)

s(x+ 1, y + 2, z − 1)
· σxσ2

yσ
−1
z .

We denote by ā := r(x + 1, y + 2, z − 1)/s(x + 1, y + 2, z − 1), and look for the subsets
of {x, y, z}3. Using the above formula, we find that δxδyδz · ā · σxσ2

yσz is calculated by

[δx(δy(δz(ā)))+ (three-element subset {x, y, z})
δx(δy(ā))δz + δx(δz(ā))δy + δy(δz(ā))δx+ (two-element subsets {x, y}, {x, z}, {y, z})
δx(ā)δyδz + δy(ā)δxδz + δz(ā)δxδy+ (one-element subsets {x}, {y}, {z})
ā · δxδyδz] · σxσ2

yσ
−1
z . (zero-element subset ∅)

As observed above, the sum has exactly 8 = 23 terms, coming from the fact that

|P(∆)| = 2|∆|,

the symbol P(·) denoting the power set of its input argument. Further, it should be noted,
that the automorphisms σ` appear in every summand with a non-zero coefficient.

Proof. The first equality

δkσ` · a = δk · a · σ`, k ∈ Nm, ` ∈ Zn

is obvious. For the second part, we use induction on |k|. If |k| = 1, then δ = δi for some
index i and

δi · a · σ` = a · δiσ` + δi(a)σ` = δ∅(a)δiσ
` + δi(a)δ∅σ` =

∑
S⊆{i}

δS(a)δ{i}\Sσ`

3We have got three derivations, each appearing with an exponent of 1. In that particular situation,
we have δ[1] = δx, δ

[2] = δy and δ[3] = δz. For the sense of readability, we refer to this set by writing
{x, y, z} instead of {1, 2, 3}.
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Suppose now, the statement holds for |k|, and consider the case |k|+ 1:

|k|+1∏
i=1

δ[i] · a · σ` = δ[|k|+1] ·
|k|∏
i=1

δ[i] · a · σ` = δ[|k|+1] ·
∑
S⊆[|k|]

(∏
i∈S

δ[i](a)

)
·

 ∏
j∈[|k|]\S

δ[j]σ`


=
∑
S⊆[|k|]

δ[|k|+1] ·

(∏
i∈S

δ[i](a)

)
·

 ∏
j∈[|k|]\S

δ[j]σ`


=
∑
S⊆[|k|]

δS(a)δ[|k|+1]δ[|k|]\Sσ` + δ[|k|+1]
(
δS(a)

)
δ[|k|]\Sσ`

=
∑
S⊆[|k|]

(
δS(a)δ[|k|+1]\Sσ` + δS∪[|k|+1](a)δ[|k|+1]\(S∪{|k|+1})σ`

)
=

∑
S⊆[|k|+1]

δS(a)δ[|k|+1]\Sσ`

Remark. We’ve constructed a difference-differential ring starting from a differential ring
and adjoining a set of unitary automorphisms Σ. Specializing the set of derivations ∆
to be the empty set, we obtain a so called difference ring .

In particular, we will use the notion (R,Σ) := (R, ∅,Σ) for a difference-ring, i.e. a
difference-differential ring where the set of derivations is the empty set. The ring of
difference-operators D consists of difference-monomials, that are elements of the set Γn,
we’ve encountered at (1.10), and difference-operators that are formal expressions of the
form ∑

γ∈Γn

cγ γ, cγ ∈ K, the set K a subring of R, Γn as in (1.10)

From that point of view, it is reasonable to consider a theory of difference-differential
rings, as difference- and differential-rings embed as special cases into this framework.

Difference-Differential Ring (R,∆,Σ)

Difference-Ring (R,Σ)Differential Ring (R,∆)

∆ = ∅Σ = ∅

But even more is possible. We will later on consider the ring of Ore polynomials, as well
as the Weyl-algebra and the commutative polynomial ring K[x1, ..., xn]. Therefore, we
will extend this picture in section 1.4.
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Lets stay for one more moment at the difference-ring. The order of a difference-monomial
is defined by

ordΓn(γ) := ordΓn(σl11 . . . σ
ln
n ) = |l1|+ . . .+ |ln|, γ ∈ Γn.

Difference-monomials of order s and order less or equal to s are collected in

Γn(s) := {γ ∈ Γn : ordΓn(γ) ≤ s}, Γ=
n (s) := {γ ∈ Γn : ordΓn(γ) = s}.

Next, we will give the generating functions of |Γn(s)| and |Γ=
n (s)|.

To that end, we will use the following fact: In [KLAV98] it is shown, that the number
of solutions to the equation |x1|+ . . .+ |xn| = k in integers is

n∑
j=0

2j
(
n

j

)(
k − 1

j − 1

)
, n ≥ 1, k ≥ 1. (1.12)

We mention explicit the exceptional case, where k = 0, because (1.12) is only valid for
k ≥ 1. In this case there is only one possibility where we set x1 = . . . = xn = 0.

Theorem 1 (Generating Function of |Γn(s)|).
Consider a difference ring (R,Σ) with n automorphisms. Then, in the ring RJxK we
have the identity:

∞∑
s=0

|Γn(s)|xs =
(1 + x)n

(1− x)n+1
, |x| < 1.

Theorem 2 (Generating Function of |Γ=
n (s)|).

In the setting as in Theorem 1, we have

∞∑
s=0

|Γ=
n (s)|xs =

(
1 + x

1− x

)n
, |x| < 1.

Proof. Doing Taylor expansion around x0 = 0 on the right hand side, yields the coeffi-
cient of x0 to be 1. There is a single difference-monomial of order 0, namely σid. For
s ≥ 1, we use the Mathematica package developed by Koutschan [Kou09, Kou10]. The
package is loaded by typing

In[1]:= << HolonomicFunctions.m
HolonomicFunctions package by Christoph Koutschan, RISC-Linz, Version 1.6 (12.04.2012)
–>Type ?HolonomicFunctions for help

We plug in sum (1.12) and want to get rid of the sum quantifier. This is performed by
creative telescoping.

In[1]:= summand[s ] := 2j ∗ Binomial[n, j] ∗ Binomial[s− 1, j − 1]

In[2]:= First[CreativeTelescoping[summand[s], S[j]− 1, {S[s]}]]
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Out[2]= {(−2− s) Ss
2 + 2n Ss + s}

In[3]:= ApplyOreOperator[%, a[s]]

Out[3]= sa[s] + 2na[1 + s] + (−2− s)a[2 + s]

The initial values of the sequence as = |Γ=
n (s)| are given by a0 = 1, a1 = 2n.

For the right hand side, we use the convolution(
1 + x

1− x

)n
=

( ∞∑
s=0

(
n

s

)
xs

)
·

( ∞∑
s=0

(
n+ s− 1

s

)
xs

)
=

∞∑
s=0

(
s∑

k=0

(
n+ k − 1

k

)(
n

s− k

))
xs.

Equipped with this sum representation, we can again apply creative telescoping

In[1]:= summand[s ] := Binomial[n + k − 1, k] ∗ Binomial[n, s− k]

In[2]:= First[CreativeTelescoping[summand[s], S[k]− 1, {S[s]}]]
Out[2]= {(−2− s)S2

s + 2nSs + s}
In[3]:= ApplyOreOperator[%, b[s]]

Out[3]= sb[s] + 2nb[1 + s] + (−2− s)b[2 + s]

It remains to check the initial values, given by b0 = 1 and b1 = 2n. Hence, both sequences
satisfy the same recurrence equation with identical initial values, and therefore agree.

The notion ordΘm(·) from the differential ring, as well as the notion ordΓn(·) from the
difference ring, can now be lifted to difference-differential ring. To that end, we will now
introduce the notion of order of a difference-differential monomial .

Definition 4. The order of a difference-differential monomial λ is defined by

ordΛm,n(λ) := ordΛm,n(δk11 . . . δkmm σl11 . . . σ
ln
n ) = k1+. . .+km+|l1|+. . .+|ln|, λ ∈ Λm,n.

Obviously, if λ = θγ where θ ∈ Θm and γ ∈ Γn, we have

ordΛm,n(λ) = ordΛm,n(θγ) = ordΘm(θ) + ordΓn(γ), λ ∈ Λm,n.

The set Λm,n(s) is the subset of monomials in Λm,n whose order is bounded by s, i.e.

Λm,n(s) := {λ ∈ Λm,n : λ = δk11 . . . δkmm σl11 . . . σ
ln
n and ordΛm,n(λ) ≤ s}.

The identity element λid is the unique monomial in a difference-differential ring of order
zero. Similar to (1.2), we have for integers s ≤ t:

Λm,n(s) ⊆ Λm,n(t).

It is obvious that the number of solutions in the integers to the diophantine inequality
given by

x1 + . . .+ xm + |y1|+ . . .+ |yn| ≤ s, (x1, . . . , xm) ∈ Nm, (y1, . . . , yn) ∈ Zn
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equals |Λm,n(s)|.

Further, we will be interested in the set of operators of order exactly s defined by

Λ=
m,n(s) := {λ ∈ Λm,n : λ = δk11 . . . δkmm σl11 . . . σ

ln
n and ordΛm,n(λ) = s}.

As before, a different perspective on the set Λ=
m,n(s) is the diophantine equation

x1 + . . .+ xm + |y1|+ . . .+ |yn| = s, (x1, . . . , xm) ∈ Nm, (y1, . . . , yn) ∈ Zn

where the number of solutions is given by |Λ=
m,n(s)|.

We will now give the generating functions of |Λm,n(s)| and |Λ=
m,n(s)|. It will turn out,

that this generating functions are rational functions of the form p(x)/(1− x)d for some
integer d, and a classic result in the theory of generating functions (Theorem 5) will then
imply a recurrence representation for the coefficient sequences (Corollary 1 and Corollary
2). The validity of our Theorems will be shown at Example 2. Finally Corollary 3 holds
the essence of our considerations. At the end of this section, we summarize the points
that characterize the rings (R,∆), (R,Σ) and (R,∆,Σ).

Theorem 3 (Generating Function of |Λm,n(s)|). Let (R,∆,Σ) be a difference-differential
ring, with set of derivations ∆ := {δ1, . . . , δm} and set of automorphisms Σ := {σ1, . . . , σn}.
Then, in the ring of formal power series RJxK:

∞∑
s=0

|Λm,n(s)|xs =
(1 + x)n

(1− x)m+n+1
, |x| < 1. (1.13)

Theorem 4 (Generating Function of |Λ=
m,n(k)|). In the setting as in Theorem 3,

∞∑
s=0

|Λ=
m,n(s)|xs =

(1 + x)n

(1− x)m+n
, |x| < 1. (1.14)

Proof. Starting from (1.13), we obtain

(1 + x)n

(1− x)m+n+1
=

∞∑
s=0

|Λm,n(s)|xs =

∞∑
s=0

(
s∑

k=0

|Λ=
m,n(k)|

)
xs

=
1

1− x

∞∑
s=0

|Λ=
m,n(s)|xs,

where we used Lemma 3. Next we show (1.14). To that end, we calculate the cardinality
of |Λ=

m,n(s)|. The order is split up between the derivations and the automorphisms. It
is shown in [KLAV98] that the number of solutions to the equation x1 + . . .+xm = k in
non-negative integers is given by(

m+ k − 1

k

)
, m ≥ 1, k ≥ 0.
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The no. of solutions to |x1| + . . . + |xn| = k has already been met at (1.12). Both
identities can be verified by a combinatorial argument. We are looking for all splits of
orders (for the derivations resp. automorphisms) that sum up to s. Therefore, we have
to prove that

∞∑
s=0

 s∑
i=0

(
m+ i− 1

i

) n∑
j=0

(
n

j

)(
s− i− 1

j − 1

)
2j

xs =
(1 + x)n

(1− x)m+n
, |x| < 1.

Bringing the sum quantifiers to the left, we get as a summand a product of binomial
coefficients. We can get rid of the inner sums (on i and j) by first computing the
annihilator of the summand, and afterwards applying creative telescoping. Hence, we
are now considering

as =
s∑
i=0

n∑
j=0

(
m+ i− 1

i

)(
n

j

)(
s− i− 1

j − 1

)
2j ,

The annihilator can be computed by Koutschan’s package:

In[4]:= summand[s ] := Binomial[m+i−1, i]∗Binomial[n, j]∗Binomial[s−i−1, j−1]∗2j

In[5]:= First[CreativeTelescoping[summand[s], S[j]− 1, {S[i], S[s]}]]
Out[5]= {(1 + 2i+ i2 − s− is)Si + (i− i2 +m− im+ is+ms)Ss + (−2in− 2mn), (−2 + i− s)S2

s +
2nSs + (−i+ s)}

In[6]:= First[CreativeTelescoping[%, S[i]− 1, {S[s]}]]
Out[6]= {(−2− s)S2

s + (m+ 2n)Ss + (m+ s)}
In[7]:= ApplyOreOperator[%, a[s]]

Out[7]= (m+ s)a[s] + (m+ 2n)a[1 + s] + (−2− s)a[2 + s]

We have got a second order recurrence equation with polynomial coefficients. The initial
values are given by: a0 = 1 and a1 = m + 2n. On the other hand, we compute the
convolution of

∞∑
s=0

(
n

s

)
xs = (1 + x)n,

∞∑
s=0

(
m+ n+ s− 1

s

)
xs =

1

(1− x)m+n
,

which would yield

(1 + x)n

(1− x)m+n
=

∞∑
s=0

(
s∑

k=0

(
m+ n+ k − 1

k

)(
n

s− k

))
xs =:

∞∑
s=0

bsx
s. (1.15)

We claim, that the generating function (1.15) satisfies the same recurrence equation. For
the proof we use again Koutschan’s package:

In[1]:= summand[s ] := Binomial[m + n + k − 1, k] ∗ Binomial[n, s− k]

In[2]:= First[CreativeTelescoping[summand[s], S[k]− 1, {S[s]}]]
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Out[2]= {(−2− s)S2
s + (m+ 2n)Ss + (m+ s)}

In[3]:= ApplyOreOperator[%, b[s]]

Out[3]= (m+ s)b[s] + (m+ 2n)b[1 + s] + (−2− s)b[2 + s]

To conclude the proof, we check initial values, which gives b0 = 1 and b1 = m + 2n.
Therefore, we have for all s ≥ 0 that as = bs. This proves our claim.

So, the generating functions of both |Λm,n(s)| and |Λ=
m,n(s)| are rational functions. We

quote a famous result [Sta13, Cor. 4.3.1, p. 543], about the relation between a rational
generating function and its coefficient sequence, and will apply it to our setting.

Theorem 5 (Rational Generating Functions). Consider the sequence (ak)k≥0 ∈ RN,
and let d be a non-negative integer. The following is equivalent:

• For a polynomial p(x) of degree less or equal to d

∞∑
k=0

akx
k =

p(x)

(1− x)d+1

• For all k ≥ 0,
d+1∑
i=0

(−1)(d+1−i)
(
d+ 1

i

)
ak+i = 0.

• ak is a polynomial function of k of degree at most d. Moreover, ak has degree
exactly d if and only if p(1) 6= 0, in that case the leading coefficient of ak is p(1)/d!

Corollary 1 (Recurrence representation for |Λm,n(k)|). The sequence (|Λm,n(k)|)k≥0
satisfies

m+n+1∑
i=0

(−1)(m+n+1−i)
(
m+ n+ 1

i

)
|Λm,n(k + i)| = 0, k ≥ 0.

Hence, for fixed values m,n the sequence is uniquely determined given the first m+n+ 1
values. |Λm,n(k)| is a polynomial in k of degree exactly m + n with leading coefficient
2n/(m+ n)!

Example 2 (Taylor Expansion of Rational Generating Function).
Consider the sets

∆ := {δ1, δ2}, Σ := {σ1}

over a field K. We want to consider all operators of order ≤ 2. They are given by:

Λ2,1(2) = {λid, σ1, δ1, δ2, σ
−1
1 , σ−2

1 , σ2
1, δ

2
1 , δ

2
2 , δ1σ1, δ1σ

−1
1 , δ2σ1, δ2σ

−1
1 , δ1δ2}.

Our formula gives:

(1 + x)1

(1− x)2+1+1
=
∞∑
k=0

|Λ2,1(k)|xk = 1 + 5x+ 14x2 + 30x3 + 55x4 + 91x5 + . . .
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hence, there are 14 operators of degree less equal 2. The coefficient sequence (|Λ2,1(k)|)k≥0

satisfies:

|Λ2,1(k)| − 4|Λ2,1(k + 1)|+ 6|Λ2,1(k + 2)| − 4|Λ2,1(k + 3)|+ |Λ2,1(k + 4)| = 0,

with initial values |Λ2,1(0)| = 1, |Λ2,1(1)| = 5, |Λ2,1(2)| = 14 and |Λ2,1(3)| = 30.
|Λ2,1(k)| can be expressed as polynomial like:

|Λ2,1(k)| = 21

(2 + 1)!
k3 + a2k

2 + a1k + a0 =
k3

3
+ a2k

2 + a1k + a0,

and with initial values plugged in

|Λ2,1(k)| = 1

6
(2k3 + 9k2 + 13k + 6). (1.16)

Corollary 2 ([Recurrence representation for |Λ=
m,n(k)|). The sequence

(
|Λ=
m,n(k)|

)
k≥0

satisfies
m+n∑
i=0

(−1)(m+n−i)
(
m+ n

i

)
|Λ=
m,n(k + i)| = 0, k ≥ 0.

Hence, for fixed values m,n the sequence is uniquely determined given the first m + n
values. |Λ=

m,n(k)| is a polynomial in k of degree exactly m+n−1 with leading coefficient
2n/(m+ n− 1)!.

Example 2 (continued). Continuing from before, we find the generating function

∞∑
s=0

|Λ=
2,1(s)|xs =

(1 + x)1

(1− x)2+1
= 1 + 4x+ 9x2 + 16x3 + 25x4 + 36x5 + 49x6 + . . . ,

the sequence
(
|Λ=

2,1(k)|
)
k≥0

satisfies:

−|Λ=
2,1(k)|+ 3|Λ=

2,1(k + 1)| − 3|Λ=
2,1(k + 2)|+ |Λ=

2,1(k + 3)| = 0,

with initial values |Λ=
2,1(0)| = 1, |Λ=

2,1(1)| = 4 and |Λ=
2,1(2)| = 9.

Viewn as polynomial, we find that

|Λ=
2,1(k)| = 21

(2 + 1− 1)!
k2 + a1k + a0,

with initial values plugged in, we get

|Λ=
2,1(k)| = k2 + 2k + 1 = (k + 1)2.

Observe the relation (plugging in (1.16))

|Λ2,1(k)| − |Λ2,1(k − 1)| = 1

6

(
2k3 + 9k2 + 13k + 6

)
− . . .

1

6

(
(2(k − 1)3 + 9(k − 1)2 + 13(k − 1) + 6)

)
= k2 + 2k + 1 = |Λ=

2,1(k)|.

17



The following Corollary is a summary about the above considerations.

Corollary 3 (Polynomial growth of |Λ=
m,n(t)| and |Λm,n(t)|). There exist polynomials

p(t), q(t) ∈ Q[t] such that

deg(p(t)) = m+ n− 1, deg(q(t)) = m+ n, m+ n ≥ 1,

with leading coefficients

LC(p(t)) =
2n

(m+ n− 1)!
, LC(q(t)) =

2n

(m+ n)!
,

such that for t ∈ N

|Λ=
m,n(t)| = p(t), |Λm,n(t)| = q(t),

Moreover, p and q are related by

p(0) = q(0) = 1, p(t) = q(t)− q(t− 1), t > 0.

In particular, the last line implies that for t > 0:

q(t) =
t∑

s=0

p(s).

Further, the polynomials p(t) and q(t) satisfy recurrence equations with constant coeffi-
cients such that

c0 · P (k) + · · ·+ cT · P (k + T ) = 0, k ≥ 0,

where the coefficients are given by

ci =

{
(−1)(m+n−i)(m+n

i

)
, P (t) = p(t), 0 ≤ i ≤ T = m+ n;

(−1)(m+n+1−i)(m+n+1
i

)
, P (t) = q(t), 0 ≤ i ≤ T = m+ n+ 1.

Summary

All the rings R, we’ve considered so far, contain a set of monomials M. We’ve defined
the order of a monomial in each ring, that has lead us to the consideration of M=(s) and
M(s). We’ve given the cardinality of |M=(s)| and |M(s)| by considering the generating
function.

Ring M Eq. Generating Function |M=(s)| Generating Function |M(s)|
(R,∆) Θm (1.1) 1/(1− x)m 1/(1− x)m+1

(R,Σ) Γn (1.10) (1 + x)n/(1− x)n (1 + x)n/(1− x)n+1

(R,∆,Σ) Λm,n (1.11) (1 + x)n/(1− x)m+n (1 + x)n/(1− x)m+n+1

Note the “factorization” of the generating function of |Λ=
m,n(k)| as follows:
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Difference-Differential Ring (R,∆,Σ)

∞∑
k=0

|Λ=
m,n(k)|xk = (1+x)n

(1−x)m+n

Difference-Ring (R,Σ)

∞∑
k=0

|Γ=
n (k)|xk = (1+x)n

(1−x)n

Differential Ring (R,∆)

∞∑
k=0

|Θ=
m(k)|xk = 1

(1−x)m

m = 0n = 0

This comes as no surprise, due to the fact that

∞∑
k=0

|Λ=
m,n(k)|xk =

∞∑
k=0

(
k∑
i=0

|Θ=
m(i)| · |Γ=

n (k − i)|

)
xk

=

( ∞∑
k=0

|Θ=
m(k)|xk

)
·

( ∞∑
k=0

|Γ=
n (k)|xk

)
,

(1.17)

in particular, a difference-differential operator of order k consisting of a differential op-
erator of order i (where 0 ≤ i ≤ k) is multiplied by a difference-operator of order k − i
for all k.

Each of the quantities |M=(s)| and |M(s)| can be measured by a polynomial p ∈ Q[s]
characterized by the following data.

Ring M deg(|M=(s)|) LC(|M=(s)|) deg(|M(s)|) LC(|M(s)|)
(R,∆) Θm m− 1 1/(m− 1)! m 1/m!
(R,Σ) Γn - - n 2n/n!

(R,∆,Σ) Λm,n m+ n− 1 2n/(m+ n− 1)! m+ n 2n/(m+ n)!

It is not possible to make statements about deg(|Γ=
n (s)|) and LC(|Γ=

n (s)|), based on
Theorem 5, because the assumption of Theorem is not fulfilled.

However, Theorem 5 allows us to conclude that each of |M=(s)| and |M(s)| satisfies a
recurrence equation with constant coefficients of the form

c0 · P (s) + . . .+ cT · P (s+ T ) = 0, s ≥ 0,

where T and ci are given as in the following table.

Once again, note that |Γ=
n (s)| is not covered by Theorem 5.
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Ring M P (s) T ci

(R,∆) Θm |Θ=
m(s)| m− 1 (−1)(m−1−i)(m−1

i

)
(R,∆) Θm |Θm(s)| m (−1)(m−i)(m

i

)
(R,Σ) Γn |Γn(s)| n (−1)(n−i)(n

i

)
(R,∆,Σ) Λm,n |Λ=

m,n(s)| m+ n (−1)(m+n−i)(m+n
i

)
(R,∆,Σ) Λm,n |Λm,n(s)| m+ n+ 1 (−1)(m+n+1−i)(m+n+1

i

)

In [KLAV98, Section II.], it is shown at the set of monomials Θm and Γn, how this
polynomial can be expressed using binomial coefficients. The reasoning is done by
combinatorial arguments. The equation (1.17) gives the link to difference-differential
monomials.

Ring M |M=(s)|

(R,∆) Θm

(
m+s−1
m−1

)
, s ≥ 0

(R,Σ) Γn

n∑
i=0

2i
(
n

i

)(
s− 1

i− 1

)
, s ≥ 1

1, s = 0.

(R,∆,Σ) Λm,n

(
m+ s− 1

m− 1

)
+

s−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
s− `− 1

i− 1

))
, s ≥ 1

1 s = 0

The relation between |M(s)| and |M=(s)| is given by (1.3).

20



Ring M |M(s)|

(R,∆) Θm

(
m+s
s

)
, s ≥ 0

(R,Σ) Γn

n∑
i=0

2i
(
n

i

)(
s

i

)
, s ≥ 1

1, s = 0

(R,∆,Σ) Λm,n

s∑
k=0

((
m+ k − 1

m− 1

)
+

k−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
k − `− 1

i− 1

)))
, s ≥ 1

1 s = 0

Example 2 (continued). Let us one last time revisit Example 2. We’ve got a difference-
differential ring, with two derivations and one automorphism, giving us the parameters
m = 2, n = 1. Then, |Λ=

m,n(s)| simplifies for s = 2 to

|Λ=
2,1(2)| = |Θ=

2 (0)| · |Γ=
1 (2)|+ |Θ=

2 (1)| · |Γ=
1 (1)|+ |Θ=

2 (2)| · |Γ=
1 (0)|

= 1 · 2 + 2 · 2 + 3 · 1 = 9 (confirming our result = (2 + 1)2).

Alternatively, we could use the formula from above table to obtain

|Λ=
m,n(s)| =

(
m+ s− 1

m− 1

)
+

s−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
s− `− 1

i− 1

))

|Λ=
2,1(2)| =

(
3

1

)
+

1∑
`=0

(
`+ 1

1

)( 1∑
i=0

2i
(

1

i

)(
1− `
i− 1

))

= 3 +

1∑
`=0

(`+ 1)

(
20

(
1

0

)(
1− `
−1

)
+ 21

(
1

1

)(
1− `

0

))
= 3 + 2

1∑
`=0

(`+ 1) = 9.

To obtain |Λ2,1(2)| we plug in the formula

|Λm,n(s)| =
s∑

k=0

((
m+ k − 1

m− 1

)
+
k−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
k − `− 1

i− 1

)))

|Λ2,1(2)| =
2∑

k=0

((
k + 1

1

)
+
k−1∑
`=0

(
`+ 1

1

)( 1∑
i=0

2i
(

1

i

)(
k − `− 1

i− 1

)))

=
2∑

k=0

(
(k + 1) +

k−1∑
`=0

(`+ 1)

(
20

(
1

0

)(
k − `− 1

−1

)
+ 21

(
1

1

)(
k − `− 1

0

)))

=

2∑
k=0

(
(k + 1) + 2

(
k∑
`=1

`

))
=

2∑
k=0

(k + 1)2 = 1 + 4 + 9 = 14.
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Remark. Let now s > 0. If we specialize Σ = ∅ ⇔ |Σ| = n = 0 in the formulas for
|Λ=
m,n(s)| and |Λm,n(s)| we obtain(

m+ s− 1

m− 1

)
+

s−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
s− `− 1

i− 1

))∣∣∣∣∣
n=0

=

(
m+ s− 1

m− 1

)
,

and similar

s∑
k=0

((
m+ k − 1

m− 1

)
+
k−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
k − `− 1

i− 1

)))∣∣∣∣∣
n=0

=

(
m+ s

s

)
,

giving as the formulas from the differential ring.

Analog, we can specialize ∆ = ∅ ⇔ |∆| = m = 0, to obtain(
m+ s− 1

m− 1

)
+

s−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
s− `− 1

i− 1

))∣∣∣∣∣
m=0

=
n∑
i=0

2i
(
n

i

)(
s− 1

i− 1

)
,

and similar

s∑
k=0

((
m+ k − 1

m− 1

)
+

k−1∑
`=0

(
m+ `− 1

m− 1

)( n∑
i=0

2i
(
n

i

)(
k − `− 1

i− 1

)))∣∣∣∣∣
m=0

=

n∑
i=0

2i
(
n

i

)(
s

i

)
,

demonstrating the consistency of our considerations.

1.2. Gröbner Bases for Modules

We start this section with a brief historical overview about the progress how the idea of
Gröbner bases developed over the past five decades and put particular emphasis on the
most important steps on that journey. There exist an enormous amount of literature
on Gröbner bases, the interested reader is referred to the Gröbner bases Bibliography
[BZ12] as the ultimate reference to any work related to the theory of Gröbner Bases.
The main presentation of this chapter is then the theory of relative Gröbner bases for
difference-differential operators, that is later on abstracted by the Concept of Gröbner
Reduction.

Buchberger [Buc65, Buc70, Buc85, BW98] has introduced the concept of Gröbner bases
(also called standard bases) in his Ph.D. thesis for ideals in a commutative multivariate
polynomial ring over a field K. This was the starting point of manifold considerations of
related ideas over various domains. The polynomial ring K[x1, ..., xn] forms a commuta-
tive noetherian ring4.

4A noetherian ring is a ring in which every ideal is finitely generated. We will later on use the term
noetherian in various contexts, e.g. in Hilbert’s Basis Theorem (compare Theorem 7) as well as for finite
reduction relations (compare Definition 17). The meaning, if not explicit clear from the context, will be
emphasized at occurrence.
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Generalizations in several directions were considered over the years, and it is almost
impossible to give a comprehensive description containing all the important milestones
in development. Therefore, we make here a cut, and come to the point of interest for
this thesis, namely a generalization to a non-commutative ground domain, as it is the
case in modules of differential operators.

Treating differential operators with a Gröbner basis method has been considered in
[Gal85, OS94, SST00]. Applications of Gröbner bases in a differential ring are given at
[Tak89].

Pauer [IP98, Pau07] formulated Gröbner Bases over not necessarily commutative rings,
including rings of differential operators and polynomial rings over commutative noethe-
rian rings.

Gröbner bases in a multivariate Ore-Algebra was studied by [Kou09]. He considered the
subclass of so called holonomic modules and provided algorithmic applications, known
as Zeilberger’s holonomic system approach. A prominent example of the application of
this theory is the recently proven q-TSPP conjecture [KKZ11] appearing as q-analogue
of a theorem appearing at the enumeration of Totally Symmetric Plane Paritions in the
combinatorial discipline of partition analysis.

In this thesis we are mainly interested in modules of difference-differential operators over
a field. The question, how to treat difference-differential operators is of general interest,
not only in pure mathematics but as well in mathematical physics [DL12b].

Several authors investigated how to set up a theory of Gröbner bases in this general
setting, most notable A. Levin, F. Winkler and M. Zhou. Major application of Gröbner
bases in this setting is the computation of univariate and multivariate dimension poly-
nomials for finitely generated modules of difference- and differential operators.

In this section, we will recall the theory of relative Gröbner bases. The theory of rela-
tive Gröbner bases is introduced and developed in [ZW08a]. We will later on present a
generalized notion of relative Gröbner bases and its applications, so we will recall the
original formulation here. The contents presented in this section appeared in a series of
papers [ZW06, ZW08b, Dön12].

The common backbone of every developed Gröbner basis theory is the existence of mono-
mials in the considered ring R. As coefficient domain, we presume given a commutative
ring K ⊆ R. We fix the set of monomials in R to be M, and require that every element
of R has an unique representation of the form

f ∈ R : f =
∑
m∈M

am ·m, am ∈ K, M ⊆ R, at most finitely many am not zero.

We can add elements in R in the usual way, and multiply from the left by elements in
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M by taking into account the possible non-commutative product of M and elements in
the coefficient domain K.

Notation. Throughout this thesis, we study the set of monomials that appear in a
ring/module element. Therefore, if a formal expression

f =
∑
m∈M

am ·m, am ∈ K a subring of the ring R, (1.18)

where M is a set of monomials, appears in our considerations, we will denote the set

T

(∑
m∈M

am ·m

)
:= {m ∈M : am 6= 0} ⊆M,

as the term set of f , that is commonly also known as the support of f . This set T(f) is
always a finite set. If the element f is given by (1.18), we will denote the coefficient am
of m ∈ T(f) by fm. This applies also to products, such as (ag)m, by which we mean the
coefficient of m in ag. Sometimes, we will denote the set of monomials of a ring element
by Λ, this will be emphasized at occurence.

