
Making Formal Methods Popular:
The Crux is Math Education!

Franz Lichtenberger

Research Institute for Symbolic Computation (RISC-Linz)
Johannes Kepler University

Linz, Austria
franz.lichtenberger@risc.jku.at

Abstract. Although on many occasions, especially at FM conferences,
highlights of the use of Formal Methods in software development are
presented, FM plays just a minor role in both the everyday work of soft-
ware engineers as well as Computer Science and Software Engineering
curricula. To me, one of the main reasons for the status quo is that math-
ematics education, as it is usually done today, does not enable students
to understand and to use Formal Methods.
Software engineering is a young engineering discipline that is different
in many respects from the classical engineering fields. To me the most
distinguishing point is the kind of mathematics that serves the respective
fields well. Classical, calculus-based engineering mathematics is of no use.
Just putting more emphasis on Discrete Mathematics, as recommended
and usually done, is – by far – not enough.
I will report on an alternative approach to teaching introductory math-
ematics to students of CS and SE which started already in the 1980s.
The whole first year is dedicated to teach ”The Language and Methods
of Mathematics”. It is also an introduction into FM, i.e. in the second
semester students learn to do Hoare-style correctness proofs, for example.
Implementing such radical changes in the curriculum is, of course, also a
”political” problem. Some of these aspects will be discussed, for example
that this will be possible only if SE is regarded a discipline of its own, not
just a part of CS. In many cases it will also be necessary to take math
education away from math departments. Real (IR -) mathematicians have
a hard time understanding the mathematical needs of software engineers.
In the last section I will present some personal thoughts about which
advanced mathematical topics could play a major role in future SE edu-
cation, as for example (partial) differential equations do in classical en-
gineering mathematics. For me, these topics come from algebra, aiming
at ”conceptual mathematics”, which essentially is category theory.

1 Introduction

Although on many occasions, especially at FM conferences, highlights of the
use of Formal Methods in software development are presented, FM plays just a
minor role in both the everyday work of software engineers as well as Computer
Science and Software Engineering curricula.



There are reasons to believe that this cannot be changed dramatically, or even
that it should not be changed. Many practitioners regard FM as not applicable
and thus unimportant for the main stream, relevant just in some niches. I assume
that most participants of a workshop on FM in SE education will disagree. So,
what can we do to bring FM closer to the main stream in software development?

To me, one of the main reasons for the status quo is that mathematics edu-
cation, as it is usually done today, does not enable students to understand and
to use Formal Methods. This seems a bit remote, at first glance. In this paper,
which is no research paper proper, but more an extended position statement, I
will try to explain my point of view and give recommendations for how to make
FM more popular.

2 Mathematics in CS and Engineering

It is generally agreed that mathematics plays an important role in the curricu-
lum of the classical engineering disciplines like Civil, Mechanical or Electrical
Engineering. Often up to 30% of an engineers education is devoted to math-
ematics. The mathematics taught there is well-established, almost exclusively
calculus-based, since the advent of computers numerical mathematics plays an
important role as well.

Software Engineering is a young engineering discipline that is different in
many respects from the classical engineering fields. To me the most distinguishing
point is the kind of mathematics that serves the respective fields well. Classical,
calculus-based engineering mathematics is of no use. Just putting more emphasis
on Discrete Mathematics, as recommended and usually done, is – by far – not
enough.

There is a lot of material, mostly developed by high-ranking committees of
IEEE Computer Society and ACM, giving guidelines for CS and SE curricula
both at the undergraduate and the graduate level or describing the ”body of
knowledge” in the respective fields. All of that is valuable and great, I just
criticize one point: the attitude towards mathematics. Let’s start with SE2004
([1]). Just saying that ”Discrete mathematics is the mathematics underlying all
computing, including software engineering [and so on]” and choosing two in-
troductory courses on discrete structures from the CS volume, shows me that
SE is not regarded as a discipline of its own. The third course, called Statistics
and Empirical Methods, is relevant to SE, as it is for any engineering discipline.
By the way, in GSwE2009 ([2]) software engineering is treated as a subfield of
systems engineering (be careful: in this document SE stands for systems engi-
neering, whereas SwE is software engineering). In SWEBOK ([3]) it is basically
the same: mathematics and FM play just a minor role.

