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Abstract. In this paper we present an algorithm which can prove algebraic
relations involving η-quotients, where η is the Dedekind eta function.

1. The Problem

Let N be a positive integer throughout this paper. We denote by R(N) the set of
integer sequences r = (rδ)δ|N indexed by the positive divisors δ of N ; r̃ = (r̃δ)δ|N
is defined by r̃δ := rN/δ. For r ∈ R(N) we define an associated η-quotient as

f(r)(τ) :=
∏

δ|N

η(δτ)rδ , τ ∈ H,

where η(τ) := e
πiτ
12

∏∞
n=1(1− qn), q = q(τ) := e2πiτ , is the Dedekind eta function

and H := {x ∈ C : Im(x) > 0}.

The input to our algorithm is n ∈ N, r(j) ∈ R(N) and aj ∈ Q for j = 1, . . . , n;
the output is true or false depending whether

(1)
∑

1≤j≤n

ajf(r
(j))(τ) ≡ 0,

is true or false 1. The new contribution of this paper is that we reduce the proving
of the identity (1), to the proving of a finite number of identities of the type (1)
under additional constraints; in particular, in each such identity the terms are
modular functions for the group Γ0(N).

This research was supported by the strategic program “Innovatives OÖ 2010 plus” by the
Upper Austrian Government in the frame of project W1214-N15-DK6 of the Austrian Science
Fund (FWF).

1Using “≡” is short hand for meaning equality for all τ ∈ H.
1



2 CRISTIAN-SILVIU RADU

2. The First Problem Reduction

Recall that

(2) η(−1/τ) ≡ (−iτ)1/2η(τ).

Applying τ 7→ −1/(Nτ) to both sides of the identity (1) we obtain by (2) ,

∑

1≤j≤n

aj
∏

δ|N

(−i/δ)
rδ
2 × τ

∑
δ|N r

(j)
δ

2 f(r̃(j))(τ) ≡ 0.

We may rewrite this sum as

(3)

m2
∑

k=m1

τ k/2
∑

1≤j≤n
∑

δ|N r
(j)
δ

= k
2

aj
∏

δ|N

(−i/δ)
rδ
2 f(r̃(j))(τ) ≡ 0

for some m1,m2 ∈ Z with m1 ≤ m2.

Lemma 2.1. Let n be a positive integer and fk : H → C such that fk(τ + 24) ≡
fk(τ) for k = 0, . . . , n. Then

(4)
n

∑

k=0

τ k/2fk(τ) ≡ 0

iff fk(τ) ≡ 0 for k = 1, . . . , n.

Proof. Applying τ 7→ τ + 24 to both sides of (4) m times we obtain
n

∑

k=0

(τ + 24m)k/2fk(τ) ≡ 0.

Therefore
n

∑

k=0

(τ + 24m)k/2fk(τ) ≡ 0, m = 0, . . . n

which we may write in matrix form:















1 τ 1/2 τ . . . τn/2

1 (τ + 24)1/2 τ + 24 . . . (τ + 24)n/2

1 (τ + 48)1/2 τ + 48 . . . (τ + 48)n/2

...
...

...
. . .

...
1 (τ + 24n)1/2 τ + 24n . . . (τ + 24n)n/2



























f0(τ)
f1(τ)
f2(τ)
...

fn(τ)













≡ 0.

This matrix is a Vandermonde-matrix with determinant
∏

0≤i<j≤n

(((τ + 24j)1/2 − (τ + 24i)1/2).
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Hence for all τ ∈ H this matrix is invertible. Multiplying both sides by the inverse
we obtain fk(τ) ≡ 0 for k = 0, . . . , n. �

For k ∈ Z we define

S(k) :=
{

r ∈ R(N) : 2
∑

δ|N

rδ = k
}

.