Example 3. Consider the ring R := Q[x1, x2, x3]. Let f ∈ R, and let ni := degxi(f).
Then, f can be written as

f =

n1∑
i=0

n2∑
j=0

n3∑
k=0

ai,j,k · xi1x
j
2x
k
3, ai,j,k ∈ K = Q, M := {xi1x

j
2x
k
3 : (i, j, k) ∈ N3}.

For example, if f = 3x2
1x3 − 2x2x

4
3 − x1x2x3 we have

T(f) = {x2
1x3, x2x

4
3, x1x2x3}.

We then have that

fx21x3 = 3, fx2x43 = −2, (2x1 · f)x21x2x3 = −2.

Example 4. We consider differential operators with polynomial coefficients. To that
end, let K := Q[x] and dx be the differential operator w.r.t. x, that is, the element dx
satisfies

dx · x = x · dx + 1.

If we now consider an element in this ring,

f =
k∑
i=0

ai(x)dix =
k∑
i=0

 mi∑
j=0

aj,i · xj
 dix, ai(x) ∈ K = Q[x], ak(x) 6= 0,

we obtain
T(f) =

{
dix : ai(x) 6= 0

}
One could also think of choosing K = Q and obtaining

T(f) =
{
xjdix : aj,i 6= 0

}
.

From that, we see that the choice of the ring K has crucial influence on the set T(f).
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Based on the ring R, we can construct the free R-module F , that is generated by
E := {e1, ..., eq}. From that, we have

F = Re1 ⊕ · · · ⊕Req,

hence, every f ∈ F can be represented as

f =

q∑
i=1

∑
m∈M

(am,i ·m) · ei, am,i ∈ K,

and monomials in F are of the form ME := {(m, e) : m ∈ M, e ∈ E}. We can think
of the set E to consist of {e1, . . . , eq} where ei might be identified by the i-th unit vector.

In Lemma 6 we’ve encountered the non-commutative product of a difference-differential
operator with an element from the ring D. Rephrasing Lemma 6 by using the set of
terms we obtain

T(λ · a) = T(δkσl · a) ⊆ {δk′σl : k′ ≤π k}, a ∈ D, k ∈ Nm, l ∈ Zn, (1.19)

where ≤π denotes the (partial) product order, i.e.

k = (k1, . . . , km) ≤π l = (l1, . . . , lm) :⇔ ki ≤ li, 1 ≤ i ≤ m. (1.20)

We assume that the monomials in our considered rings are ordered with respect to
4⊆ M×M. Once, an order has been defined, it makes sense to designate the maximal
term or the leading term in a set of monomials. We will use the symbol LT≺ for the
leading term, respectively LC≺ to denote its coefficient, or just LT and LC if ≺ is clear
from the context.

For commutative polynomials this order is usually established by considering the expo-
nent vector in Nn and then put order on the n-fold non-negative integers.

For difference-differential operators we face monomials containing integer exponents.
Obviously, we can relate Λm,n ∼= Nm × Zn in the natural way. Zhou and Winkler
[ZW06] suggest to use a generalization of term order concept on Nm×Zn. The handling
of negative exponents is done by decomposing Zn into so called orthants, that cover the
whole plane and overlap only trivially.

Definition 5 (Orthant Decomposition, [ZW06, ZW08a]).
A decomposition of Zn into k parts is called an orthant decomposition and Znj is called
the j-th orthant of this decomposition, if

Zn =

k⋃
j=1

Znj ,

and for all j we have that:
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1. (0, . . . , 0) ∈ Znj , and c := (c1, . . . , cn) in Znj implies that −c := (−c1, . . . ,−cn) is
not in Znj ,

2. Znj is a finitely generated subgroup of Zn, which is isomorphic toNn as a semigroup

3. the group generated by Znj is Zn

So, after all, what is an orthant decomposition? One possible view of orthant decom-
positions of the plane is to consider it as a finite family of monoid homomorphisms
φu : Nn → Zn each of whose images generate the group Zn and being such that⋃

u∈Nn
im(φu) = Zn.

Consequently the set of monomials Λm,nE of F is covered by finitely many isomorphic
copies of Nm×Nn×E in which term orders are well founded and reduction is supposed
to behave well. Remark that only the automorphisms, i.e. the exponent vector that lies
in Zn determines the orthant of a monomial δrσs · ei.

Given such an orthant decomposition of Zn and m ∈ N, the family {Nm × Znj : 1 ≤
j ≤ k} is said to be an orthant decomposition of Nm × Zn. A standard example of an
orthant decomposition of Zn is a family {Zn1 , . . . ,Zn2n} of all cartesian products of n sets
each of which is either N or −N.

If we now can reduce elements in every orthant to zero, a characterization similar to
S-polynomials as in the commutative Gröbner basis theory can be proven. An essential
ingredient is the concept of generalized term order, as considered in [ZW06, ZW08a].

Definition 6 (Generalized Term order).
Given an orthant decomposition {Znj : 1 ≤ j ≤ k} of Zn, let E := {e1, . . . , eq} be a
set of generators of a free module F . A total order ≺ on Nm × Zn × E is called a
generalized term order on Nm × Zn × E with respect to the decomposition, if and only
if the following conditions hold

1. (0, . . . , 0, ei) is minimal in Nm × Zn × {ei}, ei ∈ E

2. If (a, ei) ≺ (b, ej), then for any c such that c and b are in the same orthant,

(a+ c, ei) ≺ (b+ c, ej), where a, b, c ∈ Nm × Zn, ei, ej ∈ E.

With the notation introduced at the beginning of this section, let F be a free D-module
with a set of free generators E = {e1, . . . , eq}. As we have seen, Λm,nE = {λei : λ ∈
Λm,n, 1 ≤ i ≤ q} is a set of monomials of F which is in natural one-to-one correspon-

dence with the set Nm × Zn × E (δk11 . . . δkmm σl11 . . . σ
ln
n e ↔ (k1, . . . , km, l1, . . . , ln, e)). A

total order ≺ of the set of monomials Λm,nE is a generalized term order on Λm,nE if the
corresponding order of the setNm×Zn×E is a generalized term order in the above sense.
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If µ = δk11 . . . δkmm σl11 . . . σ
ln
n and ν = δ

k′1
1 . . . δ

k′m
m σ

l′1
1 . . . σ

l′n
n , we say that µ divides ν and

write µ|ν if and only if the (m+n)-tuples (k1, . . . , km, l1, . . . , ln) and (k′1, . . . , k
′
m, l
′
1, . . . , l

′
n)

lie in the same orthant of Nm×Zn and ki ≤ k′i for 1 ≤ i ≤ m and |lj | ≤ |l′j | for 1 ≤ j ≤ n.

If t1 = µei and t2 = νej are elements of Λm,nE, we say that t1 divides t2 and write t1|t2
if and only if µ|ν and i = j.

In what follows, if the exponent vectors of two elements µ, ν ∈ Λm,n lie in the same
orthant of Nm × Zn, we write µ ∼ ν. If t1 = µei, t2 = νej we write t1 ∼ t2 if µ ∼ ν.
Also, we write µ ∼ t2 if µ ∼ ν.

Since Λm,nE is a free basis of F as a K-module, every element f ∈ F has a unique
representation of the form

f = a1λ1ej1 + . . .+ adλdejd , ai ∈ K, 1 ≤ i ≤ d,

where λ1ej1 , . . . , λdejd are distinct elements of Λm,nE. Given a generalized term order
≺ on Λm,nE, it is easy to see that if LT≺(f) = µei (for µ ∈ Λm,n, 1 ≤ i ≤ q), and
µ ∈ Λm,n, then LT≺(νf) = νLT≺(f) if and only if ν ∼ µ.

The above mentioned reduction is a generalization of division to (non-commutative) ring
elements by taking into account multiple quotients. As already mentioned, the paper
[ZW08a] is talking about the ring of difference-differential operators D by taking into
account a bivariate filtration as introduced in Chapter 2.

Theorem 6 (Relative Reduction [ZW08a, p. 731, Thm. 3.1]).
Let “≺1” and “≺2” be two generalized term orders on Λm,nE. Let g1, . . . , gp ∈ F\{0}

and f ∈ F . Then
f = h1g1 + . . .+ hpgp + r, (1.21)

for some elements h1, . . . , hp ∈ D and r ∈ F such that

1. hi = 0 or LT≺1(higi) 41 LT≺1(f), i = 1, . . . , p;

2. r = 0 or LT≺1(r) ≺1 LT≺1(f) such that

LT≺1(r) /∈ {LT≺1(λgi) : LT≺2(λgi) 42 LT≺2(r), λ ∈ Λm,n, i = 1, . . . , p} . (1.22)

Definition 7. Let “≺1” and “≺2” be two generalized term orders on Λm,nE. We say
that f ≺1-reduces relative to ≺2 to r, and call this procedure relative reduction, if f and
r are represented as in (1.21) and the conditions of Theorem 6 apply.

Hence, we perform a reduction of f modulo {g1, . . . , gp} but require additionally for the
reducing element gk ∈ {g1, . . . , gp} that

LT≺2(λgk) 42 LT≺2(r), λ ∈ Λm,n. (1.23)
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Condition (1.34) appears strange at first sight, but is explained later on, where relative
reduction is applied to filtered rings. It is a stronger assumption on the reduction rela-
tion compared to polynomial reduction, where the second condition is dropped and only
the first assumption is kept.

The characteristic property of a Gröbner basis now lies in its behaviour with respect to
reduction as introduced at Theorem 6. Of course, there are a lot of equivalent ways to
define Gröbner bases, known in literature as Buchberger’s S-polynomial criterion5, in
terms of divisibility of leading term ideals6 or even by considering the syzygy-module 7.
A summary is given at [BWK93, Proposition 5.38].

At the commutative multivariate polynomial ring, Hilbert’s basis theorem holds.

Theorem 7 (Hilbert’s Basis Theorem). If the ring R is noetherian (or, what is equiva-
lent, every ideal of R is finitely generated) then the polynomial ring R[x] is also noethe-
rian.

Hilbert’s Basis Theorem provides the induction base to prove that any ideal in R[X] has
a finite system of generators if R has. Gröbner bases now provide unique remainders,
called normal-forms, with respect to generalized division.

Definition 8 (Relative Gröbner Basis).
Let N be a D-module of difference-differential operators, ≺1 and ≺2 be two generalized
term orders on Λm,nE. Then, the set G := {g1, . . . , gt} ⊆ N\{0} is a ≺1- Gröbner basis
relative to ≺2, if and only if G generates the D-module N , and f in N implies that it
can be ≺1-reduced relative to ≺2 to zero modulo G.

To decide whether a given set of polynomials is a Gröbner basis one can apply Buch-
berger’s Theorem [BWK93, Theorem 5.64]. The generalization to the ring D was pre-
sented in [ZW08a, Theorem 3.2].

Theorem 8 (Buchberger Theorem at D).
Let F be a free D-module, ≺ a generalized term order on Λm,nE, the notions LT and LC
understood with respect to ≺. Consider G ⊆ F\{0}, and N the submodule of F spanned

5Compare [AL94, Theorem 1.7.4]: Define the S-polynomial S(gi, gj) by

S(gi, gj) :=
lcm(LT(gi),LT(gj))

LT(gi)
gi −

lcm(LT(gi),LT(gj)

LT(gj)
gj .

Let G := {g1, . . . , gt} be a set of non-zero polynomials in K[X]. Then G is a Gröbner basis for the ideal
〈g1, ..., gt〉 if and only if for all i 6= j the S-polynomial S(gi, gj) can be reduced modulo G to zero.

6Compare [CLO97, Proposition 3]: The leading term ideal 〈LT(I)〉 = 〈LT(f) : f ∈ I〉 can be
described by a finite set of polynomials g1, . . . , gt ∈ I as 〈LT(I)〉 = 〈LT(g1), . . . ,LT(gt)〉.

7Compare [CLO98, Proposition 1.9]: Let (f1, ..., ft) ∈ K[X]t. The set of all (a1, . . . , at) ∈ K[X]t such
that a1f1 + . . .+ atft = 0 is an K[X]-submodule of K[X]t, called the first syzygy-module of (f1, . . . , ft).
With the help of Buchberger’s algorithm we can do computations for the first syzygy module: The
reduction to zero of the S-polynomial of a pair of polynomials in a Gröbner basis is a syzygy. These
syzygies generate the first syzygy-module.
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by G. The orthant decomposition on Zn (i.e. the exponent vector of the automorphisms)
gives motivation to consider

Λ(j) := {δkσl : k ∈ Nm, l ∈ Znj } (1.24)

The sets Λ(j) are now considered as the orthants of Λ. The set G is a Gröbner basis for
N if and only if for all orthants Λ(j), for all f, g ∈ G and for all

v ∈ R[Λ(j)]〈τ ∈ Λ(j)E | ∃ λ ∈ Λ : τ = LT(λf)〉 ∩ R[Λ(j)]〈ξ ∈ Λ(j)E | ∃ η ∈ Λ : ξ = LT(ηg)〉

the S-polynomial

S(j, f, g, v) :=
v

LC(f)

f

LT(f)
− v

LC(g)

g

LT(g)

can be reduced modulo G to zero.

1.3. Associated Rings of Operators

Throughout in literature, systems of partial differential or difference equations are de-
scribed by operators. In this thesis we restrict our attention to linear operators.

We are interested in certain rings R containing a commutative subring K ⊆ R (not
necessarily central), such that R is a free module over K. In particular there exists a
K-basis M ⊆ R (which we call monomials). If this is the case, we write R = K(M), and
define the symbol by

R = K(M) :⇐⇒ every r ∈ R has a representation as r =
∑
m∈M

rm ·m, (1.25)

where rm ∈ K, rm = 0 almost everywhere. Because R is free over K, this representation
is unique.

We want to identify certain systems of difference-/ differential-equations with elements in
an operator-ring . We will carry out the construction of the operator-ring on the example
of the ring of differential operators, the other examples we’ve encountered are analogous.

Let R be a ring and ∆ := {δ1, . . . , δm} ⊆ EndZ(R) be a set of pairwise commutative
derivations on R. We use the embedding R→ EndZ(R), r 7→ r̄, where for all x ∈ R we
have r̄(x) := r · x. This is, we denote by r̄ ∈ EndZ(R) the endomorphism associated to
the element r ∈ R.

Next, we extend R̄ (i.e. the image of R) by {δ1, . . . , δm}, that is, we consider the smallest
subring of EndZ(R) containing R̄∪{δ1, . . . , δm}. This is the ring of differential operators
induced by ∆ on R. Elements in this ring are of the form

n∑
j=1

βi1 ◦ . . . ◦ βid(j) , βik ∈ R̄ ∪ {δ1, . . . , δm}. (1.26)
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We now have

(δi ◦ ā)(x) = δi(a · x) = a · δi(x) + δi(a) · x = (ā ◦ δi + δi(a))(x),

i.e. we have
δi ◦ ā = ā ◦ δi + δi(a), δi ∈ ∆,

that corresponds to the Leibniz rule. This justifies to view operator (1.26) as∑
α∈Nm

aα ◦ δα1
1 ◦ . . . ◦ δ

αm
m , aα ∈ R,α = (α1, . . . , αm), (1.27)

only finitely many aα not zero. By Lemma 6 a similar reasoning can be applied to rings
of difference and difference-differential operators.

It turns out, representation (1.27) is not unique, due to possible relations among the
endomorphisms. To overcome this, we define the free ring of operators Op(R) as follows.

Consider a differential ring (R,∆) where ∆ = {δ1, . . . , δm} ⊆ EndZ(R) is a set of pairwise
commutative derivations. A differential monomial is identified by its exponent vector

Θm → Nm, δk11 . . . δkmm 7→ (k1, . . . , km), hence Θm
∼= Nm.

From that point of view, the additive group of Op(R) is given by the free R-module
R(Nm), i.e. we have ’point-wise addition’ of monomials with same exponent vector8.
Hence, elements of Op(R) are mappings f : Nm → R that are zero almost everywhere.
With the mappings

Ek : Nm → R, Ek(l) =

{
1 . . . k = l,

0 . . . else.
, k ∈ Nm

we can write

f =
∑
k∈Nm

f(k)Ek, f(k) ∈ R, f(k) = 0 almost everywhere.

We now have to define multiplication in a way that we can consider the mapping

δk = δk11 ◦ . . . ◦ δ
km
m , k = (k1, . . . , km) ∈ Nm,

that we’ve met at (1.27). To that end, we consider

∂i := Eei , (ei = (0, . . . , 0, 1, 0, . . . , 0)− 1 at position i).

8Note that actually not Nm is contained in R, but Θm ⊆ R, i.e. the monomials in a differential ring
are elements of the set Θm. The notion is justified by the above mentioned isomorphism between the
sets Θm and Nm.
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As the derivations are pairwise commutative, the products (in the sense of composition),
build ’power products’, i.e. we take the commutative monoid Nm as basis. So we require
Nm → R(Nm) to be a homomorphism of monoids from (Nm,+) to (Op(R), ·):

Ek1,...,km = Ek1e1+...+kmem = Ek1e1 . . .E
km
em = ∂k11 . . . ∂kmm .

Elements in Op(R) can now be written as

f =
∑
k∈Nm

f(k)∂k11 . . . ∂kmm =
∑
k∈Nm

f(k)∂k, f(k) ∈ R, f(k) = 0 almost everywhere.

For a final definition of the multiplication, we set for r ∈ R

∂i · r = r · ∂i + δi(r).

By requiring the multiplication to be distributive, we get the following Theorem.

Theorem 9. (Op(R),+, ·) forms a ring, in which every element has an unique repre-
sentation.

We call this ring the free ring of operators Op(R).

Let S be a ring. We consider an S-module F (F is called a function space)9. The set of
operators that applied to f ∈ F give 0 is called the annihilator of f

annS(f) := {r ∈ S : r · f = 0},

which forms a left S-module. The annihilator of f gives an implicit description of the
element f .

Example 5. Consider the differential ring R = R[x] with ∆ := {dx := d/dx}. Elements
in S := Op(R) are of the form

k∑
i=0

ai(x)dix, ai(x) ∈ R[x], ak(x) 6= 0.

A suitable function space F would be the set of smooth10 functions over the reals C∞(R).
The domain F is a left S-module. The ring S acts on F by

(a0(x) + a1(x)dx + . . .+ ak(x)dkx) · f(x) := a0(x)f(x) + a1(x)f ′(x) + . . .+ ak(x)f (k)(x),

where ai(x) ∈ R[x], f ∈ C∞(R). Because

d

dx
e2x2−x = (4x− 1)e2x2−x ⇒

(
d

dx
− (4x− 1)

)
· e2x2−x = 0,

it follows that

dx − (4x− 1) ∈ annS

(
e2x2−x

)
.

9Later on, we will specialize the ring S to be S = Op(R). However, the developed theory is valid for
general rings S, and is therefore formulated as general as possible.

10A function is called smooth if and only if it is infinitely often differentiable. The set of real functions
R→ R that are smooth is denoted by C∞(R).
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At [Zei90, Kou09] it is shown, how one can do algorithmic computation of generators of
the annihilator module, and decide questions such as module membership, to prove that
a given identity is a consequence of defining relations, such as Gröbner bases witness
that a given polynomial is contained in a polynomial ideal.

Let us now consider the (non-commutative) ring S := Op(R), and let M be a left S-
module. The ring element a ∈ S appears as additive (i.e. Z-linear) operator ā : M →M ,
m 7→ ā(m) := a ·m. So for X ⊆ S we may ask for the solution set

VM (X) := {m ∈M : ∀a ∈ X : a ·m = 0},

sometimes called the solution variety, that is obviously given by

VM (X) =
⋂
a∈X

ker(ā) ⊆M.

If S is commutative, this abelian group is an S-module. Deciding membership inVM (X)
where X is finite, is obvious. But in general, it is not clear to decide whether for given
U ⊆M we have that VM (X) = U , in particular (for U = ∅) if there exists any solution
at all.

From that, it seems reasonable to define the module of X as S/SX. SX is the left ideal
generated by X, i.e. a submodule of S considered as a left S-module; thus S/SX is a
left S-module too.

The projection π : S → S/SX, defined by π(1) =: u, is the way to describe VM (X)
adequate. If a ∈ X we have that π(a) = 0 and so

a · u = a · π(1) = π(a · 1) = π(a) = 0,

meaning that u is a solution of X in S/SX. Further, it is an universal solution:

Lemma 7. If M is an arbitrary left S-module and m is a solution of X in M , then
there exists exactly one homomorphism φ : S/SX →M such that φ(u) = m.

Proof. Consider ψ : S → M , defined by ψ(s) := s ·m. This is a S-homomorphism and,
since m ∈ VM (X) we get X ⊆ ker(ψ). Therefore, SX ⊆ ker(ψ) and so ψ factors as

S S/SX

M

ψ

π

φ

Now, this φ is what we want:

φ(u) = φ(π(1)) = ψ(1) = 1 ·m = m.
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Assume there is another map φ′ : S/SX → M with φ′(u) = m. Then, for arbitrary
t ∈ S we can conclude, that

φ′(π(t)) = (φ′ ◦π)(t ·1) = t · (φ′ ◦π)(1) = t ·φ′(u) = t ·m = t ·φ(u) = t ·φ(π(1)) = φ(π(t)).

Because t was chosen arbitrary in S, the image π(t) ranges over the entire S/SX we
have φ = φ′.

But we can even say more.

Lemma 8. If M is a S-module and m ∈M , then

m ∈ VM (X)⇔ ∃f ∈ S Hom(S/SX,M) : f(u) = m.

Proof. ’⇒’ is already proved. For the converse take x ∈ X. Then

0 = (f ◦ π)(x) = (f ◦ π)(x · 1) = x · (f ◦ π)(1) = x · f(u) = x ·m.

In principle we could now replaceR by a differential-, difference- or a difference-differential
ring as considered in section 1.1. However, we want to introduce yet another ring, which
is a prominent example of representing operators in a polynomial algebra, namely the
ring of Ore-polynomials.

Difference-Differential Rings and the Ore-Algebra

We’ve considered the ring D of difference-differential operators over a field K. In this
section we want to describe another approach of treating difference- and differential
operators. At the introduction, we’ve already encountered the commutation rules

δx = xδ + δ(x), σx = σ(x)σ. (1.28)

In this section we want to describe the theory of Ore-polynomials, that generalize both
commutation rules at the same time. These non-commutative polynomials were first
studied by Øystein Ore [Ore33], who considered the univariate polynomial ring K[∂;σ, δ],
where elements are of the form

f =
t∑

k=0

ak · ∂k = at∂
t + at−1∂

t−1 + . . .+ a0, ak ∈ K, at 6= 0, deg(f) = t.

with the usual addition (as in the algebra of commutative polynomials), and a product
that has to satisfy

deg(a · b) ≤ deg(a) + deg(b), a, b ∈ K[∂;σ, δ]. (1.29)

In [Mid11, Chapter 3], the ring of Ore-Polynomials is constructed from a ring R′ that
is a coefficient domain, and a ring extension ∂ whose powers generate the ring of Ore-
polynomials. In principle, very general constructions are available, that we won’t need
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in this thesis. We restrict our attention to polynomials with coefficients in a field K.

If one considers the product of ∂ = 1 · ∂1 + 0 with x ∈ K we get by (1.29):

deg(∂ · x) ≤ deg(∂) + deg(x) = 1 + 0.

Therefore, the product is a polynomial of degree less equal 1, hence it can be written as

∂ · x = a1 · ∂ + a0, a1, a0 ∈ K,

and a1 and a0 depend on x. From that viewpoint it is reasonable to view a1 = σ(x) and
a0 = δ(x)11. Let us now collect properties of σ and δ. To ensure that ∂ · 1 = 1 · ∂ = ∂,
we have to impose the condition

∂ · 1 = σ(1) · ∂ + δ(1)
!

= 1 · ∂ + 0⇒ σ(1) = 1, δ(1) = 0,

hence the map σ is an unitary homomorphism. A very similar argument shows, that δ
and σ are additive homomorphisms by requiring distributivity

∂ · (x+ y)
!

= ∂ · x+ ∂ · y, x, y ∈ K.

Likewise, we can derive relations for the product by considering

∂ · (x · y)
!

= (∂ · x) · y, x, y ∈ K.

This arguments, and very similar properties describe σ and δ. We summarize in the
following Lemma. We use the symbol O(1) := K[∂;σ, δ], or just O, when it is clear that
we consider one element ∂, for this construction.

Lemma 9 (Properties of skew-derivations).
For the univariate Ore-Algebra O over the field K, a,b in K:

• δ(0) = δ(1) = 0;

• δ(ab) = σ(a)δ(b) + δ(a)b;

• δ(a/b) = −(σ(a)δ(b))/(σ(b)b) + δ(a)/b;

• σ(a−1) = σ(a)−1;

• δ(a−1) = −δ(a)/(σ(a)a).

11Note that δ is not a derivation in the classic sense. The following discussion shows that we derive
at so called σ-skew derivations. By the choice σ = id we derive at the classic case, therefore the symbol
δ is not misleading.
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Collecting all points that are required from the initially presented properties, we can
uniquely define an Ore-operator ∂ by fixing an unitary endomorphism σ and a σ-skew-
derivation δ, meaning that

δ(x · y) = σ(x) · δ(y) + δ(x) · y, x, y ∈ K.

Recently, [KJJ14] have produced an implementation in the Sage [S+13] computer algebra
system of algorithms for the univariate case. For its multivariate generalization12

O(n) := K[∂1;σ1, δ1][∂2;σ2, δ2] . . . [∂n;σn, δn],

one has to be particularly careful. The commutation rule of the Ore-operator ∂1 with
elements from K is governed by the two maps δ1 and σ1. But already for the operator ∂2

we have as a base ring not K but K[∂1;σ1, δ1], which makes it necessary to consider the
product of ∂1 with ∂2. To overcome this, we assume that the product of two different
Ore-operators is commutative, i.e.

∂i · ∂j := ∂j · ∂i, 1 ≤ i, j ≤ s.

Using this convention, we’ve got all the possible constellations of products in O, which
can be used to construct a difference-differential ring (R,∆,Σ). First of all, instead of
considering a set of m derivations ∆, we consider a set of skew -derivations {∂1, . . . , ∂m},
that are governed by fixing unitary endomorphisms σ and fixing σ-skew derivations δ.
Powers of ∂ are defined recursively for k > 0 by

∂kx = ∂k−1 (∂x) = ∂k−1 (σ(x)∂ + δ(x)) , x ∈ K.

Lemma 10 (Product of Ore-operators with ring elements). For the univariate Ore-
Algebra O over the field K, and x in K:

∂kx = Sk,0(x)∂k + Sk,1(x)∂k−1 + . . .+ Sk,k(x)∂0, k > 0, (1.30)

where
Sk,0(x) = σk(x), Sk,k(x) = δk(x),

and
Sk,i(x) = δi(σk−i(x)) + . . .+ δk−i(σi(x)), 0 < i < k.

A proof is given in [Ore33]. The choice σ := σid, defined by

σid : K→ K, x 7→ σid(x) := x,

allows to model the commutation property

σid · x = σid(x) · σid = x · σid, x ∈ K.

12Again we use the convention, that we just write O for O(n) if n is clear from the context
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If we choose the derivation δ as the trivial derivation δ0, mapping any element to 0

δ0 : K→ K, x 7→ δ0(x) := 0,

we can then consider the ring K[∂; δ0, σid]. With this choice we get the very important
special case

∂ · x = σid(x) · ∂ + δ0(x) = x · ∂, x ∈ K,

which is the usual commutative polynomial ring.

The next question we pose, is how to handle negative exponents of the automorphisms.
First we have to distinguish the symbols σ−1(x), rather than σ(x)−1. The symbol σ−1(x)
is the unique element x′ in R that satisfies

σ(x′) = σ(σ−1(x)) = x = σ−1(σ(x)),

and therefore represents the inverse with respect to composition. On the other hand, σ
is an unitary automorphism, meaning σ(1) = 1, allowing us to gather

1 = σ(1) = σ(x · x−1) = σ(x) · σ(x−1), x ∈ K,

and therefore we conclude

σ(x−1) = σ(x)−1, x ∈ K,

i.e. the image of the multiplicative inverse of x is the multiplicative inverse of the image
of x. When talking about a negative exponent, say −k, we usually mean applying the
compositorial inverse k times, i.e. we want to express σ−k(x) that is defined as

σ−k(x) := σ−(k−1)(σ−1(x)), k > 0.

For our Ore-Algebra construction, suppose we want to represent n automorphisms. An
automorphism σi, (0 < i ≤ n) can be viewed as Ore-operator ∂i, that is governed by the
the commutation rule

∂ix = σi(x)∂i, x ∈ K,

and iterated application gives

∂ki x = ∂k−1
i (∂ix) = ∂k−1

i (σi(x)∂i) = . . . = σki (x)∂ki , k > 0,

i.e., for positive powers, the Ore operator is represented by the tuple (∂i, σi, δ0). To
represent inverse application, we consider the Ore-operator ∂m+i that determines the
inverse tuple (∂n+i, σ

−1
i , δ0), the action on ring elements is given by

∂n+ix = σ−1
i (x)∂n+i, x ∈ K,

and its powers

∂kn+ix = ∂k−1
n+i (∂n+ix) = ∂k−1

n+i

(
σ−1
i (x)∂n+i

)
= . . . = σ−ki (x)∂kn+i, k > 0.
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If we consider the Ore-algebra

O = K[∂1; δ0, σ1] . . . [∂n; δ0, σn][∂n+1; δ0, σ
−1
1 ] . . . [∂2n; δ0, σ

−1
n ],

then the Ore-operators are related by its application to elements x in K. Namely,

∂i · ∂n+i · x = ∂i · σ−1
i (x)∂n+i = σi(σ

−1
i (x)) · ∂i · ∂n+i = x · ∂i · ∂n+i. (1.31)

Often in literature it is implicitly stated that difference-differential rings can be described
by positive exponents exclusively. In this part, we are going to show explicitly that
the ring of operator monomials in a difference-differential ring is a multivariate non-
commutative polynomial ring in |∆|+ 2 · |Σ| variables. To that end, we consider a field
K endowed with a set of derivations ∆ := {δ1, . . . , δm} and a set of automorphisms
Σ := {σ1, . . . , σn}. We assume that the elements of ∆ ∪ Σ are pairwise commutative,
i.e. for all u, v ∈ ∆ ∪ Σ we have u · v = v · u, which is not necessarily the case for the
product with field elements x ∈ K. We define the set T as

T := {τ1, . . . , τn} ⊆ Aut(K), 1 ≤ k ≤ n : τk := σ−1
k ,

i.e. the operator τk is the compositoral inverse of σk. We will consider the non-
commutative polynomial rings

R := K
[
∆ ∪ Σ±1 ∪ T±1

]
, S := K

[
∆ ∪ Σ±1

]
.

We will use the following symbols to abbreviate power products in a way that

δr := δr11 . . . δrmm , r ∈ Nm.

and similar for σ and τ . Elements in R are K-linear combinations of elements

{δrσsτ t : (r, s, t) ∈ Nm × Zn × Zn},

whereas monomials in S are of the form

{δrσs : (r, s) ∈ Nm × Zn},

i.e. elements of S are of the form

S :=

a :=
∑
(r,s)

ar,sδ
rσs : (r, s) ∈ Nm × Zn

 ,

that corresponds to difference-differential operators. Further let the set R+ be defined
by

R+ :=

a :=
∑

(r,s,t)

ar,s,t δ
rσsτ t ∈ R : (r, s, t) ∈ Nm ×Nn ×Nn

 .