It seems that everybody is – more or less – satisfied with this kind of math
teaching. In our community as well I rarely hear complaints that students are
not prepared for Formals Methods in introductory math courses although FM
is nothing else than software development strictly based on mathematics. Many
practitioners (and academics) regard FM, as already said in the introduction,



as not applicable and thus unimportant. This is different from the classical en-
gineering disciplines. As Peter Henderson put it in [4]: ”... there mathematics is
intrinsically used for ”everything” - modeling, analysis, reasoning, design, verifi-
cation, validation, statistical analysis, etc. In SE it is more like an afterthought
called Formal Methods.” I am convinced that bringing FM to the mainstream
of software development needs a different kind of math teaching.

3 Introductory Math for Software Engineering

It is pretty clear which basic mathematical topics are important for Formal
Methods, an early book covering this is [5]. Many FM courses start with intro-
ducing these topics, some curricula go far beyond. I personally like [6] very much
which was developed at TU Berlin. To my knowledge all these courses come in
addition to a traditional math education, and mostly late in the curriculum,
often as graduate courses only. My plea is to teach these topics right away from
the beginning, instead of the usual things like calculus, linear algebra, or discrete
math.

An Alternative Approach

My view on a proper, realistic mathematics education for software engineers is
perhaps characterized best by part of the title of a talk I gave in 2002 at a
conference on teaching mathematics: ”It Should Be Radically Different!” That
is different from math for the classical engineering disciplines, and thus different
from how it is taught at most places today. In [7] I give the reference with a link
to the paper.

The paper is more than ten years old and I probably would use different
examples and other wording today. There I use the example of defining the
notion of ”abstract data type” mathematically, i.e. via algebraic specification,
to show that a different type of math is needed than classical, calculus-based
engineering math.

For more than 30 years we have been teaching introductory mathematics to
students of Computer Science (called ”Informatik”, at Johannes Kepler Univer-
sity, Linz, Austria) and of Software Engineering (at the University of Applied
Sciences Upper Austria) in a different way. Unfortunately the textbook we used
([8]) is in German and out of print (see link to pdf copy). The concept was
developed by Bruno Buchberger already in the late 1970s and I had the privi-
lege to contribute to the project from the beginning. The whole first semester is
dedicated to teaching ”the language and methods of mathematics”. By showing
several case studies we try to analyze and teach all those aspects of mathematics
that are necessary to treat the whole problem solving process, i.e., starting from
the formal specification of a problem, then developing recursive and iterative
algorithms for solving the given problem (which often means to conjecture and
to prove some mathematical facts), proving the correctness and analyzing the
complexity of the algorithms, and finally giving a structured documentation and
presentation of the problem and its solution.



Teach specifying and proving!

Although there is a lot more to be said about our approach, in this writing I
simply want to underscore two topics that are dear to me: specifying and proving.

What is the most important thing that one has to teach to SE students from
the beginning? Teach them to specify, then to specify, and once again – to specify!
In our introductory math course students have to write their first formal problem
specification after four weeks. You just need the basic language of mathematics
for that, i.e., propositional and predicate logic. But you need much more time
to explain the details than is usually allocated for these topics in introductory
math courses for CS. Mathematicians regard this use of logic as trivial, and in
textbooks on discrete math it’s usually worth just a few pages. Specification
means translating natural language into the (formal) language of mathematics,
but also the other direction is important: learning to read mathematics, for
example formal definitions, and to explain it in one’s own words. Our observation
is that students just out of high school are totally unprepared for this kind of
mathematics and have a hard time learning it.

