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Kurzfassung III

Kurzfassung

Das Anti-Unifikations-Problem beschäftigt sich mit der Suche nach einer General-
isierungen (Verallgemeinerung) für zwei Eingabebeispiele. Interessant sind dabei jene
Verallgemeinerungen welche am wenigsten generell sind. Informell kann das Prob-
lem wie folgt beschrieben werden: Finde einen Ausdruck für zwei konkrete Ob-
jekte welcher alle Gemeinsamkeiten beschreibt und deren Unterschiede einheitlich
als Variablen darstellt. Solche Verallgemeinerungsprobleme kommen in vielen Gebi-
eten der Computerwissenschaft und der Mathematik vor. Ein Algorithmus welcher
die am wenigsten generellen Verallgemeinerungen von zwei Eingabebeispielen berech-
net wird Anti-Unifikations-Algorithmus genannt. In dieser Arbeit studieren wir das
Anti-Unifikations-Problem in verschiedenen Theorien. Wir entwickeln Algorithmen
welche solche Probleme lösen, analysieren deren Eigenschaften, studieren deren Kom-
plexität, demonstrieren deren Anwendung anhand von realitätsnahen Beispielen und
präsentieren eine Programmbibliothek von Anti-Unifikations-Algorithmen welche in
Java implementiert wurde.

Zur Präsentation der Anti-Unifikations-Algorithmen wird eine regelbasierten Meth-
ode mit einem Speicher welcher die Unterschiede in den Eingabebeispielen protokolliert
verwendet. Unter gewissen Voraussetzungen kann ein Algorithmus der einen solchen
Speicher besitzt sowohl das Matching-Problem als auch das Problem vom Auffinden
einer gemeinsamen Instanz (Join) lösen. Manche der in dieser Arbeit entwickelten Algo-
rithmen benötigen einen Minimierungsprozess in dem das Matching-Problem gelöst wer-
den muß. Wir zeigen, dass diese Algorithmen selbst-minimierend sind, das heißt, dass
das Matching-Problem vom Anti-Unifikations-Algorithmus selbst gelöst werden kann.

Wir entwickeln Anti-Unifikations-Algorithmen für untypisierte Terme, nominale
Terme und für einfach typisierte Lambda-Terme. Für untypisierte Terme betrachten
wir Variablen erster Ordnung und Variablen höherer Ordnung. Das Anti-Unifikations-
Problem in solchen untypisierten Theorien höherer Ordnung ist endlich aber nicht de-
terministisch. Deswegen stellen wir einige wenige naturgemäße Bedingungen an die
errechneten Generalisierungen, sodass wir eine eindeutige Zuordnung zwischen einer
Generalisierungen und einem Gerüst erreichen. (Das Gerüst beinhaltet alle Gemein-
samkeiten der Eingabeterme welche in der Generalisierung erhalten werden.) Eine
Generalisierung kann in quadratischer Zeit für ein gegebenes Gerüst berechnet wer-
den. Das heißt, wenn zum Beispiel das Gerüst ein eingeschränkter größter Teilbaum
der Eingabeterme ist, dann kann sowohl die Generalisierung als auch das Gerüst in
quadratischer Zeit berechnet werden.

Generell ist das nominale Anti-Unifikations-Problem vom Typ Null (d.h., eine mini-
male komplette Menge von Generalisierungen existiert nicht immer). Wenn jedoch die
Menge der erlaubten Atome in einer Generalisierung endlich ist, dann wird das Prob-
lem eindeutig lösbar. Dies ist das Anti-Unifikations-Problem welches wir für nominale
Terme betrachten. Für einfach typisierte Lambda-Terme beschränken wir die General-
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isierungen auf Pattern höherer Ordnung, sodass die errechnete Generalisierung für zwei
beliebige Lambda-Terme ein eindeutiges Pattern ist. (In einem Pattern höherer Ord-
nung sind alle Argumente von freien Variablen unterschiedliche gebundene Variablen.)
Wir zeigen einen Algorithmus welcher diese Pattern-Generalisierung in quadratischer
Zeit berechnet.

Die implementierte Java-Bibliothek stellt Anti-Unifikations-Algorithmmen für alle
obig diskutierten Theorien bereit. Solche Anti-Unifikations-Probleme kommen zum
Beispiel in Beweisgeneralisierung, in analogischem Schlußfolgern, im Auffinden von
Ähnlichkeiten in XML Dokumenten oder Stücken von Softwarecode etc. vor. Daher
kann unsere Programmbibliothek ein wertvoller Bestandteil für Programme sein welche
solche Generalisierungsprobleme lösen müssen.
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Abstract

The anti-unification problem is concerned with finding a generalization for two input ex-
amples. The interesting generalizations are the least general ones. Informally, the prob-
lem can be described as: Given two concrete objects, find an expression that describes
all their common features and uniformly represents their differences by variables. Such
generalization problems arise in many areas of computer science and mathematics. An
algorithm that computes least general generalizations for two input examples is called an
anti-unification algorithm. In this work, we study the anti-unification problem for vari-
ous theories. We develop algorithms that solve such problems, analyze their properties,
study their computational complexity, demonstrate their usage on real world examples,
and present a library of anti-unification algorithms which is implemented in Java.

Anti-unification algorithms are presented in a rule-based manner featuring a store
that keeps track of all the differences at the input examples. Under certain circum-
stances, an algorithm that maintains such a store can be used to solve the matching
problem as well as the problem of finding a join. Some of the algorithms developed in
this work need a minimization step that requires to solve the matching problem. We
show that those algorithms are self-minimizing in the sense that the matching problem
can be solved by the anti-unification algorithm itself.

We develop anti-unification algorithms for unranked terms, nominal terms, and
simply-typed lambda terms. For unranked terms, we consider first-order variables and
higher-order variables. The anti-unification problem in such higher-order unranked
theories is finitary but highly nondeterministic. Therefore, we impose a few natural
restrictions on the computed generalizations so that we can establish a one-to-one cor-
respondence between a generalization and a skeleton. (The skeleton consists of all those
common parts of the input terms that are to be retained in the generalization.) A gen-
eralization can be computed in quadratic time for a given skeleton. This means that,
for instance, if the skeleton is a constrained longest common subtree of the input terms,
then both skeleton and generalization computation can be done in quadratic time.

In general, the problem of nominal anti-unification is of type zero, (i.e., a minimal
complete set of generalizations does not always exist) but if the set of atoms permitted in
generalizations is finite, then it becomes unitary. This is the anti-unification problem we
consider for nominal terms. For simply-typed lambda terms, we restrict generalizations
to be higher-order patterns so that a generalization computed for two arbitrary lambda
terms is a unique pattern. (In higher-order patterns all the arguments of free variables
are distinct bound variables.) We show an algorithm that computes it in quadratic time.

The implemented Java library provides anti-unification algorithms for all the theories
discussed above. Such anti-unification problems arise, for instance, in proof generaliza-
tion, in analogical reasoning, in detection of similarities in XML documents or in pieces
of software code, etc. Therefore, our library can be a valuable ingredient for tools that
need to solve such generalization problems.
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2010plus” by the Upper Austrian Government.

Parts of this work have been published in [12, 13, 14, 15].



Contents VII

Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Coherence of Joinability, Matching, and Anti-Unification . . . . . . . . . 10
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Anti-Unification for Unranked Terms and Hedges 15
2.1 First-Order Unranked Anti-Unification . . . . . . . . . . . . . . . . . . . 16

2.1.1 First-Order Unranked Terms and Hedges (Preliminaries) . . . . . 17
2.1.2 First-Order Unranked Anti-Unification Algorithm GR . . . . . . 21
2.1.3 Illustration of the Algorithm GR . . . . . . . . . . . . . . . . . . 23
2.1.4 Minimization by Anti-Unification using GR . . . . . . . . . . . . 26

2.2 Higher-Order Unranked Anti-Unification 2V . . . . . . . . . . . . . . . . 30
2.2.1 Higher-Order Unranked Terms and Hedges 2V (Preliminaries) . . 32
2.2.2 The Skeletons: Admissible Alignments . . . . . . . . . . . . . . . 34
2.2.3 Higher-Order Unranked Anti-Unification Algorithm G2V

a . . . . . 38
2.2.4 Explanation of the Transformation Rules of G2V

a . . . . . . . . . 42
2.2.5 Illustration of the Algorithm G2V

a . . . . . . . . . . . . . . . . . . 44
2.2.6 Properties of the Algorithm G2V

a . . . . . . . . . . . . . . . . . . 49
2.2.7 Complexity Analysis of G2V

a . . . . . . . . . . . . . . . . . . . . . 62
2.2.8 Computing Admissible Alignments . . . . . . . . . . . . . . . . . 63
2.2.9 Minimization by Anti-Unification using G2V

a . . . . . . . . . . . . 64
2.3 Higher-Order Unranked Anti-Unification 4V . . . . . . . . . . . . . . . . 68

2.3.1 Higher-Order Unranked Terms and Hedges 4V (Preliminaries) . . 69
2.3.2 Higher-Order Unranked Anti-Unification Algorithm G4V

a . . . . . 71
2.3.3 Illustration of the Algorithm G4V

a . . . . . . . . . . . . . . . . . . 73
2.3.4 Properties of the Algorithm G4V

a . . . . . . . . . . . . . . . . . . 75
2.3.5 Complexity Analysis of G4V

a . . . . . . . . . . . . . . . . . . . . . 78
2.3.6 Minimization by Anti-Unification using G4V

a . . . . . . . . . . . . 78

3 Anti-Unification for Ranked Terms with Binders 81
3.1 Anti-Unification for Nominal Terms . . . . . . . . . . . . . . . . . . . . 83

3.1.1 Nominal Terms (Preliminaries) . . . . . . . . . . . . . . . . . . . 83
3.1.2 Nominal Anti-Unification from Type Zero to Type Unitary . . . 89
3.1.3 Nominal Anti-Unification Algorithm GN . . . . . . . . . . . . . . 91
3.1.4 Illustration of the Algorithm GN . . . . . . . . . . . . . . . . . . 93
3.1.5 Deciding Equivariance: The Algorithm E . . . . . . . . . . . . . 94
3.1.6 Illustration of the Algorithm E . . . . . . . . . . . . . . . . . . . 95
3.1.7 Properties of the Algorithm E . . . . . . . . . . . . . . . . . . . . 96
3.1.8 Properties of the Algorithm GN . . . . . . . . . . . . . . . . . . . 99



VIII Contents

3.1.9 Complexity Analysis of E and GN . . . . . . . . . . . . . . . . . 105
3.2 Anti-Unification for Lambda Terms . . . . . . . . . . . . . . . . . . . . . 107

3.2.1 Simply-Typed Lambda Terms (Preliminaries) . . . . . . . . . . . 108
3.2.2 Anti-Unification Algorithm for Lambda Terms GP . . . . . . . . 111
3.2.3 Illustration of the Algorithm GP . . . . . . . . . . . . . . . . . . 113
3.2.4 Computation of Permuting Matchers: The Algorithm M . . . . 115
3.2.5 Illustration of the Algorithm M . . . . . . . . . . . . . . . . . . 116
3.2.6 Properties of the Algorithm M . . . . . . . . . . . . . . . . . . . 116
3.2.7 Properties of the Algorithm GP . . . . . . . . . . . . . . . . . . . 118
3.2.8 Complexity Analysis of M and GP . . . . . . . . . . . . . . . . . 122
3.2.9 A Remark on Untyped Lambda Terms . . . . . . . . . . . . . . . 125

4 A Library of Anti-Unification Algorithms 127
4.1 Structure of the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.2 First-Order Unranked Anti-Unification . . . . . . . . . . . . . . . . . . . 128

4.2.1 Explanation of the Web Interface for the Algorithm G2V
R . . . . . 130

4.2.2 Implemented Transformation Strategy for G2V
R . . . . . . . . . . 130

4.2.3 Using the Algorithm G2V
R in Java . . . . . . . . . . . . . . . . . . 132

4.3 Higher-Order Unranked Anti-Unification 2V . . . . . . . . . . . . . . . . 133
4.3.1 Explanation of the Web Interface for the Algorithm G2V

a . . . . . 134
4.3.2 Implemented Transformation Strategy for G2V

a . . . . . . . . . . 135
4.3.3 Using the Algorithm G2V

a in Java . . . . . . . . . . . . . . . . . . 136
4.4 Higher-Order Unranked Anti-Unification 4V . . . . . . . . . . . . . . . . 137

4.4.1 Implementation of the Anti-Unification Algorithm G4V
a . . . . . . 138

4.5 Anti-Unification for Nominal Terms . . . . . . . . . . . . . . . . . . . . 141
4.5.1 Explanation of the Web Interface for the Algorithm GN . . . . . 141
4.5.2 Implemented Transformation Strategy for GN . . . . . . . . . . . 142
4.5.3 Using the Algorithm GN in Java . . . . . . . . . . . . . . . . . . 143
4.5.4 Implementation of E for Deciding Equivariance . . . . . . . . . . 144

4.6 Anti-Unification for Lambda Terms . . . . . . . . . . . . . . . . . . . . . 147
4.6.1 Explanation of the Web Interface for the Algorithm GP . . . . . 147
4.6.2 Implemented Transformation Strategy for GP . . . . . . . . . . . 148
4.6.3 Using the Algorithm GP in Java . . . . . . . . . . . . . . . . . . 149
4.6.4 Implementation of M for Computing Permuting Matchers . . . . 150

5 Conclusion 153
5.1 Discussion of Future Research Directions . . . . . . . . . . . . . . . . . . 154

Bibliography 163



1

Chapter 1

Introduction

In this work, we study the anti-unification problem for different term languages. The
anti-unification problem is concerned with finding an expression that generalizes two
input examples. Interesting generalizations are the least general ones. They inherit as
many common features of the input examples as possible and uniformly represent their
differences by variables. Such generalization problems arise in many areas of computer
science and mathematics. An algorithm for constructing a least general generalization
of two given input examples is called an anti-unification algorithm. We develop such
algorithms for three different term languages, namely unranked terms, nominal terms,
and simply-typed lambda terms. We discuss the presented algorithms, study their
properties, give examples for possible applications, and demonstrate our library of
anti-unification algorithms that has been implemented in Java.

We now introduce and discuss the underlying concepts in general. All the no-
tions which are discussed here also hold for more complex objects, like hedges or
terms-in-context, which are discussed in the following chapters. For the sake of read-
ability, we will talk about terms.

Let F be a set of function symbols and V be a set of variables such that F XV “ H.
We denote by T pF ,Vq the set of terms from a given language that is constructed over
F and V. A T pF ,Vq-substitution, or simply substitution, if the set of terms is irrelevant
or clear from the context, is a function σ : V Ñ T pF ,Vq such that tx P V | σpxq ‰ xu
is finite. We write tx1 ÞÑ t1, x2 ÞÑ t2, . . . , xn ÞÑ tnu for the substitution that maps the
variable x1 to the term t1, x2 to t2, etc., and all the other variables are mapped to
themselves. The domain of a substitution σ is the finite set of variables Dompσq ::“
tx P V | σpxq ‰ xu and the range is the set of terms Ranpσq ::“ tσpxq | x P Dompσqu.

Any substitution σ can be extended to a mapping σ̂ : T pF ,Vq Ñ T pF ,Vq by in-
duction on the structure of terms. The set T pF ,Vq is assumed to be closed under σ̂
(i.e. under variable instantiation). For the sake of readability we do not distinguish
between a substitution σ and its extension σ̂. We use postfix notation for substitution
application, for instance, tσ denotes the application of a substitution σ to a term t.
The composition of two substitutions σ1 and σ2 is written as σ1σ2 and defined by
tσ1σ2 “ ptσ1qσ2 for any t P T pF ,Vq. The identity substitution is denoted by Id. Since
the concrete instances of F and V do not matter in our general discussion, we simply
write T instead of T pF ,Vq.

We define a binary relation ĺ” on T such that pt1, t2q P ĺ” if there exists a substitu-
tion σ such that t1σ and t2 are equivalent with respect to a given equivalence relation ”
(e.g., term equality, alpha equivalence, equality modulo some equational theory, etc.).
As usual, we write t1 ĺ” t2 instead of pt1, t2q P ĺ” and we say that t1 is more general
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(with respect to ”) than t2. Conversely, t2 is called more specific (with respect to ”)
than t1, or an (”-)instance of t1. If t1 ĺ” t2 and t2 ĺ” t1, then we say that t1 and t2
are equigeneral (with respect to ”) and we write t1 »” t2. Furthermore, if t1 ĺ” t2 and
t1 ­»” t2, then t1 is strictly more general (with respect to ”) than t2, written t1 ă” t2.

For example, the first-order term fpxq is syntactically (strictly) more general than
fpfpaqq because the variable x can be instantiated by a term fpaq. The two terms fpxq
and gpaq are incomparable with respect to ĺ“. Note that »“ is an instance of »”.

Theorem 1.1. Any relation ĺ” is reflexive and transitive.

Proof. Let t P T and σ “ Id, then tσ ” t holds. It follows that t ĺ” t. Furthermore, if
t1, t2, t3 P T and t1 ĺ” t2 and t2 ĺ” t3 holds, then there are substitutions σ1, σ2 such
that t1σ1 ” t2 and t2σ2 ” t3. From transitivity of ” it follows that t1σ1σ2 ” t3.

Hence, the relation ĺ” is a quasiorder. It is called the instantiation qua-
siorder. It is straightforward to obtain a partial order on T from the quasiorder
ĺ” by considering term equality modulo »”. We call that partial order the in-
stantiation order. The set T is a meet-semilattice with respect to the instantia-
tion order if for all elements t1 and t2 of T , the greatest lower bound (meet) of
t1 and t2 exists. In many cases the set of terms T is such a meet-semilattice.
For instance, if T denotes the set of all simply-typed lambda terms of a cer-
tain type, or the set of all the unranked terms which we consider in this work.

fpy1, y2q

fpx2, bqfpa, x1q fpb, x3q fpx4, x4q

fpa, bq fpb, bq

In
stan

tiation

Figure 1.1: Meet and join of some terms. All
the terms have pairwise a meet.

Figure 1.1 illustrates this lattice
structure for some simple first-order
terms. For instance, the two terms
fpa, x1q and fpx2, bq have a meet
fpy1, y2q, and also a least upper
bound (join) which is fpa, bq, while
the terms fpa, x1q and fpb, bq do not
have a join. We decided to put
fpy1, y2q on top of Figure 1.1 be-
cause one can see it as the root of
its instances. In particular, a single
variable x would be the root of all
first-order terms. In this work we only consider languages where a meet exists (for terms
of compatible types), while a join might not exist. In general, a meet is not unique.
Consider, for instance, the terms fpaq and fpfpaqq from a language with higher-order
variables. There are two incomparable meets, namely fpXpaqq and Xpfpaqq, where X
is such a higher-order variable.

A meet of two given terms is usually called their least general generalization (lgg)
and the process of finding a minimal complete set of lggs for two input terms is called
anti-unification. Intuitively, the anti-unification problem can be described as follows:

Given: Two input examples (i.e. terms).

Find: A term (i.e. lgg) which inherits all the common features from the input terms,
and uniformly represents their differences by variables.
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Example 1.1. For instance, consider the first-order terms t1 “ fpfpa, aq, aq and t2 “
fpfpb, aq, bq. The term fpx, yq generalizes t1 and t2, hence it is a generalization of
them, but it is not least general, neither is fpfpx, aq, yq an lgg. The unique lgg of t1
and t2 modulo »“ is the term fpfpx, aq, xq. Figure 1.2 illustrates the two terms and
their lgg. (Again, »“ is the concrete instance of »”.)

f

f a

a a

f

f b

b a

f

f x

x a

generalize

Figure 1.2: The terms from Example 1.1 and their lgg.

The anti-unification problem requires finding a least general term t for two input
terms t1 and t2 such that t1 ” tσ1 and t2 ” tσ2 for some substitutions σ1 and σ2.
The problem of finding a join corresponds to the weak unification problem which is
formulated in the following way: Given two term t1 and t2, find two substitutions σ1
and σ2 such that t1σ1 ” t2σ2. In contrast to the anti-unification problem, its dual
problem, the unification problem, aims at finding a substitution σ so that t1σ ” t2σ.
If σ exists, then we say that t1 and t2 are unifiable, t1σ is a common instance of
t1 and t2 modulo ”, and σ is called a unifier of t1 and t2. As already mentioned,
the interesting generalizations are the least general ones. Conversely, a unification
algorithm aims at finding the most general common instance of two terms. The most
general common instance coincides with the join if it exists but the existence of a
join does not imply unifiability. For instance, fpa, xq and fpx, bq are both smaller than
fpa, bq, hence joinable, but they are not unifiable. In contrast to joinability, the variable
names matter for unifiability of two terms. The matching problem aims at answering
the question if a term t1 is more general than t2. A substitution σ so that t1σ »” t2 is
called a matcher of t1 towards t2. Notice that matching can be used to check whether
t1 and t2 are equigeneral.

Theorem 1.2. Let T be a meet-semilattice of terms w.r.t. the instantiation ordering
and t1, t2 P T . If t1 and t2 do not share variables, then unifiability and the existence of
a join are equivalent.

Proof. Let t1 and t2 be variable disjoint terms. (ñ) Trivial. (ð) Let t be a join of t1
and t2 such that it neither shares variables with t1 nor with t2. Since t, t1 and t2 are
pairwise variable disjoint, there are substitutions σ1 and σ2 such that t1σ1 ” t ” t2σ2
and σ1 maps all variables from t2 to themselves (i.e., t2σ1 “ t2) and σ2 maps all variables
from t to themselves (i.e., tσ2 “ t). Therefore t2σ1σ2 ” t and t1σ1σ2 ” t.

Theorem 1.3. Let t1, t2 P T pF ,Vq, f, g P F and x P V be a variable which occurs
neither in t1 nor in t2. The terms t1 and t2 are unifiable iff fpgpt1q, gpt2qq and fpx, xq
are unifiable.
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Proof. Let t1, t2 P T pF ,Vq, f, g P F and x P V be a variable which occurs neither in t1
nor in t2. (ñ) There is σ so that t1σ ” t ” t2σ and since x does not occur in t1, t2 we
can choose xσ “ gptq. (ð) From gpt1q ” x and gpt2q ” x follows that gpt1q ” gpt2q.

From Theorem 1.3 it follows that the unification problem can be reduced to the search
of the join. This corresponds to the notion of defining the anti-unification problem as
the search of the meet.

We use the so called generalization type to classify the anti-unification problem for
different theories. The types are defined by means of a minimal complete set of gener-
alizations.

Definition 1.1. A complete set of generalizations of two terms t1 and t2 is a set G of
terms that satisfies the properties:

Soundness: Each t P G is a generalization of both t1 and t2.

Completeness: For each generalization t of t1 and t2, there is t1 P G such that t ĺ” t
1.

Definition 1.2. A minimal complete set of generalizations (mcg) of two terms t1 and
t2 is a complete set G of terms that satisfies also the property:

Minimality: For each t, t1 P G, if t ĺ” t
1 then t “ t1.

Definition 1.3. A theory is of generalization type

unitary iff an mcg exists for all pairs of terms from the considered theory, and it has
cardinality ď 1,

finitary iff an mcg exists for all pairs of terms from the considered theory, and it has
finite cardinality,

infinitary iff an mcg exists for all pairs of terms from the considered theory, and there
exists a pair of terms within that theory for which the set is infinite,

zero iff there exists a pair of terms within the considered theory that does not have
an mcg.

Similarly to the generalization types, one can define unification types and matching
types by means of a minimal complete set of unifiers and matchers, respectively.

To simplify the notation we write ĺ instead of ĺ” if the concrete instance of ”
is either unimportant or unmistakable by the context. For instance, if we talk about
syntactic first-order term, then ĺ denotes the instance ĺ“. Similarly, when talking
about an equational theory E then ĺ denotes the instance ĺE . In the context of
simply-typed lambda terms, the instance ĺ“α is denoted by ĺ, etc.

1.1 Related Work

The original motivation of introducing anti-unification was its application in automat-
ing induction. In an article, named “An Experiment in Automatic Induction” [72],
Popplestone originated the idea that generalizations and least general generalizations
of terms (literals in his work) exist. He mentioned that it would be useful when looking
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for methods of induction. In 1970, Plotkin [71] and Reynolds [74] independently came
up with an anti-unification algorithm that computes a unique least general generaliza-
tion (modulo variable renaming) for two syntactic first-order terms. Both algorithms
were formulated in an imperative style. In his work, Reynolds coined the term anti-
unification. While Reynolds used the form t1 ľ t2, Plotkin uses t1 ĺ t2 to indicate that
the term (clause in his work) t1 is more general than t2. To justify his choice, he states
that in the case of clauses, ĺ is almost the same as Ď.

In his PhD thesis 1976, Huet [45] formulated an algorithm in terms of recursive
equations. He uses a bijection φ from pairs of terms to variables. This bijection ensures
that the generalizations he computes are least general. The algorithm is the following:

Let φ be a bijection from pairs of terms to variables.

Define a function λ, which maps pairs of terms to terms:

1. λpfpt1, . . . , tnq, fps1, . . . , snqq “ fpλpt1, s1q, . . . , λptn, snqq, for any f .

2. λpt, sq “ φpt, sq otherwise.

Like Plotkin’s and Reynolds’ algorithm it is designed for first-order ranked terms
(i.e., where function symbols have a fixed arity) in the syntactic case. Since then,
a number of algorithms and their modifications have been developed, addressing the
problem in various theories (e.g., [4, 9, 23, 45, 68]) and from the point of view of different
applications (e.g., [6, 20, 30, 49, 57, 56, 77]).

Equational Anti-Unification. The idea that operations such as the addition or
the multiplication of numbers are associative, commutative, and that they possess a
unit element was implicitly assumed until the 19th century (see, e.g., [41]). Nowadays,
classes of algebras (like groups, rings, etc.) are often defined by equations. For instance,
the following equations stand for the axioms of associativity, commutativity, and unity:

fpx, fpy, zqq « fpfpx, yq, zq (associativity)
fpx, yq « fpy, xq (commutativity)
fpx, eq « x and fpe, xq « x (unity)

where f is a binary function symbol and e is a constant, the unit element with respect
to f . Generalizations that consider such axioms are called equational generalizations.
For instance, under consideration of the commutativity axiom, the term fpgpx, xq, cq is
an lgg of the two terms fpgpa, aq, cq and fpc, gpb, bqq while in the syntactic case fpx, yq
would be their lgg, where x and y are variables. Up until now, there are only a few
theories where term equality modulo algebraic axioms has been considered for the
anti-unification problem [2, 4, 9, 22, 23, 44, 73], and all of them are flavors of first-order
settings.

Since we do not address anti-unification problems modulo equational theories in the
present work, those results are only loosely related to our work.

The first work on equational generalization was presented by Pottier [73] and it ap-
peared in 1989. He considers term equality modulo associativity and commutativity.
In 1991, Baader [9] showed that commutative anti-unification is unitary. Burghardt
[23] (2005) uses regular tree grammars to compute a finite representation of general-
izations modulo some equational theory that represents a deductive closure of finitely
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many ground equations. In Alpuente et al. [2] (2008) an anti-unification algorithm
is presented that considers combinations of the axioms associativity, commutativity,
and unity. Some years later, in 2014, the algorithm was adapted to the order-sorted
theory [4]. It has been implemented in the Maude system (see, e.g., [29] as a Maude
reference) and the source code is freely available for download.

Unranked Anti-Unification. Unranked terms are constructed from function sym-
bols that do not have a fixed arity. For instance, fpfpaq, b, fq is an unranked term
where the function f is applied to different numbers of arguments. Notice that, like
common in the ranked case, we written a, b, f instead of apq, bpq, fpq for zero argument
applications. In the unranked setting, variables that can be instantiated by sequences
of terms are usually considered. For example, in a term fpx̃q where x̃ is a sequence
variable, x̃ might be instantiated by the sequence pa, bq leading to the term fpa, bq.
For that reason, the term fpx̃, b, x̃q is a generalization: of the two terms fpa, b, aq and
fpc, d, b, c, dq. A hedge is a sequence of unranked terms, e.g., pa, fpa, bq, fq is a hedge.

In the year 2001, Yamamoto et al. came up with an algorithm that solves a special
class of anti-unification problems for hedges, with the intention of using it for inductive
reasoning of semi-structured documents such as HTML and XML [85]. During their
work, it turned out that modeling semi-structured documents with first-order terms is
inadequate. Therefore, they use a translation between semi-structured documents and
hedges that has been proven useful in other contexts, e.g., [17, 61, 62]. The special
class of hedges that is considered in their work forbids multiple occurrences of the
same sequence variable. Such terms are called linear. Furthermore, for each subterm
fps1, . . . , snq occurring in the hedge at any depth, there is at most one sequence variable
among ps1, . . . , snq. Galitsky et al. [40] (2011) essentially describe a specialized variant
of hedge anti-unification that finds commonalities between portions of text that is
represented as a linguistic parse tree.

Word anti-unification is a special case of hedge anti-unification. A word can be
considered as a hedge of constants, i.e., a hedge where all the applications have the
empty argument hedge. Since word anti-unification is already highly nondeterministic,
special classes of generalizations have been considered, e.g., in [18, 28].

Function symbols of feature terms do not have fixed arity, like in unranked terms.
Nevertheless, they are fundamentally different to the concept of unranked terms and
hedges. In feature terms each argument is denoted by a symbol identifier instead of
position. The ordering of arguments does not matter, in contrast to unranked terms.
Furthermore, sequence variables are not considered in the theory of feature terms. For
this reasons, feature term anti-unification, as discussed in [1, 6, 70], is not comparable
to unranked anti-unification.

Motivated by the fact that an universal algorithm that solves the unranked anti-
unification problem would be useful in many different applications, such as detecting
clones of software code, clustering of XML documents, detecting similarities and dif-
ferences in them, etc., Kutsia et al. (2014) studied the first-order case of unranked
anti-unification in [54]. Two different kinds of variables are used: Sequence variables

:Notice that, depending on the term algebra, it might not be an lgg because fpx̃, b, x̃q ă

fpx̃, x, b, x̃, xq if x is a term variable and x̃ a sequence variable that can be instantiated by the empty
sequence.



1.1 Related Work 7

to fill in gaps in generalizations and term variables to abstract single subterms with
different top function symbols. An algorithm is presented that computes a minimal
complete set of unranked generalizations. Since the word anti-unification problem is
already highly nondeterministic, the minimal complete hedge anti-unification algorithm
is only of theoretical interest. To tackle this problem, they introduce the notion of a
rigid generalization where consecutive sequence variables are forbidden and design an
algorithm that is parametric by a skeleton computation function.

We will discuss that algorithm in more detail in chapter 2. Based on their idea
of a skeleton computation function, we design an algorithm to solve tractable classes
of the higher-order hedge anti-unification problem. To the best of our knowledge, up
until now, there exists no work that addresses higher-order anti-unification for hedges
or unranked terms. In the present work we also study higher-order anti-unification for
simply-typed lambda terms. Since unranked terms are fundamentally different to typed
calculus and all the existing work on higher-order anti-unification is rather related to
our work on simply-typed lambda terms than the one on unranked terms, we discuss
the work on higher-order anti-unification below.

Parts of that work have been developed in cooperation between Baumgartner and
Kutsia and were presented in [12].

Nominal Anti-Unification. In 1999, Pitts and Gabbay [39] introduced nominal
techniques to study first-order systems with bindings. In contrast to lambda calculus,
nominal logic distinguishes between atoms that can be bound and variables which
can be instantiated. The unification problem for nominal terms has been studied, for
instance, in [55, 83]. To the best of our knowledge, anti-unification has not yet been
studied for nominal terms. We address that shortcoming in our work and formulate an
algorithm that solves first-order anti-unification for nominal terms.

Parts of that work have been developed in cooperation between Baumgartner, Kutsia,
Levy, and Villaret and were presented in [15].

Higher-Order Anti-Unification. First-order generalization techniques are not suit-
able to detect similarities in terms that appear under different function applications.
For instance, the terms fpfpa, bq, cq and gpgpa, bq, cq have a variable x as first-order
lgg, while a higher-order variable, say F , would lead to a higher-order lgg F pF pa, bq, cq.
Some applications of anti-unification need to detect such similarities at the input ex-
amples. Higher-order features are requested, for instance, to reuse proofs in program
verification [57]. A restricted variant of higher-order anti-unification was used for anal-
ogy making with Heuristic-Driven Theory Projection [49], and anti-unification with
combinator terms tuned out to be useful in replaying program derivations [43], just to
name a few.

Motivated by the problem of generalizing a given program, such that the class of
problems it solves is enlarged, Hagiya [42] (1989) describes a procedure that computes
a generalized program by extending the parametrization of an input program, so that
it applies to a wider problem specification. It can be seen as a method to compute
a higher-order generalization of a given program which serves as a skeleton of the
computed output program. However, this approach is quite different from what we
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consider the anti-unification problem because it only takes one input example and the
generalization process is guided by the problem specification.

Two years later, in 1991, Pfenning presented an algorithm to solve the anti-unification
problem for higher-order pattern in the Calculus of Constructions [68], with the inten-
tion of using it for proof generalization. Higher-order pattern are λ-terms where the
arguments of free variables are distinct bound variables. Introduced by Miller [59] they
gained popularity because they show nice computational behavior.

Since then, anti-unification algorithms have been developed to address the generaliza-
tion problem within various restricted higher-order settings. Motivated by applications
in inductive learning, Feng and Muggleton [34] (1992) presented an anti-unification
algorithm in Mλ that can be seen as an extension of higher-order pattern.

While in [34, 68] higher-order anti-unification has been introduced on higher-order
formulas with lambda abstraction, Furukawa et al. [36] (1996) developed an algorithm
that essentially introduces function variables for first-order formulas by recursively ap-
plying first-order anti-unification. Later on, in the same year, they present an extension
of that work in [66] which is based on Currying.

In contrast to Feng and Muggleton who consider a subset of the language Mλ, Lu
et al. [57] (2000) studied anti-unification in the language λ2 (a second-order λ-calculus
with type variables [11]), where they forbid the occurrence of abstractions inside ar-
guments. This restriction guarantees uniqueness of the computed lgg. They give an
algorithm and demonstrate its application in program verification to reuse proofs. To-
gether with Pfenning’s algorithm, it also influenced the generalization algorithm used
in the program transformation technique called supercompilation [58].

Krumnack et al. [49] (2007) formulate another restricted variant of a higher-order
anti-unification algorithm that they use in the context of analogy making.

In 2009, Pientka uses linear higher-order pattern anti-unification to develop a higher-
order term indexing strategy based on substitution trees [69]. Linear higher-order
patterns refine the notion of higher-order patterns from [59]. First, linear higher-order
patterns require that every free variable occurs only once and in addition every free
variable is applied to all distinct bound variables in its context. She presents an algo-
rithm to insert terms into the index based on computing a linear higher-order pattern
lgg of two linear higher-order pattern terms.

A more recent work related to higher-order anti-unification is that of Schmidt et al.
from 2011 [78]. They present a restricted version of higher-order anti-unification which
can be used to find structural commonalties and generate mappings between domains
in the symbolic analogy model Heuristic-Driven Theory Projection.

In the present work we study higher-order anti-unification for unranked terms and
for simply-typed lambda terms. We give proofs of correctness for both algorithms and
prove upper bounds for their computational complexity. Work related to unranked
anti-unification has already been discussed above, since unranked terms are fundamen-
tally different to lambda terms. In contrast to Pfenning [68], who uses a higher-order
typed calculus, we do not allow higher-order types. Due to the inherent complexity of
the higher-order typed calculus, Pfenning was not able to formulate the algorithm in
Huet’s rule-based style [45]. The complexity has not been studied and the proofs of
the algorithm’s properties have been just sketched. Another difference is that, in con-
trast to Pfenning, we do not restrict the input terms to be higher-order patterns. Feng
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and Muggleton [34] restrict their input to a certain extension of higher-order patterns
in Mλ. They do not give complexity analysis of their anti-unification algorithm nor
the proofs of its properties. Pientka [69] uses linear higher-order pattern which is an
additional restriction to higher-order pattern.

All the discussed approaches are quite different from ours, for similar reasons: First,
we do not restrict the input terms, while all the other approaches do. Second, we
prove all the properties and complexity bounds for the algorithm. Furthermore, our
algorithm has been implemented and is freely available online.

Parts of that work have been developed in cooperation between Baumgartner, Kutsia,
Levy, and Villaret and were presented in [14].

Application of Anti-Unification in Software Clone Detection. Generalization
problems arise in many different research areas such as analogy making [20, 49, 57,
77], machine learning [6, 80], clone detection [20, 54, 56], data clustering [7, 35], etc.
Therefore the problem has been addressed from the point of view of various applications.

The present work concentrates on studying the anti-unification problem in different
term languages from a theoretical point of view and on the development of universally
usable algorithms. To illustrate the developed algorithms we show how they can be
used to detect software clones. Clone detection by anti-unification is not the main
topic of this work and the algorithms should be useful ingredients to solve problems in
various research areas. We only briefly discuss the topic of clone detection here and
point the reader to more comprehensive works, like [75, 76].