Obviously R+ is a subring of R too. We define a K-linear map

ϕ : R+ → S, δrσsτ t 7→ ϕ(δrσsτ t) := δrσs−t.
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Lemma 11 (Characterization of ϕ). ϕ : R+ → S is a surjection of rings.

Proof. Consider an element w := δrσp ∈ S, where r ∈ Nm, p ∈ Zn. Choose non-negative
integer vectors s, t ∈ Nn such that s − t = p. Then, ϕ(δrσsτ t) = w. Thus, R+ → S is
a K-linear epimorphism. We must now show that ϕ is a homomorphism of rings. First
we show that ϕ is unitary, i.e. ϕ(1) = 1. This is obvious by

ϕ(1) = ϕ(δ0σ0τ0) = δ0σ0−0 = 1.

As a next step, we consider ϕ(δs · a) for s ∈ Nm and a ∈ R+. Assume that

a =
∑

(r,s,t)

ar,s,t · δrσsτ t ∈ R+, (r, s, t) ∈ Nm ×Nn ×Nn, ar,s,t ∈ K.

If we apply a derivation δi to a, then

δi · a =
∑

(r,s,t)

(ar,s,tδi + δi(ar,s,t)) δ
rσsτ t =

∑
(r,s,t)

ar,s,tδ
r+eiσsτ t +

∑
(r,s,t)

δi(ar,s,t)δ
rσsτ t,

where ei denotes the i-th unit vector ei := (0, . . . , 0, 1, 0, . . . , 0) ∈ Nm, the 1 appearing
at i-th position. The map ϕ applied to δi · a gives

ϕ(δi · a) =
∑

(r,s,t)

ar,s,tδ
r+eiσs−t +

∑
(r,s,t)

δi(ar,s,t)δ
rσs−t

=
∑

(r,s,t)

(ar,s,tδi + δi(ar,s,t)) δ
rσs−t

= δi ·
∑

(r,s,t)

ar,s,tδ
rσs−t = δi · ϕ(a),

proving the identity
ϕ(δs · a) = δs · ϕ(a).

To overcome the non-commutativity with field elements x ∈ K in the product, we show

ϕ(σsτ t · x · δuσvτw) = ϕ(σsτ t) · ϕ(x · δuσvτw).

This follows from

σsτ t · x · δuσvτw = σs−t(x)σsτ tδuσvτw = σs−t(x)δuσs+vτ t+w,

therefore

ϕ(σsτ t · x · δuσvτw) = σs−t(x)δuσs+v−t−w = σs−t(x)σs−tδuσv−w

= σs−t · x · δuσv−w = ϕ(σsτ t) · ϕ(x · δuσvτw)

Combining the last two points, it is an easy matter to prove for x, y ∈ K, that

ϕ(x · δrσsτ t · y · δuσvτw) = x · δr · ϕ(σsτ t · y · δuσvτw) = x · δr · ϕ(σsτ t) · ϕ(y · δuσvτw)

= ϕ(x · δrσsτ t) · ϕ(y · δuσvτw)
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Considering now the properties gives the multiplicative property. We set

µr,s,t := ar,s,tδ
rσsτ t, νu,v,w := bu,v,wδ

uσvτw

to get for a, b ∈ R+

ϕ(ab) = ϕ

∑
(r,s,t)

µr,s,t ·
∑

(u,v,w)

νu,v,w

 = ϕ

 ∑
(r,s,t)

(u,v,w)

µr,s,t · νu,v,w


=

∑
(r,s,t)

(u,v,w)

ϕ(µr,s,t) · ϕ(νu,v,w) =
∑

(r,s,t)

ϕ(µr,s,t) ·
∑

(u,v,w)

ϕ(νu,v,w)

= ϕ

∑
(r,s,t)

µr,s,t

 · ϕ
 ∑

(u,v,w)

νu,v,w

 = ϕ(a) · ϕ(b)

Lemma 12 (Characterization of ker(ϕ)).

ker(ϕ) =

{
a ∈ R+ : ∀r ∈ Nm ∀d ∈ Zn

∑
r−s=d

ad,r,s = 0

}
.

Proof. Consider an element

a =
∑

(r,s,t)

ar,s,tδ
rσsτ t ∈ R+, (r, s, t) ∈ Nm ×Nn ×Nn.

This element a ∈ ker(ϕ) if and only if

a ∈ ker(ϕ)⇔
∑

(r,s,t)

ar,s,tδ
rσs−t = 0

⇔
∑
r∈Nm

∑
d∈Zn

∑
s−t=d

ar,s,tδ
rσd = 0

⇔ ∀r ∈ Nm ∀d ∈ Zn
∑
r−s=d

ad,r,s = 0.

Theorem 10 (Representation of ker(ϕ)). ker(ϕ) = 〈σ1τ1 − 1, . . . , σnτn − 1〉 / R+.

Proof. ϕ is a morphism of rings, hence ker(ϕ) is an ideal in R+. From

ϕ(σjτj − 1) = 0, 1 ≤ j ≤ n,
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we get that ker(ϕ) ⊇ 〈σ1τ1 − 1, . . . , σnτn − 1〉.

For the converse let a ∈ ker(ϕ). Thus

∀r ∈ Nm ∀d ∈ Zn
∑
s−t=d

ar,s,t = 0. (1.32)

Let now a be given by

a =
∑

(r,s,t)

ar,s,t · δrσsτ t =
∑
r∈Nm

∑
d∈Zn

∑
s−t=d

ar,s,tδ
rσsτ t︸ ︷︷ ︸

Sr,d(a)

=
∑
r∈Nm

∑
d∈Zn

Sr,d(a),

where the sum ranges over (r, s, t) ∈ Nm × Nn × Nn. We consider such a summand
Sr,d(a) where (1.32) holds. Thus

Sr,d(a) =
∑
t∈Nn

ar,t+d,tσ
t+dτ tδr =

∑
t∈Nn

ar,t+d,tσ
tτ tδrσd −

∑
t∈Nn

ar,t+d,tδ
rσd

=
∑
t∈Nn

ar,t+d,t(σ
tτ t − 1)δrσd,

where in the last expression the expression

σtτ t − 1 = σt11 . . . σtnn · τ
t1
1 . . . τ tnn − 1 = (σ1τ1)t1 . . . (σnτn)tn − 1.

Now remark that the elements σiτi are central elements in R+:

σiτi · x = σi · τi(x)τi = σi(τi(x)) · σiτi = x · σiτi, x ∈ K,

which is just (1.31). Therefore we can find representations

(σiτi)
ti = (σiτi − 1)γi + 1, 1 ≤ i ≤ n

where γi = 1 + σiτi + (σiτi)
2 + . . .+ (σiτi)

ti−1 where 1 ≤ i ≤ n. Multiplying together we
obtain

(σ1τ1)t1 . . . (σnτn)tn = γ + 1,

where γ is a sum of terms each of which contains some expressions σiτi − 1 as a factor.
It follows that σtτ t − 1 = γ ∈ 〈σ1τ1 − 1, . . . , σnτn − 1〉. Consequently

Sr,d(a) ∈ 〈σ1τ1 − 1, . . . , σnτn − 1〉 ⇒ a =
∑
r∈Nn

∑
d∈Zm

Sr,d(a) ∈ 〈σ1τ1 − 1, . . . , σnτn − 1〉.
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Corollary 4 (Correspondence to positive exponents). Summarizing above considera-
tions, we get the isomorphism

R+ =

a :=
∑

(r,s,t)

ar,s,t δ
rσsτ t ∈ R : (r, s, t) ∈ Nm ×Nn ×Nn

/ 〈σiτi − 1 : 1 ≤ i ≤ n〉︸ ︷︷ ︸
ker(ϕ)

∼=

a :=
∑
(r,s)

ar,sδ
rσs : (r, s) ∈ Nm × Zn

 = S,

i.e. the ring of difference-differential operators can be viewn as a quotient of a polynomial
ring, where the dependence of the automorphisms and their compositorial inverses is
factored out.

1.4. The Interplay of the considered Rings

In this section, we want to give an overview, how the rings, that are considered in this
thesis relate to each other. In literature each of the rings is studied mostly independent
of each other. Appropriate choices of “the variable-part of the definition” makes it pos-
sible to pass from one ring to another.

The advantage of this abstraction is, that theorems proven in a larger class apply to
the smaller class. For instance, a theorem on multivariate dimension polynomials in
difference-differential rings applies to all rings that could be obtained from a difference-
differential ring.
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Ore-Ring O

∆-Σ-Ring

∆-Ring

K[X]

D-Ring

An(K)

σ = σid

δ = δ0

Σ = ∅

∆ = ∅

ϕ

K = K[X]

Σ = ∅
K = K[X]

σ = σid

δ = δ0
σ = σid

δ = δ0, σ = σid

The figure shows the relation between

• the ring of Ore-polynomials O,

• the ring of difference-differential operators D,

• the ring of differential operators with set of derivations ∆,

• the ring of difference operators D,

• the ring of commutative polynomials K[X].

At each of this rings, a theory of Gröbner bases for the computation of univariate and
multivariate dimension polynomials has been developed. The connection of this rings
already leads to the suspicion, that a common theory applies to all this rings.
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In the picture arrows indicate how one can pass from one ring to the other. For example,
the arrow from the ring of Ore-polynomials O to a differential ring indicates, that by
choosing σ as the identity operator σid, an Ore variable ∂ acts as derivation.

Section 1.3. shows how to construct the ring of difference-differential operators from the
ring of Ore-polynomials by the fundamental isomorphism ϕ and derive the character-
ization Corollary 4. From that, it is evident that we can model differential rings and
difference-rings by choosing the set of automorphisms resp. the set of derivations as the
empty set, and therefore connect this concepts.

As we have seen in section 1.3, an Ore-Variable ∂ is fully characterized by fixing an
unitary endomorphism σ and a σ-skew derivation δ (see Lemma 9), and using the com-
mutation rule

∂ · x = σ(x)∂ + δ(x), x ∈ K.

To pass from the Ore-Ring to a differential ring, the choice σ = σid and derivation δ
allows the Ore-variable ∂ to act by derivation and therefore gives rise to a differential ring.

Similar, by choosing the derivation δ as zero-derivation δ = δ0 and σ arbitrary we get a
difference-operator

∂ · x = σ(x)∂, x ∈ K,

and therefore a difference ring D.

If at the same time δ = δ0 and σ = σid we’ve got the commutation rule

∂ · x = x∂,

and therefore the model of a commutative polynomial.

Starting now from the difference-differential ring (R,∆,Σ), difference-rings and differential-
rings are easily obtained by choosing the set of derivations ∆ respectively the set of
automorphisms Σ as the empty set.

Commutative polynomials are obtained by setting the set of derivations ∆ := {δ0} and
the set of automorphisms Σ := {σid}. Using multiple copies of δ0 resp. σid allows to
model a multivariate polynomial ring K[X].

Finally, a difference-operator acts by σ · x = σ(x)σ, hence σ = σid gives rise to commu-
tative polynomials.

The Weyl-Algebra An(K), the ring of differential operators with polynomial coefficients,
can be constructed in at least two ways. One way would be to view it as a sub-algebra
of the algebra of linear operators of K[X], namely EndK(K[X]). In particular, An(K) is
generated by the operators x̂1, . . . , x̂n and d1, . . . , dn, where x̂i, di : K[X] → K[X] act
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naturally by

x̂i(f) := xi · f, di(f) :=
d

dxi
f, f ∈ K[X].

Another view would be that An(K) is the free algebra

K〈x1, . . . , xn, d1, . . . , dn〉

whose generators satisfy the commutation rule

xixj = xjxi, didj = djdi, dixj = xjdi + δi,j (1.33)

where δi,j is the Kronecker symbol, defined by δi,j = 1 if i = j and zero otherwise.

To clarify the last missing connectors from the (difference-)differential-ring, we observe
that An(K) a differential ring (and therefore as a particular difference-differential ring),
where the underlying ring is K[X], and monomials are of the form dl with l ∈ Nn.

The Relation to Algebras of Solvable Type

In literature, the notion of algebras of solvable type occured in [KRW90]. If K is a
(commutative) field of characteristic zero, they consider R = K〈X1, . . . , Xn〉, the free as-
sociative algebra in the variables Xi over K. Words w of length p in R can be represented
as Xi1 · · ·Xip . A word w is said to be a standard monomial if and only if

w = Xi1 · · ·Xip ∧ 1 ≤ i1 ≤ i2 ≤ . . . ≤ ip ≤ n.

In R, we can add terms, but we restrict the multiplication Xi and Xj to be the product
XiXj := Xi ·Xj only if 1 ≤ i ≤ j ≤ n. For the product of Xj with Xi where i, j are as
in the last sentence, we encounter the operation ?.

Suppose we have a linear order < on the set of words in R. On the generators X1, . . . , Xn

of R, we introduce a new, non-commutative, product ? that satisfies for all choices of
i, j such that 1 ≤ i ≤ j ≤ n the condition

∃cij ∈ K\{0} ∃pij ∈ R : Xj ? Xi = cijXiXj + pij ∧ LT(pij) < XiXj . (1.34)

In particular, it is possible to express every f ∈ R as a K-linear combination of standard
monomials (and hence, remove any occurence of the ?-product, leaving only the usual
product).

Definition 9. The algebra R = K〈X1, . . . , Xn〉 is called an algebra of solvable type if
and only if

• R is an associative ring with 1

• for all a, b ∈ K and indices 1 ≤ h ≤ i ≤ j ≤ k ≤ n, and t is a monomial in
Xi, . . . , Xj
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1. a ? bt = bt ? a = abt

2. Xh ? bt = bXht

3. bt ? Xk = btXk

• for 1 ≤ i ≤ j ≤ n there exist 0 6= cij ∈ K and pij ∈ R such that

Xj ? Xi = cijXiXj + pij , LT(pij) < XiXj .

In particular, we can consider f, g ∈ R and calculate w.r.t. the new product ? as follows:

f ? g = c · fg + h, c ∈ K, LT(h) < LT(fg).

The axioms we’ve considered so far, allows us to find that for f, g ∈ R we have:

• LT(f ? g) = c · LT(f) · LT(g) for some c ∈ K;

• For h ∈ R, LT(f) < LT(g) implies

1. LT(f ? h) < LT(g ? h)

2. LT(h ? f) < LT(h ? g).

So, there is quite some structure available. Let us consider the situation where we have
a solvable algebra with two generators, i.e. n = 2. This situation has been studied in
[LKM11]. It turns out, that condition (1.34) translates as follows

X2 ? X1 = c12 ·X1X2 + α ·X1 + β ·X2 + γ, c12, α, β, γ ∈ K.

In this setting we have the following ([LKM11, Theorem 1.]):

Theorem 11. Consider the free algebra

A(c, α, β, γ) := K〈x, y | y ? x = c · xy + αx+ βy + γ〉,

Let q be transcendental over K. Then, A(c, α, β, γ) is isomorphic to one of the five
algebras:

• the commutative algebra K[x, y];

• the first Weyl algebra A1 = K〈x, d | dx = xd+ 1〉;

• the shift algebra S1 = K〈s, x | sx = xs+ s〉;

• the q-commutative algebra Kq[x, y] = K(q)〈x, y | yx = q · xy〉;

• the first q-Weyl algebra A
(q)
1 = K(q)〈x, ∂ | ∂x = q · x∂ + 1〉.

From that, we see that algebras of solvable type in two generators are also contained in
our picture, and therefore related to our construction. We will in the upcoming chapters
introduce an algorithmic treatment of rings of that type.
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2. The Concept of Gröbner Reduction

At the introduction we have encountered a variety of non-commutative polynomial rings
that can be used to model physical problems in a suitable operator algebra.

By careful inspection of the procedures in current literature, we’ve got the increasing evi-
dence that the interplay of filtrations and Gröbner bases must have a key role. Therefore,
in this section, we are going to equip the considered rings with a certain type of filtration
(so called “monomial filtrations”). The filtration on the ring extends to a filtration on
the considered module. This “filter-space” (which we are defining more precisely in the
next section), viewn as a K-vector space, has as most important invariant its dimension.

For several rings a theory of computation of dimension has been considered. At [FL15a],
the author, in joint work with Günter Landsmann, has developed the concept of Gröbner
Reduction. This work was presented at ISSAC 2015 in Bath.

Gröbner reduction will provide an uniform approach of computing the vector space
dimension of filter-spaces of left modules. The introduced concept is an axiomatic ap-
proach to related techniques, characterizing the properties of a binary reduction relation.

With this layer of abstraction, we are in the position to prove several known characteri-
zations from a different point of view then in current literature, without explicit knowing
the reduction relation forehead.

2.1. Filtered Modules over Filtered Rings

As indicated in the introductory chapter, we let throughout this thesis denote R an
arbitrary ring with one, containing a commutative ring K as a subring. Sometimes, K
will coincide with a field K of characteristic zero, this will be emphasized at occurence.
Hence, we will use the symbol K if we want to express that K is a commutative ring, and
K to express that K equals a field K of characteristic zero. The symbol ≤π is understood
as in (1.20).

47



Definition 10 (Filtered Ring).
Let R be a ring. By a p-fold filtration on R we mean a family of additive subgroups

Rr ⊆ R, r ∈ Np,

such that

1. Rr ·Rs ⊆ Rr+s, r, s ∈ Np;

2. Rr ⊆ Rs, r ≤π s ∈ Np;

3. R =
⋃

r∈Np
Rr;

4. 1 ∈ R0

Definition 11 (Monomial Filtration).
A filtration of R is called monomial if and only if

1. R0 = K;

2. f ∈ Rr ⇒ T(f) ⊆ Rr, r ∈ Np;

General p-fold filtrations on rings and modules, with an application of computing the
Gelfand-Kirillov-Dimension, were studied in [Tor99].

Lemma 13 (R is left- and right-R0-module).
If R is a filtered ring, R0 is a subring and each Rr is a left and a right R0-module.

We will give now some examples of filtrations on rings appearing in literature. Later
on, we will use the filtrations appearing in this examples in applications involving this
filtered rings.

Example 6 (Filtration on K[X]).
If R := K[x1, . . . , xn], one possible (n-fold) filtration is given by

F (1)
r := {f ∈ R : ∀i : degxi(f) ≤ ri}, r = (r1, . . . , rn) ∈ Nn.

This filtration on R is an example of a monomial filtration.

Another example of a monomial filtration would be, for a term order 4, to consider the
subset of R

F (2)
r := {f ∈ K[x1, . . . , xn] : LT(f) 4 xr}, r ∈ Nn.

For the commutative semigroup in the multivariate polynomial ring, we will use the
common symbol Tn(X) (e.g. [AL94]), defined by

Tn(X) := {xk11 . . . xknn : (k1, . . . , kn) ∈ Nn}.
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(i.e. the commutative semigroup consisting of power products), to indicate monomials.
The first filtration contains at most finitely many monomials, the total number is given
by the multinomial coefficient

#|F (1)
r ∩ Tn(X)| =

(
r1 + . . .+ rn
r1, . . . , rn

)
=

(r1 + . . .+ rn)!

r1! · r2! · · · rn!
, r = (r1, . . . , rn) ∈ Nn,

The second filtration might consists of infinitely many monomials m that satisfy m 4 xr.

Example 7 (Filtration on D).
For the ring D, in [ZW08a] the following situation is considered: Let

λ = δk11 . . . δkmm σl11 . . . σ
ln
n ∈ Λm,n ⊆ D, (k1, . . . , km) ∈ Nm, (l1, . . . , ln) ∈ Zn,

and set
|λ|1 := k1 + . . .+ km, |λ|2 := |l1|+ . . .+ |ln|.

For a general operator f ∈ D we define

|f |ν = |
∑

λ∈Λm,n

fλλ|ν := max{|λ|ν : fλ 6= 0}, ν = 1, 2.

Then, a bivariate filtration on D is given by

Dr,s := {f ∈ D : |f |1 ≤ r ∧ |f |2 ≤ s}, r, s ∈ N.

To prove that

f ∈ Dp ·Dq ⇒ f ∈ Dp+q, p = (p1, p2) q = (q1, q2) ∈ N2,

take f ∈ Dp ·Dq, i.e. there exists a ∈ Dp and b ∈ Dq such that f = ab. Let

a =
∑

η∈Λm,n

aηη ∈ Dp, b =
∑

µ∈Λm,n

bµµ ∈ Dq, aη, bµ ∈ K,

such that T(a) ⊆ Dp and T(b) ⊆ Dq, or what is equivalent,

∀η ∈ T(a) : |η|1 ≤ p1 ∧ |η|2 ≤ p2, ∀µ ∈ T(b) : |µ|1 ≤ q1 ∧ |µ|2 ≤ q2.

By Lemma 6, we have that

T(ab) ⊆ {λ′µ : µ ∈ T(b)},

where
λ′ ∈ {δk′σl : ∃ δkσl ∈ T(a) such that k′ ≤π k}.

Hence, for all monomials η ∈ T(a) with |η|1 = |a|1, we get for all µ ∈ T(b) with
|µ|1 = |b|1 that

|λ′µ|1 = |λ′|1 + |µ|1 ≤ |η|1 + |µ|1 = |a|1 + |b|1 = p1 + q1.
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For | · |2 we use the property that the automorphisms have the same exponent vector
regardless of non-commutativity, i.e.

∀x ∈ K : σl · x = σl(x)σl ⇒ |σl · x|2 = |σl(x) · σl|2 = |σl|2,

hence by triangle inequality

|λ′ · µ|2 = |ηµ|2 ≤ |η|2 + |µ|2 = |a|2 + |b|2 = p2 + q2.

The remaining properties

Dr,s ⊆ Dr′,s′ (r, s) ≤π (r′, s′) D =
⋃
r,s

Dr,s 1 ∈ D0,0

are plain.

Example 8 (Filtration on O).
In [Lev07], the multivariate ring of Ore-polynomials in O(n) := {∂1, . . . , ∂n} over the
field K, denoted by O, with commutation rule

∂i · x = σi(x)∂i + δi(x), x ∈ K,

for σi an injective K-homomorphism and δi a σi-skew derivation is considered. Ring
elements are K-linear combinations of power products of the form

Tn
(
O(n)

)
:= {∂k = ∂k11 . . . ∂knn , k = (k1, . . . , kn) ∈ Nn}.

If now partition the set O(n) into p disjoint subsets O1, . . . ,Op such that

O1 := {∂1, . . . , ∂n1}
Ok := {∂n1+...+nk−1+1, . . . , ∂n1+...+nk}, 1 < k ≤ p,

and n1 + . . .+ np = n, then we denote

|∂k|Oi := |∂k11 . . . ∂knn |Oi =
∑
∂t∈Oi

kt.

A p-fold filtration on O is given by

Or := {f ∈ O : |f |Oi ≤ ri}, r = (r1, . . . , rp) ∈ Np,

where
|f |Oi := max{|η|Oi : η ∈ T(f)}, 1 ≤ i ≤ p.

In [Lev07], the monomials in Or are denoted by the symbol Θ(r1, . . . , rp). However, at
the first section, we reserved the symbol Θ for differential monomials. Therefore, we
suggest to use the symbol

O(r1, . . . , rp) := {o ∈ Tn
(
O(n)

)
: ∀i : |o|Oi ≤ ri}, (r1, . . . , rp) ∈ Np.
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instead. A different view on that would be, that we can build up this p-fold filtration as
an intersection of p univariate filtrations. This is achieved by setting

O(j)
ki

:= {f ∈ O : |f |Oj ≤ ki}, ki ∈ N, 1 ≤ j ≤ p,

and considering the filtration

O(k1, . . . , kp) := O(1)
k1
∩ . . . ∩ O(p)

kp
, k = (k1, . . . , kp) ∈ Np.

Writing the p-fold filtration in that way, reflects in the structure of a partial product
order. However, not every p-fold filtration has the structure of the product order.

Many more filtrations are know throughout literature, such as the Bernstein filtration
at the Weyl algebra, the ring of differential operators with polynomial coefficients.

Given now a ring R, the obvious question is how to construct a filtration. We are going
to answer the question in two steps. As a first step, we restrict ourselves to the case
p = 1. Later on, we will consider the general case. It is obvious that we consider certain
subsets Rk ⊆ R, that satisfy

• ∀k, l ∈ N : k ≤ l⇒ Rk ⊆ Rl;

•
∞⋃
k=0

Rk = R.

Let S denote the set of subsets Rk of R that fulfill this two rules.

One possible choice to design a filtration on R is to consider the family of subsets

R
(u)
k := {r ∈ R : u(r) ≤ k} ⊆ R,

where u is about to be characterized. This choice of R
(u)
k obviously satisfies the two

characteristic properties for the set S, i.e. R
(u)
k ∈ S. The following Lemma gives a full

characterization of univariate filtrations.

Lemma 14 (Characterization of one-dimensional filtrations). With the above notation,
the family

R
(u)
k := {f ∈ R : u(f) ≤ k}, k ∈ N,

is an univariate filtration of R if and only if the map u satisfies the following conditions:

1. If x ∈ R, then u(x) = 0 if and only if x ∈ K;

2. ∀x, y ∈ R : u(x+ y) ≤ max{u(x), u(y)};

3. ∀x, y ∈ R : u(xy) ≤ u(x) + u(y);

Furthermore, for any univariate filtration Rr, there exists a mapping u : R → N, satis-

fying conditions 1.-3. such that Rr = R
(u)
r .
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Proof. Clearly, if u : R → N is a mapping satisfying the above conditions and R
(u)
k =

{x ∈ R : u(x) ≤ k} (where k ∈ N), then the family {R(u)
k : k ∈ N} satisfies con-

ditions 1.-4. of Definition 10 (with p = 1). Note that, if x ∈ R
(u)
k and c ∈ K, then

u(cx) ≤ u(c) + u(x) = u(x). This observation and property 2. imply that every R
(u)
k is

a K-module. Conversely, suppose that u is a mapping from R to N such that the family

R
(u)
k = {x ∈ R : u(x) ≤ k}, k ∈ N, satisfies conditions 1.-4. of Definition 10. Since

R
(u)
0 = K and u(x) ≥ 0 for any x ∈ R, we obtain that x ∈ K is equivalent to u(x) = 0.

The other properties of the map u follow from the fact that every R
(u)
k is a K-module

and from the first two conditions of Definition 10.

In order to prove the last part of the statement, consider a univariate filtration {Rr : r ∈
N} of R and define the mapping u : R → N by setting u(x) = min{k : x ∈ Rk}. It
is easy to check that u satisfies conditions 1.-3. Indeed, since R0 = K, we have that
u(a) = 0 for any a ∈ K and, conversely, the equality u(x) = 0 (where x ∈ R) implies
that x ∈ R0 = K. Furthermore, the fact that every Rk is a K-module and the first two
properties of a filtration imply that the mapping satisfies conditions 2 and 3.

It remains to show thatR
(u)
r = Rr for all r ∈ N. As we have already seen, R

(u)
0 = K = R0.

Let x ∈ Rr. Then u(x) ≤ r, hence, x ∈ R(u)
r . Conversely, let y ∈ R(u)

r . Then u(y) ≤ r,
so y ∈ Rr. This completes the proof of the lemma.

Remark. The first part of Lemma 14 can be generalized to p-fold filtrations (p > 1) as
follows. Let us consider a mapping u : R→ Np and let ui := πi ◦u : R→ N (1 ≤ i ≤ p),
where πi is the projection of Np onto its i-th component: (a1, . . . , ap) 7→ ai. For any

r = (r1, . . . , rp) ∈ Np, let R
(u)
r = {x ∈ R : ui(x) ≤ ri for 1 ≤ i ≤ p}. Then, one can

mimic the corresponding part of the proof of Lemma 14 to obtain that {R(u)
r : r ∈ Np}

is a p-fold filtration of R if and only if the mapping u satisfies the following conditions:

1. If x ∈ R, then u(x) = 0 if and only if x ∈ K;

2. u(x+ y) ≤π (max{u1(x), u1(y)}, . . . ,max{up(x), up(y)}) for all x, y ∈ R;

3. u(xy) ≤π (u1(x) + u1(y), . . . , up(x) + up(y)) for all x, y ∈ R.

At the same time, if p > 1, then not every p-fold filtration is of the form {R(u)
r r ∈ Np}

with a mapping u : R→ Np satisfying the above conditions. It follows from the fact that
the same element of R can belong to different components Rr and Rs with incomparable
(with respect to ≤π) p-tuples r, s ∈ Np.

Example 9. Let K[x, y] be a polynomial ring in two variables over a field K, equipped
with a natural bifiltration

Rr,s := {f ∈ K[x, y] : degx(f) ≤ r ∧ degy(f) ≤ s}, (r, s) ∈ N2,
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and let the factor ring R = K[x, y]/〈x3 − y2〉 be equipped with the canonical image Rr,s
of the filtration {Rr : r ∈ N2}. Denoting the coset of a polynomial f ∈ K[x, y] by f , we
obtain that, say, xy2 ∈ R1,2 ∩R4,0 (e.g. x2 ∈ R4,0\R1,2).

Definition 12 (Filter valuation). Let M be a set of monomials contained in R, ν : M→
N. We extend ν to R by setting:

ν : R→ N, f 7→ ν(f) := {max{ν(m)} : m ∈ T(f)}.

We call ν a filter-valuation on R if and only if

Rk := {f ∈ R : ν(f) ≤ k}

defines a filtration on R.

Lemma 15 (Characterization of filter valuations). Let R be a ring containing a set of
monomials M ⊆ R, and let K be a field of characteristic zero. Further, let ν be a filter
valuation on R. Set

R
(ν)
k := {f ∈ R : ν(f) ≤ k}, R0 = K.

Then, for α, β, γ, λ, η ∈M, c ∈ K\{0}, r, s ∈ N, a, b ∈ R, for the statements

(1) ν(λ · c · η) ≤ ν(λ) + ν(η);

(2) ν(λη) ≤ ν(λ) + ν(η);

(3) ν(λ · c) = ν(λ);

(4) (M ∩R(ν)
r ) ·R(ν)

s ⊆ R(ν)
r+s;

(5) ∃α : ν(αβ) ≤ r ∧ ν(γ) ≤ s⇒ ν(βγ) ≤ r + s;

(6) ∃α : ν(αβ) ≤ r ⇒ ν(β) ≤ r;

(7) ν(β) ≤ ν(αβ);

(8) ν(ab) ≤ ν(a) + ν(b);

the following implications hold:

• (1)⇔ (8);

• (1)⇒ (2) ∧ (3) ∧ (4);

• (5)⇒ (2) ∧ (6);

• (6)⇔ (7);

• ((2) ∧ (7) ∧M ·M ⊆M)⇒ (5);
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Proof. First, we assume (1) and show (8). To that end,

a · b =

∑
µ∈M

aµµ

 ·
∑
η∈M

bηη

 =
∑
µ,λ∈M

aµµ · bηη, aµ, bη ∈ K,

hence
ν(ab) ≤ max

µ,η∈M
{ν(aµµ · bηη)} = max

µ,η∈M
{ν(µ · bηη)}.

Now, by (1), we conclude

ν(ab) ≤ ν(µ · bηη) ≤ ν(µ) + ν(η) ≤ ν(a) + ν(b).

For the converse, assume (8) and specialize a = λ and b = c · η. Then:

ν(ab) = ν(λ · c · η) ≤ ν(λ) + ν(c · η) = ν(λ) + ν(η).

(1) ⇒ (2) is seen by specializing c = 1. Similar, setting η to 1, shows that (1) ⇒ (3).
For proving (1)⇒ (4) take

a ∈ (M ∩R(ν)
r ) ·R(ν)

s ⇒ a = λ · b = λ ·
∑
µ∈M

bµµ =
∑
µ∈M

λ · bµµ,

ν(a) ≤ max{ν(λ · bµµ) : bµ 6= 0} ≤ ν(λ) + ν(µ) ≤ r + s⇒ a ∈ R(ν)
r+s.