Based on the aforementioned, one could think that proofs are of no impor-
tance to software engineers. This might be true for ”deep” mathematical proofs,
but they definitely should learn how to prove properties of or relations between
the artifacts they produce or work with, be it specifications, designs, imple-
mentations, protocols, or others. Such proofs are ”shallow” and they have to be
formal, not just rigorous, because they are mainly done by computers. No human
can check millions or billions of states of a system, nor can she or he have the
patience (and time!) to deductively prove some intermittent assertion produced
by a proof assistant that fills several pages.

In our approach students have to do (Hoare style) correctness proofs of pro-
grams at the end of their freshmen year. Before that we teach how to do proofs
in general, i.e. natural deduction style proofs in predicate logic. I personally
think that one has to start that early with these topics, otherwise it is too late.
I mean too late to fulfill the main purpose of teaching mathematics to software
engineers: to enable them to use formal methods, i.e., methods strictly based on
mathematics.

Most important are the basics: logic and sets

To repeat it: I think that it is absolutely necessary to teach these basic skills
to enable students to use Formal Methods. But, is this also sufficient? At FM
conferences, especially in the industrial track, highlights of FM applications are
regularly presented. Often one has the feeling that (at least) a PhD in math or
CS is needed to do that work.

On the contrary, Leslie Lamport once gave a talk at a Formal Methods Ed-
ucation conference with the title ”All I Really Need to Know I Learned in High
School” ([9]). I agree with Lamport. All you need is the very basics, logic and
sets - of course to an extent that this becomes your working language. With-
out doubt, there are also topics from advanced mathematics that are useful and



probably even necessary in software engineering. For me, these topics come from
algebra, as described later.

My experience shows that it takes (at least) a whole semester to teach just
logic and sets, i.e., to bring students to the point where they, for example, really
understand the meaning of implication, that they know that disjunction usually
is used differently in math and everyday language, that they not only are able
to check the validity of De Morgan’s laws by truth tables but also to use them –
especially in the version with quantifiers – to express the meaning of a natural
language statement in different but equivalent ways, and that they can work with
the basic set operations (plus functions and relations, especially equivalences and
orderings as required in all curriculum proposals).

Where to put Discrete Math and Calculus?

Some words about where to put discrete math and calculus in a SE curriculum:
I personally prefer not to have a DM course but to put most of the topics into
other courses like Algorithms and Data Structures. This way you get the topics
when and where you need them. If a topic is not covered there, for example
modular arithmetic, then it should be taught when it is needed, say in a course
on cryptography. So one can also better scale the number of proofs one does in
detail. For SE students I think it is, for example, not necessary to give all the
proofs concerning why RSA encryption works, computational scientists should
know these proofs in detail. And if a topic does not show up in any course then
it is not needed.

This does not apply to the very first topics of DM, i.e. sets and logic. (I
personally prefer to teach logic before sets, I could explain in length why.) As
argued in the previous section, these basics should be put into an introductory
math course for SE, and treated there extensively.

It should be clear that every engineer should have courses towards qual-
ity assurance and control that are based on probability and statistics. Here, of
course, calculus comes into play. Our SE students do not have a calculus course.
Calculus is reviewed during the probability and statistics course. I think this is
a very good place because the relationship between summation in the discrete
case and integration in the continuous case, as well as differentiation, can be
demonstrated well. Here I have to remark that this is possible in an educational
system (like in my home country, Austria) where math in high school (”Gymna-
sium”) focuses very much on calculus. If freshmen can remember anything from
high school math, it is how to differentiate and how to integrate. This may be
different in other school systems.

4 Changing the Curriculum: Political Considerations

Before I come to some ”political” statements on how to enable such radical
changes in the curriculum, especially towards math teaching for software engi-
neering, I want to state that I am an educator and I belong to the people who



have problems with the term ”computer science” per se, and I think that the
fuzziness of that term is the main reason that it is difficult to impossible to find
– and teach – the ”right” mathematics that could serve the whole field in a way
that satisfies everyone.

To me, the big question is the one that has been discussed for decades now,
namely, the ”science vs. engineering” problem. It is important to know whom
we are educating: scientists or engineers? In my opinion we should not try to do
both at the same time.

