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This report is an appendix to [2] providing two pieces of information in
addition to the explicit computations of [2]. On the one hand we treat the
problem of explicit construction of proper Zolotarev polynomials of higher
degree using explicit expressions for proper Zolotarev polynomials of lower
degree. In particular we show how Z6, as computed in [2], is related to Z2.
Furthermore, we provide some ideas of intervals on the parameter t in which
the Zolotarev polynomial of degree 5 is bounded by ±1 and attains these
values at least 5 times.

1 Introduction

Please note, that this report is meant to be an appendix to [2]. This means we use all
notation and definitions from there. The current report emphasizes and extends results
from [2] and puts them in a wider framework. In this sense it is not self contained.
However, we tried to put as much information as needed to recall the most important
notions and refer to [2] whenever needed.
In [2] we are dealing with the task of finding rational solutions of the Zolotarev ODE:

n2(x− β)2(1− y2)− (1− x2)(x− γ)(x− δ)y′2 = 0 . (1)

We call all polynomial solutions of the ODE (1) a Zolotarev polynomial. If additionally
the polynomial Zn fulfills

Z ′n(β) = 0 , Zn(γ) = −Zn(δ) = ±1 , (2)
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we call it a proper Zolotarev polynomial. As in [2] we concentrate on those.
In [2] we presented an algorithm to compute all rational solutions of the Zolotarev ODE
(1), in particular it also finds all polynomial solutions. This however only works subject
to the computation of a parametrization of the relation curve.

2 Construction of Zolotarev polynomials using those of
lower degree

In [2] we computed the Zolotarev polynomial of degree 6. As one might notice from the
algorithm in [2] it is possible to compute Z2 and Z6 using the same parametrization for
β, γ, δ. In a similar way one can compute Z10, Z14 and so on. Furthermore, for Z3 and
Z9 one can do the same. In this section we show, how this works in general using a
known result from Lebedev.
In [3] Lebedev showed the following theorem for a more general setting.

Theorem 2.1. (Lebedev [3])
Let Zm be a Zolotarev polynomial of degree m > 1 and let T` be the Chebyshev polynomial
of degree ` > 1. Then Z`m = T`(Zm) is a Zolotarev polynomial of degree `m.

Proof. We give a proof using the Zolotarev ODE. We know that Zm solved the ODE,
hence

m2(x− β)2(1− Z2
m)− (1− x2)(x− γ)(x− δ)Z ′2m = 0 .

We want to show that

`2m2(x− β)2(1− T`(Zm)2)− (1− x2)(x− γ)(x− δ)Z ′2mT`(Zm)′2 = 0 .

This is equivalent to the following equations:

`2m2(x− β)2(1− T`(Zm)2)− (1− x2)(x− γ)(x− δ) m2(x− β)2(1− Z2
m)

(1− x2)(x− γ)(x− δ)T`(Zm)′2 = 0 ,

`2(1− T`(Zm)2)− (1− Z2
m)T`(Zm)′2 = 0 ,

`2(1− T`(Zm)2)− (1− Z2
m)`2U`−1(Zm)′2 = 0 ,

T`(Zm)2 − (Z2
m − 1)U`−1(Zm)2 − 1 = 0 .

The last equation holds since the Chebyshev polynomials T` and U`−1 fulfill the Pell
equation which can be easily seen from the trigonometric representation of Chebyshev
polynomials (compare [1, §18.5.1–2]). Furthermore, we used that T ′k(x) = xUk−1 (com-
pare [1, §18.9.21]), where Uk is the Chebyshev polynomial of second kind of degree
k.
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Corollary 2.2.
Let Zm be a proper Zolotarev polynomial of degree m > 1 and let T` be the Chebyshev
polynomial of degree ` > 1. Then Z`m = T`(Zm) is a proper Zolotarev polynomial if and
only if 2 - `.

Proof. We have shown in Theorem 2.1 that Z`m is a Zolotarev polynomial. We assume
that Zm is a proper one, i. e. Z ′m(β) = 0 and Zm(γ) = −Zm(δ) = ±1. Then it is
easy to see that Z ′`m(β) = T ′`(Zm(β))Z ′m(β) = 0. Furthermore, if Zm(γ) = 1, then
Z`m(γ) = T`(Zm(γ)) = T`(1) = 1. Similarly, if Zm(γ) = −1, then Z`m(γ) = T`(Zm(γ)) =
T`(−1) = (−1)`. The same holds for δ. Since for properness we require the evaluations
at γ and δ to be different, we know that 2 must not divide `.