(5)⇒ (2) is shown by taking α = 1. For (5)⇒ (6) take γ = 1 and observe that ν(1) = 0.
Next, we will show (6)⇒ (7). To that end, set r := ν(αβ) to get

ν(β) ≤ r ⇒ ν(β) ≤ ν(αβ).

For the converse, we take the chain of inequalities

ν(β) ≤ ν(αβ) ≤ r ⇒ ν(β) ≤ r.

Finally, we assume (2), (7) and that the monomials form a multiplicative monoid, we
want to show (5). We have

ν(βγ) ≤ ν(αβγ) ≤ ν(αβ) + ν(γ) = r + s.

Definition 13 (Set of p-fold filtrations). We denote the set of all p-fold filtrations on
the ring R by the symbol Fp(R), meaning that there is a Np-indiced family of subsets,
satisfying the conditions of Definition 10. For filtrations F and G we set

(F ∩G)(r,s) := Fr ∩Gs, F ∈ Fp(R), G ∈ Fq(R), r ∈ Np, s ∈ Nq.

Lemma 16 (Intersection of Filtrations). Given a ring R, let F ∈ Fp(R) be a p-fold
filtration, G ∈ Fq(R) a q-fold filtration on R, such that F and G are distinct. Then
F ∩G ∈ Fp+q(R).
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Proof. To prove property 1. take

a ∈ (F ∩G)(r,s) ∧ b ∈ (F ∩G)(t,u) ⇔ a ∈ Fr ∩Gs ∧ b ∈ Ft ∩Gu.

From that, we get that the product ab ∈ FrFt ⊆ Fr+t and ab ∈ GsGu ⊆ Gs+u, hence

ab ∈ Fr+t ∩Gs+u = (F ∩G)(r+t,s+u).

For property 2. assume that (r, s) ≤π (r′, s′). Then, Fr ⊆ Fr′ and Gs ⊆ Gs′ . Therefore,

(F ∩G)(r,s) = Fr ∩Gs ⊆ Fr′ ∩Gs′ = (F ∩G)(r′,s′).

To show property 3., we take the two-fold union⋃
r,s

(F ∩G)(r,s) =
⋃
r

⋃
s

(Fr ∩Gs) =
⋃
r

Fr ∩
⋃
s

Gs = R ∩R = R.

Finally, 1 ∈ (F ∩G)(0,0).

Lemma 17. Given a p-fold filtration F ∈ Fp(R) of R, and a partition (p1, . . . , pn) of p
s.t. p = p1 + . . .+ pn. We define n projections

πi : Fp(R)→ Fpi(R), F 7→ πi(F )t :=
⋃
i∈I

Fr1,...,ri−1,t,ri+1,...,rn 1 ≤ i ≤ n,

where the union ranges over all tuples

I := {i := (r1, . . . , ri−1, ri+1, . . . , rn) ∈ Np1 × . . .×Npi−1 ×Npi+1 × . . .×Npn}.

Then, πi(F ) is a pi-fold filtration of R.

Proof. Throughout this proof, we abbreviate

(t, r̂) := (r1, . . . , ri−1, t, ri+1, . . . , rn).

Further, we set

sup{(t, r̂), (t, ŝ)} := (max{r1, s1}, . . . ,max{ri−1, si−1}, t,max{ri+1, si+1}, . . . ,max{rn, sn})
= (t, sup{r̂, ŝ}).

To show that π(F )t are vector spaces, take a, b ∈ πi(F )t. Then, there exists r̂, ŝ such
that

a ∈ F(t,r̂) ∧ b ∈ F(t,ŝ) ⇒ a, b ∈ Fsup{(t,r̂),(t,ŝ)} = F(t,sup{r̂,ŝ}) ⊆ πi(F )t.

If a ∈ πi(F )t, b ∈ πi(F )t′ then there exist r̂, ŝ such that a ∈ F(t,r̂) and b ∈ F(t,ŝ). Thus,
the product

ab ∈ F(t+t′,r̂+ŝ) ⊆ πi(F )t+t′ .

The remaining properties are obvious.
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A special case is that each p-fold filtration of R has p projections onto F1(R)

πi : Fp(R)→ F1(R), 1 ≤ i ≤ p.

Now, we consider the converse.

Lemma 18 (Projection of Filtrations). For each integer tuple (p1, . . . , pn), there is a
map

ϕ : Fp1(R)× . . .×Fpn(R)→ Fp1+···+pn(R)(
F (1), . . . , F (n)

)
7→ ϕ

((
F (1), . . . , F (n)

))
:= F (1) ∩ . . . ∩ F (n).

The map ϕ is injective.

Proof. We generalize the notion (F ∩G)(r,s) from before,(
F (1), . . . , F (n)

)
(r1,...,rn)

:= F (1)
r1 ∩ . . . ∩ F

(n)
rn

where each F (i) is a pi-fold filtration and ri ∈ Npi . Assume that

ϕ
((
F (1), . . . , F (n)

))
= ϕ

((
G(1), . . . , G(n)

))
,

i.e. we have for (r1, . . . , rn) ∈ Nn that(
F (1), . . . , F (n)

)
(r1,...,rn)

=
(
G(1), . . . , G(n)

)
(r1,...,rn)

.

We obtain for each 1 ≤ i ≤ n:

F (i)
ri = F (i)

ri ∩R = F (i)
ri ∩

⋃
rj 6=ri

 n⋂
j=0

F (j)
rj

 =

n⋃
j=0

 n⋂
j=0

F (j)
rj

 =

n⋃
j=0

 n⋂
j=0

G(j)
rj


= G(i)

ri ∩
⋃
rj 6=ri

 n⋂
j=0

G(j)
rj

 = G(i)
ri ∩R = G(i)

ri .

Corollary 5. Given a partition p = p1 + . . .+ pn,

1. For 1 ≤ i ≤ n the association F 7→ πi(F ) provides a map

πi : Fp(R)→ Fpi(R)

2. The association ϕ is a map

ϕ : Fp1(R)× . . .×Fpn(R)→ Fp(R).
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3. Let π := (π1, . . . , πn), i.e. π : Fp(R)→ Fp1 × . . .×Fpn(R). Then

π ◦ ϕ = id.

Consequently the map ϕ is a section and π is the corresponding retraction.

Having now fixed a filtration on a ring R, we consider now a finitely generated left R-
module M , that is generated by {h1, . . . , hq}, such that M inherits a filtration on R in
the natural way, by setting

Mr := Rrh1 + . . .+Rrhq, r ∈ Np.

Definition 14 (Filtered Module). Let M be a left R-module. A p-fold filtration of the
module M with respect to the p-fold filtered ring R is a family

Mr ⊆M, r ∈ Np

of additive subgroups of M with the properties

1. Rr ·Ms ⊆Mr+s, r, s ∈ Np;

2. Mr ⊆Ms, r ≤π s ∈ Np;

3. M =
⋃

r∈Np
Mr.

M together with such a filtration is called a filtered module over the filtered ring R.

Notation. If X is an arbitrary subset of a filtered module

M =
⋃
r∈Np

Mr

wet set
Xr := X ∩Mr, r ∈ Np.

Definition 15 (Artinian Ring). We call a ring left-artinian if and only if it satisfies
the descending chain condition on left-ideals (i.e. every strictly descending chain of
left-ideals must terminate).

Definition 16 (Noetherian Module). A left R-module M is called noetherian if and only
for submodules of M the ascending chain condition holds (i.e. every strictly ascending
chain of submodules must terminate).

In the following Lemma we want to give an intuition about the nature of noetherian
modules. An overview is given in [RM87].

Lemma 19 (Characterization of noetherian modules).
The following statements are equivalent:

• M is a noetherian R-module;
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• Every submodule of M is finitely generated;

• Every collection of submodules of M has a maximal element;

Moreover, for given a filtered ring R and a filtration Mr of the R-module M

• If R is a noetherian ring and M is a finitely generated R-module, then M is
noetherian;

• For each r ∈ Np, Mr is a left R0-module.

Obviously, if M is a left module over a left-artinian ring R then M is noetherian is
equivalent to saying M is a finitely generated left R-module, and satisfies the ascending
chain condition.

Example 10. We consider, the skew polynomial ring S = R[x;σ, δ] where x acts on R
by

x · r = σ(x) · x+ δ(r), δ(rs) = σ(r)δ(s) + sδ(r), r, s ∈ R.

In [RM87, Theorem 2.9 (iv)], it is shown 1, that if σ is an automorphism and the ring
R is (left-) noetherian, then S is (left-) noetherian. But remark, that σ bijective is
an additional assumption, as condition (1.29) only allows to deduce that σ is injective.
However, in applications, the assumption that σ is an automorphism is often fulfilled,
and induction allows to prove a multivariate analog of Hilbert’s basis theorem (Theorem
7).

A p-fold filtration of R extends naturally to a p-fold filtration on free modules: Let R
be a filtered ring, and

F = Re1 ⊕ . . .⊕Req
the free R-module on the set E := {e1, . . . , eq}. Then,

Fr = Rre1 ⊕ . . .⊕Rreq, r ∈ Np, (2.1)

defines a filtration of the free module F . If a filtration is monomial with respect to the
basis M, then so is the extended filtration of F with respect to the basis ME, meaning
that always

f ∈ Fr ⇒ T(f) ⊆ Fr.

By using above notation, we immediately get that if R = K(M) then F = R(E) = K(ME).

Example 11 (Filtration on free D-module F ).
We extend the order functions of the difference-differential ring D to the free module
F = Dq: For λe ∈ Λm,nE and ν = 1, 2 let

|λe|ν := |λ|ν
1While in [RM87] the skew-polynomial ring S = R[x;σ, δ] is considered as right R-module, i.e.

elements in S are written as
n∑
k=0

xkbk with bk in R, we reformulate their approach to left-modules.
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and for a module element let

|f |ν := max{|t|ν : t ∈ T(f)}, f =
∑

t∈Λm,nE

ftt ∈ F.

This gives the extended filtration on F - for r, s ∈ N

Fr,s = Dr,se1 ⊕ · · · ⊕Dr,seq = {f ∈ F : |f |1 ≤ r ∧ |f |2 ≤ s}.

From |ej |ν = 0 it is clear that E ⊆ F0,0 whence (Fr,s) is a bivariate filtration. Since the
ring filtration is monomial, the extended filtration is so too. From that, we see that the
following is equivalent

• f ∈ Fr,s

• ∀t ∈ T(f) : |t|1 ≤ r ∧ |t|2 ≤ s

• T(f) ⊆ Fr,s

Let R be a filtered ring, and M,N filtered R-modules. An R-homomorphism ϕ : M → N
is called a filter respecting homomorphism (or simply a morphism) if it respects the filter
structure, that is, if

ϕ(Mr) ⊆ Nr r ∈ Np.

A morphism induces R0-linear maps Mr → Nr for all r ∈ Np.

Lemma 20 (Homomorphic images of Filtration).
Let R be a filtered ring and ϕ : M → N a homomorphism of R-modules.

1. If M is filtered over R then im(ϕ) is filtered by setting im(ϕ)r = ϕ(Mr). ϕ is then
a morphism M → im(ϕ).

2. If N is filtered over R then M is filtered by setting Mr = ϕ−1(Nr). ϕ is then a
morphism M → N .

Thus, each finitely generated R-module M = Rh1 + · · · + Rhq inherits a filtration by
first extending the family Rr to the free module F ∼= Rq and then pushing down with a
map

π : F →M, ei 7→ π(ei) := hi, 1 ≤ i ≤ q.

By specializing Lemma 20 to inclusion N ↪→ M any submodule N ⊆ M naturally
inherits a filtration from M via

Nr = N ∩Mr.

59



2.2. Reduction Relations

The key ingredient of Gröbner basis techniques is the notion of reduction. A reduction
relation ρ on X is a binary relation ρ ⊆ X × X. We write f −→ h to indicate that
(f, h) ∈ ρ, and f −→? h when there is a chain of finite length

f = f0 −→ f1 −→ · · · −→ fk = h, k ∈ N.

Note, that also k = 0 is allowed in this setting, that indicates that f reduces to itself.
An equivalent characterization is given by

f −→? h :⇔ (f, h) ∈
⋃
k∈N

ρk.

We give now a couple of examples of reduction relations.

Example 12 (Polynomial reduction).
For the multivariate polynomial ring over the field K, the polynomial f reduces modulo
g to h in one step, if and only if a monomial m ∈ Tn(X) exists such that

LT(f) = LT(m · g) ∧ h = f −m · g, f, g, h ∈ R, m ∈ Tn(X).

Again, Tn(X) is the commutative semigroup of power products in x1, . . . , xn.

Winkler and Zhou [ZW08a] give a reduction relation for the ring D.

Example 13 (Relative reduction).
Let ≺ and ≺′ be generalized term orders on Λm,nE, F a finitely generated free D-module.
For f, g, h ∈ F ,

f
rel−→g h ⇔ ∃λ ∈ Λm,n : LT≺(λg) = LT≺(f) ∧ LT≺′(λg) 4′ LT≺′(f) ∧

h = f − LC≺(f)/LC≺(λg) · λg.

Therefore, writing −→g for ordinary leading term reduction w.r.t. ≺ by g, we obtain

f
rel−→g h :⇔ f −→g h ∧ LT≺′(λg) 4′ LT≺′(f).

With I we denote the set of ρ-irreducible elements, that is

I := {x ∈ X : 6 ∃y ∈ X such that (x, y) ∈ ρ}. (2.2)

A subset Y ⊆ X is called ρ-stable if y ∈ Y and y −→ z implies that z ∈ Y .

For a Gröbner reduction, we will later on consider stable reduction relations on filtered
free modules.
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If ρ ⊆M ×M is a relation on a R-module M , then for k ∈ N we set

Zk := {f : (f, 0) ∈ ρk}, Z≤k :=
⋃
l≤k

Zl, Z :=
∞⋃
k=0

Zk, (2.3)

i.e. the set Zk holds the elements f ∈M that reduce to zero in k steps, the set Z≤k hold
elements that reduce in at most k steps to zero, and Z all elements that reduce to 0. It
is plain, that

Z =

∞⋃
k=0

Z≤k = {f ∈M : f −→? 0}.

Obviously 0 ∈ Z, because 0 reduces in zero steps to 0, hence 0 ∈ Z0 ⊆ Z.

In the following we set up a list of axioms, which make a relation appropriate for reducing
module elements to normal forms.

Definition 17 (Strong Reduction).
Let M be an R-module, N ⊆M a submodule and ρ a binary relation on M . ρ is called
a reduction for N provided that

1. ρ is noetherian, i.e. every sequence

f1 −→ f2 −→ · · ·

terminates;

2. the set of irreducibles I (compare (2.2)) is a monomial K-linear subspace of M ,
that is, I is a K-vector space and

∀f ∈M : f ∈ I ⇒ T(f) ⊆ I;

3. f −→ h⇒ f ≡ h (mod N);

ρ is called a strong reduction for N if it satisfies in addition

4. I ∩N = 0, that is, every non-zero element in N is reducible.

Lemma 21. A relation that satisfies axioms 1-4, i.e. a strong reduction, is noetherian
and confluent2.

Proof. The case where f ∈ I is trivial, since f can’t be reduced further. On the other
hand, if f ∈ N it reduces by axiom 4. in a finite number of steps (axiom 1.) to an
irreducible element i (which we call normal form). Obvious, i ∈ I and by axiom 3. it is
in N . Therefore we conclude i = 0. Suppose, there exist two different normal forms i1
and i2, then their difference i1− i2 is contained in I ∩N and therefore zero. This proves
that i1 = i2, or what is equivalent, the reduction relation −→ is confluent.

2A reduction relation ρ ⊆ X ×X is called confluent if and only if for all a, b, c ∈ X with b not equal
to c, such that a → b and a → c, implies the existence of d ∈ X such that b →? d and c →? d. A
noetherian reduction relation that is confluent is said to have the Church-Rosser property. In literature,
this property is sometimes also called diamond property. The theory of polynomial Gröbner basis is
developed upon this presentation in [Win96].
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Notation. If F is a free module, and −→ is strong reduction, we will write NF(f) for
the unique normal form of f ∈ F . Thus, we always have

f −→? NF(f).

In the following we will characterize a reduction relation by describing the behavior on
arbitrary modules.

Lemma 22 (Additive Decomposition by strong reduction).
Let M be an R-module, N ⊆ M be a submodule of M , and the relation ρ ⊆ M ×M be
a (noetherian) reduction on M . Then, we have

1. M = N + I;

2. I ∩N ⊆ 0⇔ Z = N .

Consequently, if F is a free module and ρ is a strong reduction for N ⊆ F , then

F = N ⊕ I and Z = N.

Proof. The additive decomposition is plain. To prove that I ∩N ⊆ 0⇒ Z = N , observe
that by axiom 1. and 3. the zero set Z is contained in N . Assume now, that I ∩N ⊆ 0,
and let n ∈ N . Then, there exists an irreducible element r ∈ N such that n −→? r.
Thus, r ∈ I ∩ N ⊆ 0 and so n −→? 0, i.e. n ∈ Z. For the converse, assume that
x ∈ I ∩N , x −→? 0 and x is irreducible. Therefore x = 0. Consequently I ∩N ⊆ 0.

One might is now led to the question how such a reduction relation might look like. We
want to stay as general as possible, but give the reader the intuition that this concept
is actually available on an arbitrary module.

Lemma 23 (Existence of strong reduction).
Let N be an arbitrary submodule of the free R-module F . Then, there exists a strong
reduction for N .

Proof. Assume that N ⊂ F whence ME 6⊆ N . Choose a set S being maximal in the
non-empty inductively ordered set {T ⊆ME : K ·T ∩N = 0}. Put C = K ·S. Obviously

F = K(ME) = N ⊕ C,

so consider projection pC : N ⊕ C −→ C and define a reduction relation

ρ = {(f, h) ∈ F × F : f 6∈ C ∧ h = pC(f)}.

It is clear that ρ terminates. The set I of ρ-irreducible elements in C which is a monomial
K-linear space. If f −→ h then

f = n+ c ∈ N ⊕ C

and h = c which shows that f ≡ h (mod N). Finally, I ∩N = C ∩N = 0, and thus ρ is
a strong reduction for N .
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For applications one might wants to consider restricted reduction relations, where we do
not leave a subspace of the considered module. This is of particular interest for filtered
modules. Therefore we conclude the definition started before by giving the defining
property for Gröbner reduction.

Definition 17 (Continued). Let R be a filtered ring, F the free R-module generated by
E := {e1, . . . , eq}. Let N ⊆ F be a submodule. A strong reduction ρ ⊆ F × F for N is
called a Gröbner reduction for N if it satisfies the axiom

5. Fr is ρ-stable for all r ∈ Np.

Lemma 24 (Additive Decomposition by Gröbner reduction).
Let R be a filtered ring, F the free R-module generated by {e1, . . . , eq}. Let N ⊆ F be

a submodule, ρ ⊆ F × F be a Gröbner reduction. Then,

Fr = Nr + Ir, r ∈ Np. (2.4)

Consequently
F = N ⊕ I, Fr = Nr ⊕ Ir, r ∈ Np. (2.5)

Proof. Let f ∈ Fr. Reduce f to normal form f −→? h = NF(f). By axiom 3. we
have that f ≡ h (mod N), therefore f − h = n ∈ N . By axiom 5. h ∈ Fr. Thus,
h ∈ I ∩Fr = Ir. As both, f and h are in Fr, so is n. Therefore, f = n+ r ∈ Nr + Ir.

Remark. Equation (2.4) corresponds to ’division with remainder’ in the classical the-
ory. Similar, equation (2.5) describes ’uniqueness of normal forms’ in Gröbner basis
computation.

Lemma 25 (Monomial submodules and Gröbner reduction).
Assume that the set of monomials M in R is a monoid. Let N ⊆ F be a monomial
submodule (i.e N is generated by a subset of ME). Choose a monomial K-linear com-
plement I of N in F (e.g., I = K · S where S = {t ∈ ME : t 6∈ N}). Let pI denote
projection N ⊕ I −→ I and let ρ ⊂ F × F be the relation

ρ = pI |F\I .

Then, with arbitrary monomial filtration, ρ is a Gröbner reduction for N .

Proof. Let N be generated by X ⊆ ME. The general element of N is n =
∑

x∈X axx.
The elements ax ∈ R are

ax =
∑
m∈M

amx ·m, amx ∈ K whence n =
∑
x∈X

∑
m∈M

amx ·mx. (2.6)

Since MM ⊆M, the expressions mx are monomials in ME. After (possibly) some cancel-
lations, equation (2.6) results in the unique representation of n as K-linear combination
of ME. Since each surviving term is a (monomial) multiple of a generator monomial of
N , it is in N , this means, N is a monomial module.
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Let S = {t ∈ ME : t 6∈ N}, and let I = K · S, the vector space generated by elements
from S. By construction, I is a monomial subspace of F .

Evidently N ∩ I = 0.

Write f ∈ F as K-linear combination of elements of ME. We may split this expression
as

f =
∑
t∈S

ftt+
∑
t6∈S

ftt, ft ∈ K

which shows that f ∈ N + I. Consequently F = N ⊕ I. The relation ρ results in

ρ : f −→ h⇔ f ∈ F \ I ∧ h = pI(f)

Thus, with exception of elements in I, every f ∈ F reduces to normal form in one step.
If f −→ h then f ∈ F \ I and h = pI(f) = pI(n + r) = r; thus, f − h = n ∈ N , i.e.,
f ≡ h mod N . Consequently ρ is a strong reduction for N .

Let f ∈ Fr and f −→ h. By monomiality of Fr, T(f) ⊆ Fr. Because f = n + h is a
direct decomposition, it follows that T(h) ⊆ Fr. Consequently h ∈ Fr and ρ is a Gröbner
reduction.

2.3. Computation of Dimension in Finitely Generated Modules

The task of computing the dimension in finitely generated modules of differential and
difference-differential operators has been considered by many researchers.

But already the first legitimate question in this context “What Dimension is actually
meant?” is not obviously answered. While in general topological spaces X the Krull-
Dimension appears (the supremum over all lengths of chains (X0, X1, . . . , Xn), where
Xk ⊆ X, ordered by inclusion), in multi-filtered rings the Gelfand-Kirillov Dimension
[Tor99] is an important quantity.

Let K be a field of characteristic zero. Previously, we have considered filter-spaces Fr
which are subspaces of F and form a K-vector space. As a K-vector space, we have
a basis, the number of K-linear independent basis elements is called the vector space
dimension. Vector space dimension is described by the Hilbert-Function. When talking
about dimension in this section we mean vector-space dimension over the field K, and
restrict our attention to finite-dimensional spaces. For an algebra over a field, the di-
mension as vector space is finite if and only if its Krull dimension is 0. We will denote
dimension of the vector space V over K by the symbol dimK(V ).

In differential algebra, the notion of differential dimension polynomial was introduced
by Kolchin [Kol64]. This dimension polynomial carries certain invariants, and its com-
putation has been addressed for the last 50 years. Methods for its computation include
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characteristic sets as well as Gröbner basis techniques. After all, the differential di-
mension polynomial is obtained from a differential ring equipped with an univariate
filtration, namely the order of the differential operator. This was the starting point of
considerations in different base rings (that we’ve considered in the introduction), for a
survey on related techniques see [KLAV98, Lev07, ZW08a, ZW08b, Lev12].

In this section, we let the commutative subring K ⊆ R contained in R be a field K of
characteristic zero.

Theorem 12 (Main Theorem on Dimension).
Let M = Rm1 + · · ·+Rmq be a finite R-module with free presentation

0 −→ N −→ F
π−→M −→ 0

where F = Rq. Assume given a strong reduction for N with set of irreducibles I. Let
V ⊆ F be a monomial K-linear subspace that is ρ-stable and let U be the set of irreducible
monomials in V . Then π(U) is a K-vector space bases for π(V ). In particular we obtain
that

dimK π(V ) = |π(U)| = |U |.

Proof. Let f, h ∈ I. Then π(f) = π(h) implies that f − h ∈ N ∩ I = 0 whence π|I is
injective. Since U = I∩ME∩V ⊆ I it is plain that π|U is injective, whence |π(U)| = |U |.
Let ∑

j

cjπ(µj) = 0, cj ∈ K, µj ∈ I ∩ME.

Then
∑

j cjµj ∈ N ∩ I = 0. Therefore cj = 0 ∀j. This demonstrates that π(I ∩ME)
is K-linearly independent. Thus π(U) ⊆ π(I ∩ME) is linearly independent. Now we
may reduce elements f ∈ F until an irreducible r is reached. Doing this for elements
f ∈ V and taking into account that the reduction stays inside V we obtain an irreducible
r ∈ V . Thus

∀f ∈ V ∃r ∈ I ∩ V with π(r) = π(f).

Now take m ∈ π(V ). ∃f ∈ V with m = π(f). Choose r ∈ I ∩ V with π(r) = π(f),

r =
∑
j

cjµj , cj ∈ K, µj ∈ME.

Since V is monomial, all µj are in V and because r ∈ I, all terms of r must be in I.
Therefore

µj ∈ V ∩ME ∩ I = U ∀j.

Consequently

m = π(r) =
∑
j

cjπ(µj) ∈ K · π(U).

So 〈π(U)〉K = V and π(U) is a K-basis.
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In the general situation consider a finite module M over an arbitrary monomially filtered
ring R

R =
⋃
r∈Np

Rr M = Rm1 + · · ·+Rmq.

Choose a free presentation

0 −→ N −→ F
π−→M −→ 0 (2.7)

with F = Rq. We get the following corollary.

Corollary 6 (Dimension in Filterspaces).
Let F be equipped with extended filtration from R and consider M with the filtration
Mr = π(Fr). For r ∈ Np let Ur be the set of irreducible monomials in the filter space Fr.
Assume given a Gröbner reduction for N . Then the sets π(Ur) provide K-vector space
bases for the spaces Mr. In particular

dimKMr = |π(Ur)| = |Ur| r ∈ Np.

Proof. Apply Theorem 12 with V = Fr.

Combining this corollary with Lemma 25 gives:

Corollary 7 (Dimension in Monomial Submodules).
Assume that the monomials in R form a multiplicative monoid, let N ⊆ F be a monomial
submodule. Let S = {t ∈ ME : t 6∈ N}. Then, for arbitrary monomial filtration Rr and
extended filtration Fr, we have

dimK
(
F/N

)
r

= |Sr|.

Proof. Let I = K · S. Then I ∩ME = S and thus I ∩ME ∩ Fr = S ∩ Fr = Sr. Using
Corollary 6 proves the assertion.

Let us consider a degenerate case, where the filtration Fr is chosen trivial by setting for
all r ∈ Np the filter space Fr = F . Careful specialization of Corollary 6, gives us the
following interesting result.

Corollary 8 (Irreducible Monomials provide Basis).
Let F be the free module F = K(ME), and let I denote the irreducible monomials in F .
Choose the free presentation (2.7). Then, the monomials π(I ∩ME) provide a linear
independent K-basis of the R-module M .

Proof. To prove π(I ∩ME) is K-linear independent let (for λk ∈ I ∩ME)

n∑
k=0

ck π(λk) = π

(
n∑
k=0

ck λk

)
= 0⇒

n∑
k=0

ck λk ∈ N ∩ I ⇒
n∑
k=0

ck λk = 0,

and therefore ck = 0 for all k.
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To show that π(I ∩ME) spans M consider y ∈ M , hence there exists a sequence of
coefficients ck ∈ K and λk ∈ I ∩ME such that

y ∈M ⇒ y = π

(
n∑
k=0

ckλk

)
=

n∑
k=0

ckπ(λk).

The claim follows.

We now consider the situation as in Theorem 12, that is, we are concerned with the
free presentation (2.7). To compute dimK π (V ) with V ⊆ F where V is a monomial
set, we can now use the following algorithm (formulated by Günter Landsmann). The
algorithm presumes that the monomials contained in V , namely V ∩ME, can be finitely
enumerated, i.e. there exist finitely many monomials m ∈ V ∩ME.

Algorithm 1 Compute dimK π (V )

Require:
R = K(M);
F a free R-module generated by E := {e1, . . . , eq};
V ⊆ F a monomial subset;

Ensure: dimK π(V )
d← dimK(V );
B ← ∅;
order the set V ∩ME : V ∩ME = {sj : 1 ≤ j ≤ d};
for 1 ≤ j ≤ d do

compute NF(sj) and write it as K-linear combination of monomials

NF(sj) =
∑
t∈ME

sjt · t

B ← B ∪ T(NF(sj)) where T(NF(sj)) = {t : sjt 6= 0};
N ← |B|;
order the set B : B = {ti : 1 ≤ i ≤ N};
construct the d×N matrix M := (Mi,j) with Mi,j = sjti ;

. The j-th row of M is the coordinate vector of sj in the basis B
return rk(M)

Theorem 13. Algorithm 1 is correct.

Proof. Since V is monomial, we have V = K · (V ∩ME). Therefore

π(V ) = π(K · (V ∩ME)) = K · π(V ∩ME),

so the set of all π(t) with t ∈ V ∩ME generates π(V ) as K-module. Obviously, we may
replace each such t by its normal-form NF(t), i.e. π(V ) is K-generated by the set

{π(NF(t)) : t ∈ V ∩ME},
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and this set must contain a K-basis as a subset. The rank is now the desired dimension.

2.4. Example from Physics

2.4.1. The Wave-Equation

The wave-equation is an example of a hyperbolic linear partial differential equation
of second order. It can be used, to model physical phenomena such as Hooke’s Law,
appearing at the modelling of the stiffness of a spring. The homogeneous wave-equation
in d-dimensional space is given by

1

c2

∂2u

∂t2
−∇2

xu =
1

c2

∂2u

∂t2
−

d∑
i=1

(
∂2u

∂x2
i

)
= 0, c > 0. (2.8)

We let ∇2
x denote the Laplace-Operator applied to the spatial coordinates x1, . . . , xd,

which is usually denoted by ∆. However, we’ve reserved ∆ for the set of derivations of a
(difference-) differential ring, that’s why we’ve decided to use this notion. Without loss
of generality, we assume that c = 1, which can be achieved by substituting t′ = c · t.

Let’s model this equation in terms of a module of differential operators over a differential
field. To that end, we consider the differential field K(x1, . . . , xd, t) with set of derivations
∆ := {δx1 , . . . , δxd , δt}, where δk acts by derivation w.r.t. k, and consider the cyclic
module that is generated by the wave-equation, i.e. we consider the cyclic free module
generated by

gd := δ2
t −

d∑
i=1

δ2
xi , (2.9)

that corresponds to (2.8). Let Θ denote the commutative semigroup generated by ∆,
we define on Θ the map

ord∆ : Θ→ N, δk1x1 . . . δ
kd
xd
δktt 7→ ord∆(δk1x1 . . . δ

kd
xd
δktt ) := k1 + . . .+ kd + kt, (2.10)

and extend to the ring of differential operators R, as in Definition 12.

Lemma 26. The family of subsets

Rk := {f ∈ R : ord∆(f) ≤ k} (2.11)

forms a filtration on R, i.e. ord∆(·) is a filter valuation in the sense of Definition 12.

Proof. As it is easily seen (for example at (1.19) with σ = id), we have for the choice
θ1 = δm, θ2 = δn where m,n ∈ Nd+1, and for c ∈ K\{0} that

θ1 · c · θ2 = c · θ1θ2 +
∑
l�πm

cl · δl · θ2,
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the coefficients cl might zero. In particular we have

ord∆(θ1 · c · θ2) = ord∆(θ1) + ord∆(θ2).

From that, we obtain by Lemma 15 that for all a, b ∈ R we have

ord∆(ab) ≤ ord∆(a) + ord∆(b)⇒ RrRs ⊆ Rr+s.