Software clone detection became an active research topic in the past decades since
clones are considered a serious problem for software maintainability. In the survey paper
from Roy et al. a classification of software clones has been suggested. They define four
different types of clones, namely Type-1, Type-2, Type-3, and Type-4. The hardness
of detecting a clone increases by the number of the type. The suggested classification
of the different clone types is the following:

Type-1: Identical code fragments except for variations in whitespace, layout and com-
ments.

Type-2: Syntactically identical fragments except for variations in identifiers, literals,
types, whitespace, layout and comments.

Type-3: Copied fragments with further modifications such as changed, added or re-
moved statements, in addition to variations in identifiers, literals, types, whites-
pace, layout and comments.

Type-4: Two or more code fragments that perform the same computation but are
implemented by different syntactic variants.

The types 1, 2, and 3 describe textual similarities while Type-4 describes the class
of semantic clones. Note that the latter one does not subsume the other clone types.
Some clone detection tools are based on translating the source code into an abstract
syntax tree or into other hierarchically organized data structures. See, for instance,
Baxter et al. [16], Evans et al. [33], Koschke et al. [48], Wahler et al. [84], and Yang
[86]. Syntactic first-order anti-unification has been used for software clone detection
by Bulychev et al. [20], Bulychev and Minea [21], and Li and Thompson [56]. They
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essentially detect clones of Type-1 and Type-2. One disadvantage of syntactic first-
order anti-unification is that it uses function symbols with fixed arity in the terms
that represent the software code. For that reason it cannot detect clones where some
statements have been removed from the source code or where some statements have
been inserted after copying the code.

Kutsia et al. [54] and Yamamoto et al. [85] suggest to use unranked first-order anti-
unification. It helps to detect some clones of Type-3, namely the ones that have been
obtained by omitting/inserting some pieces of code. The transformation between ab-
stract syntax trees and unranked terms is straightforward. Since structured documents,
like XML of HTML, can also be represented by unranked trees, the method of unranked
anti-unification can be used to compare structured documents, too.

However, since first-order anti-unification does not permit higher-order variables, it
cannot locate similar code pieces which are located under distinct parent nodes or at
different depths of the syntax tree. For instance, fpa, bq and gphpa, bqq are generalized by
a single variable, although both terms contain a and b and a more natural generalization
could be, e.g. Xpa, bq, where X is a higher-order variable.

In the present work we address this shortcoming. We start by discussing the work
from Kutsia et al. [54], illustrate the restrictions that naturally arise by first-order tech-
niques on some examples from [75], and develop higher-order techniques that overcome
those restrictions.

1.2 Coherence of Joinability, Matching, and
Anti-Unification

We will present anti-unification algorithms as rule-based systems in the spirit of
Alpuente et al. [3], using a store to keep track of differences in the input terms. More pre-
cisely, they will be described by transformation rules on triples of the form P ; S; σ ùñ
P 1; S1; σ1, where P is called the problem set, S is the store, and σ is a substitution
which holds the generalization computed by successive rule application. The elements
of the sets P and S are called the anti-unification equations (AUEs). P contains AUEs
that have not been solved yet and S contains the already solved AUEs. For illustration,
we reformulate Huet’s algorithm into a rule-based system. We call the algorithm G1,
were the G stands for generalization and the subscript 1 for first-order.

Definition 1.4. An anti-unification equation is a triple x : t1 fi t2, where x occurs
neither in t1 nor in t2. The variable x is called the generalization variable. It stands
for the most general generalization of t1 and t2.

Definition 1.5. The anti-unification algorithm G1 works on tuples P ; S; σ, where

§ the problem set P is a set of AUEs to be solved,

§ the store S is a set of already solved AUEs,

§ σ is a substitution which “holds the generalization” computed so far:,

:Let tx : t1 fi t2u; H; Id ùñ˚ P ; S; σ be some derivation in G1. Then xσ ĺ t1 and xσ ĺ t2. See
Theorem 1.5, soundness of G1.
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§ for all pairs of AUEs tx : t1 fi t2, y : t11 fi t12u Ď P Y S holds x ‰ y.

We call such a tuple a state. The three transformation rules of the algorithm are defined
below. They operate on states. The symbol Ÿ stands for disjoint union.

Dec: Decomposition

tx : fpt1, . . . , tnq fi fpt11, . . . , t
1
nqu ŸP ; S; σ ùñ

ty1 : t1 fi t11, . . . , yn : tn fi t1nu Y P ; S; σtx ÞÑ fpy1, . . . , ynqu,

where y1, . . . , yn are fresh variables, and n ě 0.

Sol: Solve

tx : t fi t1u ŸP ; S; σ ùñ P ; tx : t fi t1u Y S; σ,
if Dec is not applicable to x : t fi t1.

Mer: Merge

P ; tx : t fi t1, y : t fi t1u ŸS; σ ùñ P ; tx : t fi t1u Y S; σty ÞÑ xu.

To compute a generalization of two input terms t1 and t2, the triple P ; S; σ has to be
initialized. The procedure starts with the initial state tx : t1 fi t2u; H; Id and applies
the above rules as long as possible. The state where no more rule is applicable is called
the final state and it is of the form H; S1; σ1. One can show that G1 is confluent and
yields a unique final state (modulo ») after an exhaustive rule application. We denote
this unique final state by G1px : t1 fi t2q, i.e., H; S1; σ1 “ G1px : t1 fi t2q. The lgg can
be obtained from that final state by xσ1.

The idea of the store is to keep track of already solved AUEs in order to generalize
the same AUEs in the same way, as it is illustrated in the Mer rule. The store contains
all the differences of the two input terms.

Definition 1.6. We define two substitutions obtained by a set S of AUEs:

σ
L
pSq ::“ tx ÞÑ t1 | x : t1 fi t2 P Su

σ
R
pSq ::“ tx ÞÑ t2 | x : t1 fi t2 P Su

Given two terms t1 and t2, one can prove (see Theorem 1.5) that the store S1 of a
final state H; S1; σ1 “ G1px : t1 fi t2q is sound in the sense that

xσ1σLpS
1q “ t1 and xσ1σRpS

1q “ t2.

A coherent anti-unification algorithm computes a generalization term and two sub-
stitutions so that, when applied to the generalization term, one can obtain the two
input terms, respectively. G1 is an example for a coherent anti-unification algorithm.

Definition 1.7. An anti-unification algorithm is coherent if it computes for two terms
t1 and t2 an lgg t and two substitutions σ1 and σ2 such that tσ1 ” t1 and tσ2 ” t2.

We illustrate the algorithm G1 step by step on the two terms t1 “ fpfpa, aq, aq
and t2 “ fpfpb, aq, bq from Example 1.1. Therefore, we start with the initial state
tx : t1 fi t2u; H; Id and exhaustively transform the state by applying the rules as long
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as possible. For the sake of readability, we only keep track of the mapping for the
generalization variable x in the substitution. We underline the AUE that is selected
by the next rule application to emphasize the fact that G1 is not deterministic. Notice
that G1 is confluent and yields a unique lgg regardless of the selection strategy.

tx : fpfpa, aq, aq fi fpfpb, aq, bqu; H; Id
ùñDec ty1 : fpa, aq fi fpb, aq, y2 : a fi bu; H; tx ÞÑ fpy1, y2qu

ùñDec ty2 : a fi b, y3 : a fi b, y4 : a fi au; H; tx ÞÑ fpfpy3, y4q, y2qu

ùñSol ty3 : a fi b, y4 : a fi au; ty2 : a fi bu; tx ÞÑ fpfpy3, y4q, y2qu

ùñSol ty4 : a fi au; ty2 : a fi b, y3 : a fi bu; tx ÞÑ fpfpy3, y4q, y2qu

ùñDec H; ty2 : a fi b, y3 : a fi bu; tx ÞÑ fpfpy3, aq, y2qu

ùñMer H; ty2 : a fi bu; tx ÞÑ fpfpy2, aq, y2qu

After applying Mer, there is no more rule that can be applied. This means that H;
ty2 : a fi bu; tx ÞÑ fpfpy2, aq, y2qu is the final state and fpfpy2, aq, y2q the lgg of t1
and t2. From the store S “ ty2 : a fi bu we get σLpSq “ ty2 ÞÑ au and σRpSq “ ty2 ÞÑ bu
so that fpfpy2, aq, y2qσLpSq “ t1 and fpfpy2, aq, y2qσRpSq “ t2.

To prove the correctness of G1, one has to prove termination, soundness, complete-
ness, and uniqueness. We do not prove those properties here but we state the theo-
rems. We will prove the properties of algorithms that subsume the case of first-order
anti-unification, e.g., one can use the algorithm from section 3.2.

Theorem 1.4 (Termination). The system G1 terminates on any input.

The soundness theorem states an invariant of the algorithm, namely that the substi-
tution always “holds a generalization” of the input terms. Furthermore, it is stated in
a way that it implies coherence of G1.

Theorem 1.5 (Soundness). Let tx : t1 fi t2u; H; Id ùñ˚ P ; S; σ be some derivation
in G1. Then xσσLpSq “ t1 and xσσRpSq “ t2.

The completeness theorem implies that G1 computes a complete set of lggs.

Theorem 1.6 (Completeness). Let t be a generalization of t1 and t2. Then there exists
a derivation tx : t1 fi t2u; H; Id ùñ˚ H; S; σ obtained by G1 such that t ĺ xσ.

The uniqueness theorem says that G1 computes the same result modulo » for each
possible derivation.

Theorem 1.7 (Uniqueness modulo »). Let H; S; σ “ G1px : t1 fi t2q and H; S1; σ1 “
G1px

1 : t1 fi t2q. Then xσ » x1σ1.

Notice that, in general, the final state is not unique. If an anti-unification algorithm
computes a complete set of final states, then it should be minimized. This minimization
step is usually done by matching. Nevertheless, there are term languages where it is
not necessary to compute t1 ĺ” t2 and t2 ĺ” t1 in order to decide t1

?
»” t2. For that

case anti-unification can solve the matching problem:
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Lemma 1.8. Let t, t1, t2 P T so that t is an lgg of t1 and t2. Then t1 ĺ” t2 iff t »” t1.

Proof. Trivial by definition of an lgg.

Corollary 1.9. Let t, t1, t2 P T so that t is an lgg of t1 and t2. Let σ1, σ2 be substitu-
tions so that tσ1 ” t1 and tσ2 ” t2. If t1 ĺ t2 then t1σ

´1
1 σ2 ” t2.

We discuss Corollary 1.9. It says that a coherent anti-unification algorithm computes
a matcher σ2 modulo »” if it exists. Depending on the term language and the anti-
unification algorithm, the inverse substitution σ´1

1 might be easy to obtain from σ1
:.

If so, then σ´1
1 σ2 is the matcher computed by the anti-unification algorithm. We will

use this property of a coherent anti-unification algorithm in the following chapters to
minimize the complete set of generalization by the anti-unification algorithm itself.

Definition 1.8. We say that a term is linear if each variables occurs only once.

The following theorem tells us that we can use G1 to obtain a join of two terms
that are linear if it exists. Its proof yields a simple algorithm to compute a join that
corresponds to a meet and two substitutions.

Theorem 1.10. Let H; S; σ “ G1px : t1 fi t2q be the final state computed by G1 for
two linear first-order terms t1 and t2 and a fresh generalization variable x. Then σ

L
pSq,

σ
R
pSq, and xσ yield an answer to the joinability problem of t1 and t2.

Proof. Let H; S; σ “ G1px : t1 fi t2q be the final state computed by G1 for two linear
first-order terms t1 and t2, and let t “ xσ. Since x neither occurs in t1 nor in t2 and the
variables introduced by the Dec rule are fresh, t is variable disjoint from t1 and t2. For
the same reason, t1 and t2 do not contain variables from DompσLpSqq Y DompσRpSqq.
Furthermore, it follows that RanpσLpSqq and RanpσRpSqq do not contain variables from
DompσLpSqq YDompσRpSqq.

Therefore, σLpSq can be decomposed into σ1 “ ty ÞÑ yσLpSq | yσLpSq R Vu and σ2

such that σLpSq “ σ1σ2. For all ty, zu Ď Dompσ2q holds yσ2 ‰ zσ2 because t1 is linear.
Similarly, we can decompose σRpSq into ϑ1ϑ2. For that reason tσ1 » tσLpSq “ t1 and
tϑ1 » tσRpSq “ t2. By » we get that t1 and t2 are joinable iff tσ1 and tϑ1 are joinable.

Case 1: The domains of σ1 and ϑ1 are disjoint. Since Ranpσ1q and Ranpϑ1q do not con-
tain variables from Dompσ1qYDompϑ1q, we get σ1ϑ1 “ ϑ1σ1 and tσ1ϑ1 is an instance
of both, t1 and t2. It is a most general instance because tσ1 » t1 and tϑ1 » t2.

Case 2: The domains of σ1 and ϑ1 are not disjoint. Then there exists x1 P V with
x1σ1 “ t11 and x1ϑ1 “ t12, so that t11 ­ĺ t12 and t12 ­ĺ t11 because otherwise there
would be a generalization that is strictly less general than t, namely ttx1 ÞÑ t11u
or ttx1 ÞÑ t12u. It follows that both, t11 and t12, are of the form fps11, . . . , s

1
nq

and the head symbol f is different for t11 and t12. Otherwise, the generalization
ttx1 ÞÑ fpy11, . . . , y

1
nqu of t1 and t2 where y’s are fresh variables would be strictly

less general than t. A join does not exist in that case.

Putting this together, we get that tσ1ϑ1 is a join of t1 and t2 if σ1 and ϑ1 have disjoint
domains. Otherwise t1 and t2 are not joinable.

Theorem 1.10 can be formulated for other coherent anti-unification algorithms, like
the ones we discuss in the following chapters.

:σ1 might be a bijection such that the inverse σ´1
1 can be read off easily.
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Example 1.2. We discuss the results on the coherent first-order anti-unification
algorithm G1 and the first-order terms t1 “ fpx1, x2q, t2 “ fpx3, fpa, x4qq, and
t3 “ fpb, fpx5, aqq. In the substitution we only keep track of the mapping for the gen-
eralization variable. We compute the following final states:

H; tz1 : x1 fi x3, z2 : x2 fi fpa, x4qu; ty1 ÞÑ fpz1, z2qu “ G1py1 : t1 fi t2q

H; tz1 : x1 fi b, z2 : x2 fi fpx5, aqu; ty2 ÞÑ fpz1, z2qu “ G1py2 : t1 fi t3q

H; tz1 : x3 fi b, z2 : a fi x5, z3 : x4 fi au; ty3 ÞÑ fpz1, fpz2, z3qqu “ G1py3 : t2 fi t3q

In the first two cases we get a generalization fpz1, z2q that is equigeneral to t1. Therefore
t1 ĺ t2 and t1 ĺ t3. In the third case we get a generalization t “ fpz1, fpz2, z3qq and
from the store S we obtain the substitutions σ

L
pSq “ tz1 ÞÑ x3, z2 ÞÑ a, z3 ÞÑ x4u and

σ
R
pSq “ tz1 ÞÑ b, z2 ÞÑ x5, z3 ÞÑ au. First, since t ­» t2 and t ­» t3, the terms t2

and t3 are incomparable with respect to ĺ. Now we split the substitutions σLpSq and
σRpSq into two parts, respectively, like in the proof of Theorem 1.10: σLpSq “ tz2 ÞÑ au
tz1 ÞÑ x3, z3 ÞÑ x4u and σ

R
pSq “ tz1 ÞÑ b, z3 ÞÑ autz2 ÞÑ x5u. The domains of

tz2 ÞÑ au and tz1 ÞÑ b, z3 ÞÑ au are disjoint, hence t2 and t3 are joinable, t is a
skeleton of a join, and this join is ttz2 ÞÑ autz1 ÞÑ b, z3 ÞÑ au “ fpb, fpa, aqq.

We discussed some properties of coherent anti-unification algorithms in the general
setting. This properties can be useful to minimize a complete set of generalizations to
obtain the mcg if no matching algorithm exists. That was the main motivation behind
this discussion. In section 2.2, we will use the anti-unification algorithm for higher-order
unranked terms to minimize a complete set of generalizations it computes.

1.3 Structure of the Thesis

In Chapter 1 we introduce basic concepts and notions, and we discuss the work that is
related to ours. This is an important chapter, since we use those general concepts and
notions throughout the entire work. Chapter 2 deals with the anti-unification problem
for unranked terms and hedges. Unranked terms are constructed from function symbols
that do not have a fixed arity and hedges are sequences of unranked terms. First, we
discuss and revise the unranked anti-unification problem in the first-order case that
was introduced by Kutsia et al. [54]. Afterwards, we introduce higher-order power
by allowing context-variables and function-variables. In Chapter 3 we study the anti-
unification problem for ranked theories with binders. We consider two different term
languages that involve binders: nominal terms and simply-typed lambda terms. We
start discussing the problem for nominal terms which is a flavor of first-order logic
with named binders. Then we turn to studying the anti-unification problem for simply-
typed lambda terms. Since higher-order anti-unification is highly nondeterministic, we
restrict the generalizations to be higher-order patterns. This are lambda terms where
the arguments of free variables are distinct bound variables. In Chapter 4 we discuss
our library of anti-unification algorithms which has been implemented in Java. We
implemented four anti-unification algorithms for four different theories: unranked first-
order anti-unification, unranked higher-order anti-unification, nominal anti-unification,
and anti-unification for simply-typed lambda terms. Chapter 5 concludes this thesis
and discusses some possible directions for future work.
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Chapter 2

Anti-Unification for Unranked Terms and
Hedges

b f

bf

a

f

f

a

Figure 2.1: pfpaq, b, fpfpaq, b, fqq

In this chapter we discuss the anti-unification
problem for hedges. Hedges are sequences of un-
ranked terms, which are constructed from func-
tion symbols that do not have a fixed arity.
Function symbols are denoted by the letters
a, b, c, d, e, f, g, h. For instance, fpfpaq, b, fq is
an unranked term and pfpaq, b, fpfpaq, b, fqq is a
hedge. Unranked terms can be seen as ordered
trees and hedges as forests, as illustrated in Fig-
ure 2.1. In addition to the unranked function symbols our grammars consider two kinds
of first-order variables and two kinds of higher-order variables. The later ones can be
instantiated by contexts. Contexts are hedges: with a single occurrence of the distin-
guished symbol “hole”, denoted by ˝. They are functions which can apply to another
context or to a hedge, which are then “plugged” in the place of the hole. The formal
definitions can be found in the respective sections. Here follows an informal explanation
of the different kinds of variables that are considered in this chapter:

§ Term variables correspond to the classical first-order variables that can be re-
placed by a term. We denote term variables by x, y, z. For instance, the term
variable x in the hedge pfpaq, b, x, bqq can be instantiated by a term fpa, bq, leading
to the hedge pfpaq, b, fpa, bq, bqq.

§ Sequence variables (also called hedge variables), denoted by x̃, ỹ, z̃, are first-order
variables that can be instantiated by a hedge. For instance, the sequence variable
x̃ in the term fpx̃q might be replaced by a hedge pfpaq, b, fq. The result of that
instantiation is the term fpfpaq, b, fq.

§ Function variables are higher-order variables. They appear in functional position
and can be replaced by a bounded context. A bounded context is a term where the
hole appears at level 1. For instance, fp˝, aq is a bounded context while pa, fp˝qq
and fpfp˝q, aq are not. The letters F,G,H are used to denote function variables.

§ Context variables are similar to function variables but they can be instantiated
by arbitrary contexts. Context variables are denoted by X̃, Ỹ , Z̃. For instance,
consider the hedge pfpaq, X̃paqq. The context variable X̃ can be instantiated by
a context pb, fpfp˝q, b, fqq, resulting in the hedge pfpaq, b, fpfpaq, b, fqq.

:Notice that our contexts are hedges, while usually only terms are permitted.
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Possible application areas of anti-unification for hedges are, for instance, analogy
making [49], machine learning [6], program synthesis [47, 77], or clone detection [19, 21,
54, 56]. We choose the topic of software clone detection to illustrate our anti-unification
algorithms on a possible application area.

As already discussed in the introduction, first-order hedge anti-unification algorithms
can help to detect some clones of Type-3 but they fail to detect similarities that are
located under distinct heads or at different depths. The reason is that they lack of
higher-order power which would be needed to detect those similarities. Recall the
example terms fpa, bq and gphpa, bqq who are generalized by a single variable.

We address this shortcoming here, permitting the use of function variables and con-
text variables to gain higher-order power so that, e.g., fpa, bq and gphpa, bqq are gener-
alized by a term X̃pa, bq, where X̃ is a context variable. The hedges pfpaq, fpbqq and
pgpaq, gpbqq are generalized by a hedge pF paq, F pbqq, where F is a function variable. A
higher-order anti-unification algorithm is presented here and we demonstrate how it can
be used to reveal software clones. We are able to detect similarities in clones of Type-3
and Type-4 which cannot be detected by first-order anti-unification. For this purpose
we take some clone examples from Roy et al. [75] from the taxonomy of editing scenarios
for different clone types. In fact, we will be able to find all the similarities between the
original code and any clone of Type-3 from the suggested example. We will proceed in
the following way to develop the theory of unranked higher-order anti-unification:

1. We discuss the work from Kutsia et al. [54] and show how one can use their
anti-unification algorithm to solve matching problems of a certain kind. For
simplicity, we only considering sequence variables for this first step.

2. We develop an anti-unification algorithm which generalizes the work from [54] by
introducing context variables in addition to the hedge variables. The minimization
step is done by the anti-unification algorithm itself.

3. We introduce term and function variables to obtain generalizations which are less
general than those which only consider context and hedge variables.

Our goal is to obtain tractable classes of unranked higher-order anti-unification that
are still accurate enough in practice. To obtain such classes of tractable higher-order
generalizations all the algorithms that are considered in this chapter use the idea of
a skeleton that guides the anti-unification process. Furthermore, some restrictions on
the computed generalizations have to be introduced. For the sake of simplicity, we
formulate the anti-unification algorithms for two hedges. The extension to more hedges
is straightforward. Hedges to be generalized are assumed to be variable disjoint.

2.1 First-Order Unranked Anti-Unification

Here we discuss the work from Kutsia et al. [54] where the notion of rigid generalization
has been introduced. That work deals with unranked first-order anti-unification. First,
they give a rule-based algorithm to compute a minimal and complete set of general-
izations (mcg) for two input hedges. Due to the high inherent complexity of hedge
anti-unification, that universal algorithm is only of theoretical interest. For this rea-
son, some requirements on the computed generalizations are imposed by inventing the
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notion of a rigid generalization. Rigid generalizations are hedges where consecutive
sequence variables are forbidden. Furthermore, rigid generalizations are classified by
skeleton computation functions. Skeletons are defined recursively using a string of top
symbols of a hedge. We give the necessary definitions now.

2.1.1 First-Order Unranked Terms and Hedges (Preliminaries)

Definition 2.1 (Terms and hedges). Given pairwise disjoint countable sets of unranked
function symbols F (symbols without fixed arity) and hedge variables VH, we define
terms and hedges by the following grammar:

t ::“ fps̃q (term)
s ::“ t | x̃ (hedge element)
s̃ ::“ s1, . . . , sn (hedge)

where f P F , x̃ P VH, and n ě 0.

Hedges are finite sequences of terms and hedge variables, constructed over F and VH.
A term can be seen as a singleton hedge. The set of hedges constructed over F and
VH is denoted by T pF ,VHq, or simply by T if the concrete instances of F and VH are
unimportant. To improve readability, we put none-singleton hedges between parenthe-
sis. We denote function symbols by a, b, c, d, e, f, g, h, hedge variables by x̃, ỹ, z̃, terms
by t, s, u, q, r, and hedges by s̃, q̃, r̃, g̃, h̃. The empty hedge is denoted by ε and terms of
the form apεq are written as just a.

Example 2.1. For instance, fpfpaq, bq is a term as well as a singleton hedge and
px̃, fpfpaq, bqq is a hedge.

Definition 2.2 (Position). The set of positions of a hedge s̃ “ ps1, . . . snq, denoted
Posps̃q, is a set of strings of positive integers. ε is the empty string and ¨ stands for
concatenation. It is defined as

Posps̃q ::“
n
ď

i“1
ti¨p | p P PosTpsiqu,

PosTpsq ::“
"

tεu if s “ x̃,
tεu Y Pospq̃q if s “ fpq̃q.

f
2

b
3

x̃
1

b
2¨2

f
2¨1

a
2¨1¨1

Figure 2.2: The hedge
px̃, fpfpaq, bq, bq and its
positions.

Note that Posps̃q is a prefix closed set of strings.

Example 2.2. For instance, Pospfpa, gpb, cqqq “ t1, 1¨1,
1¨2, 1¨2¨1, 1¨2¨2u and Pospx̃, fpfpaq, bq, bq “ t1, 2, 2¨1, 2¨1¨1,
2¨2, 3u. In the latter hedge, the term fpaq stands at the po-
sition 2¨1 and a occurs at the position 2¨1¨1. Figure 2.2 illus-
trates that hedge and its positions.

With ă we denote the strict lexicographic ordering and with
Ă the strict prefix relation on positions, e.g., 1¨2¨1 ă 1¨2¨2,
1¨2¨1 ă 1¨2¨1¨2, and 1¨2¨1 Ă 1¨2¨1¨2. The relation Ď is defined
as Ă Y “.



18 Chapter 2 Anti-Unification for Unranked Terms and Hedges

Definition 2.3 (Length and size). The cardinality of a set A is denoted by |A|. Simi-
larly, the length of a hedge s̃ “ ps1, . . . snq is denoted by |s̃| and defined as the number n,
that is the number of elements in it. We define the size }s̃} of a hedge s̃ by the cardi-
nality of the set of positions |Posps̃q|, that is the number of all occurrences of function
symbols and variables in it.

Example 2.3. For instance, |px̃, fpfpaq, bq, bq| “ 3 and }px̃, fpfpaq, bq, bq} “ 6.

We denote by s̃|i the ith element of s̃, where 1 ď i ď |s̃|. For arbitrary integers i, j
and a hedge s̃, we define

s̃|ji ::“
"

ps̃|i, . . . , s̃|jq if 1 ď i ď j ď |s̃|,
ε otherwise.

Note that s̃|ii “ s̃|i. The notion of s̃|i is extended to arbitrary positions such that s̃|I
denotes the subterm at position I, for all I P Posps̃q.

Example 2.4. Consider s̃ “ px̃, fpfpaq, bq, bq. Then s̃|2 “ fpfpaq, bq, s̃|2¨1 “ fpaq,
s̃|32 “ pfpfpaq, bq, bq, and s̃|23 “ ε.

Definition 2.4 (Top symbols of a hedge). The top symbol of a term is defined as
Toppx̃q “ x̃ for any variable x̃, and Toppfps̃qq “ f for any term fps̃q. This notion
is extended to hedges, as the following sequence of symbols: Toppx̃, s̃q “ x̃Topps̃q and
Toppt, s̃q “ TopptqTopps̃q for any hedge variable x̃, term t, and hedge s̃.

Such a string of top symbols of a hedge is written as a word, denoted by w.
This definition also allows us to address the symbol at a certain position inside of
a hedge. Given a symbol or variable s and a hedge s̃ we write Possps̃q for the set
tI | Topps̃|Iq “ s and I P Posps̃qu of all occurrences of s in s̃.

Example 2.5. We demonstrate the defined notation on the hedge s̃ “ px̃, fpfpaq, bq, bq.
Topps̃q “ x̃fb and Topps̃|2q “ Topps̃|2¨1q “ f . Furthermore, Posf ps̃q “ t2, 2¨1u and
Posbps̃q “ t2¨2, 3u.

Definition 2.5 (Substitution). A substitution is a mapping σ : VH Ñ T pF ,VHq from
hedge variables to hedges that is identity almost everywhere.

The symbols σ, ϑ, ϕ are used to denote a substitution. Any substitution σ can be
extended to a mapping σ̂ : T Ñ T . We use postfix notation for application, writing,
e.g., s̃σ̂ for the application of σ̂ to s̃. The application of σ̂ to s̃ is defined by induction
on the structure of terms and hedges:

s̃σ̂ ::“

$

&

%

fpq̃σ̂q if s̃ “ fpq̃q,
σpx̃q if s̃ “ x̃,
s1σ̂, . . . , snσ̂ if |s̃| ‰ 1 and s̃ “ ps1, . . . , snq.

For a substitution σ the domain is the set of variables

Dompσq ::“ tx̃ P VH | σpx̃q ‰ x̃u
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and the range is the set of hedges

Ranpσq ::“ tσpx̃q | x̃ P Dompσqu.

The composition of two substitutions σ1 and σ2 is written as σ1σ2 and is defined
by tσ̂1σ̂2 “ ptσ̂1qσ̂2 for any t P T . The corresponding mapping may be obtained by
σ1σ2 “ tx̃ ÞÑ σ1px̃qσ̂2 | x̃ P Dompσ1qu Y tx̃ ÞÑ σ2px̃q | x̃ P Dompσ2q and x̃ R Dompσ1qu.

To simplify the notation, we do not distinguish between a substitution σ and its
extension σ̂. Notice that in Example 2.6 we would need to say that pfpx̃q, ỹ, fpỹq, aqσ̂ “
pf, a, x̃, fpa, x̃q, aq without that simplification.

Example 2.6. Let σ “ tx̃ ÞÑ ε, ỹ ÞÑ pa, x̃qu be a substitution, then pfpx̃q, ỹ, fpỹq, aqσ “
pf, a, x̃, fpa, x̃q, aq.

Definition 2.6 (Renaming). A substitution is called renaming if Ranpσq Ď VH and
|Dompσq| “ |Ranpσq|.

In other words, a renaming σ is a mapping from variables to variables. It is a bijection
from Dompσq to Ranpσq.

Definition 2.7 (Instantiation). A hedge s̃ is the instance of a hedge q̃ if there exists
a substitution σ with q̃σ “ s̃. We say that q̃ is more general than s̃ if s̃ is an instance
of q̃ and denote this by q̃ ĺ s̃. If q̃ ĺ s̃ and s̃ ĺ q̃, then we write q̃ » s̃. If q̃ ĺ s̃ and
q̃ ­» s̃, then we say that q̃ is strictly more general than s̃ and write q̃ ă s̃.

Definition 2.8 (Generalization). A hedge g̃ is a generalization of the hedges s̃ and q̃
if s̃ and q̃ are instances of g̃.

Example 2.7. The hedge pfpa, x̃q, c, x̃q is a generalization of two hedges pfpa, b, bq, c,
b, bq and pfpa, dq, c, dq. Dashed nodes indicate differences, while the solid ones form the
skeleton. The first hedge can be obtained from the generalization by replacing the hedge
variable x̃ with the hedge pb, bq. To obtain the second hedge, we need to replace x̃ by d.

f c b b

ba b

f c d

da

f c x̃

x̃a
generalize

Figure 2.3: The hedges from Example 2.7 and their generalization.

The word representation of a hedge is defined by the concatenation of the depth-first
pre-order traversal of the constituent terms. For instance, ax̃fgagbb is the word rep-
resentation of pa, x̃, fpgpa, gpb, bqqqq. Generalizations contain a common subsequence
of the word representation of the input hedges. This property is used to compute
a skeleton that guides the anti-unification algorithm. Observe, e.g., the hedges from
Figure 2.3:

pfpa,b, bq, c ,b, bq
pfpa,d q, c ,d q

pfpa, x̃ q, c , x̃ q
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Lemma 2.1. Let s̃, q̃ P T and f P F . s̃ ĺ q̃ iff fps̃q ĺ fpq̃q.

Proof. Trivial, since fps̃qσ “ fps̃σq for any f P F and any hedge s̃.

Corollary 2.2. A hedge g̃ is a generalization (respectively, a common instance) of two
hedges s̃ and q̃ iff fpg̃q is a generalization (respectively, a common instance) of the two
terms fps̃q and fpq̃q for arbitrary f P F .

Definition 2.9 (Consecutive). Two occurrences of symbols s1, s2 of a hedge are (hor-
izontal) consecutive if the corresponding positions Is1 ¨is1 and Is2 ¨is2 are in the relation
Is1 “ Is2 and is1 ` 1 “ is2.

Definition 2.10 (Vertical chain). Two occurrences of symbols s1, s2 of a hedge s̃ are
in a vertical chain if their positions Is1 and Is2 are in the relation Is1 ¨1 “ Is2 and
Is1 ¨2 R Posps̃q.

Example 2.8. For example, in s̃ “ pa, fpgpx̃, bqqq, the occurrence of a at position 1
and the occurrence of f at 2 are consecutive, as well as x̃ at 2¨1¨1 and b at 2¨1¨2.
The occurrence of f at 2 and the occurrence of g at 2¨1 are in vertical chain because
2¨2 R Posps̃q “ t1, 2, 2¨1, 2¨1¨1, 2¨1¨2u, while the occurrence of g at 2¨1 and the occurrence
of x̃ at 2¨1¨1 are not because 2¨1¨2 P Posps̃q.

Intuitively, two occurrences of symbols s1, s2 are in a vertical chain, if s1 is applied to
a term s2pq̃q where q̃ is an arbitrary hedge. If the symbol s1 is applied to a hedge like
pq̃1, s2pq̃q, q̃2q with |q̃1, s2pq̃q, q̃2| ą 1, then it is not considered a vertical chain, since it
can be seen as a branching in the tree representation of the term.

Theorem 2.3. First-order unranked anti-unification is finitary: For any hedges
s̃ and q̃ there exists their minimal complete set of generalizations. This set is finite
and unique modulo ».

Proof. The proof can be found in [54]. We will prove the more general statement that
higher-order unranked anti-unification is finitary later in Theorem 2.11.

In order to compute those “less obvious” generalizations, the complete hedge anti-
unification algorithm from [54] might produce up to 3n generalizations, where n is the
size of the input. For instance, the algorithm generates 33 generalization to compute
the mcg from Example 2.9. Furthermore, a hedge-matching algorithm is needed to
minimize the set of all the computed generalizations. Such algorithms are known to be
NP-complete (see e.g., [51, 53]). Therefore, this algorithm is only of theoretical interest
and there is not much hope to compute a minimal and complete set of higher-order
generalizations for two arbitrary input hedges in reasonable time. For that reason we
concentrate on the class of rigid generalizations in the present work.

Example 2.9. The set of hedges tpfpaq, fpx̃qq, pfpx̃, ỹq, fpx̃qq, pfpx̃, ỹq, fpỹqqu is the
mcg of the hedges pfpaq, fpaqq and pfpaq, fq. Besides the “obvious” generalization
pfpaq, fpx̃qq it contains two other generalizations. All of them are pairwise incom-
parable with respect to ĺ but only the hedge pfpaq, fpx̃qq fulfills the requirements of a
rigid generalization.
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Definition 2.11 (Alignment). Let w1 and w2 be strings of symbols. Then the sequence
a1xi1, j1y ¨ ¨ ¨ anxin, jny, for n ě 0, is an alignment if

§ i’s and j’s are positive integers such that 0 ă i1 ă ¨ ¨ ¨ ă in ď |w1| and 0 ă j1 ă
¨ ¨ ¨ ă jn ď |w2|, and

§ ak “ w1|ik “ w2|jk , for all 1 ď k ď n.

A rigidity function R is a function that returns, for every pair of strings of symbols
w1 and w2, a set of alignments of w1 and w2.

Example 2.10. Let R return the set of all longest common subsequences of two strings
whose length is at least 3:

§ Rpab, abcq “ Rpabc, ddq “ H.

§ Rpabcda, bcadq “ tbx2, 1ycx3, 2yax5, 3y, bx2, 1ycx3, 2ydx4, 4yu.

2.1.2 First-Order Unranked Anti-Unification Algorithm GR

In this subsection we discuss the central definition of a (rigid) R-generalization and
show the anti-unification algorithm from [54] that computes such generalizations for
two input hedges. We will also show some examples to illustrate the algorithm.

Definition 2.12 (R-generalization). Given two variable-disjoint hedges s̃ and q̃ and
the rigidity function R, we say that a hedge g̃ that generalizes both s̃ and q̃ is their
(rigid) R-generalization, if either RpTopps̃q,Toppq̃qq “ H and g̃ is a hedge variable,
or there exists an alignment a1xi1, j1y ¨ ¨ ¨ anxin, jny P RpTopps̃q,Toppq̃qq such that the
following conditions are fulfilled:

1. The sequence g̃ does not contain pairs of consecutive hedge variables.

2. If we remove all hedge variables that occur as elements of g̃, we get a sequence of
the form a1pg̃1q, . . . , anpg̃nq.

3. For every 1 ď k ď n, there exists a pair of sequences s̃k and q̃k such that s̃|ik “
akps̃kq, q̃|jk “ akpq̃kq and g̃k is an R-generalization of s̃k and q̃k.

Since this definition forbids consecutive hedge variables, the hedges pfpx̃, ỹq, fpx̃qq
and pfpx̃, ỹq, fpỹqq from Example 2.9 are not rigid generalizations.

The intuition behind the recursion defined by item 3 of Definition 2.12 is to recursively
compute skeletons by applying a rigidity function R to two strings of top function
symbols for two hedges, while decomposing and going deeper into the terms. The
skeletons are computed in a level-by-level manner for the given input hedges.

Item 2 of Definition 2.12 guarantees that a generalization contains exactly those
function symbols which correspond to a recursively computed skeleton. No additional
function symbols are allowed. (Allowing such extra symbols does not fit to the idea of
a skeleton.)

