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Symbolic summation started with Abramov [1] for ratio-
nal expressions and has been pushed forward by Gosper [7],
Zeilberger [30], Petkovšek [15] and Paule [14] to tackle sums
for hypergeometric expressions. In the last decade the class
of input sums has been extended significantly and covers,
for instance, hypergeometric multi-sums [29, 4], holonomic
sequences [6, 13], unspecified sequences [11], radical expres-
sions [12] or Stirling numbers [10].

We will focus on a new difference ring approach. The
foundation was led by Karr’s summation algorithm [8, 9],
which enables one to rephrase indefinite nested sums and
products in the setting of difference fields.

Definition. Let F be a field with characteristic 0 and let σ be
a field automorphism of F. Then (F, σ) is called a difference
field ; the constant field of F is defined by K = const(F, σ) =
{f ∈ F | σ(f) = f}. A difference field (F, σ) with constant
field K is called a ΠΣ∗-field if

K = F0 ≤ F1 ≤ · · · ≤ Fe = F

is a tower of field extensions where for all 1 ≤ i ≤ e each
Fi = Fi−1(ti) is a transcendental field extension of Fi−1 and
for σ one of the following holds1:

• σ(ti)
ti
∈ (Fi−1)∗ (Π-field extension);

• σ(ti)− ti ∈ Fi−1 (Σ∗-field extension).

Many new ideas have been incorporated into a strong sum-
mation theory, see e.g., [5, 17, 5, 16, 20, 18, 19, 22, 23, 25]
which led to new algorithms for the summation paradigms of
telescoping, creative telescoping and recurrence solving [21].
However, this elegant difference field approach has one cen-
tral drawback. Alternating signs cannot be represented in

1For a ring or field A we denote by A∗ the set of units.
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such a field: zero-divisors like

(1 + (−1)k)(1− (−1)k) = 0

are introduced which can be formulated only within a ring.
We will present a class of difference rings in which one can
represent algorithmically indefinite nested sums and prod-
ucts together with the alternating sign, and more generally
products over primitive roots of unity [26].

Definition. Let A be a ring with characteristic 0 and let σ be
a ring automorphism of A. Then (A, σ) is called a difference
ring ; the constant ring of A is defined by const(A, σ) = {f ∈
A | σ(f) = f}. A difference ring (A, σ) is called an RΠΣ∗-
extension of a difference field (F, σ) if the constants remain
unchanged, i.e., const(A, σ) = const(F, σ) and if

F = A0 ≤ A1 ≤ · · · ≤ Ae = A

is a tower of ring extensions where for all 1 ≤ i ≤ e one of
the following holds:

• Ai = Ai−1[ti] is a ring extension subject to the relation

tni = 1 for some n > 1 where σ(ti)
ti
∈ (Ai−1)∗ is a primitive

nth root of unity (R-extension);

• Ai = Ai−1[ti, t
−1
i ] is a Laurent polynomial ring extension

with σ(ti)
ti
∈ (Ai−1)∗ (Π-extension);

• Ai = Ai−1[ti] is a polynomial ring extension with σ(ti)−
ti ∈ Ai−1 (Σ∗-extension).

Representation of nested sums in RΠΣ∗-rings
We will restrict ourselves to basic RΠΣ∗-extensions [27]: for

R-extensions we require that σ(ti)
ti
∈ const(F, σ)∗ holds and

for Π-extensions we assume that σ(ti)
ti
∈ F∗ holds. Together

with an appropriate difference field (F, σ) one can represent
in this setting expressions (and in particular sequences pro-
duced by these expressions) in terms of indefinite nested
sums defined over hypergeometric, q-hypergeometric or q-
mixed hypergeometric products [27]. In the following we
consider the hypergeometric case only. Let f(k) be an ex-
pression in a variable k that evaluates at non-negative inte-
gers (from a certain point on) to elements of a field K. Then
f(k) is called a nested sum expression over hypergeometric
products w.r.t K and k if it is composed recursively by

• elements from the rational function field K(k);

• hypergeometric products of the form
∏k
j=l h(j) with l ∈

N = {0, 1, . . . } and a rational function h(j) ∈ K(j)∗, where
h(ν) has no pole and is non-zero for all ν ∈ N with ν ≥ l;
• the three operations +, − and ·;



• sums of the form
∑k
j=l h(j) with l ∈ N and with h(j)

being a nested sum expression over hypergeometric prod-
ucts w.r.t. K and j and being free of k; here l is chosen
big enough such that h(j)|j 7→ν does not introduce poles

for all ν ≥ l.
∑k
j=l h(j) is also called a nested sum over

hypergeometric products w.r.t. K and k.