The remaining properties are obvious.

The same reasoning can be applied to other settings.

Example 14 (Example for Filter-valuations). The following maps are examples for filter
valuations:

• The total degree deg(·) at the ring of commutative polynomials;

• The degree |·|Oi w.r.t. a partition of Ore-variables O := {∂1, . . . , ∂n} into p disjoint
subsets O1, . . . ,Op.

Computation of the Univariate Hilbert Function

Suppose, we want to find the univariate dimension polynomial for the cyclic module gen-
erated by gd as in (2.9). If R denotes the ring of differential operators of the differential
field (K(x1, . . . , xd, t),∆), we have the exact sequence

0 −→ Rgd −→ R
π−→ R/Rgd −→ 0, (2.12)

and we consider the reduction relation

f −→ h :⇐⇒ h = f − c · δktt δk1x1 . . . δ
kd
xd
· gd ∧ LT(f) = LT(δktt δ

k1
x1 . . . δ

kd
xd
· gd). (2.13)

By Corollary 6 we need to find a closed form representation for the irreducible monomials.
We fix an order on the indeterminates by ranking

δt > δx1 > . . . > δxd . (2.14)

An element is reducible with respect to the wave-equation if the order in the first ranked
variable δt is ≥ 2, therefore the irreducibles are those which have order in δt equal to zero
or one. Hence, a possible description of the irreducible monomials contained in Θ ∩ Rr
is given by

|I ∩Θ ∩Rr| =

{
(0, k1, . . . , kd) :

d∑
i=1

ki ≤ r

}
∪

{
(1, k1, . . . , kd) : 1 +

d∑
i=1

ki ≤ r

}
.

But the cardinality of this sets can be given explicit as univariate polynomial in r, by
using Lemma 4. With that, we find that

φ(r) =

(
r + d

d

)
+

(
r + d− 1

d

)
, r ≥ 0, d ≥ 1. (2.15)
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In particular, for d = 3 we obtain the result

φ(r) =

(
r + 3

3

)
+

(
r + 3− 1

3

)
=

(
r + 3

3

)
+

(
r + 2

3

)
,

which happens to coincide with [KLAV98, Example 5.7.5.], the minimal differential
dimension polynomial of the wave-equation.

Computation of the Multivariate Hilbert Function
In this paragraph, we will consider a multi-filtered version and therefore a multivariate
generalization of result (2.15).

If we make a full partition of the set ∆, i.e. we decompose the set ∆ with d + 1
elements {δx1 , . . . , δxd , δt} into exactly d + 1 sets, each containing one δxi (respectively
one containing δt), we get for gd a (d+ 1)-variate Hilbert function, that is, we consider
the (d+ 1)-fold filtration

Rr1,...,rd+1
:= {f ∈ R : ordδt(f) ≤ rd+1 ∧ ∀i : ordδxi (f) ≤ ri}. (2.16)

Let us consider the case d = 1, i.e. we consider g1 = δ2
t − δ2

x, that is, we have

(K(x, t),∆), ∆ := {δt, δx}, Rr1,r2 := {f ∈ R : ordδt(f) ≤ r1 ∧ ordδx(f) ≤ r2}.

The irreducibles in R are obviously given by

It = {f ∈ R :6 ∃h : f −→ h} = {f ∈ R : ordδt(f) ≤ 1},

hence It ∩ Rg = 0, because any multiple h of g satisfies ordδt(h) ≥ 2. When we now
reduce by reduction relation (2.13), it is possible to give explicit the normal form. In
particular, if we reduce δkt δ

l
x by g1, we obtain

δkt δ
l
x −→ δkt δ

l
x − δk−2

t δlx · g1 = δk−2
t δl+2

x −→?

{
δk+l
x k even,

δtδ
k+l−1
x k odd.

For the last step, we keep in mind that in N = Rg1, we have δ2
t − δ2

x = 0, in particular
δ2
t = δ2

x (mod N).

Now we can consider the monomials δitδ
j
x in the (i, j)-plane, and count the irreducible

monomials contained in Rr1,r2 . Suppose, we know that the irreducibles can be described
by a polynomial. Interpolating this data, the bivariate dimension polynomial can be
written explicit as

φ(r1, r2) :=


r1 + 1, r2 = 0,

r2 + 1, r1 = 0,

2(r1 + r2), r1, r2 ≥ 1.
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At the border r1 = 0 or r2 = 0, the result 2r1 + 2r2 is not valid, which is (as in the case
of univariate Hilbert polynomials over the graded polynomial ring) a matter of regularity.

For two variables we obtain by reduction the following

δkt δ
l
xδ
m
y −→ δk−2

t δl+2
x δmy + δk−2

t δlxδ
m+2
y =: h, k ≥ 2.

It now might happen, that k− 2 = ordδt(h) ≥ 2. In that case, we can reduce the mono-
mials δk−2

t δl+2
x δmy and δk−2

t δlxδ
m+2
y once more by g2, until we arrive a linear combination

of monomials mi where ordδt(mi) ≤ 1.

Example 15. For the monomial δ5
t δ

4
xδ

3
y we have that

δ5
t δ

4
xδ

3
y −→ δ3

t δ
6
xδ

3
y + δ3

t δ
4
xδ

5
y

δtδ
8
xδ

3
y + δtδ

6
xδ

5
y δtδ

6
xδ

5
y + δtδ

4
xδ

7
y,

(2.17)

so we have

δ5
t δ

4
xδ

3
y −→? NF(δ5

t δ
4
xδ

3
y) = δtδ

8
xδ

3
y + 2 · δtδ6

xδ
5
y + δtδ

4
xδ

7
y ∈ It.

We apply this algorithm to the cyclic module generated by (2.9). Suppose, from some
additional insight, we knew that we can express the Hilbert function by a multivariate
polynomial. Let φk denote the multivariate dimension polynomial associated to gk in
k + 1 variables (i.e. we consider the cyclic R-module N = Rgk). With Algorithm 1, we
derive by interpolation of small data that for ri ≥ 1

φ1(r1, r2) = 2(r1 + r2),

φ2(r1, r2, r3) = 2(1 + r1r2 + r1r3 + r2r3),

φ3(r1, r2, r3, r4) = 2(r1 + r2 + r3 + r4 + r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4).

Next, we will stay with (2.9), but split the indeterminates into the sets

∆1 := {δt}, ∆2 := {δx1 , . . . , δxd}, (2.18)

where

ord∆1(f) := ordδt(f), ord∆2(f) :=
d∑
i=1

ordδxi (f), f ∈ R.

Motivation to consider this setting might be given by some physical interpretation, where
time plays an exposed role compared to geometry. The partition of the set ∆ gives rise
the bivariate filtration:

Rr1,r2 := {f ∈ R : ord∆1(f) ≤ r1 ∧ ord∆2(f) ≤ r2}. (2.19)
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Let now ψd denote the Hilbert function associated to filtration (2.19) with respect to
N = Rgd. Obviously, ψ1 = φ1. Again, we apply Algorithm 1, do an interpolation of the
resulting data, and obtain the following sequence of bivariate polynomials (we assume
ri ≥ 1):

ψ1(r1, r2) = 2(r1 + r2)

ψ2(r1, r2) = 1 + r1 + r2 + 2r1r2 + r2
2

ψ3(r1, r2) = 1 + (5/3)r2 + r2
2 + r1 + (1/3)r3

2 + 2r1r2 + r1r
2
2

Let us identify the d-dimensional wave equation (2.9) by the vector

gd 7→ w(gd) := (ordδt(gd), ordδx1(gd), . . . , ordδxd (gd)) = (2, . . . , 2)︸ ︷︷ ︸
(d+1)−copies

.

Clearly, the reducible monomials m w.r.t. the wave-equation satisfy w(m) ≥π w(gd). We
quote now the result [KLAV98, Proposition 2.2.11], that provides an explicit formula for
the number of points in Nn less than w(gd) is given.

Theorem 14 ([KLAV98, Proposition 2.2.11]). Let a partition

{1, . . . ,m} = υ1 ∪ . . . ∪ υq, υi ∩ υj = ∅ for i 6= j

be fixed, such that mi = |υi| and m = m1 + . . .+mq. For any subset

A := {a1, . . . , an} ⊆ Nm, ak = (ak1, . . . , akm) 1 ≤ k ≤ n,

such that n ∈ N+ let

Ar := {(a1, . . . , am) ∈ A :
∑
i∈υk

ai ≤ rk ∀k : 1 ≤ k ≤ q}, r = (r1, . . . , rq) ∈ Nq.

Define the set of those elements not greater than or equal to any m-tuple from A w.r.t.
product order, that is

UA(r) := {(u1, . . . , um) ∈ Nm : ∀(a1, . . . , am) ∈ Ar ∃ 1 ≤ i ≤ m : ai > ui}

where r = (r1, . . . , rq) ∈ Nq, and denote

• S(`, n) := the set of all `-element subsets of {1, . . . , n};

• ā∅j := 0 and āσj := max{avj : v ∈ σ} for σ ∈ S(`, n) and 1 ≤ j ≤ m;

• bσi =
∑
h∈υi

āσh;

Then, |UA(r1, . . . , rq)| can be given as polynomial p in q variables by

|UA(r1, . . . , rq)| = p(r1, . . . , rq) =
n∑
`=0

(−1)`
∑

σ∈S(`,n)

q∏
i=1

(
ti +mi − bσi

mi

)
,

hence, we have degxi(p(r1, . . . , rq)) ≤ mi for 1 ≤ i ≤ q, in particular deg(p) ≤ m.
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Example 16. Let us apply Theorem 14 to gd. As already mentioned before, the wave-
equation can be identified by its exponent gd 7→ w(gd) = (2, . . . , 2) ∈ Nd+1. If we partition
∆ := {δt, δx1 , . . . , δxd} into (d+1)-subsets as before, we get with the notation of Theorem
14 that mi = 1 for 1 ≤ k ≤ d+ 1 and

a = (a11, . . . , a1(d+1)) = (2, . . . , 2) ∈ Nd+1

and therefore
ā∅k = 0, bσk = āσk = 2, 1 ≤ k ≤ d+ 1.

Hence, Theorem 14 provides an explicit closed formula for the dimension polynomial by

φd(r1, . . . , rd+1) =

d+1∏
i=1

(
ri + 1− 0

1

)
−
d+1∏
i=1

(
ri + 1− 2

1

)
=

d+1∏
i=1

(ri + 1)−
d+1∏
i=1

(ri − 1).

In the same manner, we can partition the set ∆ as in (2.18), derive m1 = 1 and m2 = d,

gd 7→ w(gd) = (ord∆1(gd), ord∆2(gd)) = (2, 2) = (a11, a12) = a ∈ N2,

and therefore
ā∅1 = ā∅2 = 0, bσ1 = āσ1 = bσ2 = āσ2 = 2.

and compute the explicit closed form as

ψd(r1, r2) = (r1 + 1)

(
r2 + d

d

)
− (r1 − 1)

(
r2 + d− 2

d

)
.

If we specialize d = 1, 2, 3, we obtain the same results as with Algorithm 1, hence, we’ve
derived a verification of the results.

2.4.2. The Heat-Equation

As a second example for a physical system that can be described in an operator-algebra,
we consider the heat equation. The heat equation is derived from Fourier’s law (stating
that the time rate of heat transfer through material is proportional to the negative
gradient in temperature and to the area), and from the conversation law of energy.
The equation derived for the wave-propagation of heat in an isotropic and homogenous
medium in d-dimensional space is

∂u

∂t
= α · ∇2

xu = α ·
d∑
i=1

(
∂2u

∂x2
i

)
, α ∈ R,

the parameter α denotes the thermal diffusitivity, which depends on the used material.
The heat equation is an example of a parabolic partial differential equation. We now
consider the cyclic free module generated by

hd := δt − α ·
d∑
i=1

δ2
xi , α ∈ R. (2.20)

Without loss of generality, we assume α = 1.
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Computation of the Univariate Hilbert Function

We keep our setting from before, that is, we consider

• the differential field (K,∆) with ∆ := {δt, δx1 , . . . , δxd};

• the filter valuation (2.10);

• the filtration on R given by (2.11);

• the exact sequence (2.12);

• the reduction relation (2.13) (with gd replaced by hd);

• and the order (2.14).

The essential condition It ∩ (Rhd) = 0 is equivalent to the statement, that irreducible
monomials m satisfy ordδt(m) = 0, for every monomial with ordδt(m) ≥ 1 can be reduced
further by hd. This allows us, by Corollary 7, and Lemma 4 to find the univariate
dimension polynomial by

φ(r) = |I ∩Θ ∩Rr| :=

{
(0, k1, . . . , kd) :

d∑
i=1

ki ≤ r

}
=

(
r + d

d

)
.

Computation of the Multivariate Hilbert Function

Similiar to the univariate case, we can now compute the result of reduction w.r.t. hd as

δkt δ
l1
x1 . . . δ

ld
xd
−→ δkt δ

l1
x1 . . . δ

ld
xd
− δk−1

t · δl1x1 . . . δ
ld
xd
· hd = δk−1

t · (
d∑
i=1

δli+2
xi ·

d∏
j=1

j 6=i

δ
lj
xj ).

For example, for d = 3, we have

m := δkt δ
l1
x1δ

l2
x2δ

l3
x3 −→ δk−1

t (δl1+2
x1 δl2x2δ

l3
x3 + δl1x1δ

l2+2
x2 δl3x3 + δl1x1δ

l2
x2δ

l3+2
x3 )

This reduction can now be iterated as in (2.17), until ordδt(m) = 0.

In the following, φk denotes the dimension polynomial associated to the cyclic free mod-
ule generated by hk in k+1 variables, associated to the filtration (2.16). The interpolation
for values ri ≥ 1 again gives polynomials:

φ1(r1, r2) = 2r1 + r2 + 1,

φ2(r1, r2, r3) = 2r1r2 + 2r1r3 + r2r3 + r2 + r3 + 1,

φ3(r1, r2, r3, r4) = 2r1r2r3 + 2r1r2r4 + 2r1r3r4 + r2r3r4+

r2r3 + r2r4 + r3r4 + 2r1 + r2 + r3 + r4 + 1.
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Next, we do again the split (2.18), i.e. we consider the bivariate filtration (2.19), to
derive the following bivariate dimension polynomials (ri ≥ 1):

ψ1(r1, r2) = 2r1 + r2 + 1,

ψ2(r1, r2) = 2r1r2 + (1/2)r2
2 + r1 + (3/2)r2 + 1,

ψ3(r1, r2) = 1 + (11/6)r2 + r2
2 + (1/6)r3

2 + r1 + 2r1r2 + r1r
2
2.

Example 17. Let us once more apply Theorem 14 to the heat equation hd given by
(2.20). The full partition of ∆ into (d+ 1)-sets corresponds to the exponent vector

a = (ordδt(hd), ordδx1 (hd), . . . , ordδxd (hd)) = (a11, . . . , a1(d+1)) = (1, 2, . . . , 2) ∈ Nd+1,

m1 = 1, m2 = d, and therefore

∀k : ā∅k = 0, bσ1 = āσ1 = 1 ∧ bσj = āσj = 2, 1 < j ≤ n.

The Theorem implies

φd(r1, . . . , rd+1) =
d+1∏
i=1

(ri + 1)− r1 ·
d+1∏
i=2

(ri − 1).

For the split (2.18) we get a = (1, 2) such that

ā∅1 = ā∅2 = 0, bσ1 = āσ1 = 1 ∧ bσ2 = āσ2 = 2,

and finally

ψd(r1, r2) = (r1 + 1)

(
r2 + d

d

)
− r1

(
r2 + d− 2

d

)
.

Once more, if we specialize d = 1, 2, 3, we obtain the same results as with Algorithm 1,
hence, we’ve derived a verification of the results.

2.5. Homomorphic Image of Gröbner Reduction

We consider a ring R containing a commutative ring K, and a set of monomials Λ ⊆ R,
such that R = K(Λ) (recall notation (1.25)) and the free R-module F

F = Re1 ⊕ · · · ⊕Req

as well as a submodule N ⊆ F . Let S = K(Ω) be another such ring (with set of
monomials Ω ⊆ S) and let ϕ : S → R denote a surjective homomorphism of rings such
that ϕ(K) = K and ϕ(Ω) = Λ. Let

G = Se1 ⊕ · · · ⊕ Seq
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denote the free S-module of same rank as R. We extend the map ϕ to a homomorphism
of S-modules (denoted by the same symbol)

ϕ : G→ F,

q∑
i=1

riei 7→ ϕ

(
q∑
i=1

riei

)
:=

q∑
i=1

ϕ(ri)ei. (2.21)

Suppose now, we are given a strong reduction σ for G, and we want to apply the
knowledge from the S-module G in the R-module F , where G and F are connected by
(2.21). This is, we want the following diagram to commute:

G

g ϕ(g) = f

NFσ(g) ϕ(NFσ(g)) = NFρ(ϕ(g))

σ

?

ϕ

ρ

?ϕ

N = ϕ(G) ⊆ F (2.22)

In this picture, σ is a reduction in G, ρ is a reduction in F . In particular, the elements
g and NFσ(g) are in G, while ϕ(g) = f and ϕ(NFσ(g)) = NFρ(ϕ(g)) are in N . We
reproduce [FL15a, Proposition 6].

Theorem 15 (Homomorphic Image of Gröbner Reduction). If σ ⊆ G × G is a strong
reduction for ϕ−1(N) then there is a strong reduction ρ ⊆ F × F such that

ϕ(NF
σ

(g)) = NF
ρ

(ϕ(g)),

that is, in diagram (2.22), when σ is a strong reduction, the reduction ρ can also be
chosen as strong reduction. Further, if σ is a Gröbner reduction for ϕ−1(N) with respect
to a monomial filtration S =

⋃
r∈Np Sr then ρ is a Gröbner reduction for N with respect

to the filtration

R =
⋃
r∈Np

ϕ(Sr).

Proof. Let
Iσ = {g ∈ G :6 ∃z with g −→ z}

denote the monomial subspace of irreducibles in G. By Lemma 24 we have that

G = ϕ−1(N)⊕ Iσ ⇒ F = N ⊕ ϕ(Iσ).

Let p : F → ϕ(Iσ) denote projection. We define the relation ρ ⊆ F × F by

f −→ρ h⇔ f 6∈ ϕ(Iσ) ∧ h = p(f).

It is clear, that ρ is noetherian (i.e. Axiom 1. is fulfilled). ϕ(Iσ) is the K-space of
ρ-irreducibles, and ϕ(Iσ) is monomial. Indeed, if

f = ϕ(i) ∈ ϕ(Iσ) ∧ i =
∑
t∈ΩE

itt⇒ f =
∑
t∈ΩE

ϕ(it)ϕ(t). (2.23)
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By monomiality of Iσ we know that all monomials t occurring in this sum are in Iσ and
so the corresponding ϕ(t) are in ϕ(Iσ). Since ϕ(ΩE) = ΛE, i.e., ϕ maps monomials
in G onto monomials in F , by collecting terms in (2.23) we see, that T(f) ⊆ ϕ(Iσ)
demonstrating Axiom 2. Axiom 3. and 4. are obvious.

Take g ∈ G and let i = NFσ(g). Then g −→?
σ i and

g − i = ν ∈ ϕ−1(N)

according to Axiom 3. for σ. Now we have

ϕ(g) = ϕ(ν) + ϕ(i) ∈ N ⊕ ϕ(Iσ).

If ν ∈ kerϕ then ϕ(g) = ϕ(i) equals its own normal form. Further,

ν 6∈ kerϕ⇒ ϕ(g) −→ρ ϕ(i).

In both cases we derive ϕ(i) = NFρ(ϕ(g)).

Now assume that S =
⋃
r∈Np Sr is a filtration and that σ is a Gröbner reduction with

respect to the extended filtration

Gr = Sre1 ⊕ · · · ⊕ Sreq.

Then Lemma 24 assures that

Gr = ϕ−1(N)r ⊕ (Iσ)r ∀r ∈ Np.

By Lemma 20, we find that Rr = ϕ(Sr) is a filtration on R and Fr = ϕ(Gr) yields the
extended filtration F =

⋃
r∈Np Fr.

Let f −→ρ h and f ∈ Fr. There is a g ∈ Gr with ϕ(g) = f . Let i = NFσ(g). Then
i ∈ Gr and so ϕ(i) ∈ ϕ(Gr) = Fr. But ϕ(i) = NFρ(f) and therefore we see that h ∈ Fr.
Consequently ρ is a Gröbner reduction.

Applying the last theorem to the ring D provides an alternative method for constructing
a Gröbner reduction in free D-modules. By Corollary 4, we’ve encountered such a
homomorphism, and hence find a possible way of handling the negative exponents that
occur in monomials of difference-differential operators, by designing a Gröbner reduction
for positive exponents exclusively.
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3. Classic Examples and their Relation to
Gröbner Reduction

In this chapter we are going to present some classic examples appearing in literature,
and their relation to Gröbner Reduction. Part of this work was presented in the report
[FL15b], developed in joint work with Günter Landsmann.

While we’ve formulated the algebraic setting on a general (non-commutative) ring, in
literature more concrete examples are considered. At concrete examples, a reduction
relation is presented and a corresponding theory of Gröbner bases for computation of
the multivariate Hilbert function is introduced.

As a matter of fact, most of this principles can be viewn under the aspect of Gröbner
Reduction. Surprisingly, the only major requirement on the underlying ring R is the
existence of monomials M contained in R, i.e. M ⊆ R, and a commutative ring K such
that K ⊆ R.

Throughout this chapter R denotes an arbitrary (possibly non-commutative) ring con-
taining a commutative ring K in such a way that R is a free K-module. All rings that
will occur are of this type. There are situations where the ring K contains a field K that
is central in R. Then, there may be two different monomial concepts:

1. R = K(M1) (R is the free K-module with basis M1);

2. R = K(M2) (R is a vector space over a field K with basis M2).

In certain instances we will need the assumption that K is a field. This will be empha-
sized at occurrence.

Further, we will consider several rings R and investigate reduction relations for submod-
ules of free modules over them. Always, F will denote the free R-module with basis
E := {e1, . . . , eq}.

While the rings are equipped with certain filtrations there is always present a well-
ordering ≺ of the monomials ME that distinguishes for all F\{0} a leading term LT(f)
and a leading coefficient LC(f).

In each of the examples below we are now concerned with two reduction relations: For
the free module F let f, g, h ∈ F , g 6= 0. Then we have
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1. full reduction ρ:

f −→ρ
g h :⇐⇒ ∃m ∈M : LT(mg) ∈ T(f) ∧ h = f −

fLC(mg)

LC(mg)
mg ∧ P ; (3.1)

2. leading term reduction σ:

f −→σ
g h :⇐⇒ ∃m ∈M : LT(mg) = LT(f)∧h = f −

fLC(mg)

LC(mg)
mg ∧ P ; (3.2)

The symbol ’P ’ denotes a predicate P = P (f, g,m, h) depending on the actual situation.
For a subset G ⊆ F one has then in both cases

f −→G h :⇐⇒ ∃g ∈ G : f −→g h.

These reduction concepts are the core of Gröbner bases.

In literature, paradigms related to what we’ve encountered in Chapter 2 are discussed.
However, the concepts appearing in current papers do not satisfy the second axiom of
Definition 17, i.e. the irreducibles form in general not a K-vector space, but only a
monomial subset of F , i.e. we have for all f ∈ F : f ∈ I ⇒ T(f) ⊆ I, where I is as in
(2.2). From that point of view, we replace axiom 2. by

2’. I is a monomial subset of F , that is

∀f ∈ F (f ∈ I ⇒ T(f) ⊆ I) ;

We call a reduction relation ρ ⊆ F ×F a weak reduction, if it satisfies axioms 1., 3. and
4. from Definition 17 and axiom 2’.

If it additionally satisfies axiom 5. from Definition 17, the reduction relation is called a
weak Gröbner reduction.

Definition 18. A weak reduction ρ ⊆ F × F satisfies

1. ρ is noetherian, i.e. every sequence of reduction steps terminates;

2’. I is a monomial subset of F , i.e. ∀f ∈ F (f ∈ I ⇒ T(f) ⊆ I);

3. f −→ h⇒ f ≡ h (mod N);

4. I ∩N = 0;

If additionally

5. f −→ h ∧ f ∈ Fr ⇒ h ∈ Fr;

it is called a weak Gröbner reduction.

80



Even when G is a Gröbner basis, ρ is in general not a strong reduction as shown at
Example 19. Plainly every (strong) Gröbner reduction in the sense of Definition 17 is
also a weak Gröbner reduction.

Definition 19 (Gröbner Basis in a Free Module).
Consider a submodule N of a free module F = K(ME). Assume given

• a well-order ≺ on ME;

• a predicate P = P (f, g,m, h);

• ρ the full reduction defined by these data.

A subset G ⊆ N is a Gröbner basis for N if and only if ρ is a weak reduction for N .

Given a filtered ring and the obvious necessary data, we need to check the defining ax-
ioms in order to reveal the relation ρ as a (weak) Gröbner reduction for N = RG. The
set G is then exposed as a Gröbner basis for N and the filter groups are ρ-stable.

So we fix a set G ⊆ F and write ρ and σ for the relations f −→ρ
g h and f −→σ

g h
respectively, i.e. f −→ρ h means f −→ρ

g h and similar for σ. All our examples follow
the pattern along the following lines.

Termination

Fix a positive integer q and design an injection ϕ : ME → Nq. The set Nq is ordered
lexicographically, i.e.

a < b :⇔ amin{i: ai 6=bi} < bmin{i: ai 6=bi}, a, b ∈ Nq

The set of monomials ME inherits a well-ordering ≺ by means of this injection.

We call such an order induced by the injection ϕ. The well order ≺ extends to a well
order on the set of all finite subsets of ME (this is {T(f) : f ∈ F}):

T(f) ≺ T(g) :⇔ max{T(f) 4 T(g)} ∈ T(g). (3.3)

where 4 is the symmetric difference (consider e.g. [BWK93]).

Lemma 27. For f, h ∈ F , and full reduction −→ρ⊆ F × F defined by (3.1), we have:

f −→ρ h⇒ T(h) ≺ T(f).

Proof. For arbitrary g, from f −→ρ
g h we see that LT(mg) ∈ T(f)\T(h) - where m is

a term as mentioned in (3.1) - whereas for all terms t with t � LT(mg) we have that
ht = ft. This demonstrates that T(f) � T(h).

Since σ ⊆ ρ it is clear that Iρ ⊆ Iσ and σ terminates if ρ terminates. Consequently both
relations terminate there.
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The set of irreducible monomials should be a monomial subset of F

A reformulation of the predicate ’the set of irreducible monomials form a monomial
subset of F ’ is given by the simple formula

f ∈ I ⇒ T(f) ⊆ I.

The relation ρ has the property

f is ρ-reducible⇐⇒ ∃h : f −→ρ h

⇐⇒ ∃g ∈ G∃m ∈M
(

LT(mg) ∈ T(f) ∧ P (f, g,m, f −
fLT(mg)

LC(mg)
mg)

)
.

In case that P does not involve h, i.e., P = P (f, g,m), we obtain

f is ρ-reducible⇔ ∃g ∈ G∃m ∈M
(
LT(mg) ∈ T(f) ∧ LC(mg)|fLT(mg) ∧ P (f, g,m)

)
.

For Iρ to be monomial it is then enough to verify the monomial irreducibility condition

∃g ∈ G∃m ∈M
(
LT(mg) ∈ T(f) ∧ LC(mg) ∈ K× ∧ P (LT(mg), g,m)

)
⇒

∃g ∈ G∃m ∈M
(
LT(mg) ∈ T(f) ∧ LC(mg)|fLT(mg) ∧ P (f, g,m)

)
.

(3.4)

The monomial irreducibility condition for σ under the assumption P = P (f, g,m) is
the same as as for ρ, except that on the right hand side of the implication we have
LT(mg) = LT(f). For details see [FL15b].

It is clear that this condition is hard to satisfy. Indeed, Iσ is not monomial in gen-
eral.

Compatibility of reduction with congruence modulo N = RG

This is always obvious from the general pattern (3.1) and (3.2).

I ∩N = 0, i.e. each non-zero element in N is reducible

The validity of this condition must be guaranteed by an appropriate choice of the gen-
erator set G which is achieved by the usual Buchberger completion procedure.

Each filter should be ρ-stable

In our examples we will consider univariate filtrations (Fr)r∈N of F that are constructed
due to the following scheme:

We start with an ’order-function’ ν : M → N where ν(m) can be read off from m ∈ M,
i.e. ν(m) is the sum of certain exponents that are present in m. The function m extends
to ME by setting

ν(me) := ν(m), m ∈M, e ∈ E.
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and further to entire F (we always use the same symbol)

ν(f) :=

{
max{ν(t) : t ∈ T(f)}, f ∈ F\{0},
−∞ f = 0.

Then, for f, g ∈ F, c ∈ K, we have

ν(f ± g) ≤ max{ν(f), ν(g)}, ν(c · f) ≤ ν(f).

The univariate filtration induced by ν is then

F (ν)
r := {f ∈ F : ν(f) ≤ r}, r ∈ N.

This is closely related to what has been discussed at Definition 12, respectively its
properties that have been examined at Lemma 15. Remark that this defines implicitly

the sets R
(ν)
r , where r ∈ N, since R = R1. From the properties of ν it is plain that

• the sets F
(ν)
r are monomial K-modules;

• r ≤ s⇒ F
(ν)
r ⊆ F (ν)

s ;

•
∞⋃
r=0

F
(ν)
r = F .

It remains to check that Rr ·Fs ⊆ Fr+s (for r, s ∈ N), which is then the only property of
filtrations that depends on the actual ring structure of R. The multivariate filtrations
that we consider are constructed from univariate ones by means of intersection: Given
order functions ν1, . . . , νp and r = (r1, . . . , rp) ∈ Np we set

F
(ν1,...,νp)
r = F (ν1)

r1 ∩ . . . ∩ F (νp)
rp = {f ∈ F : ν1(f) ≤ r1 ∧ . . . ∧ νp(f) ≤ rp}.

The next theorem condenses the preceding discussion.

Theorem 16. Let G e a subset of the free R-module F = K(ME). Assume that

• ≺ is a well order on ME;

• P = P (f, g,m, h) is a predicate F ×G×M× F → {0, 1};

• ρ is the full reduction defined by (≺, P,G);

•
(
R

(j)
r

)
r∈N

is defined by an order function νj : M→ N, 1 ≤ j ≤ p;

• Rr = R
(1)
r1 ∩ . . . ∩R

(p)
rp , r ∈ Np;

• Fr =
⊕

e∈E Rre.

Under these assumptions, if
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1. R
(j)
r ·R(j)

s ⊆ R(j)
r+s, r, s ∈ N, j = 1, . . . , p;

2. P = P (f, g,m) and the monomial irreducibility condition (3.4) holds;

3. f −→ρ
g h ∧ f ∈ Fr ⇒ h ∈ Fr for all g ∈ G;

4. N ∩ Iρ = 0;

then (Fr)r∈Np is a monomial filtration on F w.r.t. the monomial filtration (Rr)r∈Np and
the full reduction ρ is a weak Gröbner reduction for N = RG.

The Difficulties arising at the considered Rings

All the theories that are developed in current literature, take care of the differences at
the concrete setting. But what exactly are the differences?

The most obvious difference is the commutation rule of ring. The non-commutativity
might even has influence on the support (i.e. the set T(f)) of the considered element
f in the free module. For example, while in a difference-ring we have σl · a = σl(a)σl,
the situation is different in a differential ring, where lower order terms are introduced
(compare (1.28)). We’ve encountered this behaviour already at Lemma 6 (reformulated
at (1.19)), Lemma 10 or for the Weyl-algebra at (1.33).