Based on that definition, a rule-based anti-unification algorithm that solves the fol-
lowing problem has been developed in [54]:

Given: Two hedges s̃ and q̃ and a rigidity function R.

Find: A minimal complete set of R-generalizations.

The algorithm uses a data structure that consists of a variable and two hedges:
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Definition 2.13 (Anti-unification equation). An anti-unification equation, AUE in
short, is a triple x̃ : s̃ fi q̃, where x̃ does not occur in s̃ and q̃. Intuitively, x̃ is a
variable that stands for the most general generalization of s̃ and q̃.

The algorithm is parametric by the rigidity function and consists of four transforma-
tion rules that transform tuples by rule application into tuples of the same form.

Definition 2.14 (R-anti-unification algorithm). The rigid unranked first-order anti-
unification algorithm is formulated in a rule-based way working on tuples P ; S; σ and
a global parameter R, where

§ R is a rigidity function;

§ P and S are sets of AUEs such that if x̃ : s̃ fi q̃ P P Y S, then this is the sole
occurrence of x̃ in P Y S;

§ P is the set of AUEs to be solved (the problem set);

§ S is a set of already solved AUEs (the store);

§ σ is a substitution (computed so far) mapping hedge variables to hedges.

We call such a tuple a state and the algorithm is called GR, where R indicates the
rigidity function parameterizing the algorithm. The four transformation rules of the
algorithm, which are defined below, operate on states.

In the transformation rules, we use the symbols ỹ, z̃ for fresh hedge variables and the
symbol Ÿ stands for disjoint union. Furthermore, i - - denotes i ´ 1 and i`` denotes
i` 1. Note that we use other definition of s̃|ji than Kutsia et al. [54].

R-Dec-H: R-Rigid Decomposition for Hedges

tx̃ : s̃ fi q̃u ŸP ; S; σ ùñ
tz̃k : s̃k fi q̃k | 1 ď k ď nu Y P ;
tỹ0 : s̃|i

- -
1

1 fi q̃|
j - -1
1 u Y tỹk : s̃|

i - -k`1
i``
k

fi q̃|
j - -k`1
j``
k

| 1 ď k ď n´ 1u Y tỹn: s̃||s̃|
i``n

fi q̃|
|q̃|

j``n
u Y S;

σtx̃ ÞÑ pỹ0, a1pz̃1q, ỹ1, . . . , ỹn´1, anpz̃nq, ỹnqu,

if RpTopps̃q,Toppq̃qq contains a sequence a1xi1, j1y ¨ ¨ ¨ anxin, jny such that for all 1 ď
k ď n, s̃ik “ akps̃kq, q̃ik “ akpq̃kq.

R-Sol-H: R-Rigid Solve for Hedges

tx̃ : s̃ fi q̃u ŸP ; S; σ ùñ P ; tx̃ : s̃ fi q̃u Y S; σ,
if RpTopps̃q,Toppq̃qq “ H. (Notice that this transformation is equivalent to rule
R-Dec-H where RpTopps̃q,Toppq̃qq “ teu.)

R-Mer-S: R-Rigid Merge Store

P ; tx̃1 : s̃ fi q̃, x̃2 : s̃ fi q̃u ŸS; σ ùñ P ; tx̃1 : s̃ fi q̃u Y S; σtx̃2 ÞÑ x̃1u,

if x̃1 ‰ x̃2.

R-Clr-S: R-Rigid Clear Store

P ; tx̃ : ε fi εu ŸS; σ ùñ P ; S; σtx̃ ÞÑ εu.

To compute R-generalizations of s̃ and q̃, we start with the initial state tx̃ : s̃ fi q̃u;H;
Id and apply the rules on the selected anti-unification equation(s) in all possible ways.
Rules are applied exhaustively until no more rule is applicable to a certain state.
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Such a state is called final state. (Note that in a final state the problem set is empty.)
Since the algorithm is proven to be terminating, sound, and complete, the result will
be a finite set of final states that corresponds to a complete set of generalizations
with respect to R. (The proofs can be found in [54].) We denote that set of final
states by GRpx̃ : s̃ fi q̃q. The generalization that corresponds to a final state H;S;σ P
GRpx̃ : s̃ fi q̃q can be obtained by x̃σ.

To compute a minimal complete set of R-generalizations, a minimization step has
to be performed. This involves a matchability test of two hedges, for we only keep
the least general ones. To perform the minimization step we can use, for instance, the
hedge matching algorithm from [51, 52].

2.1.3 Illustration of the Algorithm GR

Example 2.11. Let s̃ “ fpa, fpb, bqq and q̃ “ pb, fpa, bq, bq be the input hedges and R
be the function computing the set of all longest common subsequences. We illustrate
how the algorithm GR exhaustively transforms the initial system to compute the rigid
lgg for s̃, q̃, and R. In the substitution, we only keep track of the mapping for the
generalization variables x̃ of the initial AUE.

tx̃: fpa, fpb, bqq fi pb, fpa, bq, bqu; H; Id

ùñ
fx1,2y
R-Dec-H tz̃1: pa, fpb, bqq fi pa, bqu; tỹ1: ε fi b, ỹ2: ε fi bu; tx̃ ÞÑ pỹ1, fpz̃1q, ỹ2qu

ùñR-Mer-S tz̃1: pa, fpb, bqq fi pa, bqu; tỹ1: ε fi bu; tx̃ ÞÑ pỹ1, fpz̃1q, ỹ1qu

ùñ
ax1,1y
R-Dec-H tz̃2: ε fi εu; tỹ1: ε fi b, ỹ3: fpb, bq fi bu; tx̃ ÞÑ pỹ1, fpapz̃2q, ỹ3q, ỹ1qu

ùñR-Sol-H H; tỹ1: ε fi b, ỹ3: fpb, bq fi b, z̃2: ε fi εu; tx̃ ÞÑ pỹ1, fpapz̃2q, ỹ3q, ỹ1qu

ùñR-Clr-S H; tỹ1: ε fi b, ỹ3: fpb, bq fi bu; tx̃ ÞÑ pỹ1, fpa, ỹ3q, ỹ1qu

x̃σ “ pỹ1, fpa, ỹ3q, ỹ1q is the rigid lgg of s̃ and q̃ with respect to R.

Notice that the least general rigid generalization from Example 2.11 is unique but,
in general, the rigidity function R causes branching. Therefore the computational
complexity highly depends on the function R.

Example 2.12. Now we will illustrate how the algorithm GR can be used to detect
software clones of the program from Figure 2.4. The example is composed from the
taxonomy of editing scenarios for different clone types, described in [75].

1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + i ;
6 prod = prod ∗ i ;
7 foo (sum , prod ) ; }}

Figure 2.4: The original program used to illustrate clone detection by anti-unification.
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1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + ( i ∗ i ) ;
6 prod = prod ∗ ( i ∗ i ) ;
7 foo (sum , prod ) ; }}

void sumProd ( int n) {
f loat sum = 0 . 0 ;
f loat prod = 1 . 0 ;
for ( int i =1; i<=n ; i++) {

sum = sum + i ;
// l i n e d e l e t e d
f oo (sum , prod ) ; }}

Figure 2.5: Two clones of the program from Figure 2.4.

Figure 2.5 shows two different types of clones of the program from Figure 2.4. The left
one is of Type-2 and the right one of Type-3. To use the rigid anti-unification algorithm,
we translate the input source-codes into hedges. It is straightforward to encode abstract
syntax trees, like it was proposed in [16, 33, 48], with hedges. Figure 2.6 shows the
term encodings of the abstract syntax trees of the program and its clones.

sumProdpinputptypepintq, nq,

returnTypepvoidq,

“ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, iqq,

“pprod, ˚pprod, iqq,

foopsum, prodqqq

sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepfloatq, sum, 0.0q, “ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, ˚pi, iqqq, “psum,`psum, iqq,

“pprod, ˚pprod, ˚pi, iqqq,

foopsum, prodqqq foopsum, prodqqq

Figure 2.6: The original program and its clones as unranked terms.

We now use the anti-unification algorithm GR to compare two pieces of software
codes. The lgg will show how similar these pieces are and at which parts they differ.
All the differences are available from the store. A clone detection tool can use this
information to draw conclusions. The most suitable rigidity function for detecting
software clones is the one that computes the set of longest common subsequences.
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Therefore, we also choose it for this example. Figure 2.7 shows the resulting lggs for
the original code and the, respective, clone. The left clone and the original code only
have a singleton mcg of R-generalizations but for the right clone and the original code
the algorithm GR yields two lggs. For such cases, a clone detection software can analyze
the store to select the better generalization.

sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepfloatq, sum, 0.0q, “ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, x̃qq, “psum,`psum, iqq,

“pprod, ˚pprod, x̃qq, x̃
foopsum, prodqqq foopsum, prodqqq

sumProdpinputptypepintq, nq,

returnTypepvoidq,

“ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq,

x̃
“pỹq,
foopsum, prodqqq

Figure 2.7: Clone detection by applying GR to the hedges from Figure 2.6.

Let us consider two more clones of the original program from Figure 2.4. Another
one of Type-3 and one clone of Type-4. Figure 2.8 shows the clones. Again we translate
the code into hedges and run the algorithm GR on the original code and the clones.
The translation of the clones into hedges will be skipped here (see Figure 2.19).

1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + i ;
6 prod = prod ∗ i ;
7 i f (n % 2)==0 {
8 foo (sum , prod ) ; }}}

void sumProd ( int n) {
f loat sum = 0 . 0 ;
f loat prod = 1 . 0 ;
int i =1; while ( i<=n) {

sum = sum + i ;
prod = prod ∗ i ;
f oo (sum , prod ) ; i ++; }}

Figure 2.8: Clones of Type-3 and Type-4.
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Running GR on the clones from Figure 2.8 and the original code results in both cases
in a singleton mcg. We show the unique results in Figure 2.9.

Notice that in the second case the assignment int i=1; at line 4 from Figure 2.8
has been moved out from the loop declaration so that the three assignments of the
program variables sum, prod, and i are at the same level. For that reason we have
three possibilities to choose 2 of 3 assignments

`3
2
˘

when searching for longest common
subsequences. This leads to branching of the anti-unification algorithm and it computes
three generalizations. Nevertheless, there is only one lgg, namely the one that has the
assignments from line 2 and 3 in it.

sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepfloatq, sum, 0.0q, “ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, x̃q

“psum,`psum, iqq,

“pprod, ˚pprod, iqq, x̃qq

Figure 2.9: Result of running GR to detect the clones from Figure 2.8.

In the first clone the application of foo has been nested into an if-statement and
in the second one the for-loop has been replaced by a while-loop. Since we represent
such control flow operations as function applications in the syntax tree, first-order
anti-unification cannot detect those similarities. We will address this shortcoming in
section 2.2 by introducing higher-order variables.

2.1.4 Minimization by Anti-Unification using GR

Since minimization of the set of final states GRpx̃ : s̃ fi q̃q requires to solve a hedge-
matching problem and universal algorithms that solve hedge-matching problems are
NP-complete (see, e.g., [51, 52]), we investigate here the special case of hedges that do
not contain pairs of consecutive variables.

In the introduction we already discussed how anti-unification may be used to solve
matching problems if deciding s̃

?
» q̃ for two hedges s̃ and q̃ can be done without

deciding s̃
?
ĺ q̃ and q̃

?
ĺ s̃ (see Corollary 1.9). Since GR is not an universal algorithm

but parametric by R, it needs some more investigation. Before we start our investigation
of the algorithm GR, we show that s̃

?
» q̃ can be decided by term traversal in linear

time for hedges that do not contain pairs of consecutive variables.

Lemma 2.4. Let s̃ and q̃ be hedges such that s̃ » q̃. Then |Posf ps̃q| “ |Posf pq̃q|, for
all f P F .

Proof. Let s̃ and q̃ be hedges such that s̃ » q̃. Then there exist substitutions σ, ϑ such
that s̃σ “ q̃ and q̃ϑ “ s̃. W.l.o.g. we assume that a function symbol f P F occurs
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more often in s̃ than in q̃. This contradicts to the existence of the substitution s̃σ “ q̃
because σ cannot reduce the number of occurrences of a function symbol f from s̃.

Theorem 2.5. Let s̃ and q̃ be hedges that do not contain pairs of consecutive hedge
variables and let s̃ » q̃. There exists a renaming σ such that s̃σ “ q̃ (and vice versa).

Proof. Let s̃ and q̃ be hedges that do not contain pairs of consecutive hedge variables
and let s̃ » q̃. We know that there is some substitution σ such that s̃σ “ q̃ and Dompσq
is a subset of the variables that occur in s̃. By assumption it follows that Ranpσq
does not contain pairs of consecutive hedge variables and together with Lemma 2.4
follows that Ranpσq Ď VH. Let σ “ tx̃1 ÞÑ ỹ1, . . . , x̃n ÞÑ ỹnu. Since s̃ » q̃, there
is also a substitution ϑ so that q̃ϑ “ s̃. Therefore s̃σϑ “ s̃. It follows that ϑ “
tỹ1 ÞÑ x̃1, . . . , ỹn ÞÑ x̃nu. This means that σ is a bijection from domain variables to
range variables.

Corollary 2.6. Let s̃ and q̃ be hedges that do not contain pairs of consecutive hedge
variables and let s̃ » q̃. Then }s̃} “ }q̃}.

In order to efficiently decide s̃
?
» q̃ for two hedges s̃ and q̃ that do not contain pairs

of consecutive hedge variables, and to compute their renaming in case of s̃ » q̃, we use
the idea of sharing variables by representing terms as directed, acyclic graphs (dags)
from [10]. Similarly to Baader and Snyder, we define an unranked term dag as directed,
acyclic graph that corresponds to an unranked term.

Definition 2.15 (Unranked term dag). An unranked term dag is a directed, acyclic
graph that is weakly connected and whose nodes are labeled with function symbols or
variables. Function symbols may have incoming and outgoing edges while variables do
not have outgoing edges. There is one function symbol that does not have incoming
edges, called the root of the term dag. The outgoing edges from any node are ordered.

Note that dags that represent the same term differ from each other by the amount
of structure they share among the subterms. Figure 2.10 shows four different dags that
represent the same term.

f

af

x̃ a

g

x̃

f

af

x̃

g

x̃

f

af

x̃

g

f

af

x̃ a

g

Figure 2.10: Dags of the term fpfpx̃, aq, a, gpx̃qq. Two of them are variable sharing
while the others are not.

Definition 2.16 (Variable sharing term dag). A variable sharing term dag is a term
dag where all occurrences of the same variable share the same node of the graph.

From [10] we know that constructing a variable sharing dag that doesn’t share func-
tion symbols, like the rightmost one from Figure 2.10, can be done in time linear to
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the size of the term, assuming that names of variables are strings of characters whose
length is bounded by a constant.

To decide s̃
?
» q̃ for two hedges s̃ and q̃ that do not contain pairs of consecutive hedge

variables, we first construct the dags fps̃q and fpq̃q, where f P F is arbitrary. After-
wards, the terms are traversed synchronously. Whenever we encounter any difference
except for the names of variables, we know that s̃ ­» q̃.

Furthermore, for each pair of variables x̃ “ s̃|I , ỹ “ q̃|I , that we encounter during the
traversal process, we record their names as mappings x̃ ÞÑ ỹ and ỹ ÞÑ x̃ in hash tables.
(Note that both variables occur at the same position I.) If there is already a mapping
x̃ ÞÑ z̃ and z̃ ‰ ỹ, then s̃ ­» q̃. The same holds for ỹ’s mapping. Since variable names
are bounded by a constant, we can assume a perfect hash function.

Corollary 2.7. For arbitrary hedges s̃ and q̃ that do not contain pairs of consecutive
hedge variables, the decision problem s̃

?
» q̃ can be solved by traversal of their variable

sharing term dags fps̃q and fpq̃q in linear time, where f P F is an arbitrary root symbol.

Example 2.13. Consider the hedges s̃ “ pfpx̃1, a, x̃2q, x̃2, gpx̃1qq and q̃ “ pfpỹ1, a, ỹ2q,
ỹ2, gpỹ1qq. We get the mappings tx̃1 ÞÑ ỹ1, x̃2 ÞÑ ỹ2u and tỹ1 ÞÑ x̃1, ỹ2 ÞÑ x̃2u. Fig-
ure 2.11 illustrates those mappings by the dashed arrows between the two variable shar-
ing dags fps̃q and fpq̃q.

f

x̃2f

ax̃1

g

f

ỹ2f

aỹ1

g

Figure 2.11: The hedges s̃ and q̃ from Example 2.13 as variable sharing term dags.

Matching with GR. Now we turn to discussing the algorithm GR. Our goal is to
minimize the complete set of final states GRpx̃ : s̃ fi q̃q by using the algorithm GR itself
(with the same R). We will also show the implication that GR solves the matching
problem for arbitrary hedges that do not contain pairs of consecutive variables.

Definition 2.17. We define two substitutions obtained by a set S of AUEs:

σ
L
pSq ::“ tx̃ ÞÑ s̃ | x̃ : s̃ fi q̃ P Su

σ
R
pSq ::“ tx̃ ÞÑ q̃ | x̃ : s̃ fi q̃ P Su

Let H; S; σ P GRpx̃ : s̃ fi q̃q. We assume: that GR is coherent so that x̃σσLpSq “ s̃
and x̃σσRpSq “ q̃. The algorithm GR computes a complete set of R-generalizations that

:Note that in Kutsia et al. [54] there is no proof of the soundness of the store, i.e., x̃σσLpSq “ s̃
and x̃σσRpSq “ q̃ has not been proven (see, e.g., Theorem 1.5). Nevertheless, we have strong evidence
that the store computed by GR is sound, since in subsection 2.2.6, we prove the soundness of the store
of a more general algorithm that subsumes the algorithm GR.
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is not minimal in general. However, the following theorem tells us, that a minimization
step can be performed by GR itself. We only need to decide s̃1

?
» q̃1 for two hedges s̃1

and q̃1 that do not contain pairs of consecutive variables. This can be done as described
above.

Theorem 2.8. Let tH; S; σ, H; S1; σ1u Ď GRpx̃ : s̃ fi q̃q. Let g̃ “ x̃σ and g̃1 “ x̃σ1

and ỹ be a hedge variable that occurs neither in g̃ nor in g̃1.

§ Then g̃ ĺ g̃1 iff there is H; S2; σ2 P GRpỹ : g̃ fi g̃1q such that ỹσ2 » g̃.

§ Then g̃1 ĺ g̃ iff there is H; S2; σ2 P GRpỹ : g̃ fi g̃1q such that ỹσ2 » g̃1.

Proof. Let tH; S; σ, H; S1; σ1u Ď GRpx̃ : s̃ fi q̃q. Let g̃ “ x̃σ and g̃1 “ x̃σ1 and ỹ
be a hedge variable that occurs neither in g̃ nor in g̃1. We show g̃ ĺ g̃1 iff there is
H; S2; σ2 P GRpỹ : g̃ fi g̃1q such that g̃ » ỹσ2.

(ñ) Assume g̃ ĺ g̃1. We know that g̃ is an R-generalization. Therefore by soundness
and completeness of GR it follows that there is H; S2; σ2 P GRpz̃ : g̃ fi g̃q such
that g̃ » ỹσ2. Making one of the two hedges in the AUE z̃ : g̃ fi g̃ more specific
than the other one gives by soundness and completeness of GR again such a final
state H; S2; σ2. By the fact that GR is coherent it follows that g̃ϑσRpS

2q “ g̃1

for the renaming ϑ so that g̃ϑ “ ỹσ2.

(ð) Assume there is H; S2; σ2 P GRpỹ : g̃ fi g̃1q such that g̃ » ỹσ2. By coherence of
GR follows that ỹσ2σRpS

2q “ g̃1. By the assumption g̃ » ỹσ2 there is a renaming
ϑ such that g̃ϑ “ ỹσ2. For that reasons g̃ϑσRpS

2q “ g̃1.

From Theorem 2.5 follows that in Theorem 2.8 if g̃ ĺ g̃1, then the matcher can easily
be obtained by computing a renaming substitution:

Corollary 2.9. Let tH; S; σ, H; S1; σ1u Ď GRpx̃ : s̃ fi q̃q. Let g̃ “ x̃σ and g̃1 “ x̃σ1

and ỹ be a hedge variable that occurs neither in g̃ nor in g̃1.

§ If g̃ ĺ g̃1 then g̃ϑσ
R
pS2q “ g̃1 where ϑ is the renaming ỹσ2ϑ “ g̃.

§ If g̃1 ĺ g̃ then g̃1ϑσLpS
2q “ g̃ where ϑ is the renaming ỹσ2ϑ “ g̃1.

As the decision problem s̃
?
» q̃ for hedges that do not contain pairs of consecutive

variables can be solved in linear time, the complexity of the minimization step heavily
depends on the complexity of the rigidity function.

The results from Theorem 2.8 lead to a more general theorem which states that we
can decide any matching problem for two arbitrary hedges that do not contain pairs of
consecutive variables by the algorithm GR.

Theorem 2.10. Let R be the rigidity function that computes the set of all common
subsequences and let s̃ and q̃ be hedges that do not contain pairs of consecutive variables.

GR solves the matching problem s̃
?
ĺ q̃ (and in the same run also q̃

?
ĺ s̃).

Proof. Let R be the rigidity function that computes the set of all common subsequences
and let s̃ and q̃ be hedges that do not contain pairs of consecutive variables. We can
assume that s̃ and q̃ do not share variables. (We compute a renaming and compose
it with the matcher in case of success.) By Theorem 2.8 we can obtain a minimal
complete set of R-generalizations of s̃ and q̃ by GR. Let us call it G.
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Case s̃ ­ĺ q̃: By the soundness of GR there is no g̃ P G so that g̃ » s̃.

Case s̃ ĺ q̃: We show that G “ tg̃u so that g̃ » s̃. Since GR is sound and complete,
there is g̃ P G such that g̃ ĺ s̃. Assume that g̃ ă s̃. Then there is a substitution
ϑ “ tx̃1 ÞÑ r̃1, . . . , x̃n ÞÑ r̃nu such that g̃ϑ “ s̃ and ϑ is not a renaming. As s̃ does
not contain consecutive variables there is r̃i (1 ď i ď n) that contains a function
application, say fpr̃1q, for some r̃1. Because s̃ ĺ q̃ the term fpr̃1q occurs in both
hedges s̃ and q̃ at a corresponding level. Since R computes all the subsequences
of top symbols, the subsequence that contains f would be longer, giving rise to
a strictly less generalization than g̃. This contradicts to g̃ being an lgg. Since we
proved that g̃ » s̃ holds, for all g̃ P G, it follows that G is a singleton if s̃ ĺ q̃.

We can read σRpSq from the store S that corresponds to g̃ so that g̃σRpSq “ q̃.
Putting this together leads to the matcher ϑ1σRpSq, where ϑ1 is the renaming
s̃ϑ1 “ g̃.

Example 2.14. Let R be the rigidity function that computes the set of longest common
subsequences. We demonstrate our results on the hedges s̃ “ pfpaq, fpaq, fpbq, aq and
q̃ “ pfpaq, fpaq, bq. GRpx̃ : s̃ fi q̃q computes the three generalizations

g̃1 “ pfpaq, fpaq, ỹ1q, g̃2 “ pỹ2, fpaq, fpỹ3q, ỹ4q, and g̃3 “ pfpaq, ỹ5, fpỹ6q, ỹ7q.

When applying GR to g̃1 and g̃2 we get the unique generalization pz̃1, fpaq, fpz̃2q, z̃3q.
Since g̃2 » pz̃1, fpaq, fpz̃2q, z̃3q we can drop g̃2. Similarly we can detect that g̃3 ĺ g̃1.

Let us discuss the example in a bit more detail. When applying GR to g̃2 and g̃3 we
get the generalization g̃4 “ pz̃1, fpaq, z̃2, fpz̃3q, z̃4q and the store tz̃1 : ỹ2 fi ε, z̃2 : ε fi ỹ5,
z̃3 : ỹ3 fi ỹ6, z̃4 : ỹ4 fi ỹ7u. Neither g̃2 » g̃4 nor g̃3 » g̃4 holds. Therefore g̃2 and g̃3
are incomparable with respect to ĺ but they are joinable by Theorem 1.10 and the join
g̃5 “ g̃4tz̃1 ÞÑ ε, z̃2 ÞÑ εu “ pfpaq, fpz̃3q, z̃4q can be read from the store. Since g̃5 ĺ g̃1 it
also follows that g̃2 and g̃3 are more general than g̃1.

Notice that in case of Example 2.14 there is the unique (modulo ») higher-order
lgg pfpaq, fpaq, X̃pbq, ỹq, where X̃ is a higher-order variable. That higher-order lgg is
strictly less general than those computed by GR since it contains an additional function
symbol. As we can see on the clone detection example (Figure 2.9) and on Exam-
ple 2.14, there are similarities that cannot be detected by first-order anti-unification.
In section 2.2 we introduce higher-order variables to detect those similarities.

2.2 Higher-Order Unranked Anti-Unification 2V
To compute unranked higher-order generalizations of two input hedges we again use the
idea of guiding the generalization process by (rigid) skeletons of the input hedges. The
first-order unranked anti-unification algorithm uses a rigidity function that computes
the skeletons level by level. This approach does not work for computing higher-order
generalizations because our goal is to detect similarities at different levels of the input
hedges (see, e.g., Example 2.15). Therefore, we decouple the skeleton generation from
the computation of the generalization. Separating this two steps enables us to study
the complexity of the generalization process independently of the skeleton computation.
That was not possible for the algorithm from subsection 2.1.2.
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A skeleton is given in the form of an admissible alignment, which is a certain sequence
of symbols occurring in both hedges. We need to restrict variable occurrences in the
generalization to guarantee that for each admissible alignment a unique lgg is computed.
We develop an algorithm that computes a rigid lgg of two hedges with respect to a
certain admissible alignment. The algorithm runs in quadratic time and requires linear
space with respect to the size of the input. This result means that, for instance, if the
skeleton is a constrained longest common subhedge of the input hedges in the sense
of [87], then both skeleton and generalization computation can be done in quadratic
time, because the time complexity of computing a constrained lcs is quadratic. One
can also compute an lgg which contains, for instance, a constrained longest common
subforest [5], or an agreement subhedge/subtree [46] of the input hedges.

The 2V in the title stands for the two kinds of variables we permit: Context variables
to abstract vertical differences between terms, and hedge variables to abstract horizontal
differences. Contexts that we consider here are hedges with a single occurrence of the
distinguished symbol “hole”. They are functions which can apply to another context or
to a hedge, which are then “plugged” in the place of the hole.

Example 2.15. The hedge pX̃paq, fpX̃pgpa, x̃q, cq, x̃qq is a generalization of two hedges
phpaq, fphpgpa, b, bq, cq, b, bqq and pa, fpgpa, dq, c, dqq. Dotted and dashed nodes indicate
differences, while the solid ones form the admissible alignment. The first hedge can be
obtained from the generalization by replacing the context variable X̃ with the context
hp˝q and the hedge variable x̃ with the hedge pb, bq. To obtain the second hedge, we need
to replace X̃ with the hole (i.e., to eliminate X̃) and to replace x̃ by d.
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ba b

a f

cg

a

d

d

X̃ f
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c

x̃a

generalize

Figure 2.12: Two hedges and their higher-order lgg.

Similarly to the first-order case, we exploit the fact that generalizations contain a
common subsequence of the word representation of the input hedges. An admissible
alignment is such a subsequence that additionally contains the positions of the symbols
at the input hedges. Observe, e.g., the hedges from Example 2.15. The admissible
alignment contains the bold symbols:

p hpaq, fp hpgpa,b, bq, cq,b, bqq
p a , fp gpa,d q, c ,d qq

pX̃paq, fpX̃pgpa, x̃ q, cq, x̃ qq

In some cases, the skeleton can be constructed in multiple ways, giving rise to several
admissible alignments. It requires that the generalizations computed for each alignment
should be compared to each other, to make the obtained set minimal. We show how
that minimization step can be done by the anti-unification algorithm itself.
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2.2.1 Higher-Order Unranked Terms and Hedges 2V (Preliminaries)

Many definitions from subsection 2.1.1 are also valid for the more general theory we
consider here. In this subsection we give some additional definitions that are needed.
Furthermore, we overload those definitions that do not trivially generalize to the fol-
lowing higher-order unranked terms, hedges, and contexts.

Definition 2.18 (Terms, hedges, contexts). Given pairwise disjoint countable sets of
unranked function symbols F (symbols without fixed arity), hedge variables VH, context
variables VC, and a special symbol ˝ (the hole), we define terms, hedges, and contexts
by the following grammar:

t ::“ fps̃q (term)

s ::“ t | x̃ | X̃ps̃q (hedge element)
s̃ ::“ s1, . . . , sn (hedge)

c̃ ::“ s̃1, ˝, s̃2 | s̃1, fpc̃q, s̃2 | s̃1, X̃pc̃q, s̃2 (context)

where f P F , x̃ P VH, X̃ P VC, and n ě 0.

In contrast to the hedges from Definition 2.1, hedges we consider here may contain
context variables at functional position. The set of all variables VH Y VC is denoted
by V. A context can be seen as a hedge over F Y t˝u and V, where the hole occurs
exactly once. A singleton context is a hedge element over F Y t˝u and V with a single
hole in it. The set of hedges and contexts constructed over F Y t˝u and V is denoted
by T pF ,Vq, or simply by T if the concrete instances of F and V are unimportant. We
denote arbitrary contexts by c̃, d̃ and singleton contexts by 9c, 9d. The symbols X̃, Ỹ , Z̃
denote context variables, h , g denote a function symbol or a higher-order variable, and
by s we denote an arbitrary symbol from F Y t˝u Y V. E.g., hpa, bq denotes some
application to the argument hedge pa, bq where we do not care whether h is a function
symbol or a higher-order variable.

The brackets r s, are used for context application. A context c̃ can apply to a hedge s̃,
denoted by c̃rs̃s, obtaining a hedge by replacing the hole in c̃ with s̃. Application of a
context to a context is defined similarly.

Example 2.16. Examples of a term, a hedge, and a context are, respectively,
fpX̃paq, bq, px̃, X̃pa, bq, fpfpaq, bqq, and px̃, X̃pa, bq, fpfp˝q, bqq. The latter can be ap-
plied to a hedge pa, X̃paqq, resulting in px̃, X̃pa, bq, fpfp˝q, bqqra, X̃paqs “ px̃, X̃pa, bq,
fpfpa, X̃paqq, bqq.

The set of all function symbols which appear in a hedge s̃ (resp., in a context c̃) is
denoted by Fps̃q (resp., by Fpc̃q). We overload the notation FpAq for the set of all
function symbols which appear in a set of hedges and contexts A Ď T . Similarly we
use Vp¨q, VHp¨q, and VCp¨q to obtain the set of all variables, all the hedge variables, and
all the context variables, respectively.

Example 2.17. For instance, Fpx̃, X̃pa, bq, fpfpaq, bqq “ ta, b, fu, and VpAq “ tx̃, ỹ, z̃,
X̃, Ỹ u for A “ tpx̃, X̃pa, bq, fpfpaq, bqq, pỸ pa, bq, x̃, fpỹ, bq, z̃qu. Furthermore, VHpAq “
tx̃, ỹ, z̃u and VCpAq “ tX̃, Ỹ u.
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We naturally extend the notions of the set of positions Pospc̃q, the top symbols Toppc̃q,
the length |c̃|, the size }c̃}, and the subterm c̃|I to contexts c̃ and to occurrences of
context variables. The hole ˝ is treated like a function symbol. It follows that the
set of positions of hole occurrences Pos˝pc̃q in a context c̃ is a singleton set. E.g.,
Pos˝px̃, X̃pa, bq, fpX̃p˝q, bqq “ t3¨1¨1u and PosX̃px̃, X̃pa, bq, fpX̃p˝q, bqq “ t2, 3¨1u.

Definition 2.19 (Position triangle). Given three positions I1, I2 and I3, the position
triangle relation ’ is defined as

I1 ’I3 I2 :ðñ there is I4 ‰ ε such that I4 Ă I1 and I4 Ă I2 and I4 ­Ă I3 and
I1, I2, I3 are pairwise not in Ď .

This relation tests whether I1 and I2 have a common prefix which is not a prefix
of I3. None of these positions should be a prefix of another.

Example 2.18. For instance, 1¨1 ’2 1¨2, but neither 1 ’3 2, nor 1¨1 ’2 1¨1¨2, nor
1¨1 ’2 1¨1, nor 1¨1 ’1¨3 1¨2. A real world example of this relation would be two sisters
and one of their uncles.

Definition 2.20 (Substitution). A substitution is a mapping σ : V Ñ T pF ,Vq from
hedge variables to hedges and from context variables to contexts, which is identity:

almost everywhere. When substituting a context variable X̃ by a context, the context
will be applied to the argument hedge of X̃.

Any substitution σ can be extended to a mapping σ̂ : T Ñ T that can be applied
to hedges and contexts. Similarly to subsection 2.1.1, the application is defined by
induction on the structure of hedges and contexts:

s̃σ̂ ::“

$

’

’

’

’

&

’

’

’

’

%

fpq̃σ̂q if s̃ “ fpq̃q,
σpx̃q if s̃ “ x̃,

σpX̃qrq̃σ̂s if s̃ “ X̃pq̃q,
˝ if s̃ “ ˝,
s1σ̂, . . . , snσ̂ if |s̃| ‰ 1 and s̃ “ ps1, . . . , snq.

The application of a context can be defined by induction on the structure of contexts:

c̃rs̃s ::“

$

&

%

hpd̃rs̃sq if c̃ “ hpd̃q,
s̃ if c̃ “ ˝,
pq̃1, 9crs̃s, q̃2q if |c̃| ‰ 1 and c̃ “ pq̃1, 9c, q̃2q.

For a substitution σ the domain is the set of variables

Dompσq ::“ tx̃ P VH | σpx̃q ‰ x̃u Y tX̃ P VC | σpX̃q ‰ X̃p˝qu

and the range is the set of hedges and contexts

Ranpσq ::“ tσpx̃q | x̃ P Dompσqu Y tσpX̃q | X̃ P Dompσqu.

To simplify the notation, we do not distinguish between a substitution σ and its
extension σ̂.

:The identity mapping of a context variable to a context is defined as the mapping from a variable
to its application to the hole. E.g., tX̃ ÞÑ X̃p˝qu is the identity mapping for the context variable X̃.
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Example 2.19. Let σ “ tx̃ ÞÑ ε, ỹ ÞÑ pa, x̃q, X̃ ÞÑ gp˝q, Ỹ ÞÑ pb, gpgp˝, bqqqu be a sub-
stitution, then pX̃px̃q, ỹ, fpX̃pỹqq, Ỹ pfpaq, aqqσ “ pg, a, x̃, fpgpa, x̃q, b, gpgpfpaq, a, bqqqq.

We extend the notion of a renaming from Definition 2.6 so that the idea of hav-
ing an injective mapping from variables to variables is preserved by considering the
identity X̃pqtX̃ ÞÑ Ỹ p˝qu “ Ỹ pq. By that consideration a renaming σ in the sense of
Definition 2.21 is again a bijection from Dompσq to Ranpσq.

Definition 2.21 (Renaming). A substitution is called renaming if Ranpσq Ď VH Y
tX̃p˝q | X̃ P VCu and |Dompσq| “ |Ranpσq|.

The notions of instantiation and generalization are the same as in Definition 2.7 and
Definition 2.8. They are defined by the existence of substitutions to compare hedges
with respect to the instantiation quasi ordering. Lemma 2.1 and Corollary 2.2 are also
directly applicable to this richer term language.

Theorem 2.11. Higher-order unranked anti-unification is finitary: For any hedges
s̃ and q̃ there exists their minimal complete set of generalizations. This set is finite and
unique modulo ».

Proof. Note that a context variable applied to the empty hedge X̃pq may be used as
substitute for a hedge variable x̃ because X̃pq » x̃, i.e., X̃pqtX̃ ÞÑ px̃, ˝qu “ x̃ and
x̃tx̃ ÞÑ X̃pqu “ X̃pq. Therefore, it suffices to consider only context variables.

Since X̃pq acts as generalization for every pair of hedges, we assume there is a
nonempty set of hedges G for two arbitrary hedges s̃ and q̃ so that for all g̃ P G holds
that g̃ ĺ s̃ and g̃ ĺ q̃.

Since substitutions cannot eliminate function symbols and there is a σ such that
g̃σ “ s̃ for all g̃ P G, the number of function symbols of g̃ is bound by the number
of function symbols in s̃. Furthermore, from g̃σ “ s̃ we know that a variable is either
eliminated, or it stands for a certain part of the hedge s̃. There are only finitely many
variables in g̃ that stand for some part of s̃ and all the others are eliminated from g̃
when applying σ (like tỸ ÞÑ ˝u). In fact the number is bound by }s̃}. The same holds
for q̃.

Putting this together, there are only finitely many variables in g̃ that indicate
some differences at s̃ and q̃. Eliminating all those superfluous variables we obtain
g̃1 “ g̃tX̃1 ÞÑ ˝, X̃2 ÞÑ ˝, . . . u, such that the number of variables in g̃1 is bound by
}s̃}` }q̃} and g̃1 is a generalization of s̃ and q̃. Since g̃ ĺ g̃1 it can be removed from G if
g̃ ‰ g̃1. As the size of an lgg is bounded by }s̃} ` }q̃}, also the number of possible lggs
modulo » is bound. This leads to G being finite.