There is a wide spectrum of professional activities in our field: at the one
end we have computing (computational) scientists and at the other software en-
gineers. It is very clear to me that the former should become full-fledged math-
ematicians, with an emphasis on all aspects of computing, whereby ”Concrete
Mathematics” a la Knuth ([10]) has to play an important role. The mathematical
education of the latter group, however, must be different.

For all that is in between – call it CS, IT, ICT, IS, IM, System Science
or Engineering, Data Science or Engineering, Web Science or Engineering, Big
Data, Pervasive Computing, or any other name for a (sub) field – it is not clear
to me what the right math is, and therefore I refrain from comment.

I suggest developing a software engineering curriculum incorporating mathe-
matics as sketched above, and implementing it – more or less – independently of
CS departments. Yes, and it should really be an engineering curriculum. I think
that it would be good to have a ”Department for Software Science and Engineer-
ing” at every institution that grants a degree in SE. This collaboration of people
who are working scientifically on foundational issues, together with others trans-
ferring their insights to engineering practices is common in classical engineering
disciplines. It could help SE to become a mature engineering discipline.

Three Recommendations

My first advice for Software Engineering as a discipline is to divorce from Com-
puter Science. You will be the underdog in this relationship forever. Don’t go in
anger. Help each other, there are a lot of problems you could and should solve
in common.

This is important especially for curriculum development. I see no chance that
the radical changes in introductory math education I propose can be done in CS
curricula in general. For new SE curricula I definitely see the chance.

My second recommendation is to take math education for software engi-
neers away from mathematics departments. Real (IR -) mathematicians have a
hard time understanding the mathematical needs of software engineers. Many
mathematicians who have an affinity towards SE and FM work in CS or SE de-
partments anyway. Those software scientists can do the job excellently. To make
it clear: math should be taught by mathematicians, but there is no need that
they come from math departments.

My third suggestion is that SE should try to get integrated into the commu-
nity of the old engineering disciplines as a new member. This could help SE in



many, more organizational matters like accreditation, for example, to become a
mature and well recognized engineering discipline.

5 Advanced Math for SE: Algebra and Category Theory

In this last section I want present some personal thoughts about which advanced
mathematical topics could play a major role in future SE education, as for ex-
ample (partial) differential equations do in classical engineering mathematics.
The first year of classical engineering math is usually devoted to calculus and
linear algebra. Based on what I said about math education for SE, my favorite
name for the course would be ”Language and Methods of Mathematics”.

The second year I would just call ”Algebra”, starting with classical topics
(groups, rings, fields . . . ), enhanced by topics like, for example, process algebra,
relational algebra, computational algebra. Soon I would come to a topic that I
find important for SE: algebraic specification of Abstract Data Types (ADT),
which means students learn about heterogeneous algebras, basic notions like
signatures, and also some category theory for dealing with semantics of ADT
specifications.

As computing scientists need a lot of ”concrete math” a la Knuth (see [10]), I
think software engineers should learn ”conceptual mathematics” (see [11]), which
essentially is category theory (yes, this abstract nonsense, you know). In many
situations to be modelled one has a class of objects (like specifications, designs,
implementations, programs, languages, queries, XML-documents, . . . ), and some
transformation between such objects which often is associative. In most cases
one also has some identity transform (often just ”do nothing”) which already
means that the objects together with the transformation form a category.

Algebraic specification became popular in the early 1980s. In recent years also
coalgebraic modelling gained momentum. Finite and, more important, infinite
behavior of systems of all kinds can be modelled conveniently using a coalgebraic
approach. For a nice introduction see [12]. I am convinced that one could rewrite
all textbooks on automata, transition systems, reactive systems, parallel and
distributed processes, and the like, in coalgebraic language – it just does not
make sense, i.e. it does not pay off today. Perhaps this could change if students
would learn about coalgebras in their algebra course.