Since η(τ + 24) ≡ η(τ) we have f(r)(τ + 24) ≡ f(r)(τ) for all r ∈ R(N). Multi-
plying both sides of (3) by τ−m1/2 we obtain:

m2−m1
∑

k=0

τ
k
2

∑

1≤j≤n

r(j)∈S(k+m1)

aj
∏

δ|N

(−i/δ)
rδ
2 f(r̃(j))(τ) ≡ 0.

Now we apply Lemma 2.1 to conclude that
∑

1≤j≤n

r(j)∈S(k)

aj
∏

δ|N

(−i/δ)
rδ
2 f(r̃(j))(τ) ≡ 0

for all k ∈ {m1, . . . ,m2}. Multiplying with τ k/2 and applying again the involution
τ 7→ −1/(Nτ) to both sides of the last equation we obtain

(5)
∑

1≤j≤n

r(j)∈S(k)

ajf(r
(j))(τ) ≡ 0

for all k ∈ {m1, . . . ,m2}. Summarizing, we have shown that to prove (1) is
equivalent to prove (5) for all

(6) k ∈
{

min
1≤j≤n

∑

δ|N

r
(j)
δ , . . . , max

1≤j≤n

∑

δ|N

r
(j)
δ

}

Therefore without loss of generality we concern ourselves with proving identities
of the type (5) for all k as in (6). Hence we can from now on restrict the input
to our algorithm to be of the type (5).

If for a given k there is no j with r(j) ∈ S(k), then (5) is trivially 0 and there
is nothing to do or there exists mk ∈ {1, . . . , n} such that r(mk) ∈ S(k) and we
divide (5) by f(r(mk))(τ) and obtain

∑

1≤j≤n

s(j)∈S(0)

ajf(s
(j))(τ) ≡ 0

where s(j) := r(j) − r(mk). We call the above identity an identity of weight zero.
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The structure of this paper is as follows. In Section 3 we split weight zeros
identities into further smaller identities which we call “almost modular identities”.
In Section 4 we split almost modular identities into further smaller identities
which we call “modular identities”. In Section 5 we give an algorithm for proving
modular identities and conclude with a simple example.

3. Weight Zero Identities

The input to our algorithm is n ∈ N, r(j) ∈ R(N) with r(j) ∈ S(0) and aj ∈ Q

for j = 1, . . . , n; the output is true or false depending whether

(7)
∑

1≤j≤n

ajf(r
(j))(τ) ≡ 0,

is true or false. For k ∈ {0, . . . , 23} we define

S1(k) := {r ∈ S(0) :
∑

δ|N

δrδ ≡ k (mod 24)}.

Note that if τ 7→ τ + 1 then η(τ) 7→ e
πi
12η(τ) and f(r)(τ) 7→ eπi

∑
δ|N δrδ

12 f(r)(τ).
Hence applying τ 7→ τ + 1 to (7) gives

∑

1≤j≤n

aje
πi

∑
δ|N δr

(j)
δ

12 f(r(j))(τ) ≡ 0.

which is equivalent to

23
∑

k=0

e
πik
12

∑

1≤j≤n

r(j)∈S1(k)

ajf(r
(j))(τ) ≡ 0.

Applying τ 7→ τ + 1 to the above equation m times we obtain

23
∑

k=0

e
πikm
12

∑

1≤j≤n

r(j)∈S1(k)

ajf(r
(j))(τ) ≡ 0.

Writing

Fk(τ) :≡
∑

1≤j≤n

r(j)∈S1(k)

ajf(r
(j))(τ)

we have
23
∑

k=0

e
πikm
12 Fk(τ) ≡ 0
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for m = 0, . . . , 23 which in matrix form may be written as














1 1 1 . . . 1

e
2·0πi
24 e

2·1πi
24 e

2·2πi
24 . . . e

2·23πi
24

e
4·0πi
24 e

4·1πi
24 e

4·2πi
24 . . . e

4·23πi
24

. . . . . . . . .
. . . . . .

e
46·0πi

24 e
46·1πi

24 e
46·2πi

24 . . . e
46·23πi

24



























F0(τ)
F1(τ)
F2(τ)

...
F23(τ)













≡ 0.