In the next subsection we generalize the notion of an alignment from Definition 2.11
and introduce the concept of admissible alignments. This are the skeletons that appear
in a generalization of two input hedges. We prove that one does not loose generality
by considering only generalizations that contain such a skeleton of the input hedges.

2.2.2 The Skeletons: Admissible Alignments

Given two input strings of symbols, an alignment has been defined by Definition 2.11
as a common subsequence of the input strings which is coupled with the information of
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the respective positions of the symbol occurrences. Notice that the positions there are
integer values. A rigidity function returns a set of alignments for two given strings of
symbols and the anti-unification process is guided by recursively applying the rigidity
function to two strings of top function symbols for two hedges, while decomposing and
going deeper into the terms.

Since this approach does not work for higher-order generalization, we redefine the
alignment as being a common subsequence of the word representation (i.e., the string
of symbols obtained by depth-first pre-order traversal of the constituent terms) of two
input hedges which is coupled with the information of the respective positions of the
symbol occurrences. Notice that the positions are strings of integers.

Definition 2.22 (Alignment). Given two hedges s̃ and q̃, an alignment is a sequence
of the form a1xI1, J1y . . . anxIn, Jny such that:

§ I1 ă ¨ ¨ ¨ ă In and J1 ă ¨ ¨ ¨ ă Jn, and

§ ak “ Topps̃|Ikq “ Toppq̃|Jkq, for all 1 ď k ď n.

a a

b b

a

a

b

b

b b

Figure 2.13: s̃ “ pa, apb, bqq and
q̃ “ papapbpbqqq, b, bq.

An alignment represents common function sym-
bols inside of two hedges with the corresponding po-
sitions, respecting the ordering ă. It is a common
subsequence of the word representation of those
hedges with some additional information about the
positions. The length of an alignment a is the num-
ber of elements in it and we write |a|. The empty
alignment is denoted by e.

Example 2.20. The two hedges s̃ and q̃ from Figure 2.13 have many different align-
ments. ax1, 1y ax2, 1¨1y bx2¨1, 1¨1¨1y bx2¨2, 3y and ax1, 1¨1y bx2¨1, 2y bx2¨2, 3y and ax2, 1y
are three of them, while bx2¨2, 1¨1¨1y ax1, 1y is not an alignment.

The skeletons that are computed level-by-level by a rigidity function may be trans-
formed into a set of (higher-order) alignments by the following transformation rule.
First, we initialize the set A of alignments by A “ RpTopps̃q,Toppq̃qq. Then the trans-
formation rule R-App is applied to A as long as possible. The given hedges s̃ and q̃ are
considered global parameters of the transformation process.

R-App: Recursive Application of R
ta1xI1, J1y . . . akxIk, Jky . . . anxIn, Jnyu ŸA ùñ
ta1xI1, J1y . . . akxIk, Jkya

1
1xIk¨i1, Jk¨j1y . . . a

1
mxIk¨im, Jk¨jmy . . . anxIn, Jny |

a11xi1, j1y . . . a
1
mxim, jmy P A

1u YA,

if (|a| “ k or Ik ­Ă Ik`1) and A1 ‰ H where A1 “ RpTopps̃kq,Toppq̃kqqzteu and
akps̃kq “ s̃|Ik and akpq̃kq “ q̃|Jk .

Example 2.21. To illustrate this transformation, we take the hedges s̃ “ pfpaq, fpaq,
fpbq, aq and q̃ “ pfpaq, fpaq, bq and R from Example 2.14, where R is the rigidity
function that computes the set of longest common subsequences. We underline the
alignment that is selected by the next rule application. Notice that the choice is not
deterministic but R-App is confluent and yields a unique set of alignments.
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tfx1, 1yfx2, 2y, fx1, 1yfx3, 2y, fx2, 1yfx3, 2yu “ RpTopps̃q,Toppq̃qq

ùñ
Ik“1
Jk“1 tfx1, 1yax1¨1, 1¨1yfx2, 2y, fx1, 1yfx3, 2y, fx2, 1yfx3, 2yu

ùñ
Ik“2
Jk“2 tfx1, 1yax1¨1, 1¨1yfx2, 2yax2¨1, 2¨1y, fx1, 1yfx3, 2y, fx2, 1yfx3, 2yu

ùñ
Ik“1
Jk“1 tfx1, 1yax1¨1, 1¨1yfx2, 2yax2¨1, 2¨1y, fx1, 1yax1¨1, 1¨1yfx3, 2y, fx2, 1yfx3, 2yu

ùñ
Ik“1
Jk“2 tfx1, 1yax1¨1, 1¨1yfx2, 2yax2¨1, 2¨1y, fx1, 1yax1¨1, 1¨1yfx3, 2y, fx2, 1yax2¨1, 1¨1yfx3, 2yu

Since the rule R-App is not applicable anymore, the set A that corresponds to an ex-
haustive level-by-level computation of skeletons by R consists of the last 3 alignments.

Definition 2.23 (Collision). Collisions in an alignment a of two hedges are defined as
follows:

§ A collision appears at two elements akxIk, Jky, alxIl, Jly of a if either pIk Ă Il and
Jk ­Ă Jlq or pIk ­Ă Il and Jk Ă Jlq.

§ A collision appears at three elements akxIk, Jky, alxIl, Jly, anxIn, Jny of a if
Ik ’In Il and Jl ’Jk Jn.

a f

b c

f

a b

c

Figure 2.14: pa, fpb, cqq and
pfpa, bq, cq.

Example 2.22. For instance, the alignment fx2, 1ybx2¨1,
1¨2ycx2¨2, 2y of the hedges from Figure 2.14 contains a col-
lision at the two elements fx2, 1y and cx2¨2, 2y. The align-
ment ax1, 1¨1ybx2¨1, 1¨2ycx2¨2, 2y of the same hedges has a
collision at its three elements.

Definition 2.24 (Admissible alignment). An alignment
of two hedges is called admissible if there are no collisions
in it.

Note that for any two elements akxIk, Jky and alxIl, Jly of an admissible alignment,
Ik ă Il iff Jk ă Jl and Ik Ă Il iff Jk Ă Jl. Alignments that are transformed by R-App
are always admissible since the level-by-level construction cannot lead to a collision.

Example 2.23. For instance ax1, 1y ax2, 1¨1y bx2¨1, 1¨1¨1y bx2¨2, 3y is an alignment of
the hedges from Figure 2.13 but not admissible, while the alignments ax1, 1¨1y bx2¨1,
2y bx2¨2, 3y and ax2, 1y bx2¨2, 1¨1¨1¨1y are admissible.

In order to show that we do not loose generality by considering only generalizations
that contain an admissible alignment of the input hedges, we need to uniquely identify
those function symbols at the input hedges that appear in the skeleton. Therefore, the
following definition is used to uniquely rename all the symbols in a given admissible
alignment and in the corresponding hedges. Notice that the renaming is only neces-
sary for theoretical considerations in Theorem 2.12. It is not of practical use for our
developing of an anti-unification algorithm in the following subsection.

Definition 2.25 (Distinct alignment renaming). Given an alignment a “ a1xI1, J1y . . .
amxIm, Jmy of two hedges s̃ and q̃, and a sequence of pairwise distinct (fresh) symbols
á1, . . . , ám which occur neither in s̃ nor in q̃. A distinct alignment renaming is a re-
naming of all the symbols in a by the fresh ones á1xI1, J1y . . . ámxIm, Jmy. Furthermore,
the top symbol ak at s̃|Ik and q̃|Jk is replaced by ák, for all 1 ď k ď m.
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Notice that a distinct alignment renaming does not impose a loss of generality. One
can simply maintain the mapping tá1 ÞÑ a1, . . . , ám ÞÑ amu and restore the original
function symbols at any time. For a given hedge s̃, we denote this symbol renaming by
s̃tá1 ÞÑ a1, . . . , ám ÞÑ amu.

Admissible alignments are related to generalization by the following theorem. It
states that one does not loose generality by considering only generalizations that contain
an admissible alignment as their skeleton.

Theorem 2.12. Consider an alignment a of two hedges s̃1 and q̃1. Let á1xI1, J1y . . .
ámxIm, Jmy, s̃2, and q̃2 be a distinct alignment renaming of a, s̃1, and q̃1, by the fresh
symbols á1, . . . , ám. The given alignment a is admissible iff there exists a generalization
g̃ of s̃2 and q̃2 with Fpg̃q “ tá1, . . . , ámu.

Notice that in Theorem 2.12 the alignment a is admissible iff á1xI1, J1y . . . ámxIm, Jmy
is admissible, because collisions only depend on the positions and not on the function
symbols.

Proof. Let a “ a1xI1, J1y . . . amxIm, Jmy be an alignment of s̃ and q̃ such that for all
1 ď k ď m the function symbol ak is unique in s̃ and unique in q̃.

(ð) Assume g̃ is a generalization of s̃ and q̃ with Fpg̃q “ ta1, . . . , amu. We will
prove by contradiction that there are no collisions in a (see definition of admissible
alignment). Furthermore, we assume that there are at least two elements in a because
the other cases are trivial by definition.

Case 1: Assume there is a collision at two elements of a. Then there exist ai, aj P
ta1, . . . , amu such that ai is an ancestor of aj in s̃, while it is not an ancestor of aj in
q̃. We know that g̃ contains both symbols ai and aj .

Case 1.1: ai is an ancestor of aj in g̃. Then we have aipr̃1, t, r̃2q being a subterm of g̃,
where t is the term which contains aj , and r̃1, r̃2 are arbitrary hedges. By assumption,
there exists a substitution σ with ai, aj R FpRanpσqq such that ai is not an ancestor of aj
in g̃σ. However, by the rule of substitution application aipr̃1, t, r̃2qσ “ aipr̃1σ, tσ, r̃2σq
the ancestor-descendant relation is preserved, which is a contradiction.

Case 1.2: ai is not an ancestor of aj in g̃. Then we have pr̃1, t1, r̃2, t2, r̃3q being a
subhedge of g̃, where t1 is the term which contains ai, t2 is the term which contains aj ,
and r̃1, r̃2, r̃3 are arbitrary hedges. By assumption, there exists a substitution σ with
ai, aj R FpRanpσqq such that ai is an ancestor of aj in g̃σ, but this contradicts the rule
of substitution application pr̃1, t1, r̃2, t2, r̃3qσ “ pr̃1σ, t1σ, r̃2σ, t2σ, r̃3σq again.

Case 2: A collision appears at three elements. Let ai, aj , ak be those elements.
Without loss of generality, assume that ai, aj have a common ancestor h that is not an
ancestor of ak in s̃ and let aj , ak have a common ancestor g that is not an ancestor of ai
in q̃. By assumption, g̃ contains all three symbols exactly once. It follows that there are
substitutions σ1, σ2 with ai, aj , ak R FpRanpσ1qYRanpσ2qq, where g̃σ1 “ s̃ and g̃σ2 “ q̃.
By assumption, we know that g̃σ1 contains a subhedge ptij , s̃kq, with tij being the term
that contains the symbols h , ai, aj , and s̃k being a hedge that contains the symbol ak.
This implies that g̃ contains either h or a context variable that can be instantiated to
introduce h . It follows that g̃ also contains a subhedge pt1ij , s̃

1
kq, with t1ij being the term

that contains the symbols ai, aj , and s̃1k being a hedge that contains the symbol ak.
Similarly, g̃σ2 contains a subhedge pq̃i, tjkq, with q̃i being a hedge that contains the



38 Chapter 2 Anti-Unification for Unranked Terms and Hedges

symbol ai, and tjk being the term that contains the symbols g , aj , ak. Further on, g̃
either contains g or a context variable, say X̃, which can be instantiated to introduce
g . Let us call this metavariable χ. As g is an ancestor of both, aj and ak in q̃, χ has to
be above t1ij . This is a contradiction to the assumption that g is not an ancestor of ai
in q̃.

(ñ) Proof by construction of an algorithm which computes such a generalization
for a given admissible alignment of two hedges. In subsection 2.2.3 we describe this
algorithm and prove its properties.

Notice that in Theorem 2.12, by restoring the original symbol names in g̃, one obtains
a generalization h̃ of the given input hedges.

Definition 2.26 (Supporting generalization). Consider an alignment a “ a1xI1,
J1y . . . amxIm, Jmy of two hedges s̃1 and q̃1. Let á1xI1, J1y . . . ámxIm, Jmy, s̃2, and q̃2 be
a distinct alignment renaming of a, s̃1, and q̃1, by the fresh symbols á1, . . . , ám. Then,
for any generalization g̃ of s̃2 and q̃2 with Fpg̃q “ tá1, . . . , ámu, the generalization
g̃tá1 ÞÑ a1, . . . , ám ÞÑ amu of s̃1 and q̃1 is called a supporting generalization of s̃1
and q̃1 with respect to a.

Example 2.24. Let s̃ and q̃ be the hedges from Figure 2.13. Then px̃, apy, Ỹ pbqq, z̃q
is a supporting generalization of s̃ and q̃, with respect to ax2, 1y bx2¨2, 1¨1¨1¨1y, while
it is not a supporting generalization of s̃ and q̃ with respect to ax1, 1y bx2¨2, 1¨1¨1¨1y.
The hedge pX̃papx̃qq, Ỹ pb, bqq is a supporting generalization of s̃ and q̃ with respect to
ax1, 1¨1y bx2¨1, 2y bx2¨2, 3y.

Corollary 2.13. For any admissible alignment of two hedges there exists a supporting
generalization of those hedges with respect to the given alignment.

Corollary 2.14. For any generalization of two hedges there exists an admissible align-
ment of those hedges containing all the function symbols which appear in the general-
ization.

2.2.3 Higher-Order Unranked Anti-Unification Algorithm G2V
a

Given two hedges s̃ and q̃ and their admissible alignment a, we aim at computing a
least general supporting generalization of s̃ and q̃ with respect to a. Without restric-
tions, any algorithm that computes a complete set of supporting generalizations for two
hedges and their admissible alignment would yield a complete unranked higher-order
anti-unification algorithm. This follows by Theorem 2.12 if we run such an algorithm
for all admissible alignments of two hedges.

We already saw in the first-order case that a universal algorithm without forbid-
ding consecutive hedge variables is highly nondeterministic. This is also the case in
higher-order anti-unification, hence it comes with no surprise that the least general
supporting generalization of s̃ and q̃ with respect to a is not unique.

Example 2.25. For instance, for pa, b, aq and pb, cq with the admissible alignment
bx2, 1y, we have two supporting lggs px̃, b, x̃, ỹq and px̃, b, ỹ, x̃q. For apbpaqq and bpcq
with the admissible alignment bx1¨1, 1y, we also have two supporting lggs X̃pbpX̃pỹqqq
and X̃pbpỸ pX̃pqqqq.
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Our goal is to compute a unique supporting generalization for two hedges and an ad-
missible alignment which captures the common structure of both input hedges. There-
fore, we introduce some restrictions to ensure uniqueness of a supporting generalization
and call such generalizations rigid, overloading the notion of Definition 2.12. By for-
bidding consecutive hedge variables for the first case of Example 2.25 we get one rigid
lgg px̃, b, ỹq which is a unique supporting generalization. Since we introduce context
variables in addition to first-order variables, the restriction has to be extended for the
“vertical direction”. The following two definitions introduce this restrictions.

Definition 2.27 (Rigid hedge). A hedge s̃ is rigid if the following conditions hold:

1. No context variable in s̃ applies to the empty hedge.

2. s̃ doesn’t contain consecutive hedge variables.

3. s̃ doesn’t contain vertical chains of (context): variables.

4. s̃ doesn’t contain context variables with a hedge variable as the first or the last
argument (i.e., no subterms of the form X̃px̃, . . . q and X̃p. . . , x̃qq.

Definition 2.28 (Rigid generalization). Given two variable-disjoint hedges s̃, q̃ and
their admissible alignment a, a rigid hedge g̃ is called a rigid generalization of s̃ and q̃
with respect to a, if g̃ is a supporting generalization of s̃ and q̃ with respect to a so that:

5. There are substitutions σ, ϑ with g̃σ “ s̃ and g̃ϑ “ q̃ such that all the contexts in
σ and ϑ are singleton contexts.

Intuitively, item 1 and item 5 together forbid that, in a rigid generalization, con-
text variables capture horizontal disagreements of the input hedges. We want to use
hedge variables for generalizing horizontal disagreements. For instance, consider the
hedges pfpbq, aq and pb, cq with the admissible alignment bx1¨1, 1y. The three support-
ing generalizations X̃pbq, pX̃pbq, Ỹ pqq and pX̃pbq, ỹq are pairwise distinct in the relation
». Nevertheless, the latter one tells us more about the common structure. Those two
restrictions are solely for the purpose of picking one (the most natural) case out of some
equi-general solutions, and we provide the user some additional information about the
solution we compute.

The last three restrictions of Definition 2.27 are needed to compute a unique sup-
porting generalization, as discussed above.

Example 2.26. For instance, X̃pa, bq is a rigid generalization of fpgpa, b, cqq and pa, bq
with respect to ax1¨1¨1, 1ybx1¨1¨2, 2y, while X̃pa, b, x̃q and X̃pỸ pa, bqq are not rigid gen-
eralizations.

Definition 2.29 (Rigid lgg). A rigid generalization g̃ of s̃ and q̃ with respect to a is
called a least general rigid generalization (rigid lgg) of s̃ and q̃ with respect to a, if there
is no rigid generalization h̃ of s̃ and q̃ with respect to a which satisfies g̃ ă h̃.

Note that two hedges might have a supporting generalization which is strictly less
general than their rigid lgg with respect to the same admissible alignment. Example 2.27
illustrates such a case.

:Vertical chains that consist of a context variable and a hedge variable are barred by item 4.
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Example 2.27. For instance, X̃paq ă X̃pX̃paqq and both of them are supporting gener-
alizations of fpfpaqq and gpgpgpgpaqqqq with respect to ax1¨1¨1, 1¨1¨1¨1¨1y, but only X̃paq
is a rigid generalization.

Based on Definition 2.28, we present a rule-based anti-unification algorithm that
solves the following problem:

Given: Two hedges s̃ and q̃ and their admissible alignment a.

Find: A least general rigid generalization g̃ of s̃ and q̃ with respect to a.

The algorithm uses the following data structure that consists of three parts. A hori-
zontal part of the form x̃: s̃ fi q̃, a vertical part X̃: c̃ fi d̃, and an admissible alignment.
Intuitively, the horizontal and the vertical part together represent a decomposition of
the hedges c̃rs̃s and d̃rq̃s.

Definition 2.30 (Anti-unification equation). An anti-unification equation, AUE in
short, is a triple of the form x̃: s̃ fi q̃; X̃: c̃ fi d̃; a, where

§ x̃ is a hedge variable and s̃, q̃ are hedges,

§ X̃ is a context variable and c̃, d̃ are contexts,

§ a is an admissible alignment of s̃ and q̃.

The algorithm consists of eight transformation rules that transform tuples by rule
application into tuples of the same form.

Definition 2.31 (Rigid higher-order anti-unification algorithm). The rigid unranked
higher-order anti-unification algorithm is formulated in a rule-based way working on
tuples P ; S; σ, where

§ P is the set of AUEs to be solved (the problem set);

§ S is a set of already solved AUEs (the store);

§ σ is a substitution (computed so far) mapping variables to hedges and contexts.

§ for all pairs of AUEs tx̃: s̃1 fi q̃1; X̃: c̃1 fi d̃1; a1, ỹ: s̃2 fi q̃2; Ỹ : c̃2 fi d̃2; a2u Ď
P Y S holds x̃ ‰ ỹ and X̃ ‰ Ỹ .

We call such a tuple a state and the algorithm is called G2V
a , where a indicates the

skeleton that appears in the generalization and 2V indicates that two different kinds of
variables are considered. The eight transformation rules of the algorithm, which are
defined below, operate on states.

As all the AUEs in S have the empty alignment, we write x̃ : s̃ fi q̃; X̃ : c̃ fi d̃ instead
of x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; e for an AUE of S. In the transformation rules below, we use the
symbols Ỹ , Z̃ for fresh context variables and ỹ, z̃ for fresh hedge variables. The symbol
Ÿ stands for disjoint union. Furthermore, i - - denotes i´ 1 and i`` denotes i` 1.
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Spl-H: Split Hedge

tx̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a1xi1¨I1, j1¨J1y . . . akxik¨Ik, jk¨Jky
ak`1xik`1¨Ik`1, jk`1¨Jk`1y . . . amxim¨Im, jm¨Jmyu ŸP ; S; σ ùñ

tỹ : s̃|iki1 fi q̃|jkj1 ; Ỹ : ˝ fi ˝; a1xpi1 ´ i
- -
1 q¨I1, pj1 ´ j

- -
1 q¨J1y . . .

akxpik ´ i
- -
1 q¨Ik, pjk ´ j

- -
1 q¨Jkyu Y

tz̃ : s̃|im
i``
k

fi q̃|jm
j``
k

; Z̃ : ˝ fi ˝; ak`1xpik`1 ´ ikq¨Ik`1, pjk`1 ´ jkq¨Jk`1y . . .

amxpim ´ ikq¨Im, pjm ´ jkq¨Jmyu Y P ;
tx̃ : ε fi ε; X̃ : c̃rs̃|i

- -
1

1 , ˝, s̃|
|s̃|

i``m
s fi d̃rq̃|

j - -1
1 , ˝, q̃|

|q̃|

j``m
su Y S; σtx̃ ÞÑ pỸ pỹq, Z̃pz̃qqu,

If i1 ‰ ik`1 and j1 ‰ jk`1, and, moreover, i1 “ ik or j1 “ jk, for 1 ď k ă m.

Abs-L: Abstract Left Context

tx̃ : ps̃l, hps̃q, s̃rq fi q̃; X̃ : c̃ fi d̃; a1xi¨I1, J1y . . . amxi¨Im, Jmyu ŸP ; S; σ ùñ
tx̃ : s̃ fi q̃; X̃ : c̃rs̃l, hp˝q, s̃rs fi d̃; a1xI1, J1y . . . amxIm, Jmyu Y P ; S; σ,

where I1 ‰ ε, hps̃q “ ps̃l, hps̃q, s̃rq|i, and s̃l, s̃r are hedges.

Abs-R: Abstract Right Context

tx̃ : s̃ fi pq̃l, hpq̃q, q̃rq; X̃ : c̃ fi d̃; a1xI1, j¨J1y . . . amxIm, j¨Jmyu ŸP ; S; σ ùñ
tx̃ : s̃ fi q̃; X̃ : c̃ fi d̃rq̃l, hp˝q, q̃rs; a1xI1, J1y . . . amxIm, Jmyu Y P ; S; σ,

where J1 ‰ ε, hpq̃q “ pq̃l, hpq̃q, q̃rq|j , and q̃l, q̃r are hedges.

App-A: Apply Alignment

tx̃ : ps̃l, a1ps̃q, s̃rq fi pq̃l, a1pq̃q, q̃rq; X̃ : c̃ fi d̃;
a1xi, jya2xi¨I2, j¨J2y . . . amxi¨Im, j¨Jmyu ŸP ; S; σ ùñ

tỹ : s̃ fi q̃; Ỹ : ˝ fi ˝; a2xI2, J2y . . . amxIm, Jmyu Y P ;
tx̃ : ε fi ε; X̃ : c̃rs̃l, ˝, s̃rs fi d̃rq̃l, ˝, q̃rsu Y S; σtx̃ ÞÑ a1pỸ pỹqqu,

where a1ps̃q, a1pq̃q are the terms at the positions i, j and s̃l, s̃r, q̃l, q̃r are hedges.

Sol-H: Solve Hedge

tx̃: s̃ fi q̃; X̃: ˝ fi ˝; eu ŸP ; S; σ ùñ P ; tx̃: s̃ fi q̃; X̃: ˝ fi ˝u Y S; σtX̃ ÞÑ ˝u.

Res-C: Restore Context

P ; tx̃ : ε fi ε; X̃ : ps̃l, 9c, s̃rq fi pq̃l, 9d, q̃rqu ŸS; σ ùñ
P ; tx̃ : ε fi ε; X̃ : 9c fi 9d, ỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝u Y S;
σtX̃ ÞÑ pỹ, X̃p˝q, z̃qu,

if not ε “ s̃l “ s̃r “ q̃l “ q̃r. 9c, 9d are singleton contexts.

Mer-S: Merge Store

P ; tx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃, x̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u ŸS; σ ùñ
P ; tx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃u Y S; σtx̃2 ÞÑ x̃1, X̃2 ÞÑ X̃1p˝qu.

Clr-S: Clear Store

P ; tx̃ : ε fi ε; X̃ : ˝ fi ˝u ŸS; σ ùñ P ; S; σtx̃ ÞÑ ε, X̃ ÞÑ ˝u.

To compute a generalization of two hedges s̃ and q̃ with respect to an admissible
alignment a, the procedure starts with the initial state tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au; H; Id,
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where x̃ and X̃ are fresh variables, and applies the rules exhaustively. A state where no
more rule is applicable is called final state. In the final state, the problem set is empty.
We will prove termination, soundness, and completeness of G2V

a , as well as uniqueness
(modulo ») of the final state in subsection 2.2.6. The unique final state for two hedges
s̃ and q̃ with respect to an admissible alignment a is denoted by G2V

a pX̃px̃q : s̃ fi q̃q,
where x̃ and X̃ are the fresh generalization variables. The rigid lgg that corresponds
to a final state H;S;σ “ G2V

a pX̃px̃q : s̃ fi q̃q can be obtained by X̃px̃qσ. The store S
keeps track of already solved AUEs in order to generalize the same AUEs in the same
way. In the final state it contains all the differences of the input hedges.

Definition 2.32. We define two substitutions obtained by a set S of AUEs:

σ
L
pSq ::“ tx̃ ÞÑ s̃, X̃ ÞÑ c̃ | x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a P Su

σRpSq ::“ tx̃ ÞÑ q̃, X̃ ÞÑ d̃ | x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a P Su

Let H; S; σ “ G2V
a pX̃px̃q : s̃ fi q̃q. In Theorem 2.21 (Soundness) we show that the

algorithm G2V
a is coherent so that X̃px̃qσσLpSq “ s̃ and X̃px̃qσσRpSq “ q̃.

2.2.4 Explanation of the Transformation Rules of G2V
a

Before illustrating G2V
a on some examples and discussing its properties, we briefly ex-

plain informally what the rules do. At each step, each AUE x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a
in P represents the hedges c̃rs̃s and d̃rq̃s which are to be generalized such that the
final generalization contains the function symbols from a. They are split according to
the occurrences of alignment elements: All symbols from a are in s̃ and q̃. None of
them appear in c̃ and d̃. Such an AUE can be transformed by one of the first four
rules: Spl-H, Abs-L, Abs-R, or App-A. The eventual goal of these transformations is to
reach the occurrences of the first alignment element in s̃ and q̃. In the course of the
transformation, c̃ and d̃ are getting extended with contexts above those occurrences.

Spl-H. When the symbols in a are distributed in more than one term both in s̃ and
in q̃, then we use the Spl-H rule to select subhedges of s̃ and q̃ which contain all the
alignment elements. (The other parts of s̃ and q̃ are moved to the store, since they
will not contribute a symbol to the generalization.) Furthermore, by this rule, each of
these subhedges are split into two smaller subhedges: From the s̃ side these are s̃|iki1
and s̃|im

i``
k

, and from the q̃ side they are q̃|jkj1 and q̃|jm
j``
k

. The split point k is decided by

the following criteria:

§ s̃|iki1 and q̃|jkj1 contain the first k ą 0 elements of a.

§ s̃|im
i``
k

and q̃|jm
j``
k

contain the elements of a starting from k ` 1. There exists at

least one such element.

§ s̃|iki1 or q̃|jkj1 is a term (a singleton hedge), and the k ` 1’st element of a does not
belong to it.

The process will continue by generalizing s̃|iki1 and q̃|jkj1 with respect to the first

k-element prefix of a, and generalizing s̃|im
i``
k

and q̃|jm
j``
k

with respect to the elements
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of a starting from k ` 1. Note that in the next step Spl-H is not applicable to the
AUE with s̃|iki1 and q̃|jkj1 . This is because at least one of them is a single term which
completely contains the alignment elements. Therefore either Abs-L, Abs-R, or App-A
applies.

Example 2.28. Consider the hedges pgpaq, fpa, gpbqq, c, gpbq, eq and pe, e, hpa, eq, fpbq,
a, c, d, bq and the admissible alignment ax2¨1, 3¨1ybx2¨2¨1, 4¨1ycx3, 6ybx4¨1, 8y of them.

g

a

f

a g

b

c g

b

e e e h

a e

f

b

a c d b

Figure 2.15: The hedges from Example 2.28.

The dashed nodes in Figure 2.15 denote the parts which are moved into the store.
The dashed rectangle denotes s̃|iki1 and q̃|jkj1 and the dotted one s̃|im

i``
k

and q̃|jm
j``
k

.

Abs-L, Abs-R. When all symbols in a belong to one term in s̃ or in q̃ (or maybe
both), but the root of that term is not the symbol a1 from the first element of a, then
an attempt is made to get deeper to that term, to reach the subterm whose top symbol
is the a1 from a. This descent is carried out by Abs-L or Abs-R, depending whether we
are searching for the subterm with a1 in the top in s̃ or in q̃.

f

a g

b

h

a e

f

b

Figure 2.16: fpa, gpbqq and phpa, eq, fpbqq.

To illustrate the rule Abs-L which serves
as a representative of both, we use the
above example and apply Abs-L to the
AUE x̃ : fpa, gpbqq fi phpa, eq, fpbqq; X̃ : ˝ fi
˝; ax1¨1, 1¨1ybx1¨2¨1, 2¨1y following an Spl-H
application. The Abs-L transformation de-
composes the left term fpa, gpbqq into a con-
text fp˝q and a hedge pa, gpbqq, resulting
in the AUE x̃ : pa, gpbqq fi phpa, eq, fpbqq;
X̃ : fp˝q fi ˝; ax1, 1¨1ybx2¨1, 2¨1y. Fig-
ure 2.16 demonstrates this decomposition
step.

App-A. When all symbols in a belong to one term in s̃ and one term in q̃, and these
terms have the same root symbol which is exactly the a1 from the first element of a,
then a1 is moved to the generalization. This is what the App-A rule does. The process
will continue with generalizing the hedges under the occurrences of a1 in s̃ and q̃.

Sol-H. When the alignment is empty in x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; e in P , then the hedge
there will not contribute a symbol in the generalization. Moreover, both c̃ and d̃ are
holes, because only App-A can make the alignment empty, and it makes the contexts in
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the obtained AUE the hole. Such AUEs are considered solved, as their generalization
is just x̃ they contain. They should be put in the store, which keeps information about
the differences between the hedges to be generalized. At the same time, the context
variable X̃ can be deleted, as it just stand for the hole. This is what the Sol-H rule does.

Transformation of the store. The other three rules work on the store. Clr-S re-
moves the empty AUE from the store and eliminates the corresponding variables form
the generalization. Mer-S guarantees that the same AUEs are generalized with the
same variables, making sure that the same differences in the input hedges are gener-
alized uniformly. Finally, the Res-C rule guarantees that each context variable in the
generalization generalizes singleton contexts in the input hedges: A property required
for rigid generalizations.

2.2.5 Illustration of the Algorithm G2V
a

First, we illustrate the algorithm G2V
a step-by-step on some small examples. Then

we show how G2V
a can be used to detect software clones that can not be detected by

first-order anti-unification algorithms.

Example 2.29. We illustrate the transformation steps performed by G2V
a on the hedges

s̃ “ fpa, fpb, bqq and q̃ “ pb, fpa, bq, bq and their admissible alignment a “ fx1, 2y
ax1¨1, 2¨1ybx1¨2¨1, 2¨2y. In the substitution, we only keep the mappings for the two gen-
eralization variables x̃ and X̃ of the initial AUE.

tx̃: fpa, fpb, bqq fi pb, fpa, bq, bq; X̃: ˝ fi ˝; fx1, 2yax1¨1, 2¨1ybx1¨2¨1, 2¨2yu; H; Id
ùñApp-A tỹ1: pa, fpb, bqq fi pa, bq; Ỹ1: ˝ fi ˝; ax1, 1ybx2¨1, 2yu;

tx̃: ε fi ε; X̃: ˝ fi pb, ˝, bqu; tx̃ ÞÑ fpỸ1pỹ1qqu

ùñRes-C
Clr-S tỹ1: pa, fpb, bqq fi pa, bq; Ỹ1: ˝ fi ˝; ax1, 1ybx2¨1, 2yu;

tz̃1: ε fi b; Z̃1: ˝ fi ˝, z̃2: ε fi b; Z̃2: ˝ fi ˝u; tx̃ ÞÑ fpỸ1pỹ1qq, X̃ ÞÑ pz̃1, ˝, z̃2qu

ùñMer-S tỹ1: pa, fpb, bqq fi pa, bq; Ỹ1: ˝ fi ˝; ax1, 1ybx2¨1, 2yu;
tz̃1: ε fi b; Z̃1: ˝ fi ˝u; tx̃ ÞÑ fpỸ1pỹ1qq, X̃ ÞÑ pz̃1, ˝, z̃1qu

ùñ
Spl-H
Clr-S tỹ2: a fi a; Ỹ2: ˝ fi ˝; ax1, 1y, ỹ3: pfpb, bqq fi b; Ỹ3: ˝ fi ˝; bx1¨1, 1yu;

tz̃1: ε fi b; Z̃1: ˝ fi ˝u; tx̃ ÞÑ fpỸ2pỹ2q, Ỹ3pỹ3qq, X̃ ÞÑ pz̃1, ˝, z̃1qu

ùñ
App-A
Clr-S tỹ4: ε fi ε; Ỹ4: ˝ fi ˝; e, ỹ3: pfpb, bqq fi pbq; Ỹ3: ˝ fi ˝; bx1¨1, 1yu;

tz̃1: ε fi b; Z̃1: ˝ fi ˝u; tx̃ ÞÑ fpapỸ4pỹ4qq, Ỹ3pỹ3qq, X̃ ÞÑ pz̃1, ˝, z̃1qu

ùñSol-H
Clr-S tỹ3: fpb, bq fi b; Ỹ3: ˝ fi ˝; bx1¨1, 1yu;

tz̃1: ε fi b; Z̃1: ˝ fi ˝u; tx̃ ÞÑ fpa, Ỹ3pỹ3qq, X̃ ÞÑ pz̃1, ˝, z̃1qu

ùñAbs-L tỹ3: pb, bq fi b; Ỹ3: fp˝q fi ˝; bx1, 1yu;
tz̃1: ε fi b; Z̃1: ˝ fi ˝u; tx̃ ÞÑ fpa, Ỹ3pỹ3qq, X̃ ÞÑ pz̃1, ˝, z̃1qu

ùñApp-A tỹ5: ε fi ε; Ỹ5: ˝ fi ˝; eu; tỹ3: ε fi ε; Ỹ3: fp˝, bq fi ˝, z̃1: ε fi b; Z̃1: ˝ fi ˝u;
tx̃ ÞÑ fpa, Ỹ3pbpỸ5pỹ5qqqq, X̃ ÞÑ pz̃1, ˝, z̃1qu

ùñSol-H
Clr-S H; tỹ3: ε fi ε; Ỹ3: fp˝, bq fi ˝, z̃1: ε fi b; Z̃1: ˝ fi ˝u;

tx̃ ÞÑ fpa, Ỹ3pbqq, X̃ ÞÑ pz̃1, ˝, z̃1qu.
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X̃px̃qσ “ pz̃1, fpa, Ỹ3pbqq, z̃1q generalizes s̃ and q̃ with respect to a. From the store S
we can read σLpSq “ tz̃1 ÞÑ ε, Ỹ3 ÞÑ fp˝, bq, . . .u and σRpSq “ tz̃1 ÞÑ b, Ỹ3 ÞÑ ˝, . . .u.
Then we have X̃px̃qσσLpSq “ s̃ and X̃px̃qσσRpSq “ q̃.