But more can be said. At the Weyl algebra we have the situation, that the monomials xd
do not form a multiplicative monoid. This is the major difference to all other considered
examples, and causes slight difficulties in the computation. However, as we will find out,
the non-commutativity is in some sense well-behaved, that the leading terms are pre-
served, the details are carried out in the upcoming sections, in particular at Lemma 31,
or for the Ore-algebra at Lemma 42 and Lemma 43.

We note also, that Gröbner bases in [DL12a], are defined by Definition 21, which dif-
fers from our setting Definition 19. Still, we will show how this connects to our concepts.

In difference-differential rings, we still have non-commutativity, but the monomials form
a multiplicative monoid. Most technical part is here to ensure the condition

f ∈ Fr ∧ f −→ h⇒ h ∈ Fr, r ∈ Np.

For the bivariate case, that can be covered by an appropriate choice of ≺1 and ≺2, by
restricting the reduction as in Definition 7. This is demonstrated at Theorem 20. A
similar situation is at the Ore-algebra. For the Ore-algebra, this condition achieved by
using multiple term orderings, see Definition 24.

The Weyl algebra produces an involved theory, and the same is true for the Ore-algebra.
Having in mind section 1.4, it is not too surprising that the commutative case can re-use
ideas from this rings, and theory can be simplified.
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3.1. Bernstein Polynomials over the Weyl Algebra An(K)

The theory of the Weyl algebra An(K) in n variables, is the study of modules over rings
of differential operators with polynomial coefficients over the field K. There exists a vast
account on literature, most noteworthy the book by Coutinho [Cou95] that provides a
readable introduction to the topic. In this section, we review work appearing in [DL12a]
under the scope of Gröbner reduction.

In the difference-differential ring, or in the ring of Ore-polynomials, the monomials M
form a multiplicative monoid, i.e. MM ⊆ M. For the Weyl-Algebra, this is not longer
the case. As indicated in section 1.4, there are several possible viewpoints on the Weyl
algebra, with two different concepts of monomials.

Let K be a field of characteristic zero and let di denote the i-th partial derivative of the
polynomial ring K[x1, . . . , xn]. The Weyl algebra An(K) is the K-algebra generated by
K[x1, . . . , xn] ∪ {d1, . . . , dn} as a subalgebra of EndK(K[x1, . . . , xn]). The multiplication
in this ring obeys the rules (1.33).

Let A denote the ring An(K). We may consider A as a free K[x1, . . . , xn]-module with
basis M1 = {dl : l ∈ Nn}. Then M1 is a monoid isomorphic to Nn and, according to our
notational convention K and R specialize to K = K[x1, . . . , xn] and R = K(M1).

We will here stress the second approach: A as a free K-vector space with distinguished
set of monomials M2 = {xkdl : (k, l) ∈ Nn ×Nn}. In the following we write Λ for M2.

Explicitly, the product of two monomials in An(K) is

xkdl · xpdq =
∑
v∈Nn

(
l

v

)
xkdv(xp)dl+q−v, k, l, p, q ∈ Nn,

(
l

v

)
=

n∏
i=1

(
li
vi

)
(3.5)

To visualize the scope of the sum we may write

xkdl · xpdq =
∑

v≤π inf{l,p}

(
l

v

)
p!

(p− v)!
xk+p−vdl+q−v.

Filtrations in the Weyl algebra

Let F = A(E) the free A-module with basis E := {e1, . . . , eq}.

Lemma 28 (Cancellation laws in A). Let λ, µ ∈ Λ and t1, t2 ∈ ΛE. Then

1. λ · t1 = λ · t2 ⇒ t1 = t2;

2. λ · t1 = µ · t1 ⇒ λ = µ;
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Proof. λ = xkdl, t1 = xpdqe1 and t2 = xrdse2.

1. If λt1 = λt2 then xkdl · xpdqe1 = xkdl · xrdse2, therefore e1 = e2. We get∑
u≤π inf{l,p}

bux
k+p−udl+q−u =

∑
v≤π inf{l,p}

cvx
k+r−vdl+s−v, bu, cv ∈ N.

Therefore there exists u, v ∈ Nn such that

xk+pdl+q = cvx
k+r−vdl+s−v xk+rdl+s = bux

k+p−udl+q−u.

It follows that
p = r − v, q = s− v, r = p− u, s = q − u

from which we derive u = v = 0. Consequently t1 = t2.

2. Is proven in the same style.

For λ ∈ Λ we define the three order functions Λ→ N. For λ = xkdl ∈ Λ

ν1(λ) = k1 + · · ·+ kn, ν2(λ) = l1 + · · ·+ ln, ν3(λ) = ν1(λ) + ν2(λ).

Exactly like in (3.11) these order functions extend to functions νj : F → N:

νj(λe) := νj(λ), νj(f) :=

{
max{νj(t) : t ∈ T(f)}, f ∈ F\{0};
−∞, f = 0,

where λ ∈ Λ and e ∈ E.

From the definition it is clear that for f, g ∈ F and c ∈ K\{0}

νj(f ± g) ≤ max{νj(f), νj(g)}, νj(c · f) = νj(f), j = 1, 2, 3. (3.6)

Note that the extensions of ν3 to F is not the sum of the extensions to F from ν1 and
ν2.

We define three well-orders ≺x,≺d and ≺xd on ΛE:

The first ≺x comes from the injection

ΛE → N2n+3, t = xkdle 7→ (ν1(t), ν2(t), k1, . . . , kn, l1, . . . , ln, e)

≺d comes from

ΛE → N2n+3, t = xkdle 7→ (ν2(t), ν1(t), l1, . . . , ln, k1, . . . , kn, e)

and finally ≺xd by the map

ΛE → N2n+2, t = xkdle 7→ (ν3(t), k1, . . . , kn, l1, . . . , ln, e)

where E is ordered naturally and Np is ordered lexicographically. Each one determines
leading term and leading coefficient written LTk, LCk where k ∈ {x, d, xd}.
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Lemma 29. Let

λ = xkdl ∈ Λ, t = xrdse ∈ ΛE, f ∈ F\{0}.

We have k, l, r, s ∈ Nn and set |k| = k1 + . . .+ kn and similar for l, r, s. Obviously

|k + l| = |k|+ |l|.

Then:

1. ν1(λt) = |k|+ |r|, ν2(λt) = |l|+ |s|, ν3(λt) = |k|+ |r|+ |l|+ |s| = ν1(λt) + ν2(λt)

2. LTx(λt) = LTd(λt) = LTxd(λt) = xk+rdl+se

3. ν1(f) = ν1(LTx(f)), ν2(f) = ν2(LTd(f)), ν3(f) = ν3(LTxd(f)),

4. νj(λt) = νj(λ) + νj(t), j = 1, 2, 3

Proof. Points 1. and 2. follow from (3.5). For 3. take s ∈ T(f). Obvious

s 4k LTk(f), k ∈ {x, d, xd},

and by the choice of ≺k have

ν1(s) ≤ ν1(LTx(f)), ν2(s) ≤ ν2(LTd(f)), ν3(s) ≤ ν3(LTxd(f))

Hence, we obtain

ν1(f) = max{ν1(s) : s ∈ T(f)} = ν1(LTx(f));

ν2(f) = max{ν2(s) : s ∈ T(f)} = ν2(LTd(f));

ν3(f) = max{ν3(s) : s ∈ T(f)} = ν3(LTxd(f));

4. is obvious from 1.

Lemma 30. Let λ, µ ∈ Λ and s, t ∈ ΛE. Then, for k ∈ {x, d, xd}:

• λ ≺k µ⇒ LTk(λt) ≺k LTk(µt);

• s ≺k t⇒ LTk(λs) ≺k LTk(λt).

Proof. First, let λ = xkdl, µ = xrds, t = xαdβe and λ ≺x µ. Then

LTx(λt) = xk+αdl+βe LTx(µt) = xr+αds+βe.

If ν1(λ) < ν1(µ) then |k| < |r|, so

ν1(LTx(λt)) = |k + α| = |k|+ |α| < |r|+ |α| = |r + α| = ν1(LTx(µt)),

and thus LTx(λt) ≺x LTx(µt).
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If ν1(λ) = ν1(µ) and ν2(λ) < ν2(µ) then |k| = |r| and |l| < |s| so

ν1(LTx(λt)) = |k|+ |α| = |r|+ |α| = ν(LTx(µt)),

and
ν2(LTx(λt)) = |l|+ |β| < |s|+ |β| = ν2(LTx(µt)),

which also means LTx(λt) ≺x LTx(µt).

If ν1(λ) = ν1(µ) and ν2(λ) = ν2(µ) (i.e. |k| = |r| and |l| = |s|) and k 6= r then let
j := min{i : ki 6= ri}. We obtain

(|k + α|, |l + β|, k + α, l + β, e) <lex (|r + α|, |s+ β|, r + α, s+ β, e).

Once again this means that LTx(λt) ≺x LTx(µt).

The same argument can be used for the last remaining case ν1(λ) = ν1(µ) and ν2(λ) =
ν2(µ) and k = r. Then we must have l 6= s, let j := min{i : li 6= si}, then lj < sj which
results again in LTx(λt) = LTx(µt).

Second, let λ = xαdβ, s = xkdlem, t = xpdqen, such that s ≺x t. The proof works similar
as before. The only difference is one more case: When xkdl = xpdq then em must be
smaller en and the statement follows.

The proof of the statements for k ∈ {d, xd} is the same with the pairs

(ν2(·),LTd,≺d), (ν3(·),LTxd,≺xd).

Lemma 31. Let K be a field of characteristic zero, A = An(K), F = A(E) the free
A-module on the set E. Let a ∈ A\{0}, f ∈ F\{0}. Then, for k ∈ {x, d, xd}:

• LTk(a · f) = LTk(LTk(a) · LTk(f));

• LCk(a · f) = LCk(a) · LCk(f).

Proof. We show the statement for k = x, the cases k = d, xd are handled analogously.
Let λ0 = LTx(a), a0 = LCx(a) and t0 = LTx(f), f0 = LCx(f). Thus, we have

a = a0λ0 +
∑
λ≺xλ0

aλλ f = f0t0 +
∑
t≺xt0

ftt.

Then, we have

a · f = a0f0λ0t0︸ ︷︷ ︸
(S1)

+
∑
t≺xt0

a0ftλ0t︸ ︷︷ ︸
(S2)

+
∑
λ≺xλ0

aλf0λt0︸ ︷︷ ︸
(S3)

+
∑
λ≺xλ0

∑
t≺xt0

aftλt︸ ︷︷ ︸
(S4)
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Pick out a term λ0t of sum (S2). Then, from Lemma 30 we immediately derive that

LTx(λ0t) ≺x LTx(λ0t0).

When choosing a term from sum (S3) we obtain

LTx(λt0) ≺x LTx(λ0t0),

or at (S4) we have
LTx(λt) ≺x LTx(λ0t) ≺x LTx(λ0t0).

Now, let s ∈ T(a · f). Then there exists λ ∈ Λ, t ∈ ΛE with λ ∈ T(a) and t ∈ T(f) and
s ∈ T(λt). If follows that s 4x LTx(λt).

λ = λ0 ∧ t = t0 ⇒ s 4x LTx(λ0t0);

λ = λ0 ∧ t 6= t0 ⇒ s 4x LTx(λ0t) ≺x LTx(λ0t0);

λ 6= λ0 ∧ t = t0 ⇒ s 4x LTx(λt0) ≺x LTx(λ0t0);

λ 6= λ0 ∧ t 6= t0 ⇒ s ≺x LTx(λ0t0).

Consequently
LTx(a · f) = LTx(λ0t0) = LTx(LTx(a) · LTx(f)),

and
LCx(a · f) = a0f0 = LCx(a) · LCx(f).

Corollary 9. Let λ ∈ Λ\{0} and f ∈ F\{0}. Then

LTk(λf) = LTk(λ · LTk(f)), k ∈ {x, d, xd}.

Corollary 10. Let a ∈ A and f ∈ F . Then:

νk(a · f) = νk(a) + νk(f), k = 1, 2, 3.

Proof. If a = 0 or f = 0 the statements are obvious. So assume a 6= 0 and f 6= 0. Set

λ1 = xkdl = LTx(a) t1 = xαdβe1 = LTx(f)

λ2 = xpdq = LTd(a) t2 = xγdδe2 = LTd(f)

λ3 = xrds = LTxd(a) t3 = xεdζe3 = LTxd(f)

From Lemma 29 we get

LTx(λ1t1) = xk+αdl+βe1, LTd(λ2t2) = xp+γdq+δe2, LTxd(λ3t3) = xr+εds+ζe3.

Hence, by the preceding discussion we have

ν1(a · f) = ν1(LTx(a · f)) = ν1(LTx(LTx(a) · LTx(f))) = ν1(LTx(λ1 · t1))
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= ν1(xk+αdl+βe1) = |k + α| = |k|+ |α| = ν1(LTx(a)) + ν1(LTx(f))

= ν1(a) + ν1(f).

ν2(a · f) = ν2(LTd(a · f)) = ν2(LTd(LTd(a) · LTd(f))) = ν2(LTd(λ2 · t2))

= ν2(xp+γdq+δe2) = |q + δ| = |q|+ |δ| = ν2(LTd(a)) + ν2(LTd(f))

= ν2(a) + ν2(f).

ν3(a · f) = ν3(LTxd(a · f)) = ν3(LTxd(LTxd(a) · LTxd(f))) = ν3(LTxd(λ3 · t3))

= ν3(xr+εds+ζe1) = |r + ε+ s+ ζ| = |r + s|+ |ε+ ζ|
= ν3(LTxd(a)) + ν3(LTxd(f)) = ν3(a) + ν3(f).

Lemma 28 generalizes to the statement that An(K) is a domain.

Corollary 11. Let a ∈ A, f ∈ F . Then a · f = 0⇒ a = 0 ∨ f = 0.

Proof. Assume a 6= 0 and f 6= 0. Let ν denote any of ν1, ν2, ν3. Then ν(a) ≥ 0 and
ν(f) ≥ 0. It follows that ν(a · f) = ν(a) + ν(f) ≥ 0. Consequently a · f 6= 0.

Definition 20 (Filtration on An(K)). Let A = An(K), F = A(E). For r, s ∈ N we set

F (k)
r := {f ∈ F : νk(f) ≤ r}, Fr,s := F (1)

r ∩ F (2)
s , k = 1, 2, 3.

We will show that these sets define filtrations on F . Remark that we have defined
implicitly A

(i)
r and Ar,s since we may consider A as the free module A1.

Lemma 32. Let F
(k)
r be defined as in Definition 20.

1.
(
F

(i)
r

)
r∈N

defines a univariate filtration on F (1 ≤ i ≤ 3).

2. (Fr,s)r,s∈N defines a bivariate filtration on F .

Proof. From (3.6) it is clear that all the sets F
(i)
r - hence also the Fr,s are monomial

K-vector spaces, that is, vector spaces with the property

f ∈ F (i)
r ⇔ T(f) ⊆ F (i)

r , 1 ≤ i ≤ 3.

Immediate from Corollary 10 we obtain

A(i)
r · F (i)

s ⊆ F
(i)
r+s, 1 ≤ i ≤ 3.

Therefore, also Ar,sFt,u ⊆ Fr+t,s+u.

Corollary 12. For r ∈ N we have that F
(3)
r ⊆ Fr,r ⊆ F (3)

2r .

Proof. By monomiality, if f ∈ F
(3)
r then T(f) ⊆ F (3). Thus, for arbitrary t ∈ T(f),

ν1(t) + ν2(t) = ν3(t) ≤ r. Therefore, also ν1(t) ≤ r and ν2(t) ≤ r, i.e. t ∈ F (1)
r ∩ F (2)

r =
Fr,r. Thus T(f) ⊆ Fr,r and so f ∈ Fr,r.
Now assume that f ∈ Fr,r. Then T(f) ⊆ Fr,r. Therefore, if t ∈ T(f) then ν3(t) =

ν1(t) + ν2(t) ≤ r + r. Consequently t ∈ F (3)
2r . This shows that f ∈ F (3)

2r .
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3.1.1. (x, ∂)-Gröbner Bases

Dönch and Levin [DL12a] introduced the notion of (x, ∂)-Gröbner basis for free modules
over An(K). We present their concepts here and show the relation to Gröbner reduction.

Remark. In section 1.4 we have used the symbols xi and di as generators for the free alge-
bra whose generators satisfy the commutation rules (1.33). In [DL12a] the Weyl algebra
An(K) over K is considered, where An(K) is generated by x1, . . . , xn and ∂1, . . . , ∂n such
that ∂i plays the role of di. This explains, why their reduction is called (x, ∂)-reduction.
Consequently, we should name the concept (x, d)-reduction. However, for the better
reference to literature, we choose to stay along with the name (x, ∂)-reduction, although
actually no ∂ appears in our considerations (as we have reserved it for Ore-operators).

If not explicitly mentioned differently, we consider for a monomial always an n-tuple

xkdl = xk11 . . . xknn d
l1
1 . . . d

ln
n , k = (k1, . . . , kn), l = (l1, . . . , ln) ∈ Nn.

Lets consider [DL12a]. First the authors defined a divisibility notation in a non-standard
way mimicking commutative monomials

xkdl|xrds :⇔ (k, l) ≤π (r, s), k, l, r, s ∈ Nn. (3.7)

This notion extends to divisibility of monomials ΛE by defining t1 := xkdle1, t2 := xrdse2

of the free A-module F = A(E) by setting

t1|t2 :⇔ xkdl|xrds ∧ e1 = e2.

In this case the quotient t2/t1 is the element xr−kds−l ∈ Λ.

Lemma 33. Let t1, t2 ∈ ΛE. Then

t1|t2 ⇒
t2
t1
· t1 = t2 +

∑
j

njsj , nj ∈ N+, sj ∈ ΛE

such that
∀j : ν1(sj) < ν1(t2) ∧ ν2(sj) < ν2(t2).

Proof. t1 = xkdle, t2 = xrdse, k ≤π r and l ≤π s. Using formula (3.5) gives

t2
t1
· t1 = xr−kds−l · xkdle =

∑
v≤πs−l

(
s− l
v

)
xr−kdv(xk)ds−l+l−ve

=

(
s− l

0

)
xr−kd0(xk)ds−0e+

∑
06=v≤πs−l

(
s− l
v

)
xr−kdv(xk)ds−l+l−ve

= xrdse+
∑

06=v≤πs−l

(
s− l
v

)
xr−kdv(xk)ds−ve = t2 +

∑
j

njsj

Since the index v in the previous line is in Nn\{0} the conditions on the sj are obvious.
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Example 18. For n = 1, i.e. in A1(K), we have that x2d3 divides x4d4 in the sense of
(3.7), and we can write

x4d4

x2d3
· x2d3 = x2d · x2d3 = x4d4 + 2x3d3.

We have
3 = ν1(x3d3) < ν1(x4d4) = 4 ∧ 3 = ν2(x3d3) < ν2(x4d4) = 4.

Lemma 34. Let t1, t2, w ∈ ΛE. Then

t1 ≺x t2 ∧ t2|w ⇒
(
w

t2
· t1
)
w

= 0.

Proof. Set t1 = xαdβe1, t2 = xγdδe2, w = xrdse2 such that γ ≤π r and δ ≤π s. From
t1 ≺x t2 we get ν1(t1) ≤ ν1(t2) whence |α| ≤ |γ|. From (3.5) we obtain

w

t2
· t1 = xr−γds−δ · xαdβe1 =

∑
u≤πs−δ

(
s− δ
u

)
xr−γdu(xα)ds−δ+β−ue1

=
∑

u≤πs−δ

(
s− δ
u

)
α!

(α− u)!
xr−γ+α−uds−δ+β−ue1

To derive a contradiction assume that
(
w
t2
· t1
)
w
6= 0. Then

∃u
(

0 ≤π u ≤π s− δ ∧ xr−γ+α−uds−δ+β−u · e1 = xrds · e2

)
that is

e1 = e2, α = γ + u ∧ β = δ + u ≤π s,

i.e. u = β − δ ≥π 0, δ ≤π β.

If 0 <π u then |α| = |γ|+ |u| > |γ|, a contradiction. Therefore

u = 0, α = γ ∧ β = δ ∧ e1 = e2,

i.e. t1 = t2. This contradicts the assumption t1 ≺x t2.

Consequently
(
w
t2
· t1
)
w

= 0.

Let now f, g, h ∈ F such that g 6= 0. (x, ∂)-reduction, defined in [DL12a], amounts to
the following

f
(x,∂)−→g h⇐⇒ ∃w ∈ T(f) :(
LTx(g) | w ∧ h = f − fw

LCx(g)

w

LTx(g)
g ∧ ν2

(
w

LTx(g)
LTd(g)

)
≤ ν2(LTd(f))

)
.

(3.8)
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Lemma 35. Assume that f
(x,∂)−→g h and let w be the term mentioned in (3.8). Then

w 6∈ T(h).

Proof. Isolating the x-leader of g gives

h = f − fw
LCx(g)

w

LTx(g)

LCx(g)LTx(g) +
∑

t≺xLTx(g)

gtt


= f − fw

LCx(g)

w

LTx(g)
LCx(g)LTx(g)− fw

LCx(g)

w

LTx(g)

∑
t≺xLTx(g)

gtt

= f − fw
w

LTx(g)
LTx(g)−

∑
t≺xLTx(g)

fw
LCx(g)

w

LTx(g)
gtt

Application of Lemma 33 gives

h = f − fw

w +
∑
j

njsj

− ∑
t≺xLTx(g)

fw
LCx(g)

w

LTx(g)
gtt

= f − fww −
∑
j

njfwsj −
∑

t≺xLTx(g)

fwgt
LCx(g)

w

LTx(g)
t

(3.9)

where all nj > 0 and ν1(sj) < ν1(w) and ν2(sj) < ν2(w).

Considering (3.9), the coefficient of w in h is

hw = fw − fw − 0−
∑

t≺xLTx(g)

fwgt
LCx(g)

(
w

LTx(g)
· t
)
w

.

Lemma 34 now immediately provides hw = 0.

It is now possible to relate (x, ∂)-reduction to Gröbner reduction.

Theorem 17. Let P denote the predicate

P (f, g, λ) :⇔ ν2(λ · g) ≤ ν2(f)

Then,

f
(x,∂)−→g h⇔ ∃λ ∈ Λ

(
LTx(λg) ∈ T(f) ∧ h = f −

fLTx(λg)

LCx(λg)
λ ∧ P (f, g, λ)

)
.

Consequently, using notation equation (3.1), we have that

f
(x,∂)−→g h⇔ f −→ρ

g h.
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Proof. Observe that

P (f, g, λ)⇔ ν2(λ · LTd(g)) ≤ ν2(LTd(f)), cf. [DL12a]

Let f
(x,∂)−→g h and set λ = w/LTx(g), where w is the term mentioned in (3.8). Write

LTx(g) = xkdle w = xk+rdl+se⇒ λ = xrds.

Then
LTx(λg) = LTx(λ · LTx(g)) = LTx(xrds · xkdle) = xr+kds+le = w,

and LCx(λg) = LCx(g). It follows that

h = f − fw
LCx(g)

w

LTx(g)
g = f −

fLTx(λg)

LCx(λg)
λg ∧ LTx(λg) = w ∈ T(f).

Since f
(x,∂)−→g h holds, the predicate P (f, g, λ) is true. Consequently f −→ρ

g h.

Conversely assume that f −→ρ
g h. Let λ ∈ Λ be such that LTx(λg) ∈ T(f) and

h = f − fLTx(λg)

LCx(λg)
λg ∧ P (f, g, λ).

Set w = LTx(λg). Then w ∈ T(f). Write λ as λ = xudv and LTx(g) = xkdle. Then

w = LTx(λ · LTx(g)) = LTx(xudv · xkdle) = xu+kdv+le.

Thus LTx(g)|w and w/LTx(g) = xudv = λ. Since LCx(λg) = 1 · LCx(g) we obtain

h = f − fw
LCx(g)

w

LTx(g)
g ∧ ν2

(
w

LTx(g)
LTd(g)

)
≤ ν2(LTd(f)).

Consequently f
(x,∂)−→g h.

Lemma 36. Iρ is monomial.

Proof. Let LTx(λg) ∈ T(f) and P (LTx(λg), g, λ) hold. This means that

ν2(λ · g) ≤ ν2(LTx(λ · g)).

Since LTx(λg) ∈ T(f) it follows that LTx(λg) 4d LTd(f), and therefore

ν2(LTx(λg)) ≤ ν2(LTd(f)) = ν2(f).

Thus, ν2(λg) ≤ ν2(f). Consequently LTx(λg) ∈ T(f) ∧ P (f, g, λ). This demonstrates
that the monomial irreducibility condition (3.4) is satisfied.

In [DL12a] the authors define Gröbner bases differently. Formulated in our notation:
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Definition 21. Let N be a submodule of F = K(ΛE) and G ⊆ N\{0}. G is a (x, ∂)-
Gröbner basis for N if and only if

∀f ∈ N\{0} ∃g ∈ G (LTx(g)|LTx(f) ∧ ν2(g)− ν2(LTx(g)) ≤ ν2(f)− ν2(LTx(f)) .

We position this notion into the frame of our concepts.

Theorem 18. Given G ⊆ N , let σ denote the leading term reduction corresponding to

the relation f
(x,∂)−→G h, i.e.

f −→σ
g h :⇔ ∃λ ∈ Λ

(
LTx(λg) = LTx(f) ∧ h = f −

fLCx(λg)

LCx(λg)
λg ∧ ν2(λg) ≤ ν2(f)

)
;

Then G is an (x, ∂)-Gröbner basis for N if and only if Iσ ∩N = 0.

Proof. We fix some notation. Elements f, g ∈ F\{0} are written

f = f0t0 +
∑
t≺xt0

ftt = f ′0t
′
0 +

∑
t≺dt′0

ftt

g = g1t1 +
∑
t≺xt1

gtt = g′1t
′
1 +

∑
t≺dt′1

gtt

with coefficients f0, ft, f
′
0, g1, gt, g

′
1 ∈ K, i.e. we’ve got the leading terms

LTx(f) = t0 = xk0dl0e0, LTd(f) = t′0 = xk
′
0dl
′
0e′0

LTx(g) = t1 = xr1ds1e1, LTd(g) = t′1 = xr
′
1ds
′
1e′1.

Assume that G is an (x, ∂)-Gröbner basis for N and f ∈ N\{0}. ∃g ∈ G such that

LTx(g)|LTx(f) ∧ ν2(g)− ν2(LTx(g)) ≤ ν2(f)− ν2(LTx(f))

Using the notation from above we get

xr1ds1e1|xk0dl0e0 ∧ s′1 − s1 ≤π l′0 − l0,

hence r1 ≤π k0 ∧ s1 ≤π l0 ∧ e1 = e0. Set λ = xk0−r1dl0−s1 . Then

LTx(λ · g) = LTx(xk0−r1dl0−s1 · xr1ds1e1) = xk0dl0e0 = LTx(f).

Further, we get

ν2(λ · g) = ν2(LTd(x
k0−r1dl0−s1 · xr′1ds′1e′1)) = |l0 − s1 + s′1| ≤ |l′0| = ν2(f),

(note that | · | implies summation of the entries of the multi-index, and not absolute
values). This shows that

f −→σ
g f −

LCx(f)

LCx(λg)
λg,
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that means, f is σ-reducible. Consequently, each f ∈ N\{0} is σ-reducible whence
N ∩ Iσ = 0.

Conversely, assume that N ∩ Iσ = 0 and let f ∈ N\{0} is σ-reducible, ∃g ∈ G∃λ ∈ Λ
such that

LTx(λ · g) = LTx(f) ∧ h = f − LCx(f)

LCx(λg)
λg ∧ ν2(λ · g) ≤ ν2(f). (3.10)

Write λ = xadb. From (3.10) we get

xk0dl0e0 = LTx(f) = LTx(λg) = LTx(xadb · xr1ds1e1),

hence
k0 = a+ r1 ∧ l0 = b+ s1 ∧ e0 = e1 ⇒ r1 ≤π k0 ∧ s1 ≤π l0,

i.e. LTx(g)|LTx(f). Moreover

ν2(λg) = ν2(LTd(λg)) = ν2(LTd(x
adb · xr′1ds′1e′1)) = b+ s′1.

From (3.10) we obtain b+ s′1 ≤ l′0 and so

l0 + s′1 = b+ s1 + s′1 ≤ l′0 + s1,

Therefore,

ν2(g)− ν2(LTx(g)) = ν2(xr
′
1ds
′
1e′1)− ν2(xr1ds1e1) = s′1 − s1

≤ l′0 − l0 = ν2(f)− ν2(LTx(f)).

Therefore G is an (x, ∂)-Gröbner basis for N .

Corollary 13. Let ρ denote (x, ∂)-reduction (3.8) for N . If G is an (x, ∂)-Gröbner
basis for N then ρ is a weak reduction for N . Thus, an (x, ∂)-Gröbner basis for N is a
Gröbner basis for N w.r.t. ρ.

Proof. Consider an (x, ∂)-Gröbner basis for N . Since Iρ ⊆ Iσ we obtain that Iρ∩N = 0.
Together with Lemma 36 this says that ρ is a weak reduction for N .

Even when G is a Gröbner basis, the corresponding reduction relation ρ is in general
not a strong reduction.

Example 19. Consider A = A1(K), g = xd + d2 ∈ A. Let ρ be the (x, ∂)-reduction
defined by G = {g} and N = Ag.

We show that N ∩ Iρ = 0. Let a ∈ A

a = a0x
k0dl0 +

∑
µ≺xxk0dl0

aµµ a0 6= 0.
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Then,

a · g = a0x
k0dl0(xd+ d2) +

∑
µ≺xxk0dl0

aµµ(xd+ d2)

= a0x
k0dl0 · xd+ a0x

k0dl0 · d2 +
∑

µ≺xxk0dl0

(aµµxd+ aµµd
2)

Set λ = xk0dl0. Then LTx(λ · g) = LTx(xk0dl0 · (xd+ d2)) = xk0+1dl0+1. Hence,

LTx(a · g) = LTx(LTx(a) · LTx(g)) = LTx(xk0dl0 · xd) = xk0+1dl0+1

and thus LTx(λg) = LTx(a · g) ∈ T(a · g). On the other hand, we have

ν2(λg) = ν2(LTd(λg)) = ν2(LTd(λ · LTd(g))) = ν2(LTd(x
k0dl0 · d2)) = l0 + 2,

hence

ν2(a · g) = ν2(LTd(a · g)) = ν2(LTd(LTd(a) · LTd(g))) = ν2(LTd(a) · d2).

Now, xk0dl0 4d LTd(a). Applying Lemma 30 gives

xk0dl0+2 = LTd(x
k0dl0 · d2) 4d LTd(LTd(a)d2).

Therefore,

l0 + 2 = ν2(xk0dl0+2) ≤ ν2(LTd(LTd(a) · d2)) = ν2(LTd(a) · d2),

and so ν2(λg) ≤ ν2(a · g). All in all,

∃λ ∈ Λ (LTx(λg) = LTx(ag) ∧ ν(λg) ≤ ν2(ag)) ,

and choosing h appropriately we see that ag −→σ
g h, hence ag is σ-reducible. Therefore

N ∩Iσ = N ∩Iρ = 0. Consequently ρ is a weak reduction for N = Ag and {g} a Gröbner
basis.

Now consider f1, f2, g ∈ A
f1 = xd, f2 = d2.