Corollary 2.2 shows that from a proper Zolotarev polynomial of degree m we can con-
struct proper Zolotarev polynomials of degree (2k + 1)m.
The following remark shows, that for computing explicit expressions for all proper
Zolotarev polynomials, it is enough to know the proper Zolotarev of degree 2k for all
k ∈ N and of degree p for all prime numbers p.

Remark 2.3.
Let n = 2ε1 · 3ε2 · pε3

3 · . . . · pενν where pi is the i-th prime and ν ∈ N. By Corollary 2.2 we
get the following by immediate observations.
• Assume that ε1 ≥ 1 and ∑ν

i=2 εi ≥ 1:
Then Zn = Tpε2

2 ...pεnuν
(Z2ε1 ) and it is proper if Z2ε1 was chosen to be proper.

• Assume that ε1 = 0 and let i be the smallest index such that εi−1 = 0 and εi 6= 0:
Then Zn = T

p
εi−1
i ...pεnuν

(Zpi) and it is proper if Zpi was chosen to be proper.

So let us see this on the initially mentioned example of Z6.

Example 2.4.
In [2] we computed the Zolotarev polynomial of degree 6 to be

Z6 = 1
(1 + t)3

6∑
i=0

aix
i ,

with

a0 = 1− 6t− 3t2 , a2 = 3(1 + 10t+ 5t2) , a4 = −12(2t+ t2) , a6 = −4 ,
a1 = 3(3 + t)(1− t2) , a3 = 4(1 + t)(−5 + 2t+ t2) , a5 = 12(1 + t) .

We show now, that indeed Z6 = T3(Z2) taking into account, that we need to take the
same parametrization of the relation curve (compare [2]). Since in [2] we used a different
parametrization for Z2 and Z6, we recompute Z2 with the parametrization β = t+1

2 , γ =
2+t, δ = t. Then we get Z2 = tx−x2+x+1

t+1 . Note, that this is just a reparametrized version
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of the Z2 obtained in [2]. The Chebyshev polynomial of degree 3 is T3 = −3x + 4x3.
Hence, we get

T3(Z2) = 4 (tx− x2 + x+ 1)3

(t+ 1)3 − 3 (tx− x2 + x+ 1)
t+ 1 .

This can be easily checked to be the same as Z6 as above.

3 Intervals

In this section we investigate the Zolotarev polynomials Zn of degree n ∈ {2, . . . , 6},
respectively. More precisely, we look at intervals for the parameter t such that the
polynomial Zn is bounded for x ∈ [−1, 1] by ±1. Furthermore, we would like that the
values ±1 are obtained n times for x ∈ [−1, 1].

Definition 3.1.
Let Zn(x, t) be a Zolotarev polynomial and let I be an interval for the parameter t. We
say that I fulfills the parameter condition if the following hold:
• For all x ∈ [−1, 1] we have Zn(x) ∈ [−1, 1].
• There are τ1, . . . , τn with τi 6= τj for i 6= j and for all i ∈ {1, . . . , n} we have
Zn(τi) = ±1.

The cases for n ∈ {2, . . . , 4} have already been known for a while. Nevertheless, we
briefly show them here to get acquainted with the settings of this paper.

3.1 Degree 2

We consider the parametrization β = 1
2t , γ = 1

t
+ 1, δ = 1

t
− 1. Note, that with

the description of [2] this is the case which has ID 10. Then the Zolotarev polynomial
computed by the algorithm in [2] is given by Z2 = t+x−tx2. For the interval t ∈ [−1

2 ,
1
2 ]

the polynomial is bounded by ±1 as illustrated in gray in Figure 1. Choices for t outside
this interval are plotted in red. It is easily computable that these are not bounded by
±1 within the interval for x ∈ [−1, 1]. The Chebyshev polynomial of degree 1 and 2 are
in green and blue respectively.
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Figure 1: Z2 for t ∈ [−1
2 ,