Example 2.30. We illustrate the computation of a rigid lgg with respect to the given
alignment ax1¨1, 1yfx2, 2ygx2¨1¨1, 2¨1yax2¨1¨1¨1, 2¨1¨1ycx2¨1¨2, 2¨2y of the two hedges s̃ “
pŨpaq, fpŨpgpa, b, bq, cq, b, bqq and q̃ “ pa, fpgpa, dq, c, dqq. Notice that the considered
alignment is of longest possible length for the two input hedges. The symbol Ũ denotes
a context variable. All the other symbols are function symbols.

tx̃: pŨpaq, fpŨpgpa, b, bq, cq, b, bqq fi pa, fpgpa, dq, c, dqq;
X̃: ˝ fi ˝; ax1¨1, 1yfx2, 2ygx2¨1¨1, 2¨1yax2¨1¨1¨1, 2¨1¨1ycx2¨1¨2, 2¨2yu; H; Id

ùñ
Spl-H
Clr-S tỹ1: Ũpaq fi a; Ỹ1: ˝ fi ˝; ax1¨1, 1y, z̃1: fpŨpgpa, b, bq, cq, b, bq fi fpgpa, dq, c, dq;

Z̃1: ˝ fi ˝; fx1, 1ygx1¨1¨1, 1¨1yax1¨1¨1¨1, 1¨1¨1ycx1¨1¨2, 1¨2yu;
H; tx̃ ÞÑ pỸ1pỹ1q, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñAbs-L tỹ1: a fi a; Ỹ1: Ũp˝q fi ˝; ax1, 1y; z̃1: fpŨpgpa, b, bq, cq, b, bq fi fpgpa, dq, c, dq;
Z̃1: ˝ fi ˝; fx1, 1ygx1¨1¨1, 1¨1yax1¨1¨1¨1, 1¨1¨1ycx1¨1¨2, 1¨2yu;
H; tx̃ ÞÑ pỸ1pỹ1q, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñ
App-A
Sol-H tz̃1: fpŨpgpa, b, bq, cq, b, bq fi fpgpa, dq, c, dq;

Z̃1: ˝ fi ˝; fx1, 1ygx1¨1¨1, 1¨1yax1¨1¨1¨1, 1¨1¨1ycx1¨1¨2, 1¨2yu;
tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝u; tx̃ ÞÑ pỸ1paq, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñ
App-A
Clr-S tz̃2: pŨpgpa, b, bq, cq, b, bq fi pgpa, dq, c, dq;

Z̃2: ˝ fi ˝; gx1¨1, 1yax1¨1¨1, 1¨1ycx1¨2, 2yu;
tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝u; tx̃ ÞÑ pỸ1paq, fpZ̃2pz̃2qqq, X̃ ÞÑ ˝u

ùñAbs-L tz̃2: pgpa, b, bq, cq fi pgpa, dq, c, dq; Z̃2: pŨp˝q, b, bq fi ˝; gx1, 1yax1¨1, 1¨1ycx2, 2yu;
tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝u; tx̃ ÞÑ pỸ1paq, fpZ̃2pz̃2qqq, X̃ ÞÑ ˝u

ùñ
Spl-H
Clr-S tz̃3: gpa, b, bq fi gpa, dq; Z̃3: ˝ fi ˝; gx1, 1yax1¨1, 1¨1y, z̃4: c fi c; Z̃4: ˝ fi ˝; cx1, 1yu;

tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, z̃2: ε fi ε; Z̃2: pŨp˝q, b, bq fi p˝, dqu;
tx̃ ÞÑ pỸ1paq, fpZ̃2pZ̃3pz̃3q, Z̃4pz̃4qqqq, X̃ ÞÑ ˝u

ùñ
App-A
Clr-S tz̃5: pa, b, bq fi pa, dq; Z̃5: ˝ fi ˝; ax1, 1y, z̃4: c fi c; Z̃4: ˝ fi ˝; cx1, 1yu;

tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, z̃2: ε fi ε; Z̃2: pŨp˝q, b, bq fi p˝, dqu;
tx̃ ÞÑ pỸ1paq, fpZ̃2pgpZ̃5pz̃5qq, Z̃4pz̃4qqqq, X̃ ÞÑ ˝u

ùñRes-C
Clr-S tz̃5: pa, b, bq fi pa, dq; Z̃5: ˝ fi ˝; ax1, 1y, z̃4: c fi c; Z̃4: ˝ fi ˝; cx1, 1yu;

tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, z̃2: ε fi ε; Z̃2: Ũp˝q fi ˝, ỹ2: pb, bq fi d; Ỹ2: ˝ fi ˝u;
tx̃ ÞÑ pỸ1paq, fpZ̃2pgpZ̃5pz̃5qq, Z̃4pz̃4qq, ỹ2qq, X̃ ÞÑ ˝u

ùñMer-S tz̃5: pa, b, bq fi pa, dq; Z̃5: ˝ fi ˝; ax1, 1y, z̃4: c fi c; Z̃4: ˝ fi ˝; cx1, 1yu;
tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, ỹ2: pb, bq fi d; Ỹ2: ˝ fi ˝u;
tx̃ ÞÑ pỸ1paq, fpỸ1pgpZ̃5pz̃5qq, Z̃4pz̃4qq, ỹ2qq, X̃ ÞÑ ˝u

ùñ
App-A
Sol-H tz̃5: pa, b, bq fi pa, dq; Z̃5: ˝ fi ˝; ax1, 1yu; tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝,

ỹ2: pb, bq fi d; Ỹ2: ˝ fi ˝u; tx̃ ÞÑ pỸ1paq, fpỸ1pgpZ̃5pz̃5qq, cq, ỹ2qq, X̃ ÞÑ ˝u

ùñ
App-A
Sol-H H; tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, ỹ2: pb, bq fi d; Ỹ2: ˝ fi ˝,
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z̃5: ε fi ε; Z̃5: p˝, b, bq fi p˝, dqu; tx̃ ÞÑ pỸ1paq, fpỸ1pgpZ̃5paqq, cq, ỹ2qq, X̃ ÞÑ ˝u

ùñRes-C
Clr-S H; tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, ỹ2: pb, bq fi d; Ỹ2: ˝ fi ˝, ỹ3: pb, bq fi d; Ỹ3: ˝ fi ˝u;

tx̃ ÞÑ pỸ1paq, fpỸ1pgpa, ỹ3q, cq, ỹ2qq, X̃ ÞÑ ˝u

ùñMer-S H; tỹ1: ε fi ε; Ỹ1: Ũp˝q fi ˝, ỹ2: pb, bq fi d; Ỹ2: ˝ fi ˝u;
tx̃ ÞÑ pỸ1paq, fpỸ1pgpa, ỹ2q, cq, ỹ2qq, X̃ ÞÑ ˝u

X̃px̃qσ “ pỸ1paq, fpỸ1pgpa, ỹ2q, cq, ỹ2qq is a rigid lgg of the two input hedges with
respect to the given alignment and the store S contains all the information about
the differences of the input hedges so that X̃px̃qσσ

L
pSq “ pỸ1paq, fpỸ1pgpa, ỹ2q, cq, ỹ2qq

tỸ1 ÞÑ Ũp˝q, ỹ2 ÞÑ pb, bqu “ s̃ and X̃px̃qσσ
R
pSq “ pỸ1paq, fpỸ1pgpa, ỹ2q, cq, ỹ2qqtỸ1 ÞÑ ˝,

ỹ2 ÞÑ du “ q̃.

Example 2.31. Again we discuss the algorithm G2V
a on the example composed from

the taxonomy of editing scenarios for different clone types from [75]. In Figure 2.17
we recall the original code and its representation as an unranked term. It is used to
illustrate the application of G2V

a in order to detect its software clones.

1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + i ;
6 prod = prod ∗ i ;
7 foo (sum , prod ) ; }}

sumProdpinputptypepintq, nq,

returnTypepvoidq,

“ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, iqq,

“pprod, ˚pprod, iqq,

foopsum, prodqqq

Figure 2.17: The original program used to illustrate clone detection by anti-unification.

Figure 2.18 shows the two clones we already discussed in subsection 2.1.3. The left
one is of Type-3 and the right one of Type-4. First-order anti-unification was not able
to detect the similarities that appear at different levels of the abstract syntax trees.

1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + i ;
6 prod = prod ∗ i ;
7 i f (n % 2)==0 {
8 foo (sum , prod ) ; }}}

void sumProd ( int n) {
f loat sum = 0 . 0 ;
f loat prod = 1 . 0 ;
int i =1; while ( i<=n) {

sum = sum + i ;
prod = prod ∗ i ;
f oo (sum , prod ) ; i ++; }}

Figure 2.18: Clones of Type-3 and Type-4.

In the first clone the application of foo has been nested into an if-statement and in
the second one the for-loop has been replaced by a while-loop. GR was not able to
detect those similarities but by using G2V

a we can reveal them.
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sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepfloatq, sum, 0.0q, “ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, “ptypepintq, i, 1q, whilepďpi, nq,

“psum,`psum, iqq, “psum,`psum, iqq,

“pprod, ˚pprod, iqq, “pprod, ˚pprod, iqq,

ifp““p%pn, 2q, 0q, foopsum, prodq,``piqqq

foopsum, prodqqqq

Figure 2.19: The clones from Figure 2.18 as unranked terms.

Figure 2.19 shows the term encodings of the abstract syntax trees for two clones.
For generalizing the (term representation of the) original code and one of the clones,
we compute the admissible alignment of longest length (laa). We will discuss the
computation of alignments in subsection 2.2.8. In both examples, the laa is unique. (In
general this is not the case.) The length of the laa for the original code and the first
clone is 41 which is the number of all symbols in the term representation of the original
program. For the original code and the second clone it contains 38 symbols. Figure 2.20
shows the results after applying G2V

a to the term representation of the original code
and either of the clones with respect to the corresponding laa.

sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepfloatq, sum, 0.0q, “ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, X̃p“ptypepintq, i, 1q, Ỹpďpi, nq, x̃,

“psum,`psum, iqq, “psum,`psum, iqq,

“pprod, ˚pprod, iqq, “pprod, ˚pprod, iqq,

X̃pfoopsum, prodqqqq, foopsum, prodqqq

Figure 2.20: Result of running G2V
a to detect the clones from Figure 2.19.

The first result is pretty clear. The input terms can be obtained from the generaliza-
tion by instantiating the variable X̃ either with ifp““p%pn, 2q, 0q, ˝q or the hole. From
the second generalization, the term representation of the original code can be obtained
by applying the substitution tX̃ ÞÑ forp˝q, Ỹ ÞÑ ˝, x̃ ÞÑ ``piqu, and the term repre-
sentation of the second clone can be obtained by applying the substitution tX̃ ÞÑ ˝,
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Ỹ ÞÑ whilep˝,``piqq, x̃ ÞÑ εu. The information about the differences is available from
the store, as usual.

We consider two more examples: the left clone from Figure 2.5 which is of Type-2
and another cone of Type-3. The clones are illustrated in Figure 2.21.

1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + ( i ∗ i ) ;
6 prod = prod ∗ ( i ∗ i ) ;
7 foo (sum , prod ) ; }}

void sumProd ( int n) {
f loat sum = 0 . 0 ;
f loat prod = 1 . 0 ;
for ( int i =1; i<=n ; i++) {

sum = sum + i ;
prod = prod ∗ i ;
bar (sum , prod ) ; }}

Figure 2.21: Two clones of the program from Figure 2.19.

The translation into an unranked term of the left clone can be found at Figure 2.6
and in the right clone the function application foopsum, prodq from the original code
has to be replaced by barpsum, prodq. Running the algorithm G2V

a with the laas of the
original program and one of the clones gives in both cases a unique result modulo ».
The results are presented in Figure 2.22.

sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepfloatq, sum, 0.0q, “ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, X̃piqqq, “psum,`psum, iqq,

“pprod, ˚pprod, X̃piqqq, “pprod, ˚pprod, iqq,

foopsum, prodqqq X̃psum, prodqqq

Figure 2.22: Result of running G2V
a to detect the clones from Figure 2.21.

In the first case there are again laas of length 41, they contain all symbols from the
term representation of the original program. Notice that the laa is not unique, there are
4 laas, but all of them lead to the same result. The generalization G2V

a computes in this
case is strictly less general than any generalization computed by GR (see Figure 2.7)
for the same input. In the second clone, the application of foo has been changed
into bar, hence the similarities appear under different heads. This cannot be detected
by first-order generalization. However, the context variable X̃ does not tell us that
the similarities appear at the same level of the input syntax trees. In section 2.3 we
introduce function variables along with term variables to preserve such information.
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2.2.6 Properties of the Algorithm G2V
a

Here we show that G2V
a terminates and indeed computes a rigid lgg that is unique

modulo » for two hedges and their admissible alignment. We also show that G2V
a is

coherent and its computational complexity is quadratic in time and linear in space on
the size of the input. The algorithm G2V

a maintains the following four invariants. We
will use them to prove soundness of the algorithm.

Lemma 2.15 (Invariant 1). If tx̃0 : s̃0 fi q̃0; X̃0 : ˝ fi ˝; a0u; S0; σ0 ùñ
˚ Pn; Sn; σn is

a derivation in G2V
a , then for all x̃n : s̃n fi q̃n; X̃n : c̃n fi d̃n; an P Pn either an ‰ e or

c̃n “ d̃n “ ˝.

Proof. The only rules that reduce the length of an alignment are Spl-H and App-A.
The rule Spl-H splits an AUE such that the alignments of the two new AUEs are not
empty. Therefore App-A is the only rule which transforms an AUE with a nonempty
alignment into one with an empty alignment. Every AUE derived by App-A has the
form x̃n : s̃n fi q̃n; X̃n : ˝ fi ˝; an.

Lemma 2.16 (Invariant 2). Let P0;S0;σ0 ùñ
˚ Pn;Sn;σn be a derivation in G2V

a . If
for all tx̃1 : s̃1 fi q̃1; X̃1 : c̃1 fi d̃1; a1, x̃2 : s̃2 fi q̃2; X̃2 : c̃2 fi d̃2; a2u Ď P0 Y S0 holds
x̃1 ‰ x̃2 and X̃1 ‰ X̃2, then this implies x̃3 ‰ x̃4 and X̃3 ‰ X̃4 for all tx̃3 : s̃3 fi q̃3;
X̃3 : c̃3 fi d̃3; a3, x̃4 : s̃4 fi q̃4; X̃4 : c̃4 fi d̃4; a4u Ď Pn Y Sn.

Proof. Looking at the rules, it is easy to see that no rule application duplicates a
variable of an AUE, and every fresh variable is only used in one AUE.

Lemma 2.17 (Invariant 3). Let P0;S0;σ0 ùñ
˚ Pn;Sn;σn be a derivation in G2V

a . If
for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0 P P0 the variables x̃0, X̃0 only appear together as
term X̃0px̃0q in σ0 then this implies that for all x̃n : s̃n fi q̃n; X̃n : c̃n fi d̃n; an P Pn the
variables x̃n, X̃n only appear together as term X̃npx̃nq in σn. (This implies that they do
not appear in Dompσnq.)

Proof. The rules Abs-L/Abs-R are trivial. From Lemma 2.16 we know that the variables
of all the AUEs in Pi Y Si, 0 ď i ď n are pairwise disjoint. Furthermore, once a
generalization variable appears in Si, it will never appear in Pj again, for all i ď j ď n,
because there is no rule which moves an AUE from the store Sj back to the problem set
Pj . Therefore, for any generalization variable occurring in Pj , the rules Res-C, Mer-S,
Clr-S (which only operate on generalization variables within Si) have no effect on their
appearance in σj . The rule Sol-H trivially maintains this property, as it moves an AUE
to the store and therefore the condition is lifted for the corresponding variables. The
rule App-A moves the selected AUE to the store such that the condition is lifted for
those generalization variables, e.g. x̃ and X̃. Furthermore it introduces a new AUE
with two fresh variables, say ỹ and Ỹ , and it composes the mapping σitx̃ ÞÑ a1pỸ pỹqqu,
which again maintains the property that ỹ, Ỹ only appear together as term Ỹ pỹq in
σi`1. The reasoning for the rule Spl-H is very similar. It introduces two new AUEs and
also maintains this property.

Lemma 2.18 (Invariant 4). Let P0; S0; σ0 such that for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0;
a0 P P0 the variables x̃0, X̃0 only appear together as term X̃0px̃0q in σ0. If P0; S0;
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σ0 ùñ
˚ Pn; Sn; σn is a derivation in G2V

a then for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0;
a0 P P0 Y S0 holds

§ X̃0px̃0qσ0σLpP0 Y S0q “ X̃0px̃0qσnσLpPn Y Snq,

§ X̃0px̃0qσ0σRpP0 Y S0q “ X̃0px̃0qσnσRpPn Y Snq.

Proof. By induction on the length of derivations. The trivial base case is the derivation
of length zero. Let P0; S0; σ0 such that for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0 P P0 the
variables x̃0, X̃0 only appear together as term X̃0px̃0q in σ0. Note that by Lemma 2.17
this property is an invariant of G2V

a . Let P0; S0; σ0 ùñ
˚ Pn´1; Sn´1; σn´1 ùñ Pn;

Sn; σn be a derivation in G2V
a . As induction hypothesis (IH) we assume that for all

x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0 P P0 Y S0 holds

§ X̃0px̃0qσ0σLpP0 Y S0q “ X̃0px̃0qσn´1σLpPn´1 Y Sn´1q,

§ X̃0px̃0qσ0σRpP0 Y S0q “ X̃0px̃0qσn´1σRpPn´1 Y Sn´1q.

By case analysis on the applied rule, we will show that

§ X̃0px̃0qσn´1σLpPn´1 Y Sn´1q “ X̃0px̃0qσnσLpPn Y Snq,

§ X̃0px̃0qσn´1σRpPn´1 Y Sn´1q “ X̃0px̃0qσnσRpPn Y Snq.

We will only illustrate the proof for the left hand side X̃0px̃0qσn´1σLpPn´1 Y Sn´1q “
X̃0px̃0qσnσLpPn Y Snq, serving as representative of both sides and skip the rule Abs-R
which is a mirror image of Abs-L. For the sake of readability we will omit writing the
alignments as we do not care about them in this proof.

Spl-H. Pn´1 “ P Y tx̃ : s̃ fi q̃; X̃ : c̃ fi d̃u,

Pn “ P Y tỹ : s̃|iki1 fi q̃|jkj1 ; Ỹ : ˝ fi ˝u Y tz̃ : s̃|im
i``
k

fi q̃|jm
j``
k

; Z̃ : ˝ fi ˝u,

Sn “ Sn´1 Y tx̃ : ε fi ε; X̃ : c̃rs̃|i
- -
1

1 , ˝, s̃|
|s̃|

i``m
s fi d̃rq̃|

j - -1
1 , ˝, q̃|

|q̃|

j``m
su,

σn “ σn´1tx̃ ÞÑ pỸ pỹq, Z̃pz̃qqu,

s̃ “ ps̃|
i - -1
1 , s̃|iki1 , s̃|

im
i``
k

, s̃|
|s̃|

i``m
q, q̃ “ pq̃|

j - -1
1 , q̃|jkj1 , q̃|

jm
j``
k

, q̃|
|q̃|

j``m
q.

Using Definition 2.32 we have the equality

σn´1σLpPn´1 Y Sn´1q

“σn´1σLptx̃ : s̃ fi q̃; X̃ : c̃ fi d̃u Y P Y Sn´1q

“σn´1tx̃ ÞÑ s̃, X̃ ÞÑ c̃uσLpP Y Sn´1q

“σn´1tx̃ ÞÑ ps̃|
i - -1
1 , s̃|iki1 , s̃|

im
i``
k

, s̃|
|s̃|

i``m
q, X̃ ÞÑ c̃uσLpP Y Sn´1q.

The variables ỹ, Ỹ , z̃, Z̃ are fresh and therefore it holds for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi

d̃0 P P0 Y S0 that

X̃0px̃0qσn´1tx̃ ÞÑ ps̃|
i - -1
1 , s̃|iki1 , s̃|

im
i``
k

, s̃|
|s̃|

i``m
q, X̃ ÞÑ c̃uσLpP Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ ps̃|
i - -1
1 , Ỹ pỹq, Z̃pz̃q, s̃|

|s̃|

i``m
q, X̃ ÞÑ c̃u

tỹ ÞÑ s̃|iki1 , Ỹ ÞÑ ˝utz̃ ÞÑ s̃|im
i``
k

, Z̃ ÞÑ ˝uσLpP Y Sn´1q
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“ X̃0px̃0qσn´1tx̃ ÞÑ ps̃|
i - -1
1 , Ỹ pỹq, Z̃pz̃q, s̃|

|s̃|

i``m
q, X̃ ÞÑ c̃u

σLptỹ : s̃|iki1 fi q̃|jkj1 ; Ỹ : ˝ fi ˝u Y tz̃ : s̃|im
i``
k

fi q̃|jm
j``
k

; Z̃ : ˝ fi ˝u Y P Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ ps̃|
i - -1
1 , Ỹ pỹq, Z̃pz̃q, s̃|

|s̃|

i``m
q, X̃ ÞÑ c̃uσLpPn Y Sn´1q.

Further on, by Lemma 2.17 the variables x̃, X̃ only appear together as term X̃px̃q in
σn´1 which leads to

X̃0px̃0qσn´1tx̃ ÞÑ ps̃|
i - -1
1 , Ỹ pỹq, Z̃pz̃q, s̃|

|s̃|

i``m
q, X̃ ÞÑ c̃uσLpPn Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ pỸ pỹq, Z̃pz̃qq, X̃ ÞÑ c̃rs̃|
i - -1
1 , ˝, s̃|

|s̃|

i``m
suσLpPn Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ pỸ pỹq, Z̃pz̃qqutx̃ ÞÑ ε, X̃ ÞÑ c̃rs̃|
i - -1
1 , ˝, s̃|

|s̃|

i``m
suσLpPn Y Sn´1q

“ X̃0px̃0qσnσLptx̃ : ε fi ε; X̃ : c̃rs̃|i
- -
1

1 , ˝, s̃|
|s̃|

i``m
s fi d̃rq̃|

j - -1
1 , ˝, q̃|

|q̃|

j``m
su Y Pn Y Sn´1q

“ X̃0px̃0qσnσLpPn Y Snq.

App-A. Pn´1 “ tx̃ : ps̃l, a1ps̃q, s̃rq fi pq̃l, a1pq̃q, q̃rq; X̃ : c̃ fi d̃u Y P ,

Pn “ tỹ : s̃ fi q̃; Ỹ : ˝ fi ˝u Y P ,

Sn “ Sn´1 Y tx̃ : ε fi ε; X̃ : c̃rs̃l, ˝, s̃rs fi d̃rq̃l, ˝, q̃rsu,

σn “ σn´1tx̃ ÞÑ a1pỸ pỹqqu.
By Definition 2.32 we get

σn´1σLpPn´1 Y Sn´1q

“σn´1σLptx̃ : ps̃l, a1ps̃q, s̃rq fi pq̃l, a1pq̃q, q̃rq; X̃ : c̃ fi d̃u Y P Y Sn´1q

“σn´1tx̃ ÞÑ ps̃l, a1ps̃q, s̃rq, X̃ ÞÑ c̃uσLpP Y Sn´1q.

The variables ỹ, Ỹ are fresh and therefore it holds for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0 P
P0 Y S0 that

X̃0px̃0qσn´1tx̃ ÞÑ ps̃l, a1ps̃q, s̃rq, X̃ ÞÑ c̃uσLpP Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ ps̃l, a1pỸ pỹqq, s̃rq, X̃ ÞÑ c̃utỹ ÞÑ s̃, Ỹ ÞÑ ˝uσLpP Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ ps̃l, a1pỸ pỹqq, s̃rq, X̃ ÞÑ c̃uσ
L
ptỹ : s̃ fi q̃; Ỹ : ˝ fi ˝u Y P Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ ps̃l, a1pỸ pỹqq, s̃rq, X̃ ÞÑ c̃uσLpPn Y Sn´1q.

Further on, by Lemma 2.17 the variables x̃, X̃ only appear together as term X̃px̃q in
σn´1 which leads to

X̃0px̃0qσn´1tx̃ ÞÑ ps̃l, a1pỸ pỹqq, s̃rq, X̃ ÞÑ c̃uσLpPn Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ a1pỸ pỹqq, X̃ ÞÑ c̃rs̃l, ˝, s̃rsuσLpPn Y Sn´1q

“ X̃0px̃0qσn´1tx̃ ÞÑ a1pỸ pỹqqutx̃ ÞÑ ε, X̃ ÞÑ c̃rs̃l, ˝, s̃rsuσLpPn Y Sn´1q

“ X̃0px̃0qσnσLptx̃ : ε fi ε; X̃ : c̃rs̃l, ˝, s̃rs fi d̃rq̃l, ˝, q̃rsu Y Pn Y Sn´1q

“ X̃0px̃0qσnσLpPn Y Snq.
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Abs-L. Pn´1 “ tx̃ : ps̃l, hps̃q, s̃rq fi q̃; X̃ : c̃ fi d̃u Y P ,

Pn “ tx̃ : s̃ fi q̃; X̃ : c̃rs̃l, hp˝q, s̃rs fi d̃u Y P ,
Sn “ Sn´1, σn “ σn´1.

Starting with Definition 2.32 we get

σn´1σLpPn´1 Y Sn´1q

“σnσLptx̃ : ps̃l, hps̃q, s̃rq fi q̃; X̃ : c̃ fi d̃u Y P Y Snq

“σntx̃ ÞÑ ps̃l, hps̃q, s̃rq, X̃ ÞÑ c̃uσLpP Y Snq.

By Lemma 2.17 the variables x̃, X̃ only appear together as term X̃px̃q in σn´1 “ σn.
Therefore it follows that for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0 P P0 Y S0 holds

X̃0px̃0qσntx̃ ÞÑ ps̃l, hps̃q, s̃rq, X̃ ÞÑ c̃uσLpP Y Snq

“ X̃0px̃0qσntx̃ ÞÑ s̃, X̃ ÞÑ c̃rs̃l, hp˝q, s̃rsuσLpP Y Snq

“ X̃0px̃0qσnσLptx̃ : s̃ fi q̃; X̃ : c̃rs̃l, hp˝q, s̃rs fi d̃u Y P Y Snq

“ X̃0px̃0qσnσLpPn Y Snq.

Sol-H. Pn “ Pn´1ztx̃ : s̃ fi q̃; X̃ : ˝ fi ˝u,
Sn “ Sn´1 Y tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝u,
σn “ σn´1tX̃ ÞÑ ˝u.

Obviously the sets Pn´1YSn´1 and PnYSn are equal such that σLpPn´1YSn´1q “
σLpPnYSnq and furthermore tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; eu P PnYSn leads to X̃σLpPnYSnq “
˝, by Definition 2.32. Finally we get

σn´1σLpPn Y Snq

“σn´1tX̃ ÞÑ ˝uσLpPn Y Snq

“σnσLpPn Y Snq.

Res-C. Pn “ Pn´1,

Snztx̃ : ε fi ε; X̃ : 9c fi 9d, ỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝u
“ Sn´1ztx̃ : ε fi ε; X̃ : ps̃l, 9c, s̃rq fi pq̃l, 9d, q̃rqu,

σn “ σn´1tX̃ ÞÑ pỹ, X̃p˝q, z̃qu.
Therefore by Definition 2.32 holds

σn´1σLpPn´1 Y Sn´1q

“σn´1tX̃ ÞÑ ps̃l, 9c, s̃rq, x̃ ÞÑ εuσLpPn´1Y

Sn´1ztx̃ : ε fi ε; X̃ : ps̃l, 9c, s̃rq fi pq̃l, 9d, q̃rquq
“σn´1tX̃ ÞÑ ps̃l, 9c, s̃rq, x̃ ÞÑ εuσLpPn´1Y

Snztx̃ : ε fi ε; X̃ : 9c fi 9d, ỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝uq
“σn´1tX̃ ÞÑ ps̃l, X̃p˝q, s̃rqutx̃ ÞÑ ε, X̃ ÞÑ 9cuσLpPn´1Y

Snztx̃ : ε fi ε; X̃ : 9c fi 9d, ỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝uq
“σn´1tX̃ ÞÑ ps̃l, X̃p˝q, s̃rquσLpPn´1Y
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Snztỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝uq.

The variables ỹ, z̃, Ỹ , Z̃ are fresh and therefore it holds for all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi

d̃0 P P0 Y S0 that

X̃0px̃0qσn´1tX̃ ÞÑ ps̃l, X̃p˝q, s̃rquσLpPn´1Y

Snztỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝uq
“ X̃0px̃0qσn´1tX̃ ÞÑ pỹ, X̃p˝q, z̃qutỹ ÞÑ s̃l, z̃ ÞÑ s̃r, Ỹ ÞÑ ˝, Z̃ ÞÑ ˝uσLpPn´1Y

Snztỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝uq
“ X̃0px̃0qσn´1tX̃ ÞÑ pỹ, X̃p˝q, z̃quσLpPn´1 Y Snq

“ X̃0px̃0qσnσLpPn´1 Y Snq

“ X̃0px̃0qσnσLpPn Y Snq.

Mer-S. Pn “ Pn´1,

Sn “ Sn´1ztx̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u,

x̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃ P Sn,

σn “ σn´1tx̃2 ÞÑ x̃1, X̃2 ÞÑ X̃1p˝qu.
Therefore by Definition 2.32 holds

σLpPn´1 Y Sn´1q

“ tx̃2 ÞÑ s̃, X̃2 ÞÑ c̃uσLpPn´1 Y Sn´1ztx̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃uq

“ tx̃2 ÞÑ s̃, X̃2 ÞÑ c̃uσLpPn´1 Y Snq.

From the fact x̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃ P Sn follows that x̃1σLpPn´1 Y Snq “ s̃ and
X̃1σLpPn´1 Y Snq “ c̃, which finally leads to

σn´1tx̃2 ÞÑ s̃, X̃2 ÞÑ c̃uσLpPn´1 Y Snq

“σn´1tx̃2 ÞÑ x̃1, X̃2 ÞÑ X̃1p˝quσLpPn´1 Y Snq

“σnσLpPn´1 Y Snq

“σnσLpPn Y Snq.

Clr-S. Pn “ Pn´1,

Sn “ Sn´1ztx̃ : ε fi ε; X̃ : ˝ fi ˝u,
σn “ σn´1tx̃ ÞÑ ε, X̃ ÞÑ ˝u.

By Definition 2.32 it holds that

σn´1σLpPn´1 Y Sn´1q

“σn´1tx̃ ÞÑ ε, X̃ ÞÑ ˝uσLpPn´1 Y Sn´1ztx̃ : ε fi ε; X̃ : ˝ fi ˝uq
“σn´1tx̃ ÞÑ ε, X̃ ÞÑ ˝uσLpPn´1 Y Snq

“σnσLpPn´1 Y Snq

“σnσLpPn Y Snq.
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This lemma has a corollary which states that for the invariant, the initial substitution
is irrelevant:

Corollary 2.19. If P0; S0; ϑ0 ùñ
˚ Pn; Sn; ϑ0ϑ1 . . . ϑn is a derivation in G2V

a then for
all x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0 P P0 Y S0 holds

§ X̃0px̃0qσL
pP0 Y S0q “ X̃0px̃0qϑ1 . . . ϑnσL

pPn Y Snq,

§ X̃0px̃0qσR
pP0 Y S0q “ X̃0px̃0qϑ1 . . . ϑnσR

pPn Y Snq.

Using this results, we state now the main theorems which together give us correctness
and uniqueness of the generalizations that are computed by G2V

a . From Theorem 2.21
(Soundness) follows coherence of G2V

a .

Theorem 2.20 (Termination). The algorithm G2V
a terminates on any input.

Proof. We define the complexity measure of the triple P ; S; σ as a tuple of multisets
pMP ,MSq, where

MP “ t}s̃} ` }q̃} | x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a P P u,
MS “ t}s̃} ` }q̃} ` }c̃} ` }d̃} | x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a P Su.

The measures are compared by the well-founded lexicographic ordering. Each rule
strictly reduces the complexity of the triple P ; S; σ.

The Soundness Theorem shows that G2V
a indeed computes rigid generalizations. Be-

sides, the store keeps the information which indicates how to obtain the initial hedges
from the generalization:

Theorem 2.21 (Soundness). Let P be a set of AUEs of the form tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝;
au. Every exhaustive rule application in G2V

a yields a derivation P ; H; Id ùñ` H; S; σ
where g̃ “ X̃px̃qσ is a rigid generalization of s̃ and q̃ with respect to a and the store S
records all the differences such that g̃σ

L
pSq “ s̃ and g̃σ

R
pSq “ q̃.

Proof. We will proceed in the following way:

1. For any arbitrary fixed AUE in P , there is a rule in G2V
a which is applicable.

2. g̃ is a supporting generalization of s̃ and q̃ with respect to a.
G2V

a maintains the invariant that P Y S is a set of AUEs.
S records all the differences such that g̃σLpSq “ s̃ and g̃σRpSq “ q̃.

3. g̃ is a rigid generalization of s̃ and q̃ with respect to a.

First we introduce some auxiliary notations used in the proof. The notation ϑki is
used for a substitution composition ϑiϑi`1 . . . ϑk. Given an AUE x̃ : s̃ fi q̃; X̃ : c̃ fi d̃;
a P P we denote by å the admissible alignment of c̃rs̃s and d̃rq̃s. It is obtained by
extending a “ a1xi1¨I1, j1¨J1y . . . amxim¨Im, jm¨Jmy with the positions of the holes in c̃,
d̃ donated I˝¨i˝, J˝¨j˝, respectively, in the way å “ a1xI˝¨pi˝` i1q¨I1, J˝¨pj˝` j1q¨J1y . . .
amxI˝¨pi˝ ` imq¨Im, J˝¨pj˝ ` jmq¨Jmy.
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Ad 1. Show that for any x̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a P P with a being an admissible
alignment of s̃ and q̃ there is a rule which can be applied. If a “ e then the rule Sol-H is
applicable by Lemma 2.15. Let a “ a1xi1¨I1, j1¨J1y . . . amxim¨Im, jm¨Jmy ‰ e. From the
condition of Spl-H it follows that the rule Spl-H is applicable iff i1 ‰ im and j1 ‰ jm.
Otherwise either i1 “ ¨ ¨ ¨ “ im or j1 “ ¨ ¨ ¨ “ jm. W.l.o.g. we assume i1 “ ¨ ¨ ¨ “ im. If
I1 ‰ ε then Abs-L is applicable, therefore we furthermore assume I1 “ ε, which gives us
an alignment of the form a1xi, j1¨J1y . . . amxi¨Im, jm¨Jmy. If we also have j1 “ ¨ ¨ ¨ “ jm,
then either we can apply Abs-R or App-A. (Note that, if a1xi, jya2xI2, J2y . . . amxIm,
Jmy is an admissible alignment of s̃ and q̃, then a1 is the symbol at position i in s̃ and at
position j in q̃.) This leaves us with the case where j1 ‰ jm, leading to j1¨J1 ­Ă jm¨Jm
but i Ă i¨Im which is a collision and cannot appear in an admissible alignment.

Ad 2. We use well-founded induction on the length of derivations. Our base case is
the derivation of length zero. We know that the initial problem set P is a set of AUEs
and for any AUE in P a rule is applicable. It follows that for the base case holds P “ H.
Furthermore all the AUEs in S have an empty alignment. Every generalization of two
hedges is supporting with respect to an empty alignment. Therefore Corollary 2.19
covers the base case. Let P0; S0; ϑ0 ùñ P1; S1; ϑ0ϑ1 ùñ

˚ H; Sn; ϑn0 be a derivation
in G2V

a . As induction hypothesis (IH) we assume that

§ X̃1px̃1qϑ
n
2 is a supporting generalization of c̃1rs̃1s and d̃1rq̃1s with respect to å1

for all x̃1 : s̃1 fi q̃1; X̃1 : c̃1 fi d̃1; a1 P P1 Y S1,

By case analysis on the applied rule, we will show that this implies

§ X̃0px̃0qϑ
n
1 is a supporting generalization of c̃0rs̃0s and d̃0rq̃0s with respect to å0

for any arbitrary but fixed x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0 P P0 Y S0,

Spl-H. a0 “ a1xi1¨I1, j1¨J1y . . . akxik¨Ik, jk¨Jky
ak`1xik`1¨Ik`1, jk`1¨Jk`1y . . . amxim¨Im, jm¨Jmy,

ϑ1 “ tx̃0 ÞÑ pỸ pỹq, Z̃pz̃qqu.

By the IH we know that Ỹ pỹqϑn2 is a supporting generalization of s̃0|
ik
i1

and q̃0|
jk
j1

with

respect to a1xpi1´ i
- -
1 q¨I1, pj1´ j

- -
1 q¨J1y . . . akxpik ´ i

- -
1 q¨Ik, pjk ´ j

- -
1 q¨Jky, and Z̃pz̃qϑn2 is

a supporting generalization of s̃0|
im
i``
k

and q̃0|
jm
j``
k

with respect to ak`1xpik`1 ´ ikq¨Ik`1,

pjk`1 ´ jkq¨Jk`1y . . . amxpim ´ ikq¨Im, pjm ´ jkq¨Jmy. It follows that pỸ pỹq, Z̃pz̃qqϑn2 “
x̃0ϑ

n
1 is a supporting generalization of s̃0|

im
i1

and q̃0|
jm
j1

with respect to a1xpi1 ´ i - -1 q¨I1,
pj1 ´ j

- -
1 q¨J1y . . . amxpim ´ i

- -
1 q¨Im, pjm ´ j

- -
1 q¨Jmy. Notice that our contexts are hedges.

Hence X̃0px̃0qϑ
n
1 is a supporting generalization of pr̃1, s̃0|

im
i1
, r̃2q and pr̃3, q̃0|

jm
j1
, r̃4q with

respect to a1xpi1 ´ i - -1 ` |r̃1|q¨I1, pj1 ´ j - -1 ` |r̃3|q¨J1y . . . amxpim ´ i - -1 ` |r̃1|q¨Im, pjm ´

j - -1 ` |r̃3|q¨Jmy, where r̃1, r̃2, r̃3, r̃4 are arbitrary hedges. Finally we set r̃1 “ s̃0|
i - -1
1 , r̃2 “

s̃0|
|s̃0|

i``m
, r̃3 “ q̃0|

j - -1
1 , r̃4 “ q̃0|

|q̃0|

j``m
to get X̃0px̃0qϑ

n
1 is a supporting generalization of s̃0 and

q̃0 with respect to a1xi1¨I1, j1¨J1y . . . amxim¨Im, jm¨Jmy “ a0 and it also is a supporting
generalization of c̃0rs̃0s and d̃0rq̃0s with respect to å0.