This is the transpose of a Vandermonde matrix with nonzero determinant inde-
pendent of τ . Therefore Fk(τ) ≡ 0 for k = 0, . . . , 23 which is equivalent to

(8)
∑

1≤j≤n

r(j)∈S1(k)

ajf(r
(j))(τ) ≡ 0

for k = 0, . . . , 23. We apply τ 7→ −1/(Nτ) to (8) and obtain

(9)
∑

1≤j≤n

r(j)∈S1(k)

ãjf(r̃
(j))(τ) ≡ 0

where

ãj := aj
∏

δ|N

(−i/δ)
r
(j)
δ
2 .

For k, ℓ ∈ {0, . . . , 23} we define

S2(k, ℓ) := {r ∈ S1(k) :
∑

δ|N

δr̃δ ≡ ℓ (mod 24)}.

We apply the same reasoning as above to (9) and conclude that (9) is equivalent
to

(10)
∑

1≤j≤n

r(j)∈S2(k,ℓ)

ãjf(r̃
(j))(τ) ≡ 0

for ℓ = 0, . . . , 23. Applying again the involution τ 7→ −1/(Nτ) to (10) gives

(11)
∑

1≤j≤n

r(j)∈S2(k,ℓ)

ajf(r
(j))(τ) ≡ 0.

Summarizing, we have proven that one can prove a weight zero identity (7) to be
true or false if we can prove an identity of type (11) to be true or false. Dividing
identity (11) by any nonzero term f(r(d))(τ) we obtain the identity:

(12)
∑

1≤j≤n

s(j)∈S2(0,0)

ajf(s
(j))(τ) ≡ 0
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where s(j) := r(j) − r(d) and
∑

δ|N s
(j)
δ = 0, recalling the assumption on the input

for (7).

We call identities of the type (12) almost modular identities.

4. Almost Modular Identities

In view of (12), the input to our algorithm is n ∈ N, r(j) ∈ R(N) with

r(j) ∈ S2(0, 0)

and aj ∈ Q for j = 1, . . . , n; the output is true or false depending whether

(13)
∑

1≤j≤n

ajf(r
(j))(τ) ≡ 0,

is true or false. Let

(

a b
c d

)

∈ SL2(Z), (the group of 2 × 2 matrices over the

integers with determinant equal to one). If a, c > 0 and gcd(a, 6) = 1, Newman
[4] proved

η

(

aτ + b

cτ + d

)

≡
( c

a

)

e−
πia
12

(c−b−3)(−i(cτ + d))1/2η(τ),

where
(

c
a

)

is the Legendre-Jacobi symbol. If, in addition, we assume that c ≡ 0

(mod N) we obtain

f(r(j))
(aτ + b

cτ + d

)

≡f(r(j))
(a(δτ) + δb

c
δ
(δτ) + d

)

≡
∏

δ|N

(c/δ

a

)r
(j)
δ

e−
πia
12

(
∑

δ|N cr
(j)
δ

/δ−b
∑

δ|N δr
(j)
δ

−3
∑

δ|N r
(j)
δ

)f(r(j))(τ)

≡
∏

δ|N

(δc

a

)r
(j)
δ

e−
πia
12

(c/N
∑

δ|N δr̃
(j)
δ

−b
∑

δ|N δr
(j)
δ

−3
∑

δ|N r
(j)
δ

)f(r(j))(τ)

≡
(

∏

δ|N δ|r
(j)
δ

|

a

)

f(r(j))(τ),

for j = 1, . . . , n. Let p0, p1, . . . , pn be the primes dividingN . For e = (e0, . . . , en) ∈
{0, 1}n+1 we define

S3(e) := {r ∈ S2(0, 0) :
∏

δ|N

δ|r
(j)
δ

|/(pe00 · · · penn ) is a square. }.
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We may write (13) as
∑

1≤j≤n

ajf(r
(j))(τ) ≡

∑

e∈{0,1}n+1

F (e)(τ) ≡ 0,

where

F (e)(τ) :≡
∑

1≤j≤n

r(j)∈S3(e)

ajf(r
(j))(τ).