1
2 ] and Chebyshev polynomials

3.2 Degree 3

We consider a different parametrization β = 1
t
, γ = − t2−3

2t , δ = t2+9
6t than in [2]. Note,

that with the notation of [2] this is the case which has ID 2. The Zolotarev polynomial
in this case is Z3 = −t4+18t2(3x2−2)+108tx(x2−1)−162x2+81

(t2−9)2 . For the interval t ∈ [−1, 1] the
polynomial is bounded by ±1 as illustrated in gray in Figure 2. Choices for t outside
this interval are plotted in red. It is easily computable that these are not bounded by
±1 within the interval for x ∈ [−1, 1]. The Chebyshev polynomial of degree 2 and 3 are
in green and blue respectively.
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Figure 2: Z3 for t ∈ [−1, 1] and Chebyshev polynomials

3.3 Degree 4

We use the same setting as in [2]. For the interval t ∈ [−1 +
√

2, 1 −
√

2] the poly-
nomial is bounded by ±1 as illustrated in gray in Figure 3. Choices for t outside this
interval are plotted in red. It is easily computable that these are not bounded by ±1
within the interval for x ∈ [−1, 1]. The Chebyshev polynomial of degree 3 and 4 are
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in green and blue respectively. The Zolotarev polynomial itself can be found for in-
stance in [6] and according to that was already described by Markov. Using a slightly
different parametrization Rack [5] investigated Z4 and the respective interval fulfilling
the parameter condition. The reparametrization to our expression can be achieved by
t −→ 1−t

1+t .
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Figure 3: Z4 for t ∈ [−1 +
√

2, 1−
√

2] and Chebyshev polynomials

3.4 Degree 5

We consider the Zolotarev polynomial of degree 5 as computed in [2]. First we investigate
the root α =

√
2(5t2−1)
25t(t+1)3 which appears in Z5 (see Figure 4). Note, that α occurs only

linearly.

-3 -2 -1 1 2 3
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Figure 4: α from Z5 depending on t

It obtains real values in the intervals I1 = (−∞,−1), I2 = [− 1√
5 , 0) and I3 = [ 1√

5 ,∞). In
the following subsections we investigate these intervals in detail. Note, that the common
denominator of Z5 has zeros at t = 1 and t = −1

3 . The later one is not in any of the
intervals above, whereas t = 1 is in I3 and hence, we need to take care of that.
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Before investigating the intervals let us consider Z5(0) for general t.

Z5(0) = − c10t
10 + . . .+ c0

(t− 1)6(3t+ 1)4 ,

with

(c10, . . . , c0) = (2581, 8122, 6221, 1128,−966,−500,−174,−56, 17, 10, 1) .

We first solve Z5(0) = 1 which happens at

τ1,1 = −1 , τ1,2 = 1
11

2 3
√

11
√

33− 63
32/3 − 4

3
√

33
√

33− 189
− 1

 ,

τ1,3 = 1
11
(
1− 2

√
3
)
, τ1,4 = 1

11
(
1 + 2

√
3
)
,

where τ1,2 ≈ −0.47907. On the other hand Z5(0) = −1 occurs at τ−1,2 = − 1√
5 , τ−1,4 =

0, τ−1,6 = 1√
5 and the roots τ−1,1, τ−1,3, τ−1,5 of−1−z+13z2+5z3 which are approximately

τ−1,1 ≈ −2.64701, τ−1,3 ≈ −0.252373, τ−1,5 ≈ 0.299386,.
We are interested in those values of t, where −1 ≤ Z5(0) ≤ 1. This happens in the
intervals T1 = [τ−1,1, τ1,1], T2 = [τ1,2, τ−1,2], T3 = [τ−1,3, τ−1,4], T4 = [τ−1,5, τ−1,6]. This
gives a necessary condition on the interval in question. Figure 5 illustrates Z5(0).

-3 -2 -1 1

-2

-1

1

2

Figure 5: Z5(0) depending on t

Note, that similar considerations can be done for x = ±1. Furthermore, we can easily
check, that Z5(±1) = −1, no matter how t is chosen. We now take a closer look to the
intervals Ik. Since I2 is the most interesting one we start with that one.