Then it is obvious that f1, f2 ∈ Iρ. But f1 + f2 is not:

LTx(1 · g) = xd ∈ T(f) ∧ ν2(1 · g) = 2 ≤ ν2(f1 + f2),

i.e. f1 +f2 reduces to zero (w.r.t. ρ), so f1 +f2 is 6∈ Iρ. This shows that Iρ is not closed
under addition and therefore ρ is not a strong reduction for N .
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Theorem 19. Let f, g, h ∈ F such that g 6= 0. Assume that f
(x,∂)−→g h. Then, for

arbitrary r, s ∈ N

1. f ∈ F (1)
r ⇒ h ∈ F (1)

r ;

2. f ∈ F (2)
r ⇒ h ∈ F (2)

r ;

3. f ∈ Fr,s ⇒ h ∈ Fr,s;

4. f ∈ F (3)
r ⇒ h ∈ F (3)

2r ;

Consequently the full reduction corresponding to an (x, ∂)-Gröbner basis for a submodule
N ⊆ F is a weak Gröbner reduction for N with respect to these filtrations.

Proof. By Lemma 31 we may assume that f −→ρ
g h, i.e.

∃λ ∈ Λ

(
LTx(λg) ∈ T(f) ∧ h = f −

fLTx(λg)

LCx(λg)
λg ∧ P (f, g, λ)

)
.

1. Assume that f ∈ F
(1)
r . Then ν1(f) ≤ r, whence ∀t ∈ T(f) : ν1(t) ≤ r. Take

t ∈ T(h). If t ∈ T(f) then ν1(t) ≤ r. If t 6∈ T(f) then

0 6= ht = −
fLTx(λg)

LCx(λg)
(λg)t

Thus
(λg)t 6= 0⇒ t ∈ T(λg)⇒ t 4x LTx(λg) ∈ T(f).

Therefore
ν1(t) ≤ ν1(LTx(λg)) ≤ r ⇒ T(h) ⊆ F (1)

r ⇒ h ∈ F (1)
r .

2. Let f ∈ F (2)
r . Then T(f) ⊆ F (2)

r . Writing out the predicate P we obtain

ν2(λ · LTd(g)) ≤ ν2(LTd(f)).

Take t ∈ T(h). If t ∈ T(f) then t ∈ F
(2)
r . If t 6∈ T(f) then, with the same

argument as in the previous case, we obtain t ∈ T(λg). Therefore t 4d LTd(λg) =
LTd(λ · LTd(g)). Then we derive

ν2(t) ≤ ν2(LTd(λ · LTd(g)) = ν2(λ · LTd(g)) ≤ ν2(LTd(f)),

whence ν2(t) ≤ r, that is, t ∈ F
(2)
r . This shows that T(h) ⊆ F

(2)
r . Since the

filter-sets are vector spaces we arrive at h ∈ F (2)
r .

3. If f ∈ Fr,s then f ∈ F (1)
r ∩ F (2)

s . Therefore also h ∈ F (1)
r ∩ F (2)

s = Fr,s.

4. This follows from Corollary 12 and the previous point.
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3.2. The Ring of Difference-Differential Operators

At the introductory chapter 1, we have encountered the ring of difference-differential
operators over a field K. In this section, we consider the situation where we have a
commutative ring K contained in the considered ring D, and we are given a tuple
δ = (δ1, . . . , δm) of derivations and a tuple of automorphisms σ = (σ1, . . . , σn) of K. All
these maps are assumed to commute with each other. The ring D is then constructed
as the free K-module on the set of formal expressions

Λm,n := {δkσl = δk11 · · · δ
km
m σl11 · · ·σ

ln
n , (ki ∈ N, li ∈ Z)}

and a product that reflects the properties of derivations and automorphisms. We consider
the elements of the set Λm,n as the distinguished monomials, and write Λ for Λm,n.
Consequently elements of D are finite K-linear combinations∑

(k,l)∈Nm×Zn
ak,lδ

kσl, ak,l ∈ K,

and the product is driven by the rules

δi · c = c · δi + δi(c) σj · c = σj(c)σj , c ∈ K.

A left module over D is also called a difference-differential module, or ∆Σ-module over
K.1 The concept covers difference modules (∆ = ∅) as well as differential modules
(Σ = ∅) as special instances. But we can also make a link to the Weyl-algebra, considered
in the previous section.

Lemma 37. Consider a field K with char(K) = 0. Let

1. K = K[x1, . . . , xn];

2. ∆ =
{

d
dx1

, . . . , d
dxn

}
;

3. Σ = ∅.

Then the resulting ∆Σ-ring is the Weyl-algebra An(K).

Proof. This is due to the fact that partial derivatives have no relations among each other.
Precisely: Let ∆? be the monoid generated (in EndK(K)) by ∆. Then ∆? ∼= Nn and
An(K) is a free K-module with basis ∆?.

We continue our consideration with the choice K = K. We use the notation

yk = δk(y) and ys = σs(y), k ∈ Nm, s ∈ Zn.

1In the literature the tuples δ and σ are denoted informally as the sets ∆ and Σ, whence the name.
Note though, that the mappings δi need not be distinct. The same is the case with the σj .
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The product in D can then be written explicitely

δkσl · y · δrσse =
∑
u≤πk

(
k

u

)
yk−ul · δu+rσl+se, y ∈ K.

For λ = δkσl ∈ Λ we set

ν1(λ) = k1 + . . .+ km, ν2(λ) = |l1|+ . . .+ |ln|, ν0(λ) = ν1(λ) + ν2(λ). (3.11)

The extensions of these functions to D, given by

νj : D → N, a 7→ max{νj(λ) : λ ∈ T(a)}

induce the univariate filtrations

D(j)
r = {a ∈ D : νj(a) ≤ r} j = 0, 1, 2. (3.12)

Lemma 38. Let D be filtered as in (3.12), F a free D-module.

• The family
(
D

(j)
r

)
r∈N

is a monomial filtration on D, j = 0, 1, 2.

•
(
F

(j)
r

)
r∈N

is a monomial filtration on F , j = 0, 1, 2.

Proof. The proof is a variation of Example 7.

Fix an enumeration of the set E and set

t = δkσlei 7→ (νj(t), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1) j = 0, 1, 2.

The corresponding well-orders for monomials s = δkσlei1 , t = δrσsei2 in ΛE are now

s ≺j t :⇔
(νj(s), i1, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1)

<lex

(νj(t), i2, r1, . . . , rm, |s1|, . . . , |sn|, sgn(s1) + 1, . . . , sgn(sn) + 1)

Then
s 4j t⇒ νj(s) ≤ νj(t), j = 0, 1, 2.

These orders single out LTj(f) and LCj(f) for each f ∈ F\{0}. According to (3.1) we
get

f −→ρj
g h⇔ ∃λ ∈ Λ

(
LTj(λg) ∈ T(f) ∧ h = f −

fLTj(f)

LCj(λg)
λg
)

and for G ⊆ F the reduction ρj is

f −→ρj
G h⇔ ∃g ∈ G such that f −→ρj

g h.

Note that the predicate ‘P’ mentioned in (3.1) is empty here, i.e. we may set P = TRUE.
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Lemma 39. If f −→ρj
G h = f − λg and f ∈ F (j)

r then h ∈ F (j)
r .

Proof. There exists g ∈ G and λ ∈ Λ such that LTj(λg) ∈ T(f). Therefore, from

monomiality of the filtration, we get LTj(λg) ∈ F
(j)
r . Let b ∈ T(λg) be an arbitrary

monomial. Then from b 4j LTj(λg) we obtain νj(b) ≤ νj(LTj(λg)) ≤ r, that is, b ∈ F (j)
r .

Consequently λg ∈ Fr, and so is h = f − c · λg.

Together with the previous remarks, the last Lemma exhibits the relations ρj as Gröbner
reductions.

3.2.1. Relative Reduction

In [ZW07a] the filtration
(
F

(0)
r

)
r∈N

is treated by using a variant of the term order ≺0

and its corresponding reduction. In [ZW08a] the bivariate filtration Dr,s = D
(1)
r ∩D(2)

s

occurs. For the purpose of reduction the following two term orders have been used. For
monomials u = δkσlei and v = δrσsej in ΛE, set

u ≺1 v ⇔
(ν2(u), ν1(u), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1)

<lex

(ν2(v), ν1(v), j, r1, . . . , rm, |s1|, . . . , |sn|, sgn(s1) + 1, . . . , sgn(sn) + 1)

(3.13)

respectively

u ≺2 v ⇔
(ν1(u), ν2(u), i, k1, . . . , km, |l1|, . . . , |ln|, sgn(l1) + 1, . . . , sgn(ln) + 1)

<lex

(ν1(v), ν2(v), j, r1, . . . , rm, |s1|, . . . , |sn|, sgn(s1) + 1, . . . , sgn(sn) + 1)

(3.14)

The appropriate reduction concept - called relative reduction in [ZW08a] - takes into

account both of these orders. Let f, g, h ∈ F . Then f
rel−→g h if and only if

∃λ ∈ Λ
(

LT1(λg) = LT1(f) ∧ LT2(λg) 42 LT2(f) ∧ h = f − LC1(f)

LC1(λg)
λg
)
.

Here we meet leading term reduction (3.2) involving the predicate

P (f, g, λ)⇔ LT2(λg) 42 LT2(f).

Again, for G ⊆ F relative reduction is

f
rel−→G h⇔ ∃g ∈ G with f

rel−→g h.
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Theorem 20. Let the orders ≺1 and ≺2 be given by (3.13) resp. (3.14), consider the
bivariate filtration Fr,s of F , given by

Fr,s =
⊕
e∈E

Dr,se,

induced by the filtration (Dr,s)(r,s)∈N2 on D, the set Dr,s as in Example 7. Then

f
rel−→g h ∧ f ∈ Fr,s ⇒ h ∈ Fr,s.

Consequently, the full reduction associated to
rel−→G is a Gröbner reduction.

Proof. Assume f
rel−→g h and f ∈ Fr,s. Thus |f |1 ≤ r and |f |2 ≤ s. We set

u := LT1(f) = LT1(λg), u′ := LT2(f), c = LC1(λg).

Thus we may write

f = fuu+ ϕ = fu′u
′ + ϕ′

λg = cu+ ψ.

From the assumption we obtain that λg 42 u
′ and

h = f − LC1(f)

LC1(λg)
λg = fuu+ ϕ− fu

c
(cu+ ψ) = ϕ− fu

c
ψ.

Therefore
T(h) ⊆ T(ϕ) ∪ T(ψ) =

(
T(f) ∪ T(λg)

)
\ {u}.

Take µ ∈ T(h). If µ ∈ T(f) then |µ|1 ≤ r ∧ |µ|2 ≤ s. If µ ∈ T(λg) then, since
λg 42 u

′, we obtain µ 42 u
′ and therefore |µ|1 ≤ |u′|1 ≤ r. Because u = LT1(λg) we

obtain µ ≺1 u and thus |µ|2 ≤ |u|2 ≤ s. So in any case we obtain |µ|1 ≤ r ∧ |µ|2 ≤ s,

that is, |h|1 ≤ r ∧ |h|2 ≤ s. Therefore h ∈ Fr,s. Obviously f
rel−→g h implies that

LT1(h) ≺1 LT1(f). Consequently
rel−→G is a noetherian reduction compatible with the

filtration.

.

3.2.2. Computation of Multivariate ∆-Σ Dimension Polynomials

In the general case, Corollary 6 applies. We will generalize the dimension polynomial
computed in [ZW07a, ZW08a, Lev12, Lev13]. To that end, we will set up a refined
filtration of the ring D, controlled by a partition of the basic operators in the difference-
differential field (K,∆,Σ). Again, K is actually the field K. After designing a Gröbner
reduction for a submodule, Corollary 6 will give us an improved picture of the filter
spaces in the quotient.
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Consider the sets

∆ = {δ1, . . . , δm}, Σ = {σ1, . . . , σn}

of the difference-differential field (K,∆,Σ). We divide ∆ and Σ into p respectively q
pairwise disjoint subsets

∆ = ∆1 ∪ · · · ∪∆p, Σ = Σ1 ∪ · · · ∪ Σq (3.15)

where

∆1 = {δ1, . . . , δm1} ∆k = {δm1+···+mk−1+1, . . . , δm1+···+mk}, 2 ≤ k ≤ p,

and m1 + · · ·+mp = m. Similar for Σ

Σ1 = {σ1, . . . , σn1} Σk = {σn1+···+nk−1+1, . . . , σn1+···+nk}, 2 ≤ k ≤ q

where n1 + · · ·+ nq = n.

Definition 22. For a monomial λ = δk11 · · · δkmm σl11 · · ·σlnn ∈ Λm,n we define

|λ|∆r =
∑
δi∈∆r

ki, 1 ≤ r ≤ p, |λ|Σs =
∑
σi∈Σs

|li|, 1 ≤ s ≤ q.

For a general difference-differential operator we set

|a|Φ := max{|λ|Φ : λ ∈ T(a)}, Φ ∈ {∆1, . . . ,∆p,Σ1, . . . ,Σq}.

The following device defines a p+ q-variate filtration on D. For r ∈ Np+q set

Dr = {u ∈ D : ∀i : 1 ≤ i ≤ p : |u|∆i ≤ ri ∧ ∀j : 1 ≤ j ≤ q : |u|Σj ≤ rp+j}. (3.16)

We reproduce now the result obtained in [FL15a, Theorem 2].

Theorem 21. Let K be a ∆Σ-field and M a finitely generated difference-differential
module. Produce a partition of the sets ∆, Σ as described in (3.15) and equip the
operator ring D with the filtration described in (3.16). Extend the filtration to the finite
free presentation

0 −→ N −→ F
π−→M −→ 0

where F has K-basis E, and let ≺ be a generalized term order on ΛE.

If G is a Gröbner basis of N then the cardinality of the set

Ur = {t ∈ ΛE ∩ Fr : ∀g ∈ G∀λ ∈ Λ

(t = LT≺(λg)⇒ ∃i : |λg|∆i > ri ∨ ∃j : |λg|Σj > rp+j)}

provides the values of the Hilbert function of M , i.e.,

dimKMr = |Ur| ∀r ∈ Np+q.
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Proof. The relation

f −→ h⇔ ∃g ∈ G ∃λ ∈ Λ LT≺(λg) = LT≺(f) and

∀i : 1 ≤ i ≤ p |λg|∆i ≤ |f |∆i ∧ ∀j : 1 ≤ j ≤ q |λg|Σj ≤ |f |Σj and

h = f − LC≺(f)

LC≺(λg)
λg

defines a Gröbner reduction for N and Corollary 6 is applicable.

3.3. The Ring of Ore Polynomials

As we’ve indicated in the introduction, we continue now to consider a structure over the
commutative ring K. Given a K-endomorphism σ : K → K, a σ-skew derivation is an
additive map δ : K → K satisfying

δ(ab) = σ(a)δ(b) + δ(a)b, a, b ∈ K.

An Ore-variable over K is a pair ∂ = (σ, δ) where σ is an endomorphism and δ is a
σ-skew derivation.

Let ∂i = (σi, δi) be Ore-variables (1 ≤ i ≤ n) such that all mappings σi, δj commute
with each other. Then the Ore algebra O defined by O = {∂1, . . . , ∂n} is the set of K-
linear combinations on the set of formal expressions ∂k = ∂k11 · · · ∂knn with multiplication
determined by the rules

∂i · ∂j = ∂j · ∂i and ∂i · x = σi(x)∂i + δi(x) x ∈ K.

We set Λ := {∂k : k ∈ Nn} ∼= Nn, as usual its elements are called monomials.

With the convenient notation

xlk = (δl ◦ σk)(x) k, l ∈ Nn, x ∈ K.

the product in the ring O may be written explicitely

x∂l · y∂q =
∑
v∈Nn

(
l

v

)
xyl−vv · ∂ q+v =

∑
v≤πl

(
l

v

)
xyvl−v · ∂ l+q−v

where x, y ∈ K and l, q ∈ Nn. In particular

x∂0 · y∂q = xy∂q

demonstrating that K is naturally a subring of O.

Remark. With the notion from Lemma 10 we have Sk,l(x) := xlk+l, which is valid for
the univariate case. Here, we want to develop a theory of the n-fold case, thats why we
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have chosen to change notation.

In [Lev07], the set O of variables is splitted into disjoint subsets O = O1∪· · ·∪Op. This
gives order functions

νj : Λ→ N, ∂k 7→ νj(∂
k) :=

∑
∂i∈Oj

ki 1 ≤ j ≤ p,

and the total degree function ν0(∂k) = ν1(∂k) + · · · + νp(∂
k), that extends to the free

module F = O(E) where E = {e1, . . . , eq}. In the notion of Chapter 2, Example 8, we
have νj(·) = | · |Oj .

As usual

νj(∂
ke) = νj(∂

k), νj(f) =

{
maxt∈T(f) νj(t) . . . f ∈ F \ {0}
−∞ . . . f = 0

for all j = 0, 1, . . . , p.

For the remaining part of this section we assume that K is a field K.

Lemma 40. Let x, y ∈ K\{0}, k, l ∈ Nn. Then, we have

νj(x∂
k · y∂le) = νj(∂

k) + νj(∂
l), j = 0, . . . , p.

Proof. Take a term t ∈ T(x∂k · y∂l).

x∂k · y∂l =
∑
v≤πk

(
k

v

)
xyvk−v · ∂l+k−v ⇒ ∃v ≤π k : t = ∂l+v,

thus, if 1 ≤ j ≤ p then

νj(t) =
∑
∂i∈Oi

(li+vi) ≤
∑
∂i∈Oi

(li+ki) =
∑
∂i∈Oi

li+
∑
∂i∈Oi

ki = νj(∂
l)+νj(∂

k) = νj(xyk ·∂k+l).

Since xyk 6= 0 the assertion follows. The statement for j = 0 follows by summing up all
j = 1, . . . , p.

The p orders on ΛE considered in [Lev07] are defined by the p injections

τj : Λ→ Nn+p+1

∂k 7→ τj(∂
k) := (νj(λ), ν0(λ), ν1(λ), . . . , ν̂j(λ), . . . , νp(λ), kj , k1, . . . , k̂j , . . . , kp)

(3.17)
with notation

k = (k1, . . . , kn) = (k1, . . . , kp), ki ∈ N, kj ∈ NCard(Oj),
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the elements designated by ν̂j(λ) and k̂j left out. The extensions of τj to ΛE are given
by

ϕj : ΛE → Nn+p+2, ∂kei 7→ ϕj(∂
kei) := (τ(∂k), i).

Thus, for terms t1, t2 ∈ ΛE,

t1 ≺j t2 ⇔ ϕj(t1) <lex ϕj(t2).

Note that
νj(∂

k) = |kj | =
∑
∂i∈Oj

ki, 1 ≤ j ≤ p.

Lemma 41. Let k, l ∈ Nn, τj as in (3.17). Then,

τj(∂
k+l) = τj(∂

k) + τj(∂
l), 1 ≤ j ≤ p.

Proof. Using the notation from above it is plain that (k + l)j = kj + lj . Therefore

νj(∂
k+l) = |(k + l)j | = |kj + lj | = |kj |+ |lj | = νj(∂

k) + νj(∂
l).

From this observation the statement is obvious.

Leading term and leading coefficient functions are written LTj(·), LCj(·) for 1 ≤ j ≤ p.
As before it is plain that

νj(f) = νj(LTj(f)) ∀j.

Lemma 42. Let x, y ∈ K, k, l ∈ Nn, e ∈ E. Then,

LTj(x∂
k · y∂le) = ∂k+le, ∀j : 1 ≤ j ≤ p.

Proof. Take a term t ∈ T(x∂k · y∂le) with t 6= ∂k+le. Then ∃v <π k with t = ∂v+le. Let
i0 = min{i : vi 6= ki}. Then

vi0 < ki0 ∧ ∀i < i0 : vi = ki ⇒ (l + v)i0 < (k + l)i0 ∧ ∀i < i0 : (l + v)i = (k + l)i.

Thus

i0 = min{i : (l + v)i 6= (k + l)i} ∧ (l + v)i0 < (k + l)i0 ∧ ∀i : (l + v)i ≤ (k + l)i.

Therefore
ν0(t) = |l + v| = |l|+ |v| < |l|+ |k| = |l + k| = ν0(∂l+ke)

If ∂i0 ∈ Oj then
νj(t) < νj(∂

k+le)⇒ t = ∂l+ve ≺j ∂k+le.

On the other hand, if ∂i0 6∈ Oj then

νj(t) ≤ νj(∂k+le) ∧ ν0(t) < ν0(∂k+le)

and again t ≺j ∂k+le.
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Corollary 14. Let a, b, x, y ∈ K\{0}, k, l, r ∈ Nn, eu, ev ∈ E such that u < v. Then,

∂k ≺j ∂l ⇒ LTj(x∂
k · a∂reu) ≺j LTj(y∂

l · b∂rev)
∧ LTj(a∂

r · x∂keu) ≺j LTj(b∂
r · y∂lev).

1 ≤ j ≤ p.

Proof. We have to show that ∂k+reu ≺j ∂l+rev. From the hypothesis we have

τj(∂
k) <lex τj(∂

l).

Thus, using Lemma 41

τj(∂
k+r) = τj(∂

k) + τj(∂
r) <lex τj(∂

l) + τj(∂
r) = τj(∂

l+r).

Therefore also
(τj(∂

k+r), u) <lex (τj(∂
l+r), v).

Lemma 43. Let an Ore-operator a ∈ O \ {0} be given, such that LTj(a) = ∂k0 and let
f ∈ F \ {0}. Then, for all j

• LTj(a · f) = LTj(a) · LTj(f);

• LCj(a · f) = LCj(a) · σk0(LCj(f)).

Proof. Set
LCj(a) = a0, LTj(f) = ∂l0e0, LCj(f) = f0.

Thus
a = a0∂

k0 +
∑

∂k≺j∂k0

ak∂
k and f = f0∂

l0e0 +
∑

∂le≺j∂l0e0

fl,e∂
le.

a · f = a0∂
k0 · f0∂

l0e0︸ ︷︷ ︸
(S1)

+
∑

∂le≺j∂l0e0

a0∂
k0 · fl,e∂le

︸ ︷︷ ︸
(S2)

+
∑

∂k≺j∂k0

ak∂
k · f0∂

l0e0

︸ ︷︷ ︸
(S3)

+
∑

∂k≺j∂k0

∑
∂le≺j∂l0e0

ak∂
k · fl,e∂le

︸ ︷︷ ︸
(S4)

Pick out a summand of sum (S2). If ∂l ≺j ∂l0 then

LTj(ao∂
k0 · fl,e∂le) ≺j LTj(a0∂

k0 · f0∂
l0e0).

If ∂l = ∂l0 then e < e0 and

LTj(ao∂
k0 · fl,e∂le) = ∂k0+le ≺j ∂k0+l0e0 = LTj(ak∂

k · f0∂
l0e0).
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For a summand of sum (S3) we obtain

LTj(ak∂
k · f0∂

l0e0) ≺j LTj(a0∂
k0 · f0∂

l0e0).

As to sum (S4), from the scope of the first sum we derive

LTj(ak∂
k · fl,e∂le) ≺j LTj(a0∂

k0 · f0∂
le0).

If ∂l ≺j ∂l0 then
LTj(a0∂

k0 · f0∂
le0) ≺j LTj(a0∂

k0 · f0∂
l0e0).

If ∂l = ∂l0 then

LTj(a0∂
k0 · f0∂

le0) = ∂k0+l = ∂k0+l0 = LTj(a0∂
k0 · f0∂

l0e0).

So, in any case,
LTj(ak∂

k · fl,e∂le) ≺j LTj(a0∂
k0 · f0∂

l0e0).

Let t ∈ T(a · f). Then t must be a term (surviving after cancellation) of one of the sum
expressions (S1)-(S4). Consequently

t 4j LTj(a0∂
k0 · f0∂

l0e0) = ∂k0+l0e0 = ∂k0 · ∂l0e0 = LTj(a · LTj(f)).

Moreover we see that the expression ∂k0 · ∂l0e0 does not cancel out. It follows that
LTj(a · f) = LTj(a) · LTj(f).

From the expansion of expression (S1)

a0∂
k0 · f0∂

l0e0 =
∑
v≤π

(
k0

v

)
a0(f0)k0−vv ∂l0+ve0.

we derive

LCj(a · f) = a0(f0)k0 = LCj(a) · LCj(f)k0 = LCj(a) · σk0(LCj(f))

Corollary 15. Let λ = ∂k ∈ Λ, f ∈ F \ {0}. Assume that ∂ = (σ, δ), i.e.

∂ · x = σ(x) · ∂ + δ(x).

Then for all j = 1, . . . , p, we have

• LTj(λ · f) = λ · LTj(f);

• LCj(λ · f) = σk(LCj(f)).

Corollary 16. Let a ∈ O\{0}, f ∈ F\{0}. Then, for all j = 0, . . . , p

νj(a · f) = νj(a) + νj(f).
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Proof. Let 1 ≤ j ≤ p and set LTj(a) = ∂k0 , LTj(f) = ∂l0e0. Then

νj(a · f) = νj(LTj(a · f)) = νj(LTj(a) · LTj(f)) = νj(∂
k0 · ∂l0e0) = νj(∂

k0) + νj(∂
l0)

= νj(LTj(a)) + νj(LTj(f)) = νj(a) + νj(f).

The statement for j = 0 follows by summation.

Corollary 17. Let a ∈ O, f ∈ F . Then a · f = 0⇒ a = 0 ∨ f = 0. Consequently, O is
a domain.

Proof. Let a 6= 0 ∧ f 6= 0. Then ν(a) > 0 ∧ ν(f) > 0. Therefore

ν(a · f) = ν(a) + ν(f) > 0

hence a · f 6= 0.

The order functions νj propose a natural filtration concept.

F (j)
r = {f ∈ F : νj(f) ≤ r} r ∈ N, 0 ≤ j ≤ p.

For r ∈ Np we set

Fr =

p⋂
j=1

F (j)
rj = {f ∈ F : ν1(f) ≤ r1 ∧ · · · ∧ νp(f) ≤ rp}.

Again the sets O
(j)
t and Or are implicitely defined (F = O1).

Lemma 44. Let r ∈ N. Tor all 1 ≤ j ≤ p, the sets F
(j)
r defines a univariate filtration

on F with respect to the univariate filtration O
(j)
r in O. For r = (r1, . . . , rp) ∈ Np, we

have that

Fr =

p⋂
j=1

F (j)
rj

is a p-fold filtration with respect to Or.

Proof.

• If f, g ∈ F (j)
r then νj(f+g) ≤ max{νj(f), νj(g)} ≤ r, thus the sets F

(j)
r are abelian

groups;

• r ≤ s in N implies F
(j)
r ⊆ F (j)

s ;

•
∞⋃
r=0

Fr = F ;

• If a ∈ O(j)
r ∧f ∈ O(j)

s then νj(a·f) = νj(a)+νj(f) ≤ r+s, henceO
(j)
r ·F (j)

s ⊆ F (j)
s+t.
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3.3.1. Reduction with Respect to Several Term Orders

In [Lev07] the following theory is developed.

Definition 23. Let f, g ∈ F , g 6= 0. Let k, i1, . . . , ir be distinct elements in {1, . . . , p},
I = {i1, . . . , ir} and L = (k, I). Then f is L-reduced w.r.t. g if and only if

6 ∃λ ∈ Λ :
(
λ · LTk(g) ∈ T(f) ∧ ∀i ∈ I : νi(λ · LTi(g)) ≤ νi(LTi(f))

)
f is L-reduced w.r.t. G ⊆ F if and only if f is L-reduced w.r.t. g for all g ∈ G.

The corresponding reduction concept in [Lev07] is given in the next definition.

Definition 24. Let f, g, h ∈ F , g 6= 0. I and L = (k, I) as before. Then we say that f
L-reduces to h if and only if

f
L−→g h⇐⇒ ∃w ∈ T(f) : LTk(g) | w ∧

h = f − fw
τ(w/LTk(g))(LCk(g))

w

LTk(g)
g ∧

∀i ∈ I : νi

(
w

LTk(g)
LTi(g)

)
≤ νi(LTi(f))

(3.18)

Here for λ ∈ Λ the symbol τk denotes the exponent of λ, as power of ∂, considered as
the corresponding endomorphism of K, precisely

λ = ∂k, x ∈ K ⇒ τλ(x) = σk(x).

Theorem 22. Let f, g, h ∈ F , g 6= 0 and L = (k, I) as before. Let P denote the
predicate

P (f, g, λ)⇔ ∀i ∈ I : νi(λ · g) ≤ νi(f).

Let ρ denote the reduction relation

f −→ρ
g h⇔ ∃λ ∈ Λ

(
LTk(λ · g) ∈ T(f) ∧ h = f −

fLTk(λ·g)

LCk(λ · g)
λ · g ∧ P (f, g, λ)

)
.

Then
f −→ρ

g h⇔ f
L−→g h

Proof. Assume that f
L−→g h and let w ∈ T(f) as mentioned in (3.18). Let LTk(g) = ∂le.

Since LTk(g)|w we may write w = ∂p+le. Set λ = (w/LTk(g)) = ∂p. Then, by Corollary
15,

LTk(λ · g) = λ · LTk(g) = ∂p · ∂le = ∂p+le = w

In terms of the τ -notation we obtain

τ(w/LTk(g))

(
LCk(g)

)
= τλ(LCk(g)) = σp(LCk(g)) = LCk(λ · g).
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Consequently LTk(λ · g) ∈ T(f) and h = f − fLTk(λ·g)
LCk(λ·g)λ · g. Since

νi(λ · g) = νi(LTi(λ · g)) = νi(λ · LTi(g)) = νi

( w

LTk(g)
· LTi(g)

)
the formula P (f, g, λ) is exactly the additional condition in (3.18), which means that
f −→ρ

g h.

Conversely assume that f −→ρ
g h. Let λ = ∂p as mentioned in the formula, LTk(g) = ∂le

and set
w = LTk(λ · g) = λ · LTk(g) = ∂p · ∂le = ∂p+le.

Then LTk(g)|w, and

w

LTk(g)
= ∂p = λ⇒ LCk(λ · g) = σp(LCk(g)).

In τ -notation:

τ(w/LTk(g))

(
LCk(g)

)
= τ∂p

(
LCk(g)

)
= σp(LCk(g)) = LCk(λ · g).

Therefore w ∈ T(f) ∧ LTk(g)|w and

h = f − fw
τ(w/LTk(g))(LCk(g))

w

LTk(g)
g ∧ P (f, g, λ)

and this means that f
L−→g h.

Lemma 45. P satisfies the monomial irreducibility condition (3.4). Therefore

f ∈ Iρ ⇒ T(f) ⊆ Iρ.

Proof. Assume

∃g ∈ G ∃λ ∈ Λ: LTk(λ · g) ∈ T(f)∧LCk(λ · g) ∈ K× ∧∀i ∈ I : νi(λ · g) ≤ νi(LTk(λ · g)).

Then νi(λ · g) = νi(LTk(λ · g)). As LTk(λ · g) ∈ T(f) it follows

νi(LTk(λ · g)) ≤ νi(f)⇒ νi(λ · g) ≤ νi(f).

Consequently

∃g ∈ G ∃λ ∈ Λ: LTk(λ · g) ∈ T(f) ∧ LCk(λ · g)|fLTk(λ·g) ∧ ∀i ∈ I : νi(λ · g) ≤ νi(f).
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3.4. Computation of Multivariate Hilbert-Polynomials for
Polynomial Ideals

The concept of dimension polynomial for the multivariate polynomial ring was intro-
duced by Hilbert already in the 19th century. Consider the multivariate polynomial ring
R = K[x1, . . . , xn] in n unknowns over a field K. Then R is a direct sum R =

⊕∞
k=0Rk,

where Rk is generated by

{xk11 . . . xknn : k1 + . . .+ kn = k}.