App-A. s̃0 “ ps̃l, a1ps̃1q, s̃rq, q̃0 “ pq̃l, a1pq̃1q, q̃rq,
a0 “ a1xi, jy a2xi¨I2, j¨J2y . . . amxi¨Im, j¨Jmy,
ϑ1 “ tx̃0 ÞÑ a1pỸ pỹqqu.
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By IH Ỹ pỹqϑn2 is a supporting generalization of s̃1 and q̃1 with respect to a2xI2,
J2y . . . amxIm, Jmy. It follows that a1pỸ pỹqϑ

n
2 q “ x̃0ϑ

n
1 is a supporting generalization

of the terms a1ps̃1q and a1pq̃1q with respect to a1x1, 1ya2x1¨I2, 1¨J2y . . . amx1¨Im, 1¨Jmy.
Similarly as for Spl-H we conclude that X̃0px̃0qϑ

n
1 is a supporting generalization of ps̃l,

a1ps̃1q, s̃rq and pq̃l, a1pq̃1q, q̃rq with respect to a0 where i “ |s̃l| ` 1 and j “ |q̃l| ` 1. It
also is a supporting generalization of c̃0rs̃0s and d̃0rq̃0s with respect to å0.

Abs-L. x̃0 “ x̃1, X̃0 “ X̃1,
s̃0 “ ps̃l, hps̃1q, s̃rq, q̃0 “ q̃1,

c̃1 “ c̃0rs̃l, hp˝q, s̃rs, d̃0 “ d̃1,
a0 “ a1xi¨I1, J1y . . . amxi¨Im, Jmy,
ϑ1 “ Id.

It directly follows c̃1rs̃1s “ c̃0rs̃l, hp˝q, s̃rsrs̃1s “ c̃0rs̃l, hps̃1q, s̃rs “ c̃0rs̃0s. By IH
X̃1px̃1qϑ

n
2 “ X̃0px̃0qϑ

n
1 is a supporting generalization of c̃1rs̃1s and d̃1rq̃0s with respect

to ˚a1xI1, J1y . . . amxIm, Jmy. From Corollary 2.19 we know that X̃0px̃0qϑ
n
1 is a general-

ization of c̃0rs̃0s and d̃0rq̃0s. It follows that X̃0px̃0qϑ
n
1 is a supporting generalization of

c̃0rs̃l, hps̃1q, s̃rs and d̃0rq̃0s with respect to å0, were i “ |s̃l| ` 1.

Abs-R. The reasoning is the same as for Abs-L.

Sol-H, Res-C, Mer-S, Clr-S. Those remaining rules operate only on AUEs with
empty alignments. Every generalization of two hedges is supporting with respect to an
empty alignment. Therefore Corollary 2.19 covers those cases.

Summary. It follows that G2V
a maintains the invariant that P Y S is a set of AUEs.

Let P be a set of AUEs of the form tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au and P ; H; Id ùñ` H;
S; σ be a derivation in G2V

a . By Definition 2.32 we have X̃px̃qσLptx̃ : s̃ fi q̃; X̃ : ˝ fi ˝;
auq “ s̃ and X̃px̃qσRptx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; auq “ q̃. From Lemma 2.18 follows that
X̃px̃qσσLpSq “ s̃ and X̃px̃qσσRpSq “ q̃.

Ad 3. Let P ; H; Id ùñ` H; S; σ be a derivation in G2V
a and tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝;

au P P arbitrary. From above we know that g̃ “ X̃px̃qσ is a supporting generaliza-
tion of s̃ and q̃ with respect to a. First we discuss the following property of a rigid
generalization:

§ There are substitutions σ, ϑ with g̃σ “ s̃ and g̃ϑ “ q̃ such that all the contexts in
σ and ϑ are singleton contexts.

The rule Res-C eliminates all those contexts which are hedges from the store S and we
already showed that g̃σLpSq “ s̃ and g̃σRpSq “ q̃. Therefore we just set σ “ σLpSq and
ϑ “ σRpSq.

Let r̃ be an arbitrary hedge. We define the predicate Rpr̃q to be true iff r̃ is a rigid
hedge, i.e., the following properties hold:

1. No context variable in s̃ applies to the empty hedge.

2. s̃ doesn’t contain consecutive hedge variables.



2.2 Higher-Order Unranked Anti-Unification 2V 57

3. s̃ doesn’t contain vertical chains of (context) variables.

4. s̃ doesn’t contain context variables with a hedge variable as the first or the last
argument (i.e., no subterms of the form X̃px̃, . . . q and X̃p. . . , x̃qq.

Let P0; S0; ϑ0 ùñ P1; S1; ϑ0ϑ1 ùñ
˚ H; Sn; ϑn0 be an exhaustive derivation in G2V

a .
As IH we assume that for all x̃1 : s̃1 fi q̃1; X̃1 : c̃1 fi d̃1; a1 P P1 holds RpX̃1px̃1qϑ

n
2 q, and

furthermore for all ỹ1 : s̃1 fi q̃1; Ỹ1 : c̃1 fi d̃1 P S1 holds Rpỹ1ϑ
n
2 q and RpỸ1p˝qϑ

n
2 q. (Note

that from RpX̃1px̃1qϑ
n
2 q follows Rpx̃1ϑ

n
2 q and RpX̃1p˝qϑ

n
2 q.) The trivial base case is the

derivation of length zero where P “ H and ϑ1 “ Id.

By case analysis on the applied rule, we will show that this implies for any arbitrary
but fixed x̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0 P P0 holds RpX̃0px̃0qϑ

n
1 q, and for any ỹ0 : s̃0 fi q̃0;

Ỹ0 : c̃0 fi d̃0 P S0 holds Rpỹ0ϑ
n
1 q and RpỸ0p˝qϑ

n
1 q.

Abs-L, Abs-R. P0 “ P Y tx̃ : s̃0 fi q̃0; X̃ : c̃0 fi d̃0; a0u,

P1 “ P Y tx̃ : s̃1 fi q̃1; X̃ : c̃1 fi d̃1; a1u,
S0 “ S1, ϑ1 “ Id.

Trivial because X̃px̃qϑn1 “ X̃px̃qϑn2 and S0 “ S1.

App-A. P0 “ P Y tx̃ : s̃0 fi q̃0; X̃ : c̃0 fi d̃0; a0u,
P1 “ P Y tỹ : s̃1 fi q̃1; Ỹ : ˝ fi ˝; a1u,

S0 “ S1ztx̃ : ε fi ε; X̃ : c̃1 fi d̃1u,
ϑ1 “ tx̃ ÞÑ a1pỸ pỹqqu.

We have X̃px̃qϑn1 “ X̃pa1pỸ pỹqqqϑ
n
2 . By IH it holds RpỸ pỹqϑn2 q and RpX̃p˝qϑn2 q.

It follows that all the properties also hold for X̃pa1pỸ pỹqqqϑ
n
2 .

Sol-H. P0 “ P1 Y tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; eu,
S0 “ S1ztx̃ : s̃ fi q̃; X̃ : ˝ fi ˝u,
ϑ1 “ tX̃ ÞÑ ˝u.

Substitution composition gives X̃px̃qϑn1 “ x̃ϑn2 and by IH we have Rpx̃ϑn2 q.

Mer-S. P0 “ P1,

S0 “ S Y tx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃u Y tx̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u,

S1 “ S Y tx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃u,

ϑ1 “ tx̃2 ÞÑ x̃1, X̃2 ÞÑ X̃1p˝qu.

Hence x̃2ϑ
n
1 “ x̃1ϑ

n
2 and X̃2p˝qϑ

n
1 “ X̃1p˝qϑ

n
2 . By IH holds that Rpx̃1ϑ

n
2 q and

RpX̃1p˝qϑ
n
2 q.

Clr-S. P0 “ P1,

S0 “ S1 Y tx̃ : ε fi ε; X̃ : ˝ fi ˝u,
ϑ1 “ tx̃ ÞÑ ε, X̃ ÞÑ ˝u.

We have x̃ϑn1 “ Id and X̃p˝qϑn1 “ ˝, which is trivial.
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Res-C. P0 “ P1,

S0 “ S Y tx̃ : ε fi ε; X̃ : ps̃l, 9c, s̃rq fi pq̃l, 9d, q̃rqu
S1 “ S Y tx̃ : ε fi ε; X̃ : 9c fi 9d,

ỹ : s̃l fi q̃l; Ỹ : ˝ fi ˝, z̃ : s̃r fi q̃r; Z̃ : ˝ fi ˝u,
s̃l ‰ ε or s̃r ‰ ε or q̃l ‰ ε or q̃r ‰ ε,

ϑ1 “ tX̃ ÞÑ pỹ, X̃p˝q, z̃qu.

Therefore x̃ϑn1 “ x̃ϑn2 but X̃p˝qϑn1 “ pỹ, X̃p˝q, z̃qϑn2 . By IH we know that Rpỹϑn2 q,
RpX̃p˝qϑn2 q and Rpz̃ϑn2 q holds. Res-C is the only rule which maps a context variable to
a hedge. The rule itself produces AUEs where all the contexts are terms (not hedges).
Together with the condition s̃l ‰ ε or s̃r ‰ ε or q̃l ‰ ε or q̃r ‰ ε it follows that Res-C
never applies twice for the same context variable X̃. This considerations guarantee that
X̃p˝qϑn2 is a term (not a hedge) which implies that Rppỹ, X̃p˝q, z̃qϑn2 q holds.

Spl-H. P0 “ P Y tx̃ : s̃ fi q̃; X̃ : c̃ fi d̃; a0u

P1 “ P Y tỹ : s̃|iki1 fi q̃|jkj1 ; Ỹ : ˝ fi ˝; a1,

z̃ : s̃|im
i``
k

fi q̃|jm
j``
k

; Z̃ : ˝ fi ˝; a2u,

a0 “ a1xi1¨I1, j1¨J1y . . . ak`1xik`1¨Ik`1, jk`1¨Jk`1y
. . . amxim¨Im, jm¨Jmy,

a1 “ a1xpi1 ´ i
- -
1 q¨I1, pj1 ´ j

- -
1 q¨J1y

. . . akxpik ´ i
- -
1 q¨Ik, pjk ´ j

- -
1 q¨Jky,

a2 “ ak`1xpik`1´ikq¨Ik`1, pjk`1´jkq¨Jk`1y
. . . amxpim´ikq¨Im, pjm´jkq¨Jmy,

i1 “ ik or j1 “ jk,
i1 ‰ ik`1 and j1 ‰ jk`1,

S0 “ S1ztx̃ : ε fi ε; X̃ : c̃rs̃|i
- -
1

1 , ˝, s̃|
|s̃|

i``m
s fi d̃rq̃|

j - -1
1 , ˝, q̃|

|q̃|

j``m
su,

ϑ1 “ tx̃ ÞÑ pỸ pỹq, Z̃pz̃qqu.

We have X̃px̃qϑn1 “ X̃pỸ pỹq, Z̃pz̃qqϑn2 . By IH it holds RpỸ pỹqϑn2 q, RpZ̃pz̃qϑn2 q and
RpX̃p˝qϑn2 q. The condition i1 ‰ ik`1 implicitly demands that there are at least two
elements a1xi1¨I1, j1¨J1y and ak`1xik`1¨Ik`1, jk`1¨Jk`1y in a0 and it follows that both
alignments a1 and a2 are nonempty. We already know from above that Ỹ pỹqϑn2 and
Z̃pz̃qϑn2 are supporting generalizations which contain a1 and ak`1 respectively. Now we
will show that

§ Ỹ pỹqϑn2 is a term t1 (not an arbitrary hedge),

§ Z̃pz̃qϑn2 is a hedge of the form r̃, t2 where t2 is not a hedge variable.

Then it follows that Rpt1, r̃, t2q holds. Furthermore we have X̃pỸ pỹq, Z̃pz̃qqϑn2 “

X̃p˝qϑn2 rt1, r̃, t2s such that also RpX̃p˝qϑn2 rt1, r̃, t2sq holds because t1 and t2 are
nonempty terms different from a hedge variable.

Let s̃|iki1 “ pti1 , . . . , tikq and q̃|jkj1 “ ptj1 , . . . , tjkq where ti1 “ s̃|i1 , tik “ s̃|ik , tj1 “ s̃|j1 ,
tjk “ s̃|jk , then all the t’s are terms (allowing ti1 “ tik , tj1 “ tjk). Furthermore ti1 and
tj1 contain the function symbol corresponding to a1xi1¨I1, j1¨J1y, and similarly for tik ,
tjk and akxik¨Ik, jk¨Jky. We know that Ỹ pỹqϑn2 is a supporting generalization of pti1 , . . . ,
tikq and ptj1 , . . . , tjkq with respect to a1 “ a1x. . .y . . . akx. . .y and therefore Ỹ pỹqϑn2 is of
the form pr̃1, ta1 , . . . , tak , r̃2q where ta1 , tak denote those terms which contain a1 and ak
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respectively (allowing ta1 “ tak) and r̃1, r̃2 are arbitrary hedges. To finish this part we
have to show that r̃1 “ r̃2 “ ε. From above we also know that Ỹ pỹqϑn2σLpSnq “ pti1 , . . . ,
tikq and therefore r̃1, r̃2 can only contain variables which are mapped to ε by σLpSnq.
Because of RpỸ pỹqϑn2 q the hedges r̃1, r̃2 do not contain vertical chains of variables and
therefore no context variable can appear there also there are no consecutive hedge
variables. The only remaining possibility is that r̃1, r̃2 are either empty or a hedge
variable. If both are empty then we are done thus we assume w.l.o.g. that r̃1 “ x̃1 to
get a contradiction. Then there is an AUE tx̃1 : ε fi ε; X̃1 : c̃1 fi d̃1u P Sn. As X̃1 does
not appear below x̃1 it must have been terminated by some mapping ϑk “ tX̃1 ÞÑ ˝u,
2 ď k ď n. This implies that also c̃1 “ d̃1 “ ˝. By assumption the derivation
is exhaustive but for tx̃1 : ε fi ε; X̃1 : ˝ fi ˝u the rule Clr-S is applicable which is a
contradiction.

Let s̃|im
i``
k

“ p. . . , timq and q̃|jm
j``
k

“ p. . . , tjmq where tim “ s̃|im , tjm “ s̃|jm , then tim

and tjm are terms. Furthermore tim and tjm contain the function symbol corresponding
to amxim¨Im, jm¨Jmy. The further reasoning is the same as above. It follows that all
the properties are preserved when composing X̃pỸ pỹq, Z̃pz̃qqϑn2 .

The next theorem is the Completeness Theorem. It, essentially, says that for a given
alignment of two input hedges, a rigid generalization which is computed by G2V

a is least
general among all rigid generalizations of the same input.

Theorem 2.22 (Completeness). Let g̃ be a rigid generalization of s̃ and q̃ with respect
to a. Then there exists a derivation tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au; H; Id ùñ` H; S; σ
obtained by G2V

a such that g̃ ĺ X̃px̃qσ.

Proof. Let ϑ1, ϑ2, σ be substitutions, x̃ P VH, X̃ P VC fresh variables and S a set of
AUEs such that:

§ Dompϑ1q “ Dompϑ2q,

§ g̃ϑ1 “ s̃,

§ g̃ϑ2 “ q̃,

§ σ “ tx̃ ÞÑ g̃, X̃ ÞÑ ˝u,

§ S “ tỹ : ỹϑ1 fi ỹϑ2; Ỹ : ˝ fi ˝ | ỹ P Dompϑ1q, Ỹ is freshuY
tỹ : ε fi ε; Ỹ : Ỹ ϑ1 fi Ỹ ϑ2 | Ỹ P Dompϑ1q, ỹ is freshu.

We construct the final state P ; S; σ where P “ H, X̃px̃qσ “ g̃ and furthermore we
have s̃ “ X̃px̃qσϑ1 “ X̃px̃qσσLpSq and q̃ “ X̃px̃qσϑ2 “ X̃px̃qσσRpSq. We start from
this final state and we show that a rule R is applicable in reverse direction P0; S0;
σ0 Rðù P1;S1;σ1 until we reach the state tx̃0 : s̃0 fi q̃0; X̃0 : ˝ fi ˝; a0u P P0 and
g̃0 “ X̃0px̃0qσ0 “ X̃0px̃0q such that, by the invariant Lemma 2.18, we will get the
desired result.

First, all the variables in g̃1 are made distinct by reversely applying the rule Mer-S.
We also keep the store sound like described in the Mer-S rule. Now we introduce some
additional fresh variables, denoted by Ỹ and ỹ, to ensure that above every function
symbol there is a context variable and that every leaf is a hedge variable such that
g̃0 is still a rigid generalization of s̃1 and q̃1 with respect to a1. This can be done by
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applying the rule Clr-S in reverse and we use the following transformation rules to build
g̃0 “ φpg̃1q:

φps̃q “ Ỹ pψps̃qq, if Topps̃q P F , φps̃q “ ψps̃q, if Topps̃q R F .
ψpx̃q “ x̃, ψpaq “ apỹq, ψpfpt1, . . . , tnqqną0 “ fpφpt1q, . . . , φptnqq,
ψpX̃ps̃qq “ X̃pψps̃qq, ψpt1, . . . , tnqną1 “ φpt1q, . . . , φptnq.

The next step is to apply the rule Res-C in reverse direction as long as possible,
leaving only those hedge variables which occur as singleton terms under a function
symbol, e.g., those which occur in subterms of the form fpx̃q. We still have g̃0 being a
rigid generalization of s̃1 and q̃1 with respect to a1.

Now we move all the AUEs x̃1 : s̃1 fi q̃1; X̃1 : ˝ fi ˝ with x̃1 P VHpg̃q from S1 to P0 by
reversely applying the rule Sol-H. After this step, all the leafs are hedge variables and
together with their two predecessors they are subterms of the form fpX̃1px̃1qq. There
is one AUE in P0 for every subterm (leaf) of this form.

We will show that one of the rules App-A, Abs-L/Abs-R, Spl-H is applicable in reverse
direction until we get P0 “ tx̃0 : s̃0 fi q̃0; X̃0 : ˝ fi ˝; a0u and X̃0px̃0qσ0 “ X̃0px̃0q.

First, the rule App-A is applicable in reverse to every tx̃1 : s̃1 fi q̃1; X̃1 : ˝ fi ˝;
eu P P . It adds one function symbol to the alignment a0 and removes it from g̃1.
Furthermore, the hole ˝ in c̃0, d̃0 has no siblings for all the new AUEs tx̃0 : s̃0 fi q̃0;
X̃0 : c̃0 fi d̃0; a0u P P0. Every reverse application of App-A strictly decreases the size of
g̃0. Afterwards all the leafs are of the form X̃0px̃0q and there is an AUE tx̃0 : s̃0 fi q̃0;
X̃0 : c̃0 fi d̃0; a0u P P0, where the hole ˝ in c̃0, d̃0 has no siblings.

§ Case c̃1 ‰ ˝ or d̃1 ‰ ˝: By looking at the rules App-A, Abs-L/Abs-R, Spl-H it is
trivial to see that, if c̃1 ‰ ˝ or d̃1 ‰ ˝ then the only possible reverse application is
Abs-L/Abs-R. Furthermore the rule is always applicable in this situation because
the property that the hole ˝ in c̃1, d̃1 has no siblings is maintained by every reverse
rule application and from that it follows that a function is applied to either c̃1 or
d̃1. Abs-L/Abs-R maintains the property that the hole ˝ in c̃0, d̃0 has no siblings
such that we have the same situation with the possible rule applications App-A,
Abs-L/Abs-R, Spl-H as above. Obviously Abs-L/Abs-R can only be applied finitely
many times because it strictly decreases the size of c̃0 or d̃0.

§ Case c̃1 “ d̃1 “ ˝ and X̃1 has no siblings: Then there are two possibilities: Either
g̃1 “ X̃1px̃1q and we are done, or a function is applied to X̃1px̃1q like fpX̃1px̃1qq
so that the rule App-A is applicable again (see above).

§ Case c̃1 “ d̃1 “ ˝ and X̃1 has siblings: Let X̃1, . . . , X̃n, n ą 1 be the siblings. If
n “ 2 and g̃ is of the form X̃0pX̃1px̃1q, X̃2px̃2qq, then Spl-H can directly be applied
in reverse order. Otherwise we use Clr-S to introduce a fresh context variable Ỹ
above X̃n´1 and X̃n leading to the form X̃1, . . . , X̃n´2, Ỹ pX̃n´1px̃n´1q, X̃npx̃nqq
such that Spl-H is applicable in reverse order to Ỹ pX̃n´1px̃n´1q, X̃npx̃nqq. This
strictly decreases the size of g̃0.

Eventually we get g̃0 being of the form X̃0px̃0q when applying this strategy exhaustively.
And we know that tx̃0 : s̃0 fi q̃0; X̃0 : ˝ fi ˝; a0u P P0. By the invariant Lemma 2.18 we
also know that s̃ “ X̃px̃qσ0σLpP0 Y S0q “ X̃0px̃0qσLpP0 Y S0q and q̃ “ X̃px̃qσ0σRpP0 Y
S0q “ X̃0px̃0qσRpP0 Y S0q. This gives us the result s̃0 “ s̃ and q̃0 “ q̃ which proves the
existence of a derivation in G2V

a .
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The algorithm is nondeterministic. The Uniqueness Theorem says that different
transformations compute generalizations which are equivalent modulo », i.e., differ
from each other only by variable renaming:

Theorem 2.23 (Uniqueness modulo »). Let a be an admissible alignment of s̃ and q̃.
If tx̃1 : s̃ fi q̃; X̃1 : ˝ fi ˝; au; H; Id ùñ` H; S1; σ1 and tx̃2 : s̃ fi q̃; X̃2 : ˝ fi ˝; au; H;
Id ùñ` H; S2; σ2 are two exhaustive derivations in G2V

a , then X̃1px̃1qσ1 » X̃2px̃2qσ2.

Proof. By Newman’s lemma [64] and Theorem 2.20, it suffices to show local confluence.
Let P0; S0; σ0 be an arbitrary state in G2V

a . We show that for any two rule applications
P0; S0; σ0 ùñR P1;S1;σ0ϑ1 and P0; S0; σ0 ùñR1 P

1
1;S11;σ0ϑ

1
1 there are derivations

such that P1;S1;σ0ϑ1 ùñ
˚ Pi;Si;σi ˚ðù P 11;S11;σ0ϑ

1
1. It is easy to see that if the rules

R and R1 operate on different AUEs then it holds, for P1;S1;σ0ϑ1 ùñR1 P2;S2;σ0ϑ1ϑ2
and P 11;S11;σ0ϑ

1
1 ùñR P 12;S12;σ0ϑ

1
1ϑ
1
2, that P2 “ P 12, S2 “ S12 and ϑ1ϑ2 “ ϑ11ϑ

1
2 (using

the corresponding names for fresh variables), because the variables of the AUEs are
disjoint (by Lemma 2.16). Therefore we assume that both, R and R1, operate on an
arbitrary but fixed AUE tx̃0 : s̃0 fi q̃0; X̃0 : c̃0 fi d̃0; a0u P P0 Y S0.

If R is one of Spl-H, App-A, Sol-H, then no other rule is applicable to the selected
AUE and it follows that R1 “ R. If R “ Abs-L then either R1 “ R or R1 “ Abs-R.
The first case is the trivial one. In the latter case, the rules Abs-L and Abs-R operate
on different sides of the equations such that it does not matter which one is applied
first, if both are applicable at the same time. Therefore we obtain for P1;S1;σ0 ùñR1

P2;S2;σ0 and P 11;S11;σ0 ùñR P 12;S12;σ0, that P2 “ P 12 and S2 “ S12. Obviously the
same reasoning holds for R “ Abs-R. It remains to show local confluence for the cases
R “ Res-C, R “ Clr-S and R “ Mer-S.

R = Res-C. S0 “ S Y tx̃1 : ε fi ε; X̃1 : ps̃l, 9c, s̃rq fi pq̃l, 9d, q̃rqu,
S1 “ S Y tx̃1 : ε fi ε; X̃1 : 9c fi 9du Y

tỹ1 : s̃l fi q̃l; Ỹ1 : ˝ fi ˝, z̃1 : s̃r fi q̃r; Z̃1 : ˝ fi ˝u,
s̃l ‰ ε or s̃r ‰ ε or q̃l ‰ ε or q̃r ‰ ε,

ϑ1 “ tX̃1 ÞÑ pỹ1, X̃1p˝q, z̃1qu.
The rule Clr-S is not applicable for the selected AUE because of the condition s̃l ‰ ε

or s̃r ‰ ε or q̃l ‰ ε or q̃r ‰ ε. Therefore the only nontrivial case is R1 “ Mer-S, and from
the condition of Mer-S we know that there is an AUE tx̃2 : ε fi ε; X̃2 : ps̃l, 9c, s̃rq fi pq̃l, 9d,
q̃rqu P S which is the second one selected by Mer-S. To show local confluence we select
this AUE and apply Res-C again P1;S1;σ0ϑ1 ùñRes-C P2;S2;σ0ϑ1ϑ2, with ϑ2 “ tX̃2 ÞÑ
pỹ2, X̃2p˝q, z̃2qu and P2 “ P1 “ P0. Furthermore we get tx̃2 : ε fi ε; X̃2 : 9c fi 9d, ỹ2 : s̃l fi
q̃l; Ỹ2 : ˝ fi ˝, z̃2 : s̃r fi q̃r; Z̃2 : ˝ fi ˝u Ă S2. W.l.o.g. let P0; S0; σ0 ùñR1 P

1
1;S11;σ0ϑ

1
1

such that P 11 “ P0, S11 “ S and ϑ11 “ tx̃1 ÞÑ x̃2, X̃1 ÞÑ X̃2p˝qu. Now we continue with
P2;S2;σ0ϑ1ϑ2 and apply the rule Mer-S three times to obtain P2;S2;σ0ϑ1ϑ2 ùñ

3
Mer-S

Pi;Si;σ0ϑ1ϑ2tx̃1 ÞÑ x̃2, X̃1 ÞÑ X̃2p˝qutỹ1 ÞÑ ỹ2, Ỹ1 ÞÑ Ỹ2p˝qutz̃1 ÞÑ z̃2, Z̃1 ÞÑ Z̃2p˝qu.
Finally we apply to P 11;S11;σ0ϑ

1
1 the rule Res-C such that we get P 11;S11;σ0ϑ

1
1 ùñRes-C

Pi;Si;σ0ϑ
1
1tX̃2 ÞÑ pỹ2, X̃2p˝q, z̃2qu. It remains to compare the two obtained substi-

tutions σi “ tX̃1 ÞÑ pỹ1, X̃1p˝q, z̃1qutX̃2 ÞÑ pỹ2, X̃2p˝q, z̃2qutx̃1 ÞÑ x̃2, X̃1 ÞÑ X̃2p˝qu
tỹ1 ÞÑ ỹ2, Ỹ1 ÞÑ Ỹ2p˝qutz̃1 ÞÑ z̃2, Z̃1 ÞÑ Z̃2p˝qu and σ1i “ tx̃1 ÞÑ x̃2, X̃1 ÞÑ X̃2p˝qutX̃2 ÞÑ
pỹ2, X̃2p˝q, z̃2qu. Therefore we compose both substitutions exhaustively: σi “ tx̃1 ÞÑ x̃2,
X̃1 ÞÑ pỹ2, X̃2p˝q, z̃2q, X̃2 ÞÑ pỹ2, X̃2p˝q, z̃2q, ỹ1 ÞÑ ỹ2, Ỹ1 ÞÑ Ỹ2p˝q, z̃1 ÞÑ z̃2, Z̃1 ÞÑ Z̃2p˝qu
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and σ1i “ tx̃1 ÞÑ x̃2, X̃1 ÞÑ pỹ2, X̃2p˝q, z̃2q, X̃2 ÞÑ pỹ2, X̃2p˝q, z̃2qu. As the fresh variables
ỹ1, Ỹ1, z̃1, Z̃1 have been introduced during this reasoning process and all the AUEs con-
taining one of those variables have been eliminated by applications of the rule Mer-S,
the extra mappings in σi do not have any effect and may also be omitted.

R = Clr-S. S1 “ S0ztx̃1 : ε fi ε; X̃1 : ˝ fi ˝u,
ϑ1 “ tx̃1 ÞÑ ε, X̃1 ÞÑ ˝u.

For the same reason as above, the rule Res-C is not applicable for the selected AUE
such that the only nontrivial case is R1 “ Mer-S. The reasoning can be done similarly
to the case R “ Res-C. We leave this easy exercise to the reader.

R = Mer-S. S0 “ S Y tx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃u Y tx̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u,

S1 “ S Y tx̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u,

ϑ1 “ tx̃1 ÞÑ x̃2, X̃1 ÞÑ X̃2p˝qu.
If R “ Mer-S then there are the three cases R1 “ R, R1 “ Res-C and R1 “ Clr-S. The

first case is the trivial one and we already showed local confluence for the other two
cases.

2.2.7 Complexity Analysis of G2V
a

The Complexity Theorem gives upper bounds for the computational complexity and
for the required space of the algorithm G2V

a .

Theorem 2.24 (Complexity). The anti-unification algorithm G2V
a has Opn2q time

complexity and Opnq space complexity, where n is the number of symbols in the input.

Proof. Let P0; S0; σ0 “ tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au; H; Id be the initial state of G2V
a

and Pi´1; Si´1; σi´1 ùñ Pi; Si; σi an arbitrary rule application. By Theorem 2.23
we can arrange the rule applications as we like to obtain a maximal derivation. First
the rules Spl-H, Abs-L/Abs-R, App-A and Sol-H are applied exhaustively. This are the
only rules that operate on Pi´1 and furthermore they do not have conditions on Si´1
or σi´1 such that P0; S0; σ0 ùñ

` H; Sj ; σj , for some j. Afterwards they are not
applicable again and Res-C is applied exhaustively H; Sj ; σj ùñ˚

Res-C H; Sk; σk. It
transforms all the contexts in the store to terms. The rules Clr-S and Mer-S operate
on Sk but they only remove AUEs from there such that Res-C will not be applicable
again. Finally we postpone the application of Mer-S to the very end, leading to a
partial derivation H; Sk; σk ùñ˚

Clr-S H; Sl; σl ùñ˚
Mer-S H; Sn; σn where no more rule

is applicable because Mer-S does not introduce any AUEs, to which another rule could
apply.

Now we analyze the first phase P0; S0; σ0 ùñ
` H; Sj ; σj . The rule Spl-H splits an

AUE into two AUEs and moves some parts into the store. The space overhead for one
application is constant because the two new AUEs in Pi and the one in Si together
exactly cover the original one from Pi´1, and four new variables are introduced. It
can be applied Opnq many times because both of the new AUEs are nonempty. It
needs linear time (by the length of the alignment) to check for applicability and find
the position for splitting the AUE. Also the context application needs linear time. The
rules Abs-L/Abs-R are also applicable Opnq many times. They strictly reduce the size
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of a hedge in Pi. The space overhead is zero. The test for applicability, the context
application as well as the operations on the alignment need linear time. App-A is
applicable Opnq many times as well and one application needs linear time and constant
space. It strictly reduces the size of a hedge in Pi and one application needs linear time,
for the same reasons as the above rules. As Spl-H is applicable at most Opnq many
times and doubles the elements of Pi at each application and all the other rules do not
increase the length of Pi, Sol-H is applicable Opnq many times too. It follows that the
number of introduced variables is Opnq and the size of Sj is also bound by Opnq.

We compose the substitution σi immediately, but we only keep the mappings for x̃
and X̃ in σi such that σi “ tx̃ ÞÑ r̃i, X̃ ÞÑ c̃iu, for some r̃i, c̃i. As all the introduced
variables in Spl-H and App-A are fresh, they only appear once in r̃i or c̃i. This invariant
of the first phase leads to Opnq size of σi as well as Opnq time for the substitution
composition in Spl-H, App-A and Sol-H. All together we get Opn2q time complexity and
Opnq space complexity for the first phase.

The second phase is H; Sj ; σj ùñ˚
Res-C H; Sk; σk. The rule Res-C is applicable only

once per AUE leading to Opnq many applications. The space overhead is constant
at each application, introducing four fresh variables. It needs linear time at each ap-
plication. We again compose σi immediately and for similar reasons as above, the
substitution composition in Res-C only needs Opnq time, leading to an overall time
complexity of Opn2q and space complexity Opnq.

From the Opnq size of the store, it follows that also the store cleaning rule is applicable
Opnq many times and the overall time complexity of this phase is Opn2q, as we compose
substitutions immediately like before. The space overhead for Clr-S is zero.

It remains to show that H; Sl; σl ùñ˚
Mer-S H; Sn; σn only needs Opn2q time. There-

fore we postpone substitution composition. Comparing Opnq ˚Opnq AUEs in the store
needs Opn2q time and removing an AUE from the store needs constant time using a
linked list. As the size of the store is bound by Opnq and Mer-S removes one AUE at
each application, there are Opnq postponed substitution compositions. Each of them of
constant size as they all are just variable renamings. This leads to linear space overhead
and we have to compose Opnq substitutions where each composition needs Opnq time.

This concludes our complexity analysis where we showed that the algorithm runs in
Opn2q time using Opnq space.

2.2.8 Computing Admissible Alignments

The algorithm G2V
a is independent from the alignment computation. However, from

the application point of view it is interesting to experiment with various such functions
and identify practically well-behaving ones. It is not our goal to give here a survey of
possible alignment computation functions. We just mention that to have Opn2q runtime
complexity for computing higher-order generalizations (the best we can hope for due
to Theorem 2.24), we could use some known techniques to compute an admissible
alignment in quadratic time, e.g., as a constrained longest common subforest [5, 87] or
an agreement subhedge/subtree [46, 67].

In this section we just want to give an idea of alignment computation by discussing a
certain example, which is not very efficient, but it is simple and is implemented in our
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Java library. The function computes admissible alignments of longest length for two
given input hedges.

Since an alignment can be seen as a common subsequence of the word representation
of two input hedges (see Definition 2.22), computing the complete set of all admissible
alignments can be done by a generate and test method: generate all the common subse-
quences of the word representation of the input hedges and test them for admissibility
(see Definition 2.24). However, this approach is not tractable because the number of
subsequences of one sequence is already exponential in its length. Therefore it makes
sense to reduce the number of generated common subsequences. One approach might
be to compute some admissible alignments of longest length for two input hedges. (No-
tice, that this approach will not lead to a complete set of rigid lggs because there might
be incomparable rigid lggs which contain less common function symbols.)

Definition 2.33 (Longest admissible alignment). A longest admissible alignment
(laa) of two hedges is their admissible alignment with a longest length. I.e., an ad-
missible alignment a of two hedges s̃ and q̃ is an laa iff |a| ě |a1| for all admissible
alignments a1 of the hedges s̃ and q̃.

A complete set of longest admissible alignments can be computed with the aid of a
function that for two hedges, s̃ and q̃, returns a set of alignments of length k P N. We
denote this function by Csps̃, q̃, kq because it computes common subsequences of length
k for the word representations of the input hedges s̃ and q̃. Given a set of alignments A,
the subset of all admissible alignments is denoted by admissiblepAq. We formulate a
simple generate and test algorithm by setting k initially to the length of the longest
alignment (see, e.g., [50]) of two input hedges s̃ and q̃, and successively reducing k
until we get a nonempty subset of admissible alignments from Csps̃, q̃, k ´ iq, for some
0 ď i ď k. The algorithm can be described by four simple steps:

1. k :“ Length of longest alignment of s̃ and q̃.

2. A :“ Csps̃, q̃, kq.

3. If admissiblepAq “ H then

k :“ k ´ 1 and goto step 2.

4. return admissiblepAq.

This approach can still lead to iterating exponentially many alignments for two given
input hedges. Consider a longest alignment of length k which is not admissible. By
successively reducing the length to k´ i, there are

`

k
k´i

˘

possible alignments which have
to be tested for admissibility. However, our implementation (see section 4.3) offers this
approach as an example of computing a set of admissible alignments for two input
hedges.

2.2.9 Minimization by Anti-Unification using G2V
a

The algorithm G2V
a computes a rigid lgg, which corresponds to a certain admissible

alignment for two given hedges. An alignment computation function, like the one
described in subsection 2.2.8, may return a finite set A of admissible alignments for the
given input hedges. It may even happen that one alignment in A is a subsequence of
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another one. To minimize the set of generalizations which is computed for two input
hedges and a given set of alignments, we need to solve a higher-order matching problem
for hedges, instantiating context and hedge variables.

Again we use the idea of solving that matching problem by G2V
a itself. Lemma 2.4

says that for two hedges that are equigeneral s̃ » q̃ holds that |Posf ps̃q| “ |Posf pq̃q|,
for all f P F . It is stated for first-order unranked terms but trivially generalizes to
the higher-order case. From Lemma 1.8 we know that deciding s̃

?
» q̃ (without using a

universal matching algorithm) is crucial in order to solve a matching problem by G2V
a .