Lemma 4.1. Let P1, . . . , Pk be pairwise different odd primes, then for every
µ0, µ1, . . . , µk ∈ {−1, 1} there exist an a ∈ N, gcd(a, 6) = 1 such that

(

Pi

a

)

= µi

for i = 1, . . . , k and
(

2
a

)

= µ0.

Proof. By Chinese remaindering we can solve the system

a ≡ v0 (mod 8)

a ≡ v1 (mod P1)
...

...
...

a ≡ vk (mod Pk).

Here the vi are such that
(

vi
Pi

)

= µi for i = 1, . . . , k and v0 = 1 if µ0 = 1 and

v0 = 5 if µ0 = −1. In this case
(

Pi

a

)

= (−1)
Pi−1

2
a−1
2

(

a
Pi

)

= µi and
(

2
a

)

= µ0. �

Let (m0, . . . ,mn) ∈ {1,−1}n+1 be fixed. Without loss of generality assume for
the given primes that p0 < · · · < pn. If p0 = 2 apply Lemma 4.1 with k = n,
Pi = pi for i = 1, . . . , k and µi = mi for i = 0, . . . , k. If p0 6= 2 then apply
Lemma 4.1 with k = n+1, Pi = pi−1, i = 1, . . . , k and µi = mi−1 for i = 1, . . . , k,
then the a = a(m0, . . . ,mn) ∈ N given by the lemma is such that

(

pi
a

)

= mi for

i = 0, . . . , n. Let b, c, d with N |c and c > 0 be such that

(

a b
c d

)

∈ SL2(Z)

(note that gcd(a, 6N) = 1 because of
(

pi
a

)

6= 0). Then applying τ 7→ aτ+b
cτ+d

to the
identity (13) we obtain:

∑

e∈{0,1}n+1

me · F (e)(τ) ≡ 0,

where for x ∈ {0, 1}n+1 and y ∈ {−1, 1}n+1 we define

yx := yx0
0 . . . yxn

n .

Hence for each m ∈ {−1, 1}n+1 we obtain a new identity. This gives in total 2n+1

identities. Let mi = (m0,i, . . . ,mn,i) ∈ {−1, 1}n+1 for i = 1, . . . , 2n+1 be all the
elements of {−1, 1}n+1 and ei = (e0,i, . . . , en,i) ∈ {0, 1} for i = 1, . . . , 2n+1 be all
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the elements of {0, 1}n+1. Then we may write the ν := 2n+1 identities in matrix
form as follows









m
e0,1
0,1 · · ·m

en,1

n,1 m
e0,2
0,1 · · ·m

en,2

n,1 . . . m
e0,ν
0,1 · · ·m

en,ν

n,1

m
e0,1
0,2 · · ·m

en,1

n,2 m
e0,2
0,2 · · ·m

en,2

n,2 . . . m
e0,ν
0,2 · · ·m

en,ν

n,2
...

...
. . .

...
m

e0,1
0,ν · · ·m

en,1
n,ν m

e0,2
0,ν · · ·m

en,2
n,ν . . . m

e0,µ
0,ν · · ·m

en,ν
n,ν .

















F (e1)(τ)
F (e2)(τ)

...
F (eν)(τ)









≡









0
0
...
0









.

In the ν × ν matrix, which we call M , the scalar product between row i and row
j equals to

n
∏

s=0

(1 +ms,ims,j).

Therefore MMT = 2n+1I where I is the identity matrix. In particular, M is a
nonsingular matrix. Therefore

∑

1≤j≤n

r(j)∈S3(ei)

ajf(r
(j))(τ) ≡ F (ei)(τ) ≡ 0

for i = 1, . . . , ν. Dividing out the whole identity with some nonzero term we
obtain an identity of the form

(14)
∑

1≤j≤n

r(j)∈S3(e)

ajf(s
(j))(τ) ≡ 0.

where s(j) := r(j) − r(d) for j = 1, . . . , n and r(d) ∈ S3(e) is chosen such that

ad 6= 0. Note that
∏

δ|N δ|s
(j)
δ

| is a square.