Example. Consider the sum

S(k) =

k∑
j=2

F (j) =

k∑
j=2

(−1)j −
j∑
i=1

(−1)i

i

(−1 + j)j

which belongs to the class of nested sum expressions over
hypergeometric products w.r.t. Q and k. As a consequence
it follows that any shifted version of the objects within S(k)
can be expressed again by the non-shifted versions: we have

(−1)k+1 = −(−1)k, (1)

k+1∑
i=1

(−1)i

i
=

k∑
i=1

(−1)i

i
+
−(−1)k

k + 1
(2)

and S(k + 1) = S(k) + F (k + 1) with

F (k + 1) = − 1

(k + 1)2
(−1)k − 1

k(k + 1)

k∑
i=1

(−1)i

i
; (3)

note that the equalities on the expression level are justi-
fied since both sides agree for any evaluation k 7→ ν with
ν ∈ N. In the following we will construct a difference ring
composed by a tower of RΠΣ∗-extensions in which the ob-

jects (−1)k,
∑k
i=1

(−1)i

i
and S(k) with their explicitly given

shift-behaviors are represented accordingly. Starting with
the difference field (Q(x), σ) with σ(x) = x+1 and constant
field Q (which is a ΠΣ∗-field) we proceed as follows:
(1) We take the ring extension Q(x)[y] subject to the rela-
tion y2 = 1. Further, we extend σ to a ring automorphism
of Q(x)[y] with σ(y) = −y. In this way, we can model (−1)k

with ((−1)k)2 = 1 and (1) by y. By [27, Prop 2.20] we
conclude that const(Q(x)[y], σ) = const(Q(x), σ) holds, i.e.,
that (Q(x)[y], σ) forms an RΠΣ∗-extension of (Q(x), σ).

(2) Next, we want to model
∑k
i=1

(−1)i

i
with (2). First,

we check if this is possible in our given difference ring. To
be more precise, we test if there is a g ∈ Q(x)[y] with
σ(g) = g + −y

x+1
. Our telescoping algorithms [26] (see also

below) show that such a solution is not possible. Therefore
we take the polynomial ring extension Q(x)[y][s] and extend
σ to a ring automorphism of Q(x)[y][s] with σ(s) = s+ −y

x+1
.

Using [26, Theorem 2.12] the non-existence of a solution
g ∈ Q(x)[y] of σ(g) = g + −y

x+1
implies that

const(Q(x)[y][s], σ) = const(Q(x)[y], σ) = const(Q(x), σ)

holds, Hence the constructed difference ring (Q(x)[y][s], σ)
forms an RΠΣ∗-extension of (Q(x), σ) in which we can rep-

resent the sum
∑k
i=1

(−1)i

i
by s.

(3) Finally, we want to model S(k) =
∑k
j=2 F (j) with (3).

As above, we check if this is possible in the given differ-
ence ring (Q(x)[y][s], σ). By our earlier construction we can

rephrase F (k + 1) with f = − yx+(x+1)s

x(x+1)2
. Thus we check if

there exists a g ∈ Q(x)[y][s] such that σ(g) = g + f holds.
This time our telescoping algorithms produce g = y

x
. We

conclude that for G(k) = 1
k

∑k
i=1

(−1)i

i
+ c with c ∈ Q

we obtain G(ν + 1) = G(ν) + F (ν + 1) for all ν ∈ N.

Choosing c = 1 we get G(1) = S(1) = 0. Together with
S(ν + 1) = S(ν) + F (ν + 1) for all ν ∈ N we get

S(k) =
1

k

k∑
i=1

(−1)i

i
+ 1. (4)

This means that both sides agree whenever we evaluate k at
positive integers. Hence S(k) can be represented by g+ 1 =
s
x

+ 1 in (Q(x)[y][s], σ). Internally, we used the map

exprk(a) = a|
x7→k,y 7→(−1)k,s7→

∑k
i=1

(−1)i

i

for a ∈ Q(x)[y][s] that links our difference ring elements to
our nested sum expressions. E.g., exprk(f) and exprk(g+1)
are precisely the right hand sides of (3) and (4), respectively.

In general, given an RΠΣ∗-extension over a ΠΣ∗-field
(K(x), σ) with σ(x) = x+ 1 such a map exprk is canonically
induced by the action of σ and is uniquely determined up
to choice of the lower summation/multiplication bounds and
of additive constants (for sums) or multiplicative constants
(for products) from K. We are now ready to introduce the
following problem which has been solved in [27, Subsec. 7.1].

Problem RNS: Representation of Nested Sums.
Given a nested sum expression over hypergeometric prod-
ucts A(k), find a nested sum expression over hypergeomet-
ric products B(k) and a δ with the following properties:

(1) A(ν) = B(ν) for all ν ∈ N with ν ≥ δ;
(2) the nested sums and hypergeometric products in B(k)

(except products of the form αk with α being a root of
unity) are algebraically independent among each other.