We introduce some kind of “normal form”, namely the compressed form, that enables
us to decide s̃

?
» q̃ in the same manner as in subsection 2.1.4.

Definition 2.34. A hedge s̃ is in compressed form: if s̃ ă s̃tx̃ ÞÑ εu for all x̃ P VHps̃q.

Example 2.32. The hedges s̃ “ pa, x̃, X̃paqq and s̃1 “ pa, x̃, ỹq are not in compressed
form because s̃ » s̃tx̃ ÞÑ εu and s̃1 » s̃1tx̃ ÞÑ εu, while q̃ “ px̃, a, X̃paqq and q̃1 “
px̃, x̃, a, ỹq are in compressed form because q̃ ă q̃tx̃ ÞÑ εu and q̃1 ă q̃1tx̃ ÞÑ εu and
q̃1 ă q̃1tỹ ÞÑ εu.

Theorem 2.25. Let s̃ and q̃ be compressed forms of rigid hedges and let s̃ » q̃. There
exists a renaming σ such that s̃σ “ q̃ (and vice versa).

Proof. From s̃ » q̃ and Lemma 2.4 follows that there is a substitution σ so that s̃σ “
q̃ and FpRanpσqq “ H. We can assume that Dompσq Ď Vps̃q. Since s̃ and q̃ are
compressed forms of rigid hedges, we can assume that for all hedges and contexts
r̃ P Ranpσq holds (see Definition 2.27):

1. No context variable in r̃ applies to the empty hedge.

2. r̃ doesn’t contain consecutive hedge variables.

3. r̃ doesn’t contain vertical chains of variables.

4. r̃ doesn’t contain context variables with a hedge variable as the first or the last
argument (i.e., no subterms of the form X̃px̃, . . . q and X̃p. . . , x̃qq.

First, we assume that Ranpσq Ę VHYtX̃p˝q | X̃ P VCu which will lead to a contradiction.
Afterwards, it remains to show that σ is a bijection from Dompσq to Ranpσq. (See
Definition 2.21.)

If Ranpσq Ę VH Y tX̃p˝q | X̃ P VCu, then there is some hedge or context r̃ P Ranpσq
such that either r̃ “ ε or r̃ “ ˝ or |r̃| ą 1 or it is an application of the form Ỹ pr̃1q,
where Ỹ P VC and r̃1 P T ztε, ˝u (see item 1) so that Fpr̃1q “ H.

Case 1: Assume r̃ “ Ỹ pr̃1q and r̃1 P T ztε, ˝u. Since, by item 1, no context variable
in r̃1 applies to the empty hedge, every leaf in the tree representation is either a hedge
variable or the hole. By item 4 we can exclude the case that a leaf is a hedge variable so
that each leaf is the hole because Fpr̃1q “ H. By item 3, vertical chains are forbidden,
hence |r̃1| ą 1. This leads to more than one hole which is a contradiction to our
grammar.

:Notice that the compressed form of a rigid generalization might violate the property of Defini-
tion 2.28, namely the existence of substitutions to obtain the input hedges from the generalization,
where all the contexts are singletons.
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Case 2: Assume |r̃| ą 1. By the considerations of Case 1 we know that no element of
r̃ can be of the form Ỹ pr̃1q where r̃1 P T ztε, ˝u. For this reason, each element from r̃ is
either the hole ˝, or a hedge variable ỹ, or a singleton context of the form Ỹ p˝q. Together
with item 2, follows that r̃ is a context. The case where an element of r̃ is the hole ˝
can be ruled out for the following reason: We know that there is also a substitution σ1

so that s̃ “ q̃σ1 and FpRanpσ1qq “ H because s̃ » q̃. That substitution σ1 would have
to introduce the eliminated context variable and this leads to a contradiction by our
previous considerations. The only case that remains is that r̃ is of the form pỹ, Ỹ p˝qq
or pỸ p˝q, ỹq or pỹ, Ỹ p˝q, z̃q but this contradicts to q̃ being in compressed form.

Case 3: Assume r̃ “ ε or r̃ “ ˝. Since s̃ » q̃, there is also a substitution σ1 so that
s̃ “ q̃σ1 and FpRanpσ1qq “ H. That substitution σ1 would have to introduce some extra
variables leading to Case 1 or Case 2 and its contradiction.

It remains to show that σ is a bijection from Dompσq to Ranpσq. Let σ “

tx̃1 ÞÑ ỹ1, . . . , x̃n ÞÑ ỹn, X̃1 ÞÑ Ỹ1p˝q, . . . , X̃m ÞÑ Ỹmp˝qu. Since s̃ » q̃, there is also
a substitution ϑ so that q̃ϑ “ s̃. Therefore, s̃σϑ “ s̃ and it follows that σ is a renaming,
i.e., a bijection from Dompσq to Ranpσq.

Corollary 2.26. Let s̃ and q̃ be compressed forms of rigid hedges such that s̃ » q̃.
Then }s̃} “ }q̃}.

From the proof of Theorem 2.25 we can extract an algorithm to compute a compressed
form of a rigid hedge. To get a compressed form of a rigid hedge, we need to eliminate
certain hedge variables that appear in subhedges of the forms pỹ, Ỹ pr̃qq or pỸ pr̃q, ỹq
or pỹ, Ỹ pr̃q, z̃q such that, after elimination, we get a hedge that is equigeneral to the
original one. The latter case is subsumed by the other two cases. This elimination has
to be done exhaustively so that the result is an equigeneral rigid hedge in compressed
form. The following corollary describes the generate and test algorithm:

Corollary 2.27. Let s̃ P T be a rigid hedge, then the compressed form of s̃ is
the hedge s̃σ and σ is defined by the mapping that is identity everywhere except for
tx̃ ÞÑ ε | x̃ P V1u, where V1 Ď VHps̃q are the following hedge variables:
x̃ P V1 if there is a substitution ϑ so that s̃ “ s̃tx̃ ÞÑ εuϑ and ϑ is identity everywhere

except for tX̃ ÞÑ px̃, X̃p˝qq | V2utX̃ ÞÑ pX̃p˝q, x̃q | V3u with V2 Ď VCps̃q and V3 Ď VCps̃q.

In Corollary 2.27, searching for the substitution ϑ is exponential in the number
of context variables that appear in the hedge s̃. By the powerset of all possibilities
for ϑ, the complexity of the generate and test method is Op22nq where n “ |VCps̃q|.
The search space can be pruned by analyzing the neighborhood of the appearances of
context variables in s̃ but it remains nondeterministic due to the inherent complexity
of higher-order terms.

Our goal is to minimize a set of rigid higher-order generalizations. Since, to the best
of our knowledge, there is no higher-order hedge-matching algorithm and first-order
hedge-matching algorithms are already NP-complete (see, e.g., [51, 52]), we aim at
performing the minimization step by G2V

a itself. To do this, we need to decide s̃
?
» q̃ for

two rigid hedges s̃ and q̃. From Theorem 2.25 we know that for the compressed forms
of s̃ and q̃ this problem reduces to finding a simple renaming. Therefore, we translate
s̃ and q̃ into their compressed forms and search for such a renaming. We can do this
similarly to subsection 2.1.4 in the following way.
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Deciding the Existence of a Renaming. Again, we use the idea of sharing vari-
ables by representing unranked terms as directed, acyclic graphs (dags). Recall Defini-
tion 2.15 and Definition 2.16 from subsection 2.1.4:

Definition 2.15 (Unranked term dag). An unranked term dag is a directed, acyclic
graph that is weakly connected and whose nodes are labeled with function symbols or
variables. Function symbols may have incoming and outgoing edges while variables do
not have outgoing edges. There is one function symbol that does not have incoming
edges, called the root of the term dag. The outgoing edges from any node are ordered.

Definition 2.16 (Variable sharing term dag). A variable sharing term dag is a term
dag where all occurrences of the same variable share the same node of the graph.

Let s̃ and q̃ be compressed forms of rigid hedges. To decide s̃
?
» q̃, we construct the

terms fps̃q and fpq̃q, where f P F is arbitrary. Then those terms can be represented
as variable sharing dags where applications of context variables are in curried form.
We use the unranked function symbol @ to write any application X̃pr̃q in its curried
form @pX̃pq, r̃q, where X̃ P VC and r̃ P T . To solve the decision problem, the dags
are traversed synchronously like described in subsection 2.1.4 so that we have an algo-
rithm that decides s̃

?
» q̃ in linear time. Figure 2.23 shows an unranked term and its

translation into a variable sharing dag in curried form.
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Figure 2.23: The term fpfpX̃paqq, X̃pa, bqq and its curried variable sharing dag.

Matching with G2V
a . Now we turn to discussing the matching problem. Our goal is

to minimize a set of rigid generalizations of the same hedges but arbitrary alignments
by using the algorithm G2V

a itself. In fact, the following theorem says that G2V
a decides

s̃
?
ĺ q̃ for arbitrary rigid hedges s̃ and q̃.

Theorem 2.28. Let s̃ and q̃ be rigid hedges and let Ỹ P VC, ỹ P VH be variables that
occur neither in s̃ nor in q̃.

§ Then s̃ ĺ q̃ iff there is a so that H; S; σ “ G2V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » s̃.

§ Then q̃ ĺ s̃ iff there is a so that H; S; σ “ G2V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » q̃.

Proof. Let s̃ and q̃ be rigid hedges and let Ỹ P VC, ỹ P VH be variables that occur
neither in s̃ nor in q̃.

We show s̃ ĺ q̃ iff there is a so that H; S; σ “ G2V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » s̃.
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(ñ) Assume s̃ ĺ q̃. Since s̃ is a generalization of s̃ and q̃, by Theorem 2.12 there is an
admissible alignments a that corresponds to a supporting generalization of s̃ and q̃.
By correctness and uniqueness of the final state H; S; σ “ G2V

a pỸ pỹq: s̃ fi q̃q
follows that s̃ » Ỹ pỹqσ. (Notice that Ỹ pỹqσ and s̃ are both rigid hedges.)

(ð) Assume there is a so that H; S; σ “ G2V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » s̃. By

coherence of G2V
a follows that Ỹ pỹqσσRpSq “ q̃ By the assumption Ỹ pỹqσ » s̃

there is a renaming ϑ such that Ỹ pỹqσ “ s̃ϑ. For that reasons s̃ϑσRpSq “ q̃.

By Theorem 2.28, to decide s̃
?
ĺ q̃ for two rigid hedges s̃ and q̃ it suffices to search

for an admissible alignment a so that H; S; σ “ G2V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » s̃. By

Lemma 2.4 the search space can be reduced drastically because a must contain all the
occurrences of all the function symbols from s̃. (Formally, from |a| ‰ |tPosf ps̃q : f P Fu|
follows that Ỹ pỹqσ ă s̃, by Lemma 2.4.) Obviously, testing Ỹ pỹqσ

?
» s̃ is done by

translating Ỹ pỹqσ and s̃ into their, respective, compressed form. Then we perform the
test on the curried variable sharing dags of the compressed forms. The most expensive
operation is the translation into compressed form, therefore the search space pruning
for possible alignments a is of great practical value.

Example 2.33. We demonstrate our results on the hedges s̃ “ pgpa, gpbq, cqq and
q̃ “ pa, fpa, cqq. There are two admissible alignments of longest length, namely
ax1¨1, 1ycx1¨3, 2¨2y and ax1¨1, 2¨1ycx1¨3, 2¨2y. (It is the complete set of laas of s̃ and q̃.)
We compute the two rigid generalizations of s̃ and q̃ with respect to those alignments
by the algorithm G2V

a :

g̃1 “ X̃1pa, x̃2, X̃3pcqq and g̃2 “ pỹ1, Ỹ2pa, ỹ3, cqq.

For g̃1 and g̃2, there exists only one alignment a that fulfills the condition |a| “
|tPosf pg̃1q : f P Fu|, namely a “ ax1¨1, 2¨1ycx1¨3¨1, 2¨3y. Therefore, it is the sole candi-
date that can lead to a rigid generalization g̃1 of g̃1 and g̃2 so that g̃1 » g̃1. G2V

a computes
the following generalization g̃1 for g̃1 and g̃2 w.r.t. a:

g̃1 “ pz̃1, Z̃2pa, z̃3, Z̃4pcqqq.

The compressed form of g̃1 is X̃1pa, X̃3pcqq and the compressed form of g̃1 is
Z̃2pa, Z̃4pcqq. Therefore g̃1 ĺ g̃2 and the minimized set is tg̃2u.

2.3 Higher-Order Unranked Anti-Unification 4V

We consider generalizations for two input hedges and their admissible alignment. Our
goal is to enhance the precision of the computed generalizations. For instance, in the
clone detection example from Figure 2.22 different function names are generalized by
a context variable. We loose the information that the similarities are located at the
same level (under different heads) in both pieces of code. In order to capture such
information in the generalization, we need variables that are more narrow than our
context variables or our hedge variables. Here we introduce two additional types of
variables: term variables to increase the horizontal precision and function variables to
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increase the vertical precision of a generalization. The 4V in the title of this section
indicates the number of different variable types we consider.

Furthermore, we lift the restriction that a rigid generalization does not contain chains
of variables, allowing function variables in vertical chain. Similarly, we allow consecutive
term variables.

Example 2.34. The hedge g̃ “ pF pa, F pa, x̃, aqq, x̃, X̃pgpx, xqqq is a generalization of
two hedges s̃ “ pfpa, fpa, c, aqq, c, fpgpb, bqqq and q̃ “ pgpa, gpa, aqq, gpd, dqq. Dotted and
dashed nodes indicate differences, while the solid ones form the admissible alignment.
s̃ “ g̃tF ÞÑ fp˝q, x̃ ÞÑ c, X̃ ÞÑ fp˝q, x ÞÑ bu and q̃ “ g̃tF ÞÑ gp˝q, x̃ ÞÑ ε, X̃ ÞÑ ˝, x ÞÑ du.
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Figure 2.24: The hedges s̃ and q̃ and their higher-order lgg g̃ from Example 2.34.

In Example 2.34 we use all four kinds of variables in the generalization g̃ of the
hedges s̃ and q̃. The function variable F in g̃ indicates that all the a’s occur at the
same level in both s̃ and q̃. The symbol g occurs at different levels because there is a
context variable above. Furthermore, it illustrates the consecutive term variables px, xq.
Notice that G2V

a computes for the same hedges and the same admissible alignment the
generalization pX̃pa, X̃pa, x̃, aqq, x̃, Ỹ pgpỹqqq.

2.3.1 Higher-Order Unranked Terms and Hedges 4V (Preliminaries)

Many definitions from subsection 2.1.1 and subsection 2.2.1 are still valid for the richer
term language that we consider here. We overload only those definitions that do not
trivially generalize to the following terms, hedges, and contexts:

Definition 2.35 (Terms, hedges, contexts). Given pairwise disjoint countable sets of
unranked function symbols F (symbols without fixed arity), term variables VT, function
variables VF, hedge variables VH, context variables VC, and a special symbol ˝ (the hole),
we define terms, hedges, and contexts by the following grammar:

t ::“ x | fps̃q | F ps̃q (term)

s ::“ t | x̃ | X̃ps̃q (hedge element)
s̃ ::“ s1, . . . , sn (hedge)
c̊ ::“ fps̃1, ˝, s̃2q | F ps̃1, ˝, s̃2q (bounded context)

c̃ ::“ s̃1, ˝, s̃2 | s̃1, fpc̃q, s̃2 | s̃1, F pc̃q, s̃2 | s̃1, X̃pc̃q, s̃2 (context)

where f P F , x P VT, F P VF, x̃ P VH, X̃ P VC, and n ě 0.

This definition can be seen as an extension of the terms, hedges, and contexts from
subsection 2.2.1. The grammar considers two additional variable types: term variables
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and function variables. The set of all variables VTYVFYVHYVC is written as V. Term
variables are first-order variables and they can be instantiated by a term. Intuitively, a
function variable stand for an arbitrary function that is applied to a hedge of arguments
where some of the arguments may be fixed and others can be provided at instantiation
time. Function variables can be instantiated by a bounded context, that is a term over
F Y t˝u and V, where the hole occurs exactly once at level 1. We denote bounded
contexts by c̊, d̊, function variables by F,G,H, and term variables by x, y, z. We use
H ,G for a function symbol or a function variable. Application of a bounded context c̊
to a hedge s̃, denoted by c̊rs̃s, amounts to replacing the hole in c̊ by the hedge s̃. It is
the same as in the general case for arbitrary contexts and, like in the general case, a
bounded context can also be applied to another context.

Variables from VH Y VT are called first-order variables and the others are called
higher-order variables. The set of hedges and contexts constructed over F Y t˝u and
V is denoted by T pF ,Vq, or simply by T if the concrete instances of F and V do not
matter. Similarly to VHp¨q and VCp¨q, we denote by VTp¨q and VFp¨q, respectively, the
set of all the occurring term variables and the set of all the occurring function variables
in an element from T or in any subset of T . The notions of the set of positions Posps̃q,
the top symbols Topps̃q, the length |s̃|, the size }s̃}, and the subterm s̃|I of a hedge or
context s̃ can be extended naturally to take into account the new variable types.

Definition 2.36 (Substitution). A substitution is a mapping σ : V Ñ T pF ,Vq from
hedge variables to hedges, from context variables to contexts, from term variables to
terms, and from function variables to bounded contexts, which is identity almost ev-
erywhere. When substituting a higher-order variable by a context, the context will be
applied to the argument hedge of that higher-order variable.

Context application is defined by induction on the structure of contexts as in subsec-
tion 2.2.1. Any substitution σ can be extended to a mapping σ̂ : T Ñ T that can be
applied to hedges and contexts. Similarly to subsection 2.2.1, the application is defined
by induction on the structure of hedges and contexts:

s̃σ̂ ::“

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

fpq̃σ̂q if s̃ “ fpq̃q,
σpx̃q if s̃ “ x̃,
σpxq if s̃ “ x,

σpX̃qrq̃σ̂s if s̃ “ X̃pq̃q,
σpF qrq̃σ̂s if s̃ “ F pq̃q,
˝ if s̃ “ ˝,
s1σ̂, . . . , snσ̂ if |s̃| ‰ 1 and s̃ “ ps1, . . . , snq.

For a substitution σ the domain is the set of variables

Dompσq ::“ tξ P VH Y VT | σpξq ‰ ξu Y tΞ P VC Y VF | σpΞq ‰ Ξp˝qu

and the range is the set of hedges and contexts

Ranpσq ::“ tσpξq | ξ P Dompσqu Y tσpΞq | Ξ P Dompσqu.

To simplify the notation, we do not distinguish between a substitution σ and its
extension σ̂.
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Example 2.35. Let σ “ tx̃ ÞÑ ε, x ÞÑ fpX̃paqq, F ÞÑ gp˝q, X̃ ÞÑ F pF p˝qqu be a substi-
tution, then pF px̃q, x, fpF paqq, X̃pfpaq, aqqσ “ pg, fpX̃paqq, fpgpaqq, F pF pfpaq, aqqq.

The definition of a renaming is extended in the following way:

Definition 2.37 (Renaming). A substitution is called renaming if Ranpσq Ď VHYVTY
tX̃p˝q | X̃ P VCu Y tF p˝q | F P VFu and |Dompσq| “ |Ranpσq|.

A renaming is a bijection form the domain to the range of a substitution. The notions
of instantiation and generalization are the same as in Definition 2.7 and Definition 2.8.
They are defined by the existence of substitutions to compare hedges with respect to the
instantiation quasi ordering. Lemma 2.1 and Corollary 2.2 are also directly applicable
to this richer term language.

Theorem 2.29. Higher-order unranked anti-unification is finitary: For any hedges
s̃ and q̃ there exists their minimal complete set of generalizations. This set is finite and
unique modulo ».

Proof. Like in the proof of Theorem 2.11, we use context variables as substitute for
hedge variables. It suffices to consider only context variables, term variables and func-
tion variables.

Since X̃pq acts as generalization for every pair of hedges, we assume there is a
nonempty set of hedges G for two arbitrary hedges s̃ and q̃ so that for all g̃ P G holds
that g̃ ĺ s̃ and g̃ ĺ q̃.

For all g̃ P G, the number of function symbols of g̃ is bound by the number of function
symbols in s̃. Furthermore, from g̃σ “ s̃ we know that a variable is either eliminated,
or it stands for a certain part of the hedge s̃. There are only finitely many variables in g̃
that stand for some part of s̃ and all the others are eliminated from g̃ when applying σ.
In fact the number is bound by }s̃}. Term variables and function variables cannot
be eliminated, therefore the number of all occurrences of term variables and function
variables together in g̃ is bounded by }s̃}. The same holds for q̃.

Putting this together, there are only finitely many variables in g̃ that indicate some
differences at s̃ and q̃. Eliminating all those superfluous context variables we obtain
g̃1 “ g̃tX̃1 ÞÑ ˝, X̃2 ÞÑ ˝, . . . u, such that the number of variables in g̃1 is bound by
}s̃}` }q̃} and g̃1 is a generalization of s̃ and q̃. Since g̃ ĺ g̃1 it can be removed from G if
g̃ ‰ g̃1. As the size of an lgg is bounded by }s̃} ` }q̃}, also the number of possible lggs
modulo » is bound. This leads to G being finite.

2.3.2 Higher-Order Unranked Anti-Unification Algorithm G4V
a

Recall, our goal is to enhance the precision of the computed generalization. Therefore,
we refine some of the concepts that have been introduced in subsection 2.2.3 and enrich
the algorithm G2V

a with two new rules for two new kinds of variables. Following the
naming of the algorithm G2V

a , we denote its extended version by G4V
a . The first step

towards our goal is to relax the notion of a rigid hedge:

Definition 2.38 (Rigid hedge). A hedge s̃ is rigid if the following conditions hold:

1. No higher-order variable in s̃ applies to the empty hedge.



72 Chapter 2 Anti-Unification for Unranked Terms and Hedges

2. If s̃ contains consecutive first-order variables, then both of them are term variables.

3. If s̃ contains a vertical chain of variables, then both of them are function variables.

4. s̃ doesn’t contain higher-order variables with a first-order variable as the first or
the last argument.

Notice that consecutive variables are allowed if one of them is a higher-order variable
or if both of them are term variables. This definition of rigid hedges relaxes Defini-
tion 2.27 because there we do not have consecutive first-order variables and all vertical
chains of variables are forbidden. In order to use term variables and function variables,
we also need to slightly widen the notion of an AUE from the previous section:

Definition 2.39 (Anti-unification equation). An anti-unification equation, AUE in
short, is a triple of the form ξ : s̃ fi q̃; Ξ: c̃ fi d̃; a, where

§ ξ is a first-order variable and s̃, q̃ are hedges,

§ Ξ is a higher-order variable and c̃, d̃ are contexts,

§ a is an admissible alignment of s̃ and q̃.

The definitions of a rigid generalization and a rigid lgg remain unchanged. We
instantiate those definitions by the new notion of a rigid hedge. An example of a rigid
lgg using Definition 2.38 can be found in the introduction of this section (Example 2.34).

Definition 2.40 (Rigid higher-order anti-unification algorithm). The algorithm G4V
a is

an extension of G2V
a . It works on tuples P ; S; σ, called the states, like its predecessor.

G4V
a consists of ten transformation rules that operate on states. One of the eight rules

that are inherited from G2V
a , namely the rule Mer-S, needs a marginal refinement. The

two additional rules, called narrowing, are presented below.

Similarly to the definition of an AUE, we need to redefine the rule Mer-S so that it
works for both kinds of first-order variables and for both kinds of higher-order variables.
We only need to override the declaration of the generalization variables.

Mer-S: Merge Store

P ; tξ1 : s̃ fi q̃; Ξ1 : c̃ fi d̃, ξ2 : s̃ fi q̃; Ξ2 : c̃ fi d̃u ŸS; σ ùñ
P ; tξ1 : s̃ fi q̃; Ξ1 : c̃ fi d̃u Y S; σtξ2 ÞÑ ξ1,Ξ2 ÞÑ Ξ1p˝qu,

where ξ1, ξ2 are first-order variables of the same type and Ξ1, Ξ2 are higher-order
variables of the same type.

The algorithm G4V
a comprises two additional transformation rules. Both of them

work on the store. The first one transforms hedge variables into term variables and
the second one transforms context variables into function variables. The computational
complexity introduced by adding those new rules is relatively low. In fact, we will show
that G4V

a still needs quadratic time and linear space on the size of the input.

Nar-FO: Narrowing First-Order Variables

P ; tx̃ : pt1, . . . , tnq fi ps1, . . . , snq; X̃ : ˝ fi ˝u ŸS; σ ùñ

P ; tyi : ti fi si; Ỹi : ˝ fi ˝ | 1 ď i ď nu Y S; σtx̃ ÞÑ py1, . . . , ynqu,

where n ě 1 and yi’s, Ỹi’s are fresh. ti’s and si’s are terms.
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Nar-HO: Narrowing Higher-Order Variables

P ; tx̃: ε fi ε; X̃ : H1ps̃1, ...Hnps̃n, ˝, s̃1nq..., s̃
1
1q fi G1pq̃1, ...Gnpq̃n, ˝, q̃1nq..., q̃

1
1qu ŸS;σ ùñ

P ; tỹi: ε fi ε; Fi : Hips̃i, ˝, s̃1iq fi Gipq̃i, ˝, q̃1iq | 1 ď i ď nuYS;σtX̃ ÞÑ F1p...Fnp˝q...qu,

where n ě 1 and ỹi’s, Fi’s are fresh. Hi’s and Gi’s are from F Y VF.

The algorithm G4V
a works in the same manner as G2V

a . We will prove that G4V
a is

coherent and computes a unique (modulo ») final state, denoted by G4V
a pX̃px̃q : s̃ fi q̃q

for two hedges s̃ and q̃ with respect to an admissible alignment a and fresh variables x̃
and X̃. The rigid lgg that corresponds to a final state H;S;σ “ G4V

a pX̃px̃q : s̃ fi q̃q can
be obtained by X̃px̃qσ. Definition 2.32 can be easily generalized so that the substitutions
σLpSq and σRpSq cover all the differences from the store. In fact, it can be redefined
in the same manner as the Mer-S rule, overriding the declaration of the generalization
variables x̃, X̃.

Before we turn to discussing the properties of the algorithm G4V
a we illustrate its

usage on some examples.

2.3.3 Illustration of the Algorithm G4V
a

Example 2.36. We illustrate the transformation steps performed by G4V
a on the hedges

s̃ “ pfpfpaqq, fpgpb, bqqq and q̃ “ pgpgpaqq, gpd, dqq and their admissible alignment
a “ ax1¨1¨1, 1¨1¨1ygx2¨1, 2y. In the substitution, we only keep the mappings for the
two generalization variables x̃ and X̃ of the initial AUE.

tx̃: pfpfpaqq, fpgpb, bqqq fi pgpgpaqq, gpd, dqq; X̃: ˝ fi ˝; ax1¨1¨1, 1¨1¨1ygx2¨1, 2yu; H; Id
ùñ

Spl-H
Clr-S tỹ1: fpfpaqq fi gpgpaqq; Ỹ1: ˝ fi ˝; ax1¨1¨1, 1¨1¨1y,

z̃1: fpgpb, bqq fi gpd, dq; Z̃1: ˝ fi ˝; gx1¨1, 1yu; H; tx̃ ÞÑ pỸ1pỹ1q, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñAbs-L
Abs-L tỹ1: a fi gpgpaqq; Ỹ1: fpfp˝qq fi ˝; ax1, 1¨1¨1y,

z̃1: fpgpb, bqq fi gpd, dq; Z̃1: ˝ fi ˝; gx1¨1, 1yu; H; tx̃ ÞÑ pỸ1pỹ1q, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñAbs-R
Abs-R tỹ1: a fi a; Ỹ1: fpfp˝qq fi gpgp˝qq; ax1, 1y,

z̃1: fpgpb, bqq fi gpd, dq; Z̃1: ˝ fi ˝; gx1¨1, 1yu; H; tx̃ ÞÑ pỸ1pỹ1q, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñ
App-A
Clr-S tz̃1: fpgpb, bqq fi gpd, dq; Z̃1: ˝ fi ˝; gx1¨1, 1yu;

tỹ1: ε fi ε; Ỹ1: fpfp˝qq fi gpgp˝qqu; tx̃ ÞÑ pỸ1paq, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñAbs-L tz̃1: gpb, bq fi gpd, dq; Z̃1: fp˝q fi ˝; gx1, 1yu;
tỹ1: ε fi ε; Ỹ1: fpfp˝qq fi gpgp˝qqu; tx̃ ÞÑ pỸ1paq, Z̃1pz̃1qq, X̃ ÞÑ ˝u

ùñ
App-A
Sol-H H; tỹ1: ε fi ε; Ỹ1: fpfp˝qq fi gpgp˝qq,

z̃1: ε fi ε; Z̃1: fp˝q fi ˝, z̃2: pb, bq fi pd, dq; Z̃2: ˝ fi ˝u; tx̃ ÞÑ pỸ1paq, Z̃1pgpz̃2qqq, X̃ ÞÑ ˝u

ùñNar-HO H; tỹ2: ε fi ε; F1: fp˝q fi gp˝q, ỹ3: ε fi ε; F2: fp˝q fi gp˝q,

z̃1: ε fi ε; Z̃1: fp˝q fi ˝, z̃2: pb, bq fi pd, dq; Z̃2: ˝ fi ˝u;
tx̃ ÞÑ pF1pF2paqq, Z̃1pgpz̃2qqq, X̃ ÞÑ ˝u

ùñMer-S H; tỹ2: ε fi ε; F1: fp˝q fi gp˝q, z̃1: ε fi ε; Z̃1: fp˝q fi ˝, z̃2: pb, bq fi pd, dq; Z̃2: ˝ fi ˝u;
tx̃ ÞÑ pF1pF1paqq, Z̃1pgpz̃2qqq, X̃ ÞÑ ˝u

ùñNar-FO H; tỹ2: ε fi ε; F1: fp˝q fi gp˝q, z̃1: ε fi ε; Z̃1: fp˝q fi ˝, x1: b fi d; Z̃3: ˝ fi ˝,
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x2: b fi d; Z̃4: ˝ fi ˝u; tx̃ ÞÑ pF1pF1paqq, Z̃1pgpx1, x2qqq, X̃ ÞÑ ˝u

ùñMer-S H; tỹ2: ε fi ε; F1: fp˝q fi gp˝q, z̃1: ε fi ε; Z̃1: fp˝q fi ˝, x1: b fi d; Z̃3: ˝ fi ˝u;
tx̃ ÞÑ pF1pF1paqq, Z̃1pgpx1, x1qqq, X̃ ÞÑ ˝u.

X̃px̃qσ “ pF1pF1paqq, Z̃1pgpx1, x1qqq generalizes s̃ and q̃ with respect to a. From
the store S we can read σ

L
pSq “ tF1 ÞÑ fp˝q, x1 ÞÑ b, Z̃1 ÞÑ fp˝q, . . .u and

σ
R
pSq “ tF1 ÞÑ gp˝q, x1 ÞÑ d, Z̃1 ÞÑ ˝, . . .u. Then we have X̃px̃qσσ

L
pSq “ s̃ and

X̃px̃qσσ
R
pSq “ q̃.

The algorithm G2V
a from section 2.2 computes for the hedges from Example 2.36 with

respect to the same alignment the generalization pX̃paq, Ỹ pgpx̃qqq. It is strictly more
general than the one G4V

a computes.

Example 2.37. Again we use the code sample from Roy et al. [75] to illustrate the
algorithm G4V

a on the application area of software clone detection. Recall the original
code and its representation as an unranked term:

1 void sumProd ( int n) {
2 f loat sum = 0 . 0 ;
3 f loat prod = 1 . 0 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + i ;
6 prod = prod ∗ i ;
7 foo (sum , prod ) ; }}

sumProdpinputptypepintq, nq,

returnTypepvoidq,

“ptypepfloatq, sum, 0.0q,
“ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, iqq,

“pprod, ˚pprod, iqq,

foopsum, prodqqq

Figure 2.25: The original program used to illustrate clone detection by anti-unification.

The two considered clones are illustrated in Figure 2.26. In the first clone, the types
of sum and prod have been changed from float to int. The second clone has already
been discussed in subsection 2.2.5 (see Figure 2.22). It differs from the original program
by applying the function bar instead of foo to the arguments sum and prod at line 7.

1 void sumProd ( int n) {
2 int sum = 0 ;
3 int prod = 1 ;
4 for ( int i =1; i<=n ; i++) {
5 sum = sum + i ;
6 prod = prod ∗ i ;
7 foo (sum , prod ) ; }}

void sumProd ( int n) {
f loat sum = 0 . 0 ;
f loat prod = 1 . 0 ;
for ( int i =1; i<=n ; i++) {

sum = sum + i ;
prod = prod ∗ i ;
bar (sum , prod ) ; }}

Figure 2.26: Two clones of the program from Figure 2.25.

We skip the translation from the code clones into hedges and directly show the results
of running G4V

a on the respective clone and the original program in Figure 2.27. We
consider the longest admissible alignment which is unique in both cases.
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sumProdpinputptypepintq, nq, sumProdpinputptypepintq, nq,

returnTypepvoidq, returnTypepvoidq,

“ptypepxq, sum,yq, “ptypepfloatq, sum, 0.0q,
“ptypepxq, prod, zq, “ptypepfloatq, prod, 1.0q,
forp“ptypepintq, i, 1q,ďpi, nq,``piq, forp“ptypepintq, i, 1q,ďpi, nq,``piq,

“psum,`psum, iqq, “psum,`psum, iqq,

“pprod, ˚pprod, iqq, “pprod, ˚pprod, iqq,

foopsum, prodqqq Fpsum, prodqqq

Figure 2.27: Result of running G4V
a to detect the clones from Figure 2.26.

In the first case term variables are the only variables used in the generalization. That
means it can be solved by basic first-order techniques. Nevertheless, without term
variables our algorithm would compute results that are “worse” than those computed
by syntactic first-order generalization. The second result contains a function variable
F which stands for the application of either bar or foo. Remember, the algorithm G2V

a

introduced a context variable in order to abstract different function applications at two
pieces of software code. G4V

a uses function variables to preserve the information that
the similarities are located at the same level of the input syntax trees.

2.3.4 Properties of the Algorithm G4V
a

Here we show that G4V
a terminates and indeed computes a rigid lgg that is unique

modulo » for two hedges and their admissible alignment. We also show that G4V
a is

coherent and its computational complexity is quadratic in time and linear in space
on the size of the input. Before stating the main theorems, we formulate a couple of
lemmas. We need them to prove the other properties of the algorithm.

Lemma 2.30. Let P ; S; ϑ ùñR1 P1; S1; ϑσ1 ùñR2 P2; S2; ϑσ1σ2 be a sequence of
transformations where R1 P tNar-FO,Nar-HOu and R2 P G

4V
a ztNar-FO,Nar-HO,Mer-Su.

Then there exists a transformation sequence P ; S; ϑ ùñR2 P
1
1; S11; ϑσ2 ùñR1 P

1
2; S12;

ϑσ2σ1 so that P2 “ P 12, S2 “ S12, and σ1σ2 “ σ2σ1.

Proof. The rule R2 cannot operate on an AUE introduced by R1 because the rules
G4V

a ztNar-FO,Nar-HO,Mer-Su work only with generalization variables of the“2V”types.
Therefore we can assume that ùñR1 and ùñR2 are the exactly same transformation
step in both transformation sequences, i.e., the same rule, the same AUE, and the
same fresh variables. It is easy to see that P2 “ P 12 because R1 does not affect the first
component of the state. As R1 and R2 operate on distinct AUEs and all the AUEs
have pairwise disjoint generalization variables which are distinct from all the variable
occurrences in hedges and contexts of P Y S we get that Dompσ1q X Dompσ2q “ H,
Dompσ1qXVpRanpσ2qq “ H, and Dompσ2qXVpRanpσ1qq “ H. Putting all this together
we get that P2 “ P 12, S2 “ S12, and σ1σ2 “ σ2σ1.
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Lemma 2.31. Let P ; S; ϑ ùñMer-S P1; S1; ϑσ1 ùñR P2; S2; ϑσ1σ2 be a sequence of
transformations where R P G4V

a is arbitrary but fixed. Then there exists a transformation
sequence P ; S; ϑ ùñ˚

R P 11; S11; ϑσ11 ùñ˚
Mer-S P

1
2; S12; ϑσ11σ12 so that P2 “ P 12, S2 “ S12,

and X̃px̃qσ1σ2 “ X̃px̃qσ11σ
1
2 for all generalization variables in P Y S.

Proof. If Mer-S and R operate on different AUEs then we can choose the transformation
P ; S; ϑ ùñR P

1
1; S11; ϑσ11 ùñMer-S P

1
2; S12; ϑσ11σ12 to get P2 “ P 12, S2 “ S12, and σ1σ2 “

σ11σ
1
2, by the same considerations as in the proof of Lemma 2.30.