We call a reduced identity like (14) a modular identity which, summarizing, is an
identity of the form

∑

1≤j≤n

ajf(r
(j))(τ) ≡ 0
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with aj ∈ Q and r(j) ∈ R(N) for j ∈ {1, . . . , n} with the properties:
∑

δ|N

r
(j)
δ = 0,(15)

∑

δ|N

δr
(j)
δ ≡ 0 (mod 24),(16)

∑

δ|N

δr̃
(j)
δ ≡ 0 (mod 24),(17)

∏

δ|N

δ|r
(j)
δ

| = x2
j , for some xj ∈ Z.(18)

.

5. Modular Identities

In this section we explain how modular identities are proven algorithmically. In
order to do this we use the fact that each term in a modular identity falls into
a class of holomorphic functions called modular functions. Modular functions
are mapped isomorphically to meromorphic functions on a compact Riemann
surface. The reason we mention this is that one can decide algorithmically if a
meromorphic function on a compact Riemann surface is zero or not. Furthermore,
we present a classical lemma (Lemma 5.3) that has been used by authors without
proof, for example [2, p. 4827], and therefore we decided to prove it here.

Let

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z) : c ≡ 0 (mod N)

}

.

Newman [4] discovered the following theorem:

Theorem 5.1. Let r ∈ R(N), then
∑

δ|N

rδ = 0,

∑

δ|N

δrδ ≡ 0 (mod 24),

∑

δ|N

δr̃δ ≡ 0 (mod 24),

∏

δ|N

δ|rδ| = x2 , for some x ∈ Z.

iff

f(r)
(aτ + b

cτ + d

)

≡ f(r)(τ)
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for all

(

a b
c d

)

∈ Γ0(N).

Recall that H := {τ ∈ H : Im(τ) > 0}. For any r ∈ R(N), f(r) is a meromorphic
function on H. By Newman’s theorem the eta quotients which appear as terms
in a modular identity satisfy additionally

(19) f(r)
(aτ + b

cτ + d

)

≡ f(r)(τ)

for all
(

a b
c d

)

∈ Γ0(N). We will explain now how we can prove identities

involving such terms.

Following [5, p. 526], we use that holomorphic functions h on H, with the addi-
tional property

(20) h
(uτ + v

tτ + w

)

≡ h(τ)

for all

(

u v
t w

)

∈ Γ0(N), have for each γ =

(

a b
c d

)

∈ SL2(Z) a Laurent

expansion in powers of e2πin(γ
−1τ)/wγ where

wγ := min
{

h ∈ N∗ :

(

1 h
0 1

)

∈ γ−1Γ0(N)γ
}

.

For γ =

(

a b
c d

)

∈ SL2(Z) we define γτ := aτ+b
cτ+d

for τ ∈ H, γ∞ := a
c
and for

x/y ∈ Q we define

γ(x/y) :=

{

∞, if c(x/y) + d = 0,
a(x/y)+b
c(x/y)+d

, otherwise.

In this way SL2(Z) acts on H∗ := H ∪Q ∪ {∞}.

Since the function f(r) has the property (20) because of (19) it follows that it
has such a Laurent expansion for each γ. In addition, by Lemma 5.2 below it
follows that for each γ ∈ SL2(Z) this Laurent expansion has finite principal part,
namely:

f(r)(τ) ≡
∞
∑

n=dγ

cn(γ)e
2πin(γ−1τ)/wγ .

As in [5, p. 526] for γ =

(

a b
c d

)

∈ SL2(Z) we define ordγ
a/c(f(r)) to be the

smallest integer n for which cn(γ) 6= 0. Note that γ∞ = a
c
, and it is not difficult

to check that for γ1, γ2 ∈ SL2(Z) with γ1∞ = γ2∞ = a
c
we have

ordγ1
a/c(f) = ordγ2

a/c(f).
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Hence we can define

orda/c(f(r)) := ordγ
a/c(f(r)),

and when a = 1, c = 0 one should interpret a/c = ∞.