Our solution. We start with the ΠΣ∗-field (K(x), σ) with
σ(x) = x + 1. Then we compute a basic RΠΣ∗-extension
(K(x)[y][p1, p

−1
1 ] . . . [pr, p

−1
r ][s1] . . . [se], σ) of (K(x), σ) with

an element a ∈ A and a δ ∈ N such that property (1) of
Problem RNS holds with B(k) := exprk(a); for details see
the above example (for the product case see [24]). By the
explicitly given map exprk it follows that B(k) is given in
terms of one root of unity product R(k) = exprk(y) = αk

(note that one R-extension is sufficient by [27, Lemma 2.22]),
hypergeometric products Pi(k) := exprk(pi) with 1 ≤ i ≤ r
and nested sums Si(k) = exprk(si) with 1 ≤ i ≤ e.
Now consider the ring of sequences KN with component-wise
addition and multiplication, and define ev : K(x)→ KN by

ev( p
q
, k) =

{
0 if q(k) = 0
p(k)
q(k)

if q(k) 6= 0

where p, q ∈ K[x], q 6= 0 are co-prime. Then τ : K(x) → KN

with τ(a) = 〈ev(a, k)〉k≥0 for a ∈ K(x) establishes a ring
monomorphism. Thus the field K(x) and the field of rational
sequences F := τ(K(x)) are isomorphic. Further, difference
ring theory2 [27] (see also [28]) implies that

S[〈P1(ν)〉ν≥0, 〈 1
P1(ν)

〉ν≥0] . . . [〈Pr(ν)〉ν≥0, 〈 1
Pr(ν)

〉ν≥0]

[〈S1(ν)〉ν≥0] . . . [〈Se(ν)〉ν≥0]

forms a (Laurent) polynomial ring extension over the ring

S = F [〈R(ν)〉ν≥0] = τ(K(x))[〈αν〉ν≥0]

of rational sequences adjoined with 〈αν〉ν≥0. In conclusion,
the arising sums and products in B(k) (except R(k) = αk)
are algebraically independent among each other.
2Internally, one works within the difference ring of se-
quences: there two sequences are considered to be equal
if they agree from a certain point on.



Among many interesting features we emphasize that our so-
lution of Problem RNS contains the zero-recognition prob-
lem: the input A(k) evaluates to zero from a certain point
on if and only if the output B(k) is the zero-expression.

Summation paradigms in difference rings
As illustrated in the above example, our solution of Prob-
lem RNS relies on algorithms that decide if a telescoping
equation has a solution within the already constructed dif-
ference ring. More generally, we can use efficient algorithms
that solve the so-called parameterized telescoping problem.

Let (A, σ) be a difference ring with constant field K, and
take the elements f0, . . . , fd ∈ A. Then we are interested in
finding all solutions g ∈ A and c0, . . . , cd ∈ K such that

σ(g)− g = c0 f0 + · · ·+ cd fd (5)

holds. Since the set of solutions

{(c0, . . . , cd, g) ∈ Kd+1 × A | (5) holds} (6)

forms a K-vector space of dimension ≤ d+ 2, we can formu-
late this task as follows.

Problem PT: Parameterized Telescoping.
Given a difference ring (A, σ) with constant field K and
given f0, . . . , fd ∈ A; find a basis of (6).

General algorithms for this task are worked out in [26, 27]
relying on algorithms from [8]. In particular, we can solve
this problem if we take a ΠΣ∗-field (F, σ) over a constant
field K and choose any basicRΠΣ∗-extension (A, σ) on top of
(F, σ); by definition we have K = const(F, σ) = const(A, σ).

The special case d = 0 of Problem PT is nothing else than
the telescoping problem in the setting of difference rings and
is applied iteratively to solve Problem RNS. At this point
we emphasize that refined telescoping algorithms can be ex-
ploited which leads to improved versions of Problem RNS:
e.g., the sums in B(k) are minimal nested [17, 19, 22, 25].

Creative telescoping. Problem PT and our algorithms cover
as special case Zeilberger’s celebrated summation paradigm
of creative telescoping. In its simplest form it can be formu-
lated as follows.
Given d ∈ N and a nested sum expression F (n, k) over hy-
pergeometric products w.r.t. K and k where F (n, k) depends
on an extra parameter n; here K = K′(n) is supposed to be
a rational function field over a subfield K′.
Find constants c0, . . . , cd, free of k, and a nested sum ex-
pression G(n, k) w.r.t. K and k, which depends only on the
sums and products given in F (n, k), such that the creative
telescoping equation