3.4.1 Interval I2 = [− 1√
5 , 0)

By some easy investigation one finds that Z5(1) attains a local minimum for the choice
t = 1

5(2
√

5− 5). Note, that α is not defined for t = 0. However, if we consider α to be
an independent variable, we get the Chebyshev polynomial of degree 4 for t = 0.
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In the following we show that I2 fulfills the parameter condition. Let us consider the
zeros of Z ′5(x) depending on t as shown in Figure 6.

-3 -2 -1 1 2 3
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0.5

1.0

Figure 6: Solutions of Z ′5(x) = 0 depending on t

It is easy to compute, that Z ′5 has exactly three zeros within [−1, 1] when t is in the
interior of I2. We also see that they are local maxima and minima. Indeed one can
computationally show, that at these maxima and minima the value ±1 is obtained.
Hence, for

[
1
5(2
√

5− 5), 0
)
the parameter condition on Z5 is fulfilled. In Figure 7 this is

illustrated.
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Figure 7: Z5 for t ∈
[

1
5(2
√

5− 5), 0
]

Outside of t ∈
[

1
5(2
√

5− 5), 0
]
, we get the following. If 1√

5 > t > 0 then α in Z5 is
complex and hence, Z5 cannot be plotted in R2. The case t < 1

5(2
√

5− 5) is illustrated
in Figure 8 in red. In this case the slope of Z5(1) is positive and hence, there is an
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ξ ∈ [−1, 1] such that Z5(ξ) < −1. In blue we see the case t = 1
5(2
√

5− 5) and in green
the Chebyshev polynomial of degree 4.
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Figure 8: Z5 for t ∈
[

1
5(2
√

5− 5), 0
]
and t < 1

5(2
√

5− 5)

As a matter of the construction of the Zolotarev polynomials as a solution of a differential
equation, we know (see [2]) that also −Z5 is a Zolotarev polynomial. Finally, we get
the following picture. In Figure 9 the gray plots come from the Z5. The green one
represents the special case of the Chebyshev polynomial of degree 4 and the blue plot is
the Chebyshev polynomial of degree 5, each one together with its negative.
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Figure 9: ±Z5 for t ∈
[

1
5(2
√

5− 5), 0
]
and Chebyshev polynomials
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3.4.2 Interval I1 = (−∞,−1)

By some investigation one finds that Z5(1) attains a local minimum for the choice t =
1
5(−2

√
5 − 5). However, this choice would need a different interval for x in order to

reach ±1 sufficiently often. Indeed, as we can see from direct computations illustrated
in Figure 6 the polynomial has at most two extrema for x ∈ [−1, 1] with values in [−1, 1]
for t 6= 1

5(−2
√

5 − 5). Hence, the I1 does not fulfill the parameter condition. Neither
does any subinterval.
In Figure 10 this is illustrated where purple is t = 1

5(−2
√

5−5). The case t < 1
5(−2

√
5−5)

is plotted in red. Here, the slope of Z5(1) is positive and hence, there is an ξ ∈ [−1, 1]
such that Z5(ξ) < −1. In orange we show the case t > 1

5(−2
√

5− 5).

-1 1 2 3 4 5

-2

-1

1

2

Figure 10: Z5 for t around 1
5(−2

√
5− 5)

3.4.3 Interval I3 = [ 1√
5 ,∞)

For t = 1√
5 the polynomial Z5 is the constant function −1. For t = 1 the polynomial

Z5 is not defined. From the discussion above on Z5(0) we can see that for t > 1√
5 , the

polynomial Z5 is not bounded by ±1. Hence, I3 does not fulfill the parameter condition.

3.5 Degree 6

As pointed out by Heinz-Joachim Rack1 the choice t = 1 does fulfill the requirements,
when chosen on a different interval for x. In a similar way the choice t = −3 works.
However, for the interval in between these two choices, the polynomial Z6 is not bounded
by ±1. This can be seen in Figure 11.

1Private communication, 23.06.2016
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Figure 11: ±Z6 around t = −3 and t = 1

More detailed investigation of all solution of degree 6 for the Zolotarev ODE is subject
to further research.

4 Conclusion

We have shown how a given parametrization of the relation curve of a Zolotarev poly-
nomial can be used for finding higher degree Zolotarev polynomials. This describes the
special structure of Z6 and gives a reason for further investigation of this case. We have
investigated the interval which fulfills the parameter condition for Z5.
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