Students should learn about duality, which is one of the most important, yet
basic, notions in category theory. Just ”reversing the arrows” in a categorical
definition often defines another notion that makes sense. Examples are monomor-
phism and epimorphism, i.e. injective and surjective functions in the category
SET, product and coproduct (direct sum), initial and final objects, pullback and
pushout, and – very important – induction and coinduction for doing definitions
and proofs.

”Data processing” was an ancient name for our field. To see that data and
processes are just two sides of the same coin, i.e. dual in categorical language,
the first modelled algebraically, the second co-algebraically, is a beautiful insight
that all students of SE should be able to enjoy.



6 Conclusions

In this personal statement on how to make Formal Methods more popular, i.e.
bring them closer to the main stream of SE education and practice, I come to the
conclusion that mathematics education has to be changed in a way that students
early in the curriculum learn to understand and to use Formal Methods.

In accordance with the overall objectives of the FMSEET’15 workshop, as
stated in the Call for Papers,

– I find that FM education in a typical undergraduate curricula is in a sad
state, almost irrelevant,

– I give some recommendations for improving the situation which are mainly
political and far reaching, and

– I am, of course, willing to exchange knowledge and experience in any forum
aiming to support FM education.

References

[1] IEEE Computer Society and ACM Joint Task Force on Computing Curricula,
Software Engineerig 2004 - Curriculum Guidelines for Undergraduate Degree Pro-
grams in Software Engineering, http://sites.computer.org/ccse/

[2] Integrated Software and Systems Engineering Curriculum (iSSEc) Project, Grad-
uate Software Engineering 2009 (GSWe2009), http://www.gswe2009.org/

[3] P. Bourke, R.E. Fairley (eds.), SWEBOK V3.0 - Guide to the Software Engineer-
ing Body of Knowledge, http://www.computer.org/portal/web/swebok

[4] P. Henderson, personal e-mail to F. Lichtenberger, May 4, 2012.
[5] J. Woodcock, M. Loomes, Software Engineering Mathematics: Formal Methods

Demystified, Pitman Publ., London, 1988.
[6] H. Ehrig, B. Mahr, F. Cornelius, M. Große-Rhode, P. Zeitz, Mathematisch-

strukturelle Grundlagen der Informatk, 2. Aufl., Springer, Berlin, 2001.
[7] F. Lichtenberger, Mathematics Education for Software Engineers: It Should be

Radically Different!, Proc. ICTM2, 1-6 July 2002, University of Crete, Greece. (
http://www.math.uoc.gr/~ictm2/Proceedings/pap305.pdf )

[8] Buchberger B., Lichtenberger F.: Mathematik für Informatiker I: Die
Methode der Mathematik, Springer-Verlag, Heidelberg, 2. Auflage, 1981.
http://www.risc.jku.at/publications/download/risc_2230/mathematik_

informatiker_bookmarks.pdf

[9] L. Lamport, All I Really Need to Know I Learned in High School, invited talk at
CoLogNET/ Formal Methods Europe Symposium on Teaching Formal Methods,
Gent, Belgium, Nov. 18-19, 2004.

[10] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics - A Foundation
for Computer Science, Addison-Wesley, Reading, Mass., 2nd ed., 1994

[11] Lawvere F.W., Schanuel St.H.: Conceptual Mathematics: A first introduction to
categories, Cambridge University Press,2nd Ed., 2009

[12] Jacobs B., Rutten J.: A Tutorial on (Co)Algebras and (Co)Induction, EATCS
Bulletin 62 (1977), pp. 222-259.

http://sites.computer.org/ccse/
http://www.gswe2009.org/
http://www.computer.org/portal/web/swebok
http://www.math.uoc.gr/~ictm2/Proceedings/pap305.pdf
http://www.risc.jku.at/publications/download/risc_2230/mathematik_informatiker_bookmarks.pdf
http://www.risc.jku.at/publications/download/risc_2230/mathematik_informatiker_bookmarks.pdf

	Making Formal Methods Popular: The Crux is Math Education!