G(n, ν+ 1)−G(n, ν) = c0 F (n, ν) + · · ·+ cdF (n+ d, ν) (7)

holds for all evaluations ν ∈ N with ν ≥ λ for some λ ∈ N.
We can tackle this problem as follows: We take the difference
field (K(x), σ) with σ(x) = x + 1 and construct an RΠΣ∗-
extension (A, σ) of (K(x), σ) with f0, . . . , fd ∈ A and a δ ∈ N
such that for 0 ≤ i ≤ d the evaluations of exprk(fi) and
F (n + i, k) with k 7→ ν agree for all non-negative integers
ν ≥ δ (compare Problem RNS). If we fail to find a solution
c0, . . . , cd ∈ K (not all ci being non-zero) and g ∈ A for (5),
then we conclude that the desired solution of (7) does not
exist; in this case we can either increase d or we can use
our enhanced algorithms [17, 19, 22, 25] for Problem PT.
Otherwise, if we find such a solution, we obtain the desired

G(n, k) := exprk(g) and a λ ∈ N with λ ≥ δ such that (7)
holds all ν ∈ N with ν ≥ λ.
Given such a solution, we can sum (7) over k and get

G(n, a+ 1)−G(n, 1) = c0 S(n, a) + · · ·+ cd S(n+ d, a)

for the sum S(n, a) =
∑a
k=λ F (n, k). This means that both

sides of the obtained recurrence in terms of nested sums over
hypergeometric products agree for any evaluation a 7→ ν
with ν ∈ N and ν ≥ λ. Further, we can specialize a, e.g., to n
which yields a recurrence for the definite sum

∑n
k=λ F (n, k).

Recurrence solving. Finally, we can look for solutions of a
given recurrence relation

a0(k)S(k) +a1(k)S(k+ 1) + · · ·+ad(k)S(k+ d) = b(k) (8)

where ai(k) are polynomials in K[k] and b(k) is a nested
sum expression over hypergeometric products w.r.t. K and
k. More precisely, we find the so-called d’Alembertian solu-
tions [2, 3]. This means that we find all solutions of (8) that
are expressible in terms of nested sums over hypergeometric
products. Internally, the expression b(k) is rephrased to a
difference ring composed by a tower of RΠΣ∗-extensions and
variants of the algorithms from [15, 5, 16, 20, 18] are used
to compute these solutions. We remark that the produced
solutions are highly nested. As a consequence, the simplifi-
cation of these solutions with our telescoping algorithms for
Problem RNS is a crucial and highly challenging task.

Applications
Combining this toolbox of computing recurrences and solv-
ing them in terms of nested sums over hypergeometric, q-
hypergeometric or q-mixed hypergeometric products, we ob-
tain an efficient summation machinery that has been built
into the Mathematica package Sigma [21].

In[1]:= << Sigma.m

Sigma - A summation package by Carsten Schneider c© RISC-Linz

For instance, after entering the definite sum

In[2]:= mySum = SigmaSum[(1− (−1)
k
)SigmaBinomial[n, k]

SigmaSum[SigmaPower[−1, i]/i, {i, 1, k}], {k, 0, n}]

Out[2]=

n∑
k=0

(
1− (−1)k

)(n
k

) k∑
i=1

(−1)i

i

one can calculate a linear recurrence by the function call

In[3]:= rec = GenerateRecurrence[mySum]

Out[3]= −4nSUM[n] + 4(n + 1)SUM[n + 1] + (−n− 2)SUM[n + 2] = −2n
n+1

Internally, one activates the parameterized telescoping algo-
rithms mentioned above. Next, we solve the computed re-
currence in terms of nested sums over hypergeometric prod-
ucts by executing the function call

In[4]:= recSol = SolveRecurrence[rec[[1]], SUM[n]]

Out[4]= {{0,−2n}{0,−
2n

n
}, {1,

1

n
− 2

n
n∑

i=1

2−i

i
}}

This means that h1(n) = −2n and h2(n) = − 2n

n
are two

linearly independent solutions of the homogeneous version

of the input recurrence and p(n) = 1
n
− 2n

∑n
i=1

2−i

i
is a

particular solution of the recurrence itself. In a nutshell, we
obtain the full solution set

{c1 h1(n) + c2 h(n) + p(n) | c1, c2 ∈ Q}. (9)

In particular, the arising sums and products are algebraically
independent among each other. Finally, we determine c1, c2
such that (9) equals to S(n) for n = 1, 2:



In[5]:= sol = FindLinearCombination[recSol,mySum, n, 2]

Out[5]= −2n
n∑

i=1

2−i

i
+

1− 2n

n

Since this expression and S(n) are both a solution of the
same recurrence of order 2, they must agree for all n ∈ N.

In this talk we exploit this summation machinery of Sigma
and demonstrate challenging problems coming from combi-
natorics and particle physics; in the latter case see, e.g., [27]
and references therein.
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