Clearly, dimKRk, is equal to the number of such monomials, as they form a basis of Rk.
By Lemma 5, the number of monomials in n variables generating Rk is given by

dimKRk =

(
n+ k − 1

k

)
, k = k1 + . . .+ kn, k, k1, . . . , kn ∈ N, k ≥ 0, n ≥ 1.

Theorem 23 (Hilbert).
Let R = K[x1, . . . , xn] =

⊕∞
k=0Rk be a graded polynomial ring over a field K, and

M =
⊕∞

k=0Mk a graded R-module. Then, there exists a polynomial φ(t) with rational
coefficients such that

dimKMk = φ(k), k large enough.

This polynomial φ is called the Hilbert polynomial of the graded module M . Obviously
we obtain bounds for φ(k) by

0 ≤ φ(k) ≤
k∑
i=0

(
n+ i− 1

i

)
=

(
n+ k

k

)
.

As we have proven a theorem on the dimension of a filtered module, we cover the Hilbert
polynomial as a special case of our considerations. Indeed, in the general case we can
apply Corollary 7 to actually compute a multivariate generalization of the Hilbert poly-
nomial.

The computation of Hilbert polynomials in this setting is addressed in [Sta78, KW88,
BS92, Eis95, CLO97]. A generalization towards bivariate Hilbert polynomials was made
in [Lev99]. With the help of Gröbner reduction we are in position to reason about gen-
eral multivariate Hilbert polynomials in this setting.

The basis of one algorithm, for the computation of Hilbert polynomials, is to use polyno-
mial Gröbner bases. From that point of view, it is reasonable to first make the connection
to our concept of Gröbner reduction, i.e. we show how to achieve a filtration that is
compatible to polynomial reduction.

Lemma 46. Let a E R := K[x1, . . . , xn] be an ideal and G a Gröbner of a w.r.t. any
term order ≺, then for r ∈ Nn,

Rr := {f ∈ K[x1, . . . , xn] : LT(f) � xr11 . . . xrnn }
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defines a monomial filtration with the additional property

m ∈ Rr ∧ n 4 m⇒ n ∈ Rr.

Consequently −→G is a Gröbner reduction w.r.t. (Rr)r∈Nn.

Example 20. If we consider the ideal aER := K[x, y], where

a := R〈f1 := x4y3 + xy6, f2 := xy5, f3 := 2x5y2 − 4x3y5〉ER,

we obtain as a Gröbner basis

G := {g1 := x4y3, g2 := xy5, g3 := x5y2}.

with respect to the lexicographic order (where x > y > z). Graphically, this ideal corre-
sponds to

m

n

Figure 3.1.: (m,n) 7→ xmyn

Let us consider the bivariate dimension polynomial associated to the filtration

Rr,s = {f ∈ R : degx(f) ≤ r ∧ degy(f) ≤ s}, r, s ∈ N.

Plugging in values (r, s) � (0, 0), we can count the number of irreducible monomials.
This value can be interpolated as bivariate polynomial by:

# of irred. monomials in Rr,s : p2(r, s) = 2r + s+ 10 ∈ K[r, s], (r, s) ≥π (5, 4).

From that, we see that the growth of elements is linear by increasing the degree in one
direction. For the univariate filtration

Rk := {f ∈ R : deg(f) ≤ k},

we count as irreducible monomials
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k 6 7 8 9 10 11

no. of irred. terms 27 31 34 37 40 43

hence, we obtain p1(k) = 3k+10 for k ≥ 7. For example, there are
(

8+2
2

)
= 45 monomials

in 2 variables of total degree 8. From this 45 monomials, there are 34 irreducible, leaving
11 reducible elements w.r.t. polynomial reduction with lexicographic order. They are
given by

R8\I = {xy7, xy6, xy5, x2y6, x2y5, x3y5, x4y4, x4y3, x5y3, x5y2, x6y2}

From this 11 monomials

• One monomial (xy5) has degree 6, hence
(

6+2
2

)
− 1 = 27 irreducible monomials of

degree 6;

• Five monomials (xy5, xy6, x2y5, x4y3, x5y2) have degree ≤7, hence
(

7+2
2

)
− 5 = 31

irreducible monomials of degree 7.

Further, we observe, that for all k ∈ N we have

Rk ⊆ Rk,k ⊆ R2k ∧ p2(k, k) = p1(k).

We now consider the general case of a p-fold filtration. Obviously, we could take the
theory developed for the ring of Ore polynomials. However, due to the behaviour of
monomials in K[x1, . . . , xn], we can greatly simplify this theory.

As in section 3.3 we split the unkowns into p disjoint subsets X1, . . . , Xp, such that
their union equals X and each xi corresponds to exactly one Xj . The degree w.r.t. this
partition is then given by

degXj : Tn(X)→ N, xk 7→
∑
xi∈Xj

ki, 1 ≤ j ≤ p.

The free module F is constructed by the generator E := {e := 1}, i.e. F = R1. With
this setting, the functional degXj (·) extends to R and F respectively by choosing

degXj (x
ke) := degXj (x

k), degXj (f) =

{
maxt∈T(f) degXj (t) . . . f ∈ F\{0};
−∞ . . . f = 0,

for all 1 ≤ j ≤ p.

Let us now formulate the basic characteristics of degXj (·).

Lemma 47. Let R := K[x1, . . . , xn], a partition X :=
⋃p
i=1Xi be fixed, Then, for

k, l ∈ Nn, a, b ∈ K\{0}, f, g ∈ R\{0} we have:

1. degXj (af ± bg) ≤ max{degXj (f),degXj (g)};
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2. degXj (fg) = degXj (f) + degXj (g);

In particular, this points can be specialized to

3. degXj (ax
k · bxl) = degXj (x

k) + degXj (x
l) =

∑
xi∈Xj (ki + li);

4. degXj (ax
k · f) =

∑
xi∈Xj ki + degXj (f);

We can now apply the considerations from before, and designate the leading term w.r.t.
the partition Xj , this is, identify each monomial by the integer-vector

τj : Tn(X)→ Nn+1, xk 7→ (degXj (x
k), k1, . . . , kn),

giving a one-to-one correspondence between Tn(X) and Nn+1. By ordering the terms λ
appearing in f ∈ R compared in lexicographic order, this gives LTj(f) and LCj(f).

However, it might happens, that τj(λ) = τk(λ) for j 6= k. If, for example, we have
X := {x1, x2, x3}, we can consider the partition X1 := {x1}, X2 := {x2, x3}. Then,

τ1(x3
1x2x

2
3) = (3, 3, 1, 2) = τ2(x3

1x2x
2
3).

By Lemma 47, we immediately obtain

τj(x
k · xl) = τj(x

k+l) = (degXj (x
k+l), k1 + l1, . . . , kn + ln)

= (degXj (x
k), k1, . . . , kn) + (degXj (x

l), l1, . . . , ln) = τj(x
k) + τj(x

l).

Similar as in the ring O, we plainly have for f ∈ R that

LTj(f) = degXj (LTj(f)), 1 ≤ j ≤ p.

Lemma 48. Let 1 ≤ j ≤ p. Given f, g ∈ R\{0}, we have:

• LTj(f · g) = LTj(f) · LTj(g);

• LCj(f · g) = LCj(f) · LCj(g).

This applies in particular to f ∈ Tn(X) ⊆ R, i.e.

LTj(x
k · g) =

 ∏
xi∈Xj

xkii

 · LTj(g), LCj(ax
k · g) = a · LCj(g) a ∈ K.

The degree functionals degXj induce a natural filtration of F = R1, by setting

F (j)
r := {f ∈ F : degXj (f) ≤ r}, r ∈ N, 1 ≤ j ≤ p,

respectively, its p-fold counterpart defined as the intersection Fr = F
(1)
r1 ∩ . . . ∩ F

(p)
rp .
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As before, we show that each F
(j)
r defines an univariate filtration on F w.r.t. the uni-

variate filtration on Rr on R. Therefore, by Lemma 16, Fr is a p-fold filtration w.r.t. Rr.

We want now to characterize the full reduction that is obtained by this setting. This is
a straight-forward specialization of Theorem 22. We state it explicit here.

Definition 25 (Full reduction in K[X]).
Let f, g ∈ F = R1, s.t. g 6= 0, denote the predicate P by

P (f, g, xk)⇔ degXj (x
k · g) ≤ degXj (f), 2 ≤ j ≤ p. (3.19)

Then, ρ is the full reduction

f −→ρ
g h⇔ ∃xk ∈ Tn(X)

(
LT1(xkg) ∈ T(f) ∧ h = f −

fLT1(xk·g)

LC1(xk · g)
xkg ∧ P (f, g, xk)

)
.

Let now
ri := degXi(f) = degXi(LTi(f)), 1 ≤ i ≤ p.

The predicate (3.19) fits in full reduction in the sense that

xkg ∈ F (1)
r1 because LT1(xkg) ∈ T(f) ⊆ F (1)

r ,

and xkg ∈ F
(2)
r2 ∩ . . . ∩ F

(n)
rn because of P . From that, one obtains that an arbitrary

permutation of the indices results in the same result. Namely, we could replace the
argument in Definition 25 by

∃xk ∈ Tn(X)

(
∃` : 1 ≤ ` ≤ p : LT`(x

k · g) ∈ T(f) ∧ h = f −
fLT`(xk·g)

LC`(xk · g)
xkg ∧ P (f, g, xk, `)

)
;

(3.20)
where

P (f, g, xk, `) :⇔ degXj (x
k · g) ≤ degXj (f), 1 ≤ j ≤ p, j 6= `.

Lemma 49. The predicate P given by (3.19) satisfies the monomial irreducibility con-
dition (3.4), i.e. f ∈ Iρ ⇒ T(f) ⊆ Iρ.

Proof. See the proof of Lemma 45.
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4. Relative Reduction and Buchberger’s
Algorithm in Filtered Free Modules

While in the previous section, we’ve considered (and extended) the existing approaches
for the computation of a Gröbner reduction, we now want to propose a Buchberger proce-
dure, for certain type of filtrations. We are interested in multivariate filtrations that are
built as intersection of univariate filtrations. In particular, we reflect the discussions of
the author and Prof. Alexander Levin, and propose a method for computing a generating
set, such that every non-zero element in the considered submodule reduces with respect
to this generating set to zero. The author has, together with Prof. Levin submitted a
pre-print to the proceedings of the ACA (Applications of Computer Algebra), see [FL16].

In [ZW08a], a method was presented, that provided the method terminates, produces a
Gröbner basis with respect to relative reduction. In fact, this is a variant of Buchberger’s
algorithm (i.e. adding non-zero remainders with respect to multivariate division), by
taking into account relative reduction. However, in [Dön13], an example was presented
where the method does not terminate. This termination property has been examined in
[HZ15].

We reproduce the discussion from [Dön13, HZ15]. Let

≺= lex(x3 > x1 > x2), ≺′= grevlex(x3, x2, x1).

on {x1, x2, x3} and let Gi be defined as

Gi := {f0 := x3
1x

2
2 + x4

1x2, f1 := x3
2x

2
3 + x1x

2
2x

2
3}

∪ {gj := x3+4j
1 x2x3 + x2+4j

2 x2
3 | j = 0 . . . i}.

Claim 1. G0 is a Gröbner basis w.r.t. ≺′ for 〈f0, g0〉. To that end, we observe that the
S-polynomials can be reduced to zero. Indeed,

S≺′(f0, g0) = x4
1x2x3 − x3

2x
2
3 = x1 · g0 − (x3

2x
2
3 + x1x

2
2x

2
3)︸ ︷︷ ︸

=:f1

S≺′(f0, f1) = x2x
2
3 · f0 − x3

1 · f1 = 0

S≺′(f1, g0) = x4
1x

2
2x

2
3 − x4

2x
3
3 = x2x

2
3 · f0 − x2

2x3 · g0 + 0.

For the second part of the loop, we ≺-reduce the S-polynomial S(f0, gi) relative to ≺′.

117



Claim 2. Let Hi := {f0, g0, . . . , gi}. The S-polynomial

S≺(f0, gi) = x3
1x

3+4i
2 x2

3 − x7+4i
1 x2x3 is not ≺-reducible modulo Hi relative to ≺′ .

For the gi we observe for 0 ≤ j ≤ i that

LT≺(x3
1x

1+4(i−j)
2 gj) = x3

1x
3+4i
2 x2

3 = LT≺(S≺(f0, gi))

LT≺′(S≺(f0, gi)) = x7+4i
1 x2x3 ≺′ x6+4j

1 x
2+4(i−j)
2 x3 = LT≺′(x

3
1x

1+4(i−j)
2 gj),

hence (by the second line) reduction with one of {g0, . . . , gi} is prohibited. For f0 we
observe degx3(xa11 x

a2
2 x

a3
3 · f0) is the same for both monomials occurring in f0, hence we

make a tie break, and the monomial with higher degree w.r.t. x1 is the dominant part.
But this is always the monomial x4

1x2 which has already higher degree than S(f0, gi),
hence S≺(f0, gi) can not be reduced with f0 either.

It turns out, that S≺(f0, gi) can be reduced by f1, in particular

LT≺(x2
1x

1+4i
2 · f1) = x3

1x
3+4i
2 x2

3 = LT≺(S≺(f0, gi))

LT≺′(x
2
1x

1+4i
2 · f1) = x2

1x
4+4i
2 x2

3 ≺′ x7+4i
1 x2x3 = LT≺′(S≺(f0, gi)),

hence, it is possible to achieve the following chain of reductions:

S≺(f0, gi) = x3
1x

3+4i
2 x2

3 − x7+4i
1 x2x3 −→f1 S≺(f0, gi)− x2

1x
1+4i
2 · f1

= −x7+4i
1 x2x3 − x2

1x
4+4i
2 x2

3 =: h1 −→f1 h1 + x1x
2+4i
2 · f1

= −x7+4i
1 x2x3 + x1x

5+4i
2 x2

3 =: h2 −→f1 h2 − x3+4i
2 · f1

= −x7+4i
1 x2x3 + x6+4i

2 x2
3 = −gi+1.

At each intermediate step, we observe, that the elements h1, h2 and gi+1 are irreducible
w.r.t. Hi. But obviously

Hi+1 = Hi ∪ {gi+1},

hence, we add infinitely many elements gi+1, which causes the algorithm to fail.

Although relative reduction is formulated for modules over the ring of difference-differential
operators, the example above is formulated for usual commutative polynomials. We’ve
already seen, that the interplay of rings allows to pass from one setting to the other,
hence the same or similar examples could have been formulated for other rings (where
this type of Buchberger algorithm is formulated).

We want to generalize the algorithm proposed in [ZW08a], and view it under the aspect
of Gröbner reduction. First, let us fix the setup, that we assume in this chapter.

General Assumption 2. We consider a ring R generated by a set of monomials Λ ⊆ R.
Further, we assume that R contains a commutative subring K ⊆ R, that serves as
coefficient domain i.e. we have R = K(Λ). The letter F shall denote the free R-module
generated by E := {e1, . . . , eq} such that F = R(E) = K(ΛE).
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We assume, that R is p-fold filtered by

Rr := {f ∈ R : ν1(f) ≤ r1 ∧ . . . ∧ νp(f) ≤ rp}, r = (r1, . . . , rp) ∈ Np, (4.1)

each νi(·) is assumed to be a filter valuation (in the sense of Definition 12). For monomials
t1, t2 ∈ ΛE ⊆ F , define

t1 ≺nm t2 :⇐⇒ (νm(t1), νn(t1), ϕ(t1)) <lex (νm(t2), νn(t2), ϕ(t2)), 1 ≤ m,n ≤ p,

and

t1 ≺m t2 :⇐⇒ (νm(t1), ν(t1), ϕ(t1)) <lex (νm(t2), ν(t2), ϕ(t2)), 1 ≤ m ≤ p,

where ϕ : ΛE → Ns (s a positive integer) uniquely identify ti, such as the exponent
vector in a power product. We define for t = λe ∈ ΛE, that νi(λe) := νi(λ) and
ν(t) := ν1(t) + . . .+ νp(t) and extend this to F by

νk(f) := max
≺k
{νk(t) : t ∈ T(f)}, ν(f) := ν1(f) + . . .+ νp(f), f ∈ F\{0}.

We get the following facts:

• t1 ≺m t2 ⇒ νm(t1) ≤ νm(t2);

• t1 ≺nm t2 ⇒ ((νm(t1) < νm(t2)) ∨ (νm(t1) = νm(t2) ∧ νn(t1) ≤ νn(t2)));

In [HZ15] for the ring R the ring of difference-differential operators D is considered. For
the termination of Buchberger’s algorithm, the notion of difference-differential degree
compatibility is introduced. In fact, if the pair of generalized term orders ≺1 and ≺2

are difference-differential degree compatible, the Buchberger’s algorithm as introduced in
[ZW08a] terminates. We want to lift their approach to our general setting, and generalize
relative reduction to set-relative reduction. To that end, we introduce so called admissible
orders.

Definition 26. Let R be a bifiltered ring with filtration

Rr,s = {f ∈ R : ν1(f) ≤ r ∧ ν2(f) ≤ s}, (r, s) ∈ N2,

where νi are filter valuations. Let F be a free R-module with basis E and let F be the
induced filtration given by {Fr,s = Rr,sE : (r, s) ∈ N2}. Let ≺1 and ≺2 be two term
orders on ΛE ⊆ F . The term orders ≺1 and ≺2 are called admissible if and only if for
t1, t2 ∈ ΛE:

• if t1 ≺1 t2 then ν1(t1) < ν1(t2) or (ν1(t1) = ν1(t2) ∧ ν2(t1) < ν2(t2));

• if t1 ≺2 t2 then ν2(t1) < ν2(t2) or (ν2(t1) = ν2(t2) ∧ ν1(t1) < ν1(t2));

• t1 ≺1 t2 ⇐⇒ t1 ≺2 t2 when ν1(t1) = ν1(t2) and ν2(t1) = ν2(t2).
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Example 21. If ϕ : ΛE → Nn (n is some positive integer) uniquely identifies a mono-
mial, then the pair

t1 ≺ t2 :⇔ (u1(t1), u2(t1), ϕ(t1)) <lex (u1(t2), u2(t2), ϕ(t2)),

t1 ≺′ t2 :⇔ (u2(t1), u1(t1), ϕ(t1)) <lex (u2(t2), u1(t2), ϕ(t2))

is an example for a pair of admissible orders on the monomials ΛE in F .

The following Lemma is proven in [Lev00, Lemma 4.1].

Theorem 24. Consider the ring R with set of monomials Λ ⊆ R. Let the monomials
Λ be built as Λ = Ak ·Bl where A := {a1, . . . , am}, B := {b1, . . . , bn} and

Ak ·Bl := ak11 . . . akmm · b
l1
1 . . . b

ln
n , k = (k1, . . . , km) ∈ Nm, l = (l1, . . . , ln) ∈ Zn.

Let S be an infinite sequence of terms ΛE (where E := {e1, . . . , eq}). Then, there exists
an index 1 ≤ j ≤ q, and an infinite subsequence

{λ1ej , λ2ej , . . . , λkej , . . .} ⊆ S

such that λk divides λk+1 for all k = 1, 2, . . . .

Example 22. The monomials in the rings of our interested are covered by Theorem 24:

• commutative polynomials (with A = {x1, . . . , xm} and n = 0);

• difference operators (with m = 0 and B = {σ1, . . . , σn});

• differential operators (with A = {δ1, . . . , δm} and n = 0);

• difference-differential operators (with A = {δ1, . . . , δm} and B = {σ1, . . . , σn});

• Ore-operators (with A = {∂1, . . . , ∂m} and n = 0).

As a next step, we generalize [HZ15, Lemma 3.2] to monomially filtered rings with that
particular kind of monomials.

Lemma 50. Let F be a free R-module, ≺ and ≺′ be a pair of admissible term orders on
ΛE, and Gi := {g1, . . . , gs, r1, . . . , ri} ⊆ F\{0}. If ri+1 is ≺-reduced modulo Gi relative
to ≺′, and if

for any λ ∈ Λ, h ∈ Gi : LT≺(ri+1) 6= LT≺(λ · h),

then the ascending chain G1 ⊆ G2 ⊆ . . . stabilizes.

Proof. Since for all λ ∈ Λ and h ∈ Gi we have LT≺(ri+1) 6= LT≺(λ ·h), the element ri+1

is irreducible w.r.t. Gi. Condition (1.22) is involving the term order ≺′ would apply
only if ri+1 would be reducible, hence, we are considering the usual notion of reducedness
w.r.t. Gi for the order ≺. If the chain G1 ⊆ G2 ⊆ . . . does not stabilize, then there
would be an infinite subsequence of monomials {λ1e, λ2e, . . .} ⊆ ΛE , such that λk|λk+1

contrary to the statement of Theorem 24.
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Theorem 25. If R denotes an arbitrary monomially bi-filtered ring, where R is built
from monomials of the form Ak · Bl with (k, l) ∈ Nm × Zn, and the orders ≺ and
≺′ are chosen to be admissible, then Buchberger’s algorithm as formulated in [ZW08a]
terminates in a finite number of steps.

Proof. We start with G := {g1, . . . , gq} and already assume that it is a Gröbner basis
with respect to ≺′ (which can be ensured by Lemma 50). Suppose that the relative
reduction proceeds by generating the sequence of sets Gi := {g1, . . . , gq, r1, . . . , ri} for
i ≥ 1 and let ri+1 be reduced with respect to Gi. Then, either

• LT≺(ri+1) 6= LT≺(λh) for any λ ∈ Λ and h ∈ Gi, or

• LT≺(ri+1) = LT≺(λh) for some λ ∈ Λ, h ∈ Gi such that LT≺′(ri+1) ≺′ LT≺′(λh).

By Lemma 50, the first case cannot occur infinitely often many times (that is, if all
Gi are obtained from Gi−1 via a transition of the first type, then the ascending chain
G1 ⊆ G2 ⊆ . . . stabilizes). For the second case, we have

LT≺(ri+1) = LT≺(λh),

LT≺′(ri+1) ≺′ LT≺′(λh)⇔ ν2(LT≺′(ri+1)) < ν2(LT≺′(λh)).

If the algorithm does not terminate, then (Gi)i≥1 is a strictly increasing sequence. There-
fore, we can assume that there are infinitely many pairs (i, j) ∈ N2 with i > j such that

LT≺(ri) = LT≺(λrj) ∧ LT≺′(ri) ≺′ LT≺′(λrj).

We obtain a strictly descending (w.r.t. the order ≺′) infinite sequence of monomials in
ΛE that contradicts the fact that ΛE is well-ordered w.r.t. ≺′.

While relative reduction is concerned with bivariate filtrations, we consider the situa-
tion of a multivariate filtration. To that end, we introduce the concept of set-relative
reduction.

Theorem 26. Let F be the free R-module, where R is a (not necessarily commutative)
noetherian ring and the fixed commutative subring K of R is a field. Let f ∈ F and
G = {g1, . . . , gq} ⊆ F\{0}. Let A be a subset of {≺1, . . . ,≺p}, and an order ≺nm (1 ≤
m,n ≤ p) defined above be fixed. Then, there exists h1, . . . , hq ∈ R and r ∈ F such that

f = h1g1 + . . .+ hqgq + r

and

• hi = 0 or for all ≺ in A we have

LT≺(higi) � LT≺(f), 1 ≤ i ≤ q;

• r = 0 or for all ≺ in A with LT≺(r) � LT≺(f) we have that

LT≺nm(r) /∈ {LT≺nm(λgi) : LT≺mn (λgi) �mn LT≺mn (r) : λ ∈ Λ}, 1 ≤ m,n ≤ p.
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Proof. We give a constructive proof, along the lines of [ZW08a, Theorem 3.1]. First, we
initialize r = f and hi = 0 for 1 ≤ i ≤ q. The next steps are repeated until r = 0 or
there exists no λ and gi that satisfy the conditions of the theorem. If there exists λ ∈ Λ
such that for all ≺ in A we have LT≺(r) � LT≺(f) and

LT≺nm(r) = LT≺nm(λgi) ∧ LT≺mn (λgi) �mn LT≺mn (r),

we are allowed to perform the reduction step, and update the quantities r to r′ resp. hi
to h′i as

r′ = r −
LC≺nm(r)

LC≺nm(λgi)
λgi h′i = hi +

LC≺nm(r)

LC≺nm(λgi)
· λ.

Obviously, we have that

LT≺nm(r′) ≺nm LT≺nm(r), while for all ≺ in A we have LT≺(λgi) � LT≺(f).

Since the monomials ΛE ⊆ F are well-ordered, this can only be repeated finitely often.
Summing up the λi to hi we obtain for all ≺ in A that LT≺(higi) � LT≺(f).

Definition 27. Let A ⊆ {≺1, . . . ,≺p}, ≺nm∈ {≺ki : 1 ≤ i, k ≤ p}, f ∈ F , the elements
{g1, . . . , gq} ⊆ F\{0} and r ∈ F . We say that f A-reduces relative to ≺nm to r if only if
the conditions of Theorem 26 apply, and we call this process set-relative reduction. The
reduction is fully characterized by the tuple

(A,≺) ∈ P({≺1, . . . ,≺p})× {≺ki : 1 ≤ i, k ≤ p}.

Consider now a set V := {f1, . . . , fp} ⊆ F\{0}. A set G := {g1, . . . , gq} ⊆ F\{0} is a
Gröbner basis for V if and only if every element f ∈ R〈V 〉 can be reduced modulo G
to zero in finitely many steps. For the reduction, we consider set relative reduction. As
easily observed, this definition is equivalent to (RG) ∩ I = 0.

Based on set-relative reduction, we can now consider a p-step procedure for computing
Gröbner bases in this setting. We restrict our attention to rings R where the monomials
are of the form Ak · Bl with (k, l) ∈ Nm × Zn., i.e. we can presume that Theorem 24
and Theorem 25 holds.

We also assume that the fixed orthant decomposition of Nm×Zn consists of k orthants
and Λ(j) (1 ≤ j ≤ k) is a subset of Λ (we use notation (1.24) from Theorem 8, that al-
though formulated for difference-differential operators, can be generalized to monomials
of the form Ak ·Bl easily), whose exponent vectors lie in the j-th orthant. Furthermore,
K[Λ(j)] will denote the subring of R generated (as a K-vector space - as in Theorem 26,
we assume that K is a field) by the set Λ(j).

Exactly in the fashion of Theorem 8, we consider elements f, g ∈ F , where ≺ is a
monomial order of ΛE, and V (j, f, g) will denote a finite system of generators of the
K[Λ(j)]-module

K[Λ(j)]〈LT≺(λf) ∈ Λ(j)E : λ ∈ Λ〉 ∩ K[Λ(j)]〈LT≺(ηg) ∈ Λ(j)E : η ∈ Λ〉
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With that notation, for every generator v ∈ V (j, f, g), the element

S≺(j, f, g, v) =
v

LTj,≺(f)

f

LCj,≺(f)
− v

LTj,≺(g)

f

LCj,≺(g)

is said to be an S-polynomial of f and g w.r.t. j, v and ≺.

Based on the preceding results, we can now present Buchberger’s algorithm in this
setting.

Algorithm 2 Given V , compute a set G such that R〈V 〉 = R〈G〉 and (RG) ∩ I = 0.

Require: F is a free R-module, V := {f1, . . . , fr} ⊆ F\{0};
The ring R is p-fold filtered as in (4.1).

Ensure: G := {g1, . . . , gs} ⊆ F\{0} where R〈G〉 = R〈V 〉 such that I ∩ (RG) = 0.
(I understood as the irreducible elements w.r.t. set-relative reduction)
A ← {≺p};
G(0) ← {f1, . . . , fr};
while there exist j ∈ {1, . . . , k}, f, g ∈ G(0) and v ∈ V (j, f, g) such that S≺p(j, f, g, v)

A-reduces to r 6= 0 relative to ≺p by G(0) do
G(0) ← G(0) ∪ {r};

G(1) ← G(0);
for ` = p− 1, . . . , 1 do

(A,≺)← ({≺p, . . . ,≺`+1},≺`+1
` );

while there exist j ∈ {1, . . . , k}, f, g ∈ G(p−`) and v ∈ V (j, f, g) such that
S≺`(j, f, g, v)-A-reduces to r 6= 0 relative to ≺ by G(p−`) do
G(p−`) ← G(p−`) ∪ {r};

G(p−`+1) ← G(p−`);
return G(p)

Theorem 27. Consider V := {f1, . . . , fs} ⊆ F\{0}, let G := {g1, . . . , gq} ⊆ F\{0} be a
{≺1, . . . ,≺p}\{≺i}-Gröbner basis of V relative to ≺i. Then, G is a Gröbner basis of V
with respect to ≺j for all 1 ≤ j ≤ p.

Proof. If f ∈ F can be {≺1, . . . ,≺p}\{≺i}-reduced modulo G relative to ≺i to zero,
then f can be reduced to zero modulo G with respect {≺1, . . . ,≺p}\{≺i} in the classic
way. To see, that G is a Gröbner basis w.r.t. ≺i we take f ∈ R〈V 〉, which we represent
as in Theorem 26 as

f = h1g1 + . . .+ hqgq.

In every step of the set-relative reduction, we have

LT≺i(λjgj) �i LT≺i(r), λj ∈ T(hj), 1 ≤ j ≤ q.

We now conclude that

r = cjλjgj + rj ⇒ LT≺i(rj) �i LT≺i(r), cj ∈ K.
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If now LT≺i(r) �i LT≺i(f) then LT≺i(rj) �i LT≺i(f). This is in particular fulfilled for
the first step, where r = f . So in every step, we have

LT≺i(rj) �i LT≺i(f).

Further, if

LT≺i(hjgj) �i LT≺i(λjgj)⇒ LT≺i((hj + cjλj)gj) �i LT≺i(λjgj),

⇒ LT≺i(hjgj) �i LT≺i(rj) �i LT≺i(f).

But this obviously fulfilled, since in the first step, we have hj = 0 for all j.
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5. Outlook

In this thesis, we’ve presented the concept of Gröbner reduction, for a common treat-
ment of modules over certain (non-commutative) rings of operators. While this approach
covers quite some rings of interest in the mathematical landscape, there still might be
extensions to a wider class of rings, that would be subject to further study. The book
[RM87] is devoted to non-commutative noetherian rings, and gives a lot of different per-
spectives on related constructions. There might be also some applications to physical
systems, that are described by operator algebras, where Gröbner reduction could be
applied.

Another research perspective might be formulated as follows: Consider the ring R =
K(M), as well as an R-module M , and a binary reduction relation ρ ⊆ M ×M . Let W
be a well-founded relation, rk : M →W a function, and X ⊆M a set. Then, we define

u −→ v :⇐⇒ ∃x ∈ X : v = u− x ∧ rk(v) < rk(u).

For example, one possible choice would be W = M, the function rk is the leading
term LT : R → M. Hence, leading term reduction can be viewed under that ’model-
reduction’. It turns out, that a great account of Theorems appearing in classic textbooks
on Gröbner bases (such as [AL94, BWK93, Win96, CLO97]), can be proven under the
aspect of this reduction relation with a view towards Gröbner reduction. A further choice
of rk would be as sketched at the beginning of Chapter 3, namely (3.3), in particular
rk : F → Pfin(ΛE) (the set of finite subsets of monomials ME), that assigns to f ∈ F
its support T(f).
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[Tri78] W. Trinks. Über B. Buchbergers verfahren, Systeme algebraischer Gleichun-
gen zu lösen. Journal of Number Theory, 10(4):475 – 488, 1978.

[Wil06] H. S. Wilf. Generatingfunctionology. A. K. Peters, Ltd., 2006.

[Win96] F. Winkler. Polynomial Algorithms in Computer Algebra. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1996.

[Zei90] D. Zeilberger. A Holonomic Systems Approach to Special Functions Identi-
ties. Journal of Computational Applied Mathematics, 32(3):321–368, Novem-
ber 1990.
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