The value of orda/c(f(r)) at a
c
∈ Q ∪ {∞} can be computed by the following

lemma due to Ligozat [1]:

Lemma 5.2 (Ligozat). Let r ∈ R(N). Then

orda/c(f(r)) =
N

24c · gcd(c,N/c)

∑

δ|N

gcd(δ, c)2rδ
δ

.

So our functions f(r), besides having the property (19) and being holomorphic

on H, also have the property that for each γ =

(

a b
c d

)

∈ SL2(Z) have a

Laurent expansion in powers of e2πin(γ
−1τ)/wγ with finite principal part. We call

such functions modular functions (on Γ0(N)). Denote by X0(N) the set of orbits
of the action of Γ0(N) on H∗. We denote the orbit of τ ∈ H∗ by [τ ] ∈ X0(N).

We can then view a modular function f naturally as a function f̃ on X0(N) by

defining f̃([τ ]) := f(τ) for τ ∈ H. The definition of f̃ at the points

C0(N) := {[τ ] : τ ∈ Q ∪ {∞}}

needs to be considered separately, see [5, p. 532]. Next, the space X0(N) is next
transformed into a compact topological space, by making H∗ a topological space
and giving X0(N) the quotient topology. Finally one transforms X0(N) into a

compact Riemann surface. What is important is that the function ˜f(r) becomes
a meromorphic function on X0(N) which is holomorphic at all points from

U0(N) := {[τ ] : τ ∈ H}.

Furthermore to each meromorphic function f̃ on a compact Riemann surface
one can assign an order to f̃ at each point [τ ] ∈ X0(N) and we denote this by

ord[τ ](f̃). It turns out that ord[τ ](f̃) = ordτ (f) for every τ ∈ Q ∪ {∞}.

The reason we want to view a modular function f as meromorphic function f̃
on a compact Riemann surface is that we can then use an important theorem
that applies to nonzero meromorphic functions on a compact Riemann surface.
Namely, if f̃ 6= 0 is a meromorphic function on a compact Riemann surface then
the number of poles of f̃ equal to the number of zeros of f̃ , more precisely, for our
case this means

∑

[τ ]∈X0(N) ord[τ ](f̃) = 0, see [3, Prop. 4.12]. Note that X0(N) is

the disjoint union of U0(N) and C0(N), and as we mentioned above ord[τ ](f̃) ≥ 0
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for [τ ] ∈ U0(N). Therefore

0 =
∑

[τ ]∈X0(N)

ord[τ ](f̃) =
∑

[τ ]∈U0(N)

ord[τ ](f̃) +
∑

[τ ]∈C0(N)

ord[τ ](f̃)

≥
∑

[τ ]∈C0(N)

ord[τ ](f̃).

Note that this translates into

(21)
∑

τ∈S

ord[τ ](f̃) ≤ 0

where S is a complete set of representatives of C0(N), that is C0(N) = {[τ ] : τ ∈
S} such that for every x1, x2 ∈ S we have [x1] 6= [x2].

Such a complete set of representatives S can be computed by using the following
lemma.

Lemma 5.3. Let S ⊆ Q be defined by S := ∪d|NSd where Sd is the unique
subset of {a/d : a ∈ {1, . . . , d}, gcd(a, d) = 1} with the property that for every
x ∈ {1, . . . , gcd(d,N/d)} with gcd(x, gcd(d,N/d)) = 1 there exists an unique
a/d ∈ Sd such that a ≡ x (mod gcd(d,N/d)). Then S is a complete set of
representatives of C0(N).

Proof. We split the proof into three smaller parts.

(A). For i = 1, 2, let ai, ci ∈ Z with gcd(ai, ci) = 1. Then there exists γ ∈ Γ0(N)
such that γ a1

c1
= a2

c2
iff there exist bi, di ∈ Z with aidi − bici = 1 such that

d1c2 − d2c1 ≡ 0 (mod gcd(N, c1c2)).

Proof of (A): Assume that there exists γ ∈ Γ0(N) such that γ a1
c1

= a2
c2
. By

the extended Euclidean algorithm there exist bi, di be such that aidi − bici = 1.

Set γi :=

(

ai bi
ci di

)

. Then γi∞ = ai
ci

which implies that γγ1∞ = γ2∞ and

γ−1
2 γγ1∞ = ∞. Consequently, γ−1

2 γγ1 =

(

1 h
0 1

)

for some h ∈ Z. Multiplying

γ2 to the left and γ−1
1 to the right we obtain

γ =

(

∗ ∗
d1c2 − d2c1 + hc1c2 ∗

)

.

In particular, since γ ∈ Γ0(N) it follows that

d1c2 − d2c1 + hc1c2 ≡ 0 (mod N),

which implies that d1c2 − d2c1 ≡ 0 (mod gcd(N, c1c2)).
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Now assume that there exist ci, di ∈ Z such that aidi−bici = 1 and d1c2−d2c1 ≡ 0
(mod gcd(N, c1c2)). Then for some k ∈ Z we have d1c2−d2c1−k gcd(N, c1c2) = 0,
by the extended Euclidean algorithm there exist u, v ∈ Z such that uc1c2+vN =

gcd(N, c1c2) and consequently d1c2 − d2c1 − kuc1c2 = kvN . Set γi =

(

ai bi
ci di

)

,

then

γ := γ2

(

1 ku
0 1

)

γ−1
1 =

(

∗ ∗
d1c2 − d2c1 − kuc1c2 ∗

)

.

Hence γ ∈ Γ0(N) and one verifies γ a1
c1

= a2
c2
.

(B). For all a1
c1

∈ Q ∪ {∞} there exist u ∈ S and γ ∈ Γ0(N) such that γ a1
c1

= u.

Note: Here we interpret ∞ = 1
0
.

Proof of (B): Let b1, d1 ∈ Z be such that a1d1−b1c1 = 1. Set c2 := gcd(c1, N) and
choose a2 ∈ Z defined uniquely by the property a2 ≡ a1

c1
c2

(mod gcd(N/c2, c2))

and a2/c2 ∈ S. Let b2, d2 be integers such that a2d2 − b2c2 = 1. Then

a1
c1
c2

− a2 ≡ 0 (mod gcd(N/c2, c2)) ⇒ d2
c1
c2

− d1 ≡ 0 (mod gcd(N/c2, c2))

⇒d2
c1
c2

− d1 ≡ 0 (mod gcd(N/c2, c1)) ⇒ d2c1 − d1c2 ≡ 0 (mod gcd(N, c1c2)).

This by (A) implies that there exist γ ∈ Γ0(N) such that γ a1
c1

= a2
c2
.

(C). Let a1
c1
, a2
c2

∈ S. If there is γ ∈ Γ0(N) such that γ a1
c1

= a2
c2
, then a1

c1
= a2

c2
.

Proof of (C): Assume that there exists γ ∈ Γ0(N) such that γ a1
c1

= a2
c2
, then

by (A) there exist bi, di ∈ Z with aidi − bici = 1 such that d2c1 − c1d2 ≡ 0
(mod gcd(N, c1c2)). Since c1, c2|N , we have c1|c2 and c2|c1, and thus c1 = c2 := c.
This implies c(d2 − d1) ≡ 0 (mod gcd(N, c2)) which is equivalent to d2 − d1 ≡ 0
(mod gcd(N/c, c)), which is equivalent to a2 ≡ a1 (mod gcd(N/c, c)) and by the
definition of S we have a1 = a2. �

Example: We want to prove the modular identity:

(22) 1−
η(28τ)η(7τ)2η(4τ)η(τ)2

η(14τ)3η(2τ)3
− 2

η(28τ)2η(7τ)η(4τ)2η(τ)

η(14τ)3η(2τ)3
≡ 0.

This may be rewritten as:

1− f(r(1))(τ)− 2f(r(2))(τ) ≡ 0

where r(1), r(2) ∈ R(28) are defined by

(r
(1)
1 , r

(1)
2 , r

(1)
4 , r

(1)
7 , r

(1)
14 , r

(1)
28 ) := (2,−3, 1, 2,−3, 1)

and
(r

(2)
1 , r

(2)
2 , r

(2)
4 , r

(2)
7 , r

(2)
14 , r

(2)
28 ) := (1,−3, 2, 1,−3, 2).
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Note that r(1) and r(2) satisfy (15)-(18) for N = 28. Next note that ˜f(r(1)) and
˜f(r(2)) are meromorphic functions on X0(28). We have by Lemma 5.3 that

{[1], [1/2], [1/4], [1/7], [1/14], [1/28]} = C0(28).

By Ligozat’s theorem:

ord[1](
˜f(r(1))) = 1

ord[1/2](
˜f(r(1))) = −1

ord[1/4](
˜f(r(1))) = 0

ord[1/7](
˜f(r(1))) = 1

ord[1/14](
˜f(r(1))) = −1

ord[1](
˜f(r(2))) = 0

ord[1/2](
˜f(r(2))) = −1

ord[1/4](
˜f(r(2))) = 1

ord[1/7](
˜f(r(2))) = 0

ord[1/14](
˜f(r(2))) = −1

We define
F (τ) := 1− f(r(1))(τ)− 2f(r(2))(τ).

Hence we have
∑

[τ ]∈C0(28)

ord[τ ](F̃ )

= ord[1](F̃ ) + ord[1/2](F̃ ) + ord[1/4](F̃ ) + ord[1/7](F̃ ) + ord[1/14](F̃ ) + ord[1/28](F̃ )

≥0− 1 + 0 + 0− 1 + ord[1/28](F̃ ).

In order to bound the order of F̃ at the point [1/28] = [∞] we compute the
q-expansion of

F (τ) = 0 + 0q + 0q2 + ....

Therefore ord[1/28] F̃ ≥ 3, that is F̃ has least a triple zero at [1/28]. In particular

(23)
∑

[τ ]∈C0(28)

ord[τ ](F̃ ) ≥ −2 + 3 = 1.
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Hence F̃ = 0 because if F̃ 6= 0 then (21) would apply which says
∑

[τ ]∈C0(28)
ord[τ ](F̃ ) ≤

0 and this is a contradiction to (23). It follows that F̃ = 0 and hence F = 0 and
we have proven the identity (22).

5.1. The Algorithm in a Nutshell. The strategy in the above example can be
applied to any modular identity F = 0, where the notion of modular identity is
defined at the end of Section 4. First assume that F 6= 0. Take each term f(r(i))
appearing in F and compute its order at each point [τj ] ∈ C0(N)− [∞], then

ord[τj ](F̃ ) ≥ oj := min{ord[τj ](
˜f(r(i))) : i ∈ {1, . . . , n}}.

This implies that
∑

[τ ]∈C0(N)

ord[τ ](F̃ ) ≥ o1 + · · ·+ o|C0(N)|−1 + ord[∞](F̃ ).

To obtain a contradiction to (21) we need to prove that

(24) ord[∞](F̃ ) ≥ −(o1 + · · ·+ o|C0(N)|−1) + 1.

This is done by looking at the expansion of F in powers of q, if F is indeed zero
then each computed coefficient in the expansion of F has to be zero. If some
coefficient of F is not zero, then clearly F 6= 0 and we are done disproving the
identity F = 0. Hence in case F = 0 we must have

F (τ) = 0 + 0q + · · ·+ 0q−(o1+···+o|C0(N)|−1)−1 + . . .

which by (24) implies
∑

[τ ]∈C0(N) ord[τ ](F̃ ) ≥ 1 contradicting (21), and therefore
our assumption F 6= 0 is false.
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