Let us assume that R operates on the merged AUE from the first transformation step.
Since R operates on the merged AUE, it operates on the store, hence R P tRes-C,Clr-S,
Mer-S,Nar-FO,Nar-HOu. If R P tRes-C,Clr-Su, then we can use confluence of G2V

a

because Res-C and Clr-S work only with generalization variables of the “2V” types.
Therefore, it suffices to analyze the cases R P tMer-S,Nar-FO,Nar-HOu. It follows that
P2 “ P 12 because Mer-S, Nar-FO, and Nar-HO do not touch the first component of the
state. The case R “ Mer-S is trivial because we can choose the exactly same transfor-
mation sequence.

R“Nar-FO. Mer-S operates on two AUEs in S that consist of the same hedges and
contexts, say tx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃, x̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u Ď S. W.l.o.g. S1 “
Sztx̃2 : s̃ fi q̃; X̃2 : c̃ fi d̃u and σ1 “ tx̃2 ÞÑ x̃1, X̃2 ÞÑ X̃1p˝qu. By assumption, the rule
Nar-FO operates on x̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃. Therefore, it is of the form x̃1 : pt1, . . . , tnq fi
ps1, . . . , snq; X̃1 : ˝ fi ˝ and X̃1pqϑ “ ˝ “ X̃2pqϑ and X̃1, X̃2 do not occur in the
generalization for they are eliminated by Sol-H. Let S22 be S1ztx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃u,
then S2 “ S22 Y txi : ti fi si; Ỹi : ˝ fi ˝ | 1 ď i ď nu and σ2 “ tx̃1 ÞÑ px1, . . . , xnqu where
xi’s and Ỹi’s are fresh.

Let S20 be Sztx̃1 : s̃ fi q̃; X̃1 : c̃ fi d̃u. We choose as first part of the transfor-
mation sequence P ; S; ϑ ùñNar-FO P 10; S10; ϑσ10 ùñNar-FO P 11; S11; ϑσ11 so that S10 “
S20 Y txi : ti fi si; Ỹi : ˝ fi ˝ | 1 ď i ď nu and σ2 “ tx̃1 ÞÑ px1, . . . , xnqu where xi’s
and Ỹi’s are the same fresh variables as above. Furthermore, S11 “ S10ztx̃2 : s̃ fi q̃;
X̃2 : c̃ fi d̃u Y tyi : ti fi si; Z̃i : ˝ fi ˝ | 1 ď i ď nu and σ2 “ tx̃2 ÞÑ py1, . . . , ynqu where
yi’s and Z̃i’s are fresh. Now we apply Mer-S n times for merging xi : ti fi si; Ỹi : ˝ with
yi : ti fi si; Z̃i : ˝ and we keep the variables xi, Ỹi in the computed generalization. The
mappings of the form yi ÞÑ xi remain in σ12 but they are negligible because they have
been introduced as being fresh and afterwards they have been eliminated, hence they
can be seen as temporary. Putting our considerations together we get that S2 “ S12,
and X̃px̃qσ1σ2 “ X̃px̃qσ11σ

1
2 for all generalization variables in P Y S.

R“Nar-HO. The considerations are exactly the same as for Nar-FO.

Theorem 2.32 (Termination). The algorithm G4V
a terminates on any input.

Proof. The termination proof for G2V
a still works for G4V

a . (See Theorem 2.20.)

Theorem 2.33 (Soundness). Let P be a set of AUEs of the form tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝;
au. Every exhaustive rule application in G4V

a yields a derivation P ; H; Id ùñ` H; S;
σ where g̃ “ X̃px̃qσ is a rigid generalization of s̃ and q̃ with respect to a and the store
S records all the differences such that g̃σLpSq “ s̃ and g̃σRpSq “ q̃.
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Proof. A rigid generalization in the sense of Definition 2.28 is also a rigid hedge in
the sense of Definition 2.38. By Lemma 2.30 and Lemma 2.31, we can assume that
all the rules G2V

a ztMer-Su have been exhaustively applied and by soundness of G2V
a

we know that g̃σLpSq “ s̃ and g̃σRpSq “ q̃ holds and g̃ is a rigid generalization.
Let P ; H; Id ùñ

`

G2V
a ztMer-Su

H; S0; ϑ0 be such an exhaustive partial transformation

and let H; S0; ϑ0 ùñ
˚
Nar-FO,Nar-HO H; Sn; ϑ0ϑ

n
1 be some transformation applications

of the rules Nar-FO and Nar-HO. The empty transformation n “ 0 is our base
case. Assuming that for n ´ 1 all the properties hold, we show by induction that
H; Sn´1; ϑ0ϑ

n´1
1 ùñNar-FO,Nar-HO H; Sn; ϑ0ϑ

n´1
1 ϑn still maintains all the properties.

The rule Nar-FO transforms a hedge variable into consecutive term variables. Let
S1 “ Sn´1ztx̃ : pt1, . . . , tnq fi ps1, . . . , snq; X̃ : ˝ fi ˝u and ϑn “ tx̃ ÞÑ px1, . . . , xnqu
and Sn “ S1 Y txi : ti fi si; Ỹi : ˝ fi ˝ | 1 ď i ď nu. From coherence and sound-
ness, namely X̃px̃qϑ0ϑ

n´1
1 σLpSn´1q “ s̃, follows that X̃px̃qϑ0ϑ

n´1
1 ϑnσLpSnq “ s̃ because

xiσLpSnq “ ti for all 1 ď i ď n. Furthermore, since X̃px̃qϑ0ϑ
n´1
1 is a rigid generaliza-

tion, also X̃px̃qϑ0ϑ
n´1
1 ϑn is rigid because consecutive term variables are allowed. The

reasoning for Nar-HO is equivalent and to show that Mer-S maintains all the properties
we can refer to the soundness proof of G2V

a since all the considerations there also hold
for the new types of variables.

Theorem 2.34 (Completeness). Let g̃ be a rigid generalization of s̃ and q̃ with respect
to a. Then there exists a derivation tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au; H; Id ùñ` H; S; σ
obtained by G4V

a such that g̃ ĺ X̃px̃qσ.

Proof. We proceed in the same manner as in the proof of the completeness theorem
(Theorem 2.22) of G2V

a , applying rules in reverse order to obtain from the general-
ization g̃ the initial state tx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au; H; Id. Assuming that there are
substitutions so that g̃ϑ “ s̃ and g̃ϑ1 “ q̃, we initialize for the reverse transformation
the store by those substitutions so that g̃σLpSq “ s̃ and g̃σRpSq “ q̃. The strategy
from the proof of Theorem 2.22 is extended in the following way: First Mer-S is applied
in reverse H; S1; σ1 ˚

Mer-Sðù H; S; σ until all the variable occurrences are disjoint in
the range of σ1. Afterwards we transform all the (maximal) subsequences of term vari-
ables into fresh hedge variables and all the (maximal) application-sequences of function
variables are transformed into fresh context variables by reverse application of Nar-FO
and Nar-HO, respectively H; S2; σ2 ˚

Nar-FO,Nar-HOðù H; S1; σ1. Afterwards we use the
strategy from the proof of Theorem 2.22.

Theorem 2.35 (Uniqueness modulo »). Let a be an admissible alignment of s̃ and q̃.
If tx̃1 : s̃ fi q̃; X̃1 : ˝ fi ˝; au; H; Id ùñ` H; S1; σ1 and tx̃2 : s̃ fi q̃; X̃2 : ˝ fi ˝; au; H;
Id ùñ` H; S2; σ2 are two exhaustive derivations in G4V

a , then X̃1px̃1qσ1 » X̃2px̃2qσ2.

Proof. By Lemma 2.30 and Lemma 2.31 we can rearrange both derivations so that
they correspond to an exhaustive transformation in G2V

a . Doing so we get par-
tial derivations tx̃1 : s̃ fi q̃; X̃1 : ˝ fi ˝; au; H; Id ùñ` H; S11; σ11 and tx̃2 : s̃ fi q̃;
X̃2 : ˝ fi ˝; au; H; Id ùñ` H; S12; σ12. From the uniqueness theorem of G2V

a we know
that X̃1px̃1qσ

1
1 » X̃2px̃2qσ

1
2. Since Nar-FO operates on AUEs with empty contexts

and Nar-HO works on AUEs with empty hedges, they operate on disjoint AUEs. To-
gether with disjointness of the generalization variables we get confluence of Nar-FO and
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Nar-HO applications. Mer-S transformations are postponed until the end. From conflu-
ence of Nar-FO and Nar-HO applications we get H; S11; σ11 ùñ˚

Nar-FO,Nar-HO H; S21 ; σ21
and H; S12; σ12 ùñ˚

Nar-FO,Nar-HO H; S22 ; σ22 with X̃1px̃1qσ
2
1 » X̃2px̃2qσ

2
2 . The postponed

Mer-S transformations are confluent too (see uniqueness proof of G2V
a ).

2.3.5 Complexity Analysis of G4V
a

The complexity analysis shows that the two additional rules do neither increase the
upper bound of the runtime complexity nor the upper bound of the required space that
we gave in Theorem 2.24.

Theorem 2.36 (Complexity). The anti-unification algorithm G4V
a has Opn2q time com-

plexity and Opnq space complexity, where n is the number of symbols in the input.

Proof. Like in the uniqueness proof, we perform an exhaustive G2V
a transformation that

can be done in Opn2q time and Opnq space, where n is the number of symbols in the
input. Mer-S is postponed until the end and the reasoning is the same as in the case of
G2V

a . Therefore, it suffices to show that exhaustive Nar-FO and Nar-HO transformations
can be done in Opn2q time using Opnq space. From the previous complexity analysis
of G2V

a we know that the size of the store is bounded by Opnq. Since the number of
term variables and function variables together which are introduced by Nar-FO and
Nar-HO is also bounded by Opnq and each term variable and each function variable
in the generalization stands for at least one symbol at both input hedges, the space
complexity of Opnq remains intact. For the same reason there are only linearly many
applications of Nar-FO and Nar-HO together. Since the store is bounded by Opnq, all
the applicability tests of Nar-FO and Nar-HO together can be done in linear time too.
There are at most linearly many substitution compositions that can be done in linear
time, hence the additional rules do neither increase the time complexity nor the space
complexity of the anti-unification process.

2.3.6 Minimization by Anti-Unification using G4V
a

To use the minimization technique from G2V
a by the extended algorithm G4V

a we need
to prove Theorem 2.25 again for the redefined notion of a rigid hedge. We recall the
theorem from subsection 2.2.9 and prove that it still holds:

Theorem 2.25. Let s̃ and q̃ be compressed forms of rigid hedges and let s̃ » q̃. There
exists a renaming σ such that s̃σ “ q̃ (and vice versa).

Proof. From s̃ » q̃ and Lemma 2.4 follows that there is a substitution σ so that s̃σ “
q̃ and FpRanpσqq “ H. We can assume that Dompσq Ď Vps̃q. Since s̃ and q̃ are
compressed forms of rigid hedges, we can assume that for all hedges and contexts
r̃ P Ranpσq holds (see Definition 2.38):

1. No higher-order variable in r̃ applies to the empty hedge.

2. If r̃ contains consecutive first-order variables, then both of them are term variables.

3. If r̃ contains a vertical chain of variables, then both of them are function variables.

4. r̃ doesn’t contain higher-order variables with a first-order variable as the first or
the last argument.
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First, we assume that Ranpσq Ę VHYVTYtX̃p˝q | X̃ P VCuY tF p˝q | F P VFu which
will lead to a contradiction. Afterwards, it remains to show that σ is a bijection from
Dompσq to Ranpσq. (See Definition 2.37.)

If Ranpσq Ę VH Y VT Y tX̃p˝q | X̃ P VCu Y tF p˝q | F P VFu, then there is some hedge
or context r̃ P Ranpσq such that either r̃ “ ε or r̃ “ ˝ or |r̃| ą 1 or it is an application
of the form Ỹ pr̃1q, where Ỹ P VCYVF and r̃1 P T ztε, ˝u (see item 1) so that Fpr̃1q “ H.

Case 1: Assume r̃ “ Ỹ pr̃1q and r̃1 P T ztε, ˝u. Since, by item 1, no higher-order
variable in r̃1 applies to the empty hedge, every leaf in the tree representation is either
a first-order variable or the hole. By item 4 we can exclude the case that a leaf is a
first-order variable so that each leaf is the hole because Fpr̃1q “ H. Since there is only
one hole in a context, Toppr̃1q and Ỹ are two variables in vertical chains in the hedge r̃.
(Notice that |r̃1| ą 1 would lead to more than one hole.) By item 3, it follows that both
of them are function variables. Therefore, the definition of σ contains a mapping of the
form X̃ ÞÑ F pGpc̃qq for some F,G P VF, X̃ P VC and some context c̃. By assumption
s̃σ “ q̃ and with the mapping X̃ ÞÑ F pGpc̃qq follows that s̃ ă q̃. This is a contradiction
to s̃ » q̃.

Case 2: Assume |r̃| ą 1. By the considerations of Case 1 we know that no element of
r̃ can be of the form Ỹ pr̃1q where r̃1 P T ztε, ˝u. For this reason and because Fpr̃1q “ H,
each element from r̃ is either the hole, or a first-order variable, or a singleton context
of the form Ỹ p˝q where Ỹ P VC Y VF.

Case 2.1: Assume that r̃ contains an element that is a term variable. Because |r̃| ą 1
and by assumption s̃σ “ q̃ it follows that σ contains a mapping of the form X̃ ÞÑ r̃ or
x̃ ÞÑ r̃. Since at least one element of r̃ is a term variable it follows that s̃ ă q̃. This is
a contradiction to s̃ » q̃.

Case 2.2: Assume that r̃ contains an element that is the hole. It follows that σ
contains a mapping of the form X̃ ÞÑ pr̃1 ˝ r̃2q. Because r̃1 and r̃2 cannot be contexts,
it follows that both of them are (possibly empty) sequences of first-order variables. We
know that there is also a substitution σ1 so that s̃ “ q̃σ1 and FpRanpσ1qq “ H because
s̃ » q̃. That substitution σ1 would have to introduce the eliminated context variable
and this leads to a contradiction by our previous considerations.

Case 2.3: Assume that r̃ contains no element that is a term variable or the hole. The
only possibility that remains is that r̃ is of the form pỹ, Ỹ p˝qq or pỸ p˝q, ỹq or pỹ, Ỹ p˝q, z̃q
where Ỹ P VC Y VF.

Case 2.3.1: Assume that Ỹ P VF, say Ỹ “ F . Because |r̃| ą 1 it follows that σ
contains a mapping of the form X̃ ÞÑ pr̃1, F p˝q, r̃2q where X̃ P VC. It follows that s̃ ă q̃
because s̃σ “ q̃. This is a contradiction to s̃ » q̃.

Case 2.3.2: Assume that Ỹ P VC. This contradicts to q̃ being in compressed form.

Case 3: Assume r̃ “ ε or r̃ “ ˝. Since s̃ » q̃, there is also a substitution σ1 so that
s̃ “ q̃σ1 and FpRanpσ1qq “ H. That substitution σ1 would have to introduce some extra
variables leading to Case 1 or Case 2 and its contradiction.

It remains to show that σ is a bijection from Dompσq to Ranpσq. Since s̃ » q̃, there is
a substitution ϑ so that q̃ϑ “ s̃. Therefore, s̃σϑ “ s̃. It follows that σ is a renaming.

Notice that a term variable can only be instantiated by a term and not by a hedge
variable. Furthermore, function variables can only be instantiated by a bonded context
and not by a hedge variable. For that reason only eliminations of hedge variables that



80 Chapter 2 Anti-Unification for Unranked Terms and Hedges

appear next to a context variable need to be considered when computing the compressed
form of a rigid hedge, like done in Corollary 2.27. Computing a compressed form of a
rigid hedge can be done in exactly the same way as in subsection 2.2.9 because term
variables and function variables cannot be instantiated by a hedge variable.

It follows that for two rigid hedges s̃ and q̃ we can decide s̃
?
» q̃ again by translating

s̃ and q̃ into their compressed forms and then we search for a renaming on the com-
pressed forms. To search for a renaming, we can again use the dag representation where
higher-order variables are in curried form.

To solve the matching problem for two rigid hedges by G4V
a , one can proceed in

exactly the same way as described in subsection 2.2.9 for the simpler case without
term variables and function variables. Even the proof of Theorem 2.28 remains sound
without any modification. Therefore we can just state the following corollary:

Corollary 2.37. Let s̃ and q̃ be rigid hedges and let Ỹ P VC, ỹ P VH be variables that
occur neither in s̃ nor in q̃.

§ Then s̃ ĺ q̃ iff there is a so that H; S; σ “ G4V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » s̃.

§ Then q̃ ĺ s̃ iff there is a so that H; S; σ “ G4V
a pỸ pỹq: s̃ fi q̃q and Ỹ pỹqσ » q̃.

Notice that the considerations about pruning the search space from subsection 2.2.9

also apply here. To decide s̃
?
ĺ q̃ by the algorithm G4V

a , one only needs to consider
those alignments a that fulfill the condition |a| “ |tPosf ps̃q : f P Fu|. Informally,
all appearances of function symbols in s̃ should also occur in a. Otherwise a is not a
possible candidate.

Example 2.38. We demonstrate our results on the hedges s̃ “ pfpfpaqq, fpaqq and
q̃ “ pa, gpgpaqq, aq. There are three admissible alignments of longest length, namely
ax1¨1¨1, 1yax2¨1, 2¨1¨1y and ax1¨1¨1, 1yax2¨1, 3y and ax1¨1¨1, 2¨1¨1yax2¨1, 3y. (It is the
complete set of laas of s̃ and q̃.) We compute the three rigid generalizations of s̃ and q̃
with respect to those alignments by the algorithm G4V

a :

g̃1 “ pX̃1paq, X̃2paq, x̃3q and g̃2 “ pỸ1paq, ỹ2, Ỹ3paqq and g̃3 “ pz̃1, F2pF3paqq, Z̃4paqq.

For g̃1 and g̃2, there exists only one alignment a that fulfills the condition |a| “
|tPosf pg̃1q : f P Fu|, namely a “ ax1¨1, 1¨1yax2¨1, 3¨1y. Therefore, it is the sole candi-
date that can lead to a rigid generalization g̃1 of g̃1 and g̃2 so that g̃1 » g̃1. G4V

a computes
the following generalization g̃1 for g̃1 and g̃2 w.r.t. a:

g̃1 “ pZ̃1paq, z̃2, Z̃3paq, z̃4q.

The compressed form of g̃1 is pX̃1paq, X̃2paqq and the compressed form of g̃1 is
pZ̃1paq, Z̃3paqq. Therefore g̃1 ĺ g̃2 and g̃1 can be removed so that tg̃2, g̃3u remain in
the complete set of generalizations of s̃ and q̃ with respect to the set of all laas. Next we

test g̃2
?
ĺ g̃3. The only candidate alignment is a “ ax1¨1, 2¨1¨1yax3¨1, 3¨1y. G4V

a computes
the following generalization g̃1 for g̃2 and g̃3 w.r.t. a:

g̃1 “ px̃1, X̃2paq, x̃3, X̃4paqq.

The compressed form of g̃2 is pỸ1paq, Ỹ3paqq and the compressed form of g̃1 is
pX̃2paq, X̃4paqq. Therefore, tg̃3u is the mcg. Notice that the compressed form of g̃3
is g̃3 itself, hence g̃1 ă g̃3 and it follows that also g̃2 ă g̃3 and g̃1 ă g̃3.
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Chapter 3

Anti-Unification for Ranked Terms with
Binders

A computer program can be seen as a function from input values to an output. In order
to define the behavior of such a function we need to address the input values that are
transformed during the evaluation process. Therefore, we give them some temporary
names, like x, y, etc., that are of no interest for the user. Similarly, mathematical
expressions, like x2 ` y ` 1 where the variables x, y denote unknown subjects, may be
described in a schematic way as functions:

fpx, yq “ x2 ` y ` 1

The variables x and y are bounded in the scope of the function definition. We can
rename them by z1 and z2 without changing the semantics of f :

fpz1, z2q “ z2
1 ` z2 ` 1

Church [27] developed the lambda calculus to represent computable functions in a
purely syntactic manner. The notion of alpha equivalence defines the class of terms
that are equal up to bound variable renaming. For instance, the above examples are
two alpha equivalent lambda terms:

λx.λy. x2 ` y ` 1 “α λz1.λz2. z
2
1 ` z2 ` 1

Pitts and Gabbay [37, 38, 39] introduced nominal techniques to study first-order sys-
tems with bindings. They distinguish between atoms that can be bound, and variables
that can be instantiated. In contrast to the lambda calculus where bound variables may
appear in functional position, atoms do not appear in functional position. Furthermore,
the name of a bound atom is used as a label for the binding. Alpha equivalence is es-
sentially defined on swapping of atoms. The above examples can also be encoded by
nominal terms, since no higher-order variables are involved. We use the atoms a, b, and
c in the example:

a.b. a2 ` b` 1 “α c1.c2. c2
1 ` c2 ` 1

We can prove alpha equivalence by applying the swappings pa c1q and pb c2q to the
left-hand side term or to the right-hand side term (the formal definitions can be found
in subsection 3.1.1):
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pb c2q‚ppa c1q ‚ a.b. a2 ` b` 1q “ pb c2q ‚ c1.b. c2
1 ` b` 1 “ c1.c2. c2

1 ` c2 ` 1
pb c2q‚ppa c1q ‚ c1.c2. c2

1 ` c2 ` 1q “ pb c2q ‚ a.c2. a2 ` c2 ` 1 “ a.b. a2 ` b` 1
When dealing with languages that involve binders together with substitutions, one

needs to be careful to avoid unwanted capturing by the scope of a binder at instanti-
ation time. The approach in lambda calculus is to avoid variable capturing by alpha
equivalent renaming so that the variables in a substitution do not interfere with bound
variables of the term to be instantiated. For instance, pλx.λy. x2 ` y ` zqtz ÞÑ xu be-
comes λx1.λy. x

2
1` y`x. Nominal techniques use a so called freshness context in order

to specify atoms which are forbidden in a substitution when instantiating a variable.
Atoms that are not forbidden might be captured by a binder. For instance, a.b. a2`b`z
tz ÞÑ au “ a.b. a2 ` b ` a if a is not forbidden in the instantiation of z. A pair of a
nominal term and a freshness context is called a term-in-context.

In the present chapter, we develop anti-unification algorithms for nominal
terms-in-context and for simply-typed lambda terms. Both of them rely on a
subalgorithm that constructively decides an extended variant of alpha equivalence
which is needed to compute least general generalizations for two input terms. We
prove soundness and completeness properties of the main algorithms and their subal-
gorithms, and analyze their complexity. Several authors, e.g. [24, 32, 55], showed that
there is a close relation between nominal terms and higher-order pattern. In particular,
Levy and Villaret [55] showed how to translate nominal unification problems into
higher-order pattern unification problems and how to obtain nominal unifiers back
from higher-order pattern unifiers.

Our original intention was to “kill two birds with one stone” by developing an
anti-unification algorithm that computes higher-order pattern generalizations of two
λ-terms and introducing a similar translation approach to solve the anti-unification
problem for nominal terms. However, it turned out that the nature of freshness con-
texts considered in nominal terms-in-context introduces some difficulties when search-
ing for a meet. In general, a minimal complete set of generalizations does not exist for
two nominal terms-in-context. This is in sharp contrast with the related problem of
anti-unification for higher-order patterns, which always have a single lgg. It is not clear
how such a translation approach would work. Therefore, we developed two algorithms
that are independent of each other:

1. We discuss the problem of searching a meet for two nominal terms-in-context and
illustrate the problem that arises. To tackle that problem, we restrict the set of
considered atoms that are allowed in a generalization to be finite and fixed. Under
this restriction the anti-unification problem for two terms-in-context becomes
unitary. We develop an anti-unification algorithm that computes a unique lgg for
two terms-in-context and a finite set of atoms. The upper bound of its runtime
complexity is Opn5q and it needs Opn4q space, where n is the input size.

2. We consider the anti-unification problem for simply-typed lambda terms and de-
velop a rule-based algorithm that computes a least general higher-order pattern
generalization for two arbitrary simply-typed λ-terms. The upper bound for the
runtime complexity of this algorithm is quadratic in the size of the two input
terms and it needs linear space in the size of the input.
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3.1 Anti-Unification for Nominal Terms

Here we study the nominal anti-unification problem, which is concerned with finding
a least general generalization for two terms-in-context. In general, the problem is of
type zero, but if the set of atoms permitted in generalizations is finite, then there
exists a unique lgg (modulo »“α). We present an algorithm that computes it. The
algorithm relies on a subalgorithm that constructively decides equivariance between
two terms-in-context. Nominal anti-unification can be applied to problems were gen-
eralization of first-order terms is needed (inductive learning, clone detection, etc.), but
bindings are involved. Languages that are based on nominal logic are, for instance,
αProlog [26], FreshML [79], Nominal Isabelle [81], etc. We start with an illustrating
example that shows two nominal terms and their generalization. Notice that in Exam-
ple 3.1 the variable x can be reused three times, even though the binders a. and b. refer
to atoms at different levels in the tree representation of the terms to be generalized.

Example 3.1. The nominal term a.fpx, gppa cqpa bq¨x, pa dqpa cq¨xq, dq is a generaliza-
tion of the two nominal terms a.fpa, gpb, cq, dq and b.fpc, gpb, dq, dq. The first term
can be obtained from the generalization by instantiating the variable x with the atom
a and the second one by replacing x with c. The swappings in front of x are applied
immediately at instantiation time.

a.

f

ga d

b c

b.

f

gc d

b d

a.

f

gx d

pa cqpa bq¨x pa dqpa cq¨x

generalize

Figure 3.1: Two nominal terms and their lgg.

3.1.1 Nominal Terms (Preliminaries)

Characters that denote function symbols, terms, term variables, substitutions, etc. and
standard notations, like the cardinality of a set, are the same as in the previous chapters.

Definition 3.1 (Nominal signature). In nominal signatures we have a set of sorts of
atoms, a disjoint set of sorts of data, and a set of function symbols. Sorts of atoms
are denoted by ν and sorts of data by δ. Function symbols have an arity of the form
τ1 ˆ ¨ ¨ ¨ ˆ τn Ñ δ, where τi are sorts given by the grammar:

τ ::“ ν | δ | xνyτ

Sorts of the form xνyτ classify terms that are binding abstractions of atoms of sort ν
over terms of sort τ .

Example 3.2. In Figure 3.2, we illustrate an example of a nominal signature for
expressions in a small fragment of ML. It is taken from Urban et al. [83].
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sort of atoms: vid
sort of data: exp
function symbols: vr: vidÑ exp

app: expˆ expÑ exp
fn: xvidyexpÑ exp
lv: expˆ xvidyexpÑ exp
lf: xvidyppxvidyexpq ˆ expq Ñ exp.

Figure 3.2: Nominal signature for expressions in a small fragment of ML

Definition 3.2 (Nominal term). Given disjoint sets of countably infinite term vari-
ables V:, countably infinite atoms A;, and a signature Σ.

A swapping pa bq is a pair of atoms a, b P A of the same sort. A permutation is a
(possibly empty) sequence of swappings. Nominal terms are given by the grammar:

t ::“ fpt1, . . . , tnq | a | a.t | π¨x

where f is an n-ary function symbol, a is an atom, π is a permutation, and x is a
variable. They are called respectively application, atom, abstraction, and suspension.

We denote atoms by upright letters a, b, c, d, e. The letter h denotes an atom or a
function symbol. Upright Greek letters π, ρ,µ, τ are used to denote permutations. The
inverse of a permutation π “ pa1 b1q . . . pan bnq is the permutation pan bnq . . . pa1 b1q,
denoted by π´1. The identity permutation is denoted by Id and instead of Id ¨x we
write just x. The set of nominal terms constructed over Σ, A, and V is denoted by
T pΣ,A,Vq, or simply by T if the concrete instances of Σ, A, and V are unimportant.

Definition 3.3 (Permutation). The action of a permutation π on a term t is defined
by induction on the number of swappings in π:

Id‚t “ t; pa bqπ‚t “ pa bq‚pπ‚tq.

where the effect of a swapping is defined by induction on the structure of terms:

pa bq‚fpt1, . . . , tnq “ fppa bq‚t1, . . . , pa bq‚tnq; pa bq‚pc.tq “ ppa bq‚cq . ppa bq‚tq ;

pa bq‚a “ b; pa bq‚b “ a; pa bq‚c “ c, when c R ta, bu; pa bq‚π¨x “ pa bqπ¨x.

Like in the previous chapters, the set of variables of a nominal term t is denoted
by Vptq. A term t is called ground if Vptq “ H. We define the set of atoms of a
permutation π as the set ta | π‚a ‰ au, denoted by Apπq. Similarly, the set of atoms of
a term t is the set of all atoms which appear in it and is denoted by Aptq. For instance,
Apfpa.gpaq, pb cq¨x, dq “ ta, b, c, du. We extend the notion Ap¨q for subsets of T .

:We assume that V contains countably infinite variables of each sort of atoms and sort of data.
;We assume that A contains countably infinite atoms of each sort of atoms.
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f ε

a. 1

b. 1¨1

g 1¨1¨1

pa bq¨x 1¨1¨1¨1 a 1¨1¨1¨2

h 2

c 2¨1

Figure 3.3: The tree form and
positions of the nominal term
fpa.b.gppa bq¨x, aq, hpcqq.

The set of positions of a term t is denoted by Posptq.
Positions are defined with respect to the tree represen-
tation in the usual way, as strings of integers. How-
ever, suspensions are put in a single leaf node. For any
term t, we denote by t|I the subterm of t at position I.

Example 3.3. Figure 3.3 illustrates the tree form of
the term fpa.b.gppa bq¨x, aq, hpcqq, and the correspond-
ing positions. The application of f stands in the
position ε (the empty sequence). The suspension is
put in one node of the tree, at the position 1¨1¨1¨1.
The abstraction operator and the corresponding bound
atom together occupy one node as well. The sub-
term b.gppa bq¨x, aq at position 1¨1 can be denoted by
fpa.b.gppa bq¨x, aq, hpcqq|1¨1 “ b.gppa bq¨x, aq.

As usual, we denote by }t} the cardinality of the set of positions of a nominal term t.
Similarly, }t}Abs stand for the number of abstraction occurrences in t, i.e., the cardinality
|tI | I P Posptq and t|I “ a.t1 for some a P A and t1 P T u|.

Every permutation π naturally defines a bijective function from the set of atoms to
the sets of atoms, that we will also represent as π. Suspensions are uses of variables
with a permutation of atoms waiting to be applied once the variable is instantiated.
Occurrences of an atom a are said to be bound if they are in the scope of an abstraction
of a, otherwise are said to be free.

Definition 3.4 (Free atoms). We denote by FAptq the set of all atoms which occur freely
in t and by FA-sptq is the set of all atoms which occur freely in t ignoring suspensions:

FApfpt1, . . . , tnqq “
Ťn
i“1 FAptiq, FA-spfpt1, . . . , tnqq “

Ťn
i“1 FA-sptiq,

FApaq “ tau, FApa.tq “ FAptqztau, FA-spaq “ tau, FA-spa.tq “ FA-sptqztau,
FApπ¨xq “ Apπq, FA-spπ¨xq “ H.

In Definition 3.5, we overload the notion of a top symbol (also called head of the term)
from the previous chapter and Definition 3.6 overloads the definition of a substitution
for nominal terms.

Definition 3.5 (Top symbol). The head (or top symbol) of a term t, denoted Topptq,
is defined as: Toppfpt1, . . . , tnqq “ f , Toppaq “ a, Toppa.tq “ ., and Toppπ¨xq “ x.

Definition 3.6 (Substitution). A substitution is a mapping σ : V Ñ T pΣ,A,Vq from
variables to terms of the same sort, which is identity almost everywhere.

Any substitution σ can be extended to a mapping σ̂ : T Ñ T that can be applied
to nominal terms. Application allows atom capture and forces the permutation effect.
Similarly to subsection 2.1.1, the application is defined by induction on the structure
of terms:

tσ̂ ::“

$

’

’

&

’

’

%

fpt1σ̂, . . . , tnσ̂q if t “ fpt1, . . . , tnq,
a if t “ a,
a.ptσ̂q if t “ a.t,
π‚σpxq if t “ π¨x
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The notion of substitution domain and range are defined similarly to subsection 2.1.1.
To simplify the notation, we do not distinguish between a substitution σ and its exten-
sion σ̂.

Example 3.4. For instance, in a.xtx ÞÑ au “ a.a the atom a is captured, and in
π¨xtx ÞÑ tu “ π‚t the permutation is immediately applied to t. A more concrete exam-
ple is pa bq¨xtx ÞÑ fpa, pa bq¨yqu “ fpb, pa bqpa bq¨yq.

Definition 3.7 (Freshness context). A freshness constraint is a pair of the form a#x
stating that the instantiation of x cannot contain free occurrences of a. A freshness
context is a finite set of freshness constraints.

We use ∇ and Γ to denote freshness contexts. Vp∇q and Ap∇q denote respectively
the set of variables and atoms of ∇.

Definition 3.8. We say that a substitution σ respects a freshness context ∇, if for
all x, FA-spxσq and ta | a#x P ∇u are disjoint, i.e., FA-spxσq X ta | a#x P ∇u “ H.

Definition 3.9 (Alpha equivalence and freshness predicate). The predicate “α, which
stands for α-equivalence between terms, and the freshness predicate # were defined in
[82, 83] by the following theory:

∇ $ a “α a(“α-atom)
∇ $ t1 “α t

1
1 ¨ ¨ ¨ ∇ $ tn “α t

1
n

∇ $ fpt1, . . . tnq “α fpt11, . . . , t
1
nq

(“α-application)

∇ $ t “α t
1

∇ $ a.t “α a.t1 (“α-abs-1)
a ‰ a1 ∇ $ t “α pa a1q‚t1 ∇ $ a#t1

∇ $ a.t “α a1.t1 (“α-abs-2)

a#x P ∇ for all a such that π‚a ‰ π1‚a
∇ $ π¨x “α π1 ¨x

(“α-susp.)

where the freshness predicate # is defined by

a ‰ a1
∇ $ a#a1 (#-atom)

∇ $ a#t1 ¨ ¨ ¨ ∇ $ a#tn
∇ $ a#fpt1, . . . tnq

(#-application)

∇ $ a#a.t(#-abst-1)
a ‰ a1 ∇ $ a#t

∇ $ a#a1.t (#-abst-2)

pπ´1‚a#xq P ∇
∇ $ a#π¨x

(#-susp.)

The intended meanings of the two predicates from Definition 3.9 are:

1. ∇ $ a#t holds, if for every substitution σ such that tσ is a ground term and σ
respects the freshness context ∇, we have a is not free in tσ;

2. ∇ $ t “α u holds, if for every substitution σ such that tσ and uσ are ground
terms and σ respects the freshness context ∇, tσ and uσ are α-equivalent.
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Based on the definition of the freshness predicate #, we can design an algorithm
which solves the following problem:

Given: A set of freshness formulas ta1#t1, . . . , an#tnu.
Compute: A minimal (with respect to Ď) freshness context ∇ such that

∇ $ a1#t1, . . . ,∇ $ an#tn.

Such a freshness context ∇ may or may not exist, and the algorithm should detect
it. Essentially, the algorithm is a bottom-up application of the rules of the freshness
predicate, starting from each of the ∇ $ a1#t1, . . . ,∇ $ an#tn. It succeeds if each
branch of such a derivation tree is either closed (i.e., ends with the application of
the #-atom or the #-abst-1 rule), or ends with an application of the #-susp. rule,
producing a membership atom of the form a#x P ∇ for some a and x.

Definition 3.10 (Minimal freshness context algorithm). We give a rule-based descrip-
tion of the algorithm, which we call Ctx for it is supposed to compute a freshness context.
The rules operate on pairs F ; ∇, where F is a set of atomic freshness formulas of the
form a#t, and ∇ is the freshness context to be computed. The pair F ; ∇ is called the
state. The algorithm Ctx consists of five transformation rules that operate on states.
The rules are presented below.

The following transformation rules of Ctx transform states into states. The character
Ÿ stands for disjoint union.

Del-Ctx : Delete (#-atom)

ta#bu ŸF ; ∇ ùñ F ; ∇, if a ‰ b.

Abs-Ctx 1: Abstraction (#-abst-1)

ta#a.tu ŸF ; ∇ ùñ F ; ∇.

Abs-Ctx 2: Abstraction (#-abst-2)

ta#b.tu ŸF ; ∇ ùñ ta#tu Y F ; ∇, if a ‰ b.

Dec-Ctx : Decomposition (#-application)

ta#fpt1, . . . , tnqu ŸF ; ∇ ùñ ta#t1, . . . , a#tnu Y F ; ∇.

Sus-Ctx : Suspension (#-susp.)

ta#π¨xu ŸF ; ∇ ùñ F ; tπ´1‚a#xu Y∇.

To compute a minimal freshness context which justifies the atomic freshness formulas
a1#t1, . . . , an#tn, we start with ta1#t1, . . . , an#tnu; H and apply the rules of Ctx as
long as possible. It is easy to see that the algorithm terminates. The state to which no
rule applies has either the form H; ∇ or ta#auYF ; ∇, where ∇ is a freshness context.
In the former case we say that the algorithm succeeds and computes ∇, writing this
fact as Ctx pta1#t1, . . . , an#tnuq “ ∇. In the latter case we say that Ctx fails and write
Ctx pta1#t1, . . . , an#tnuq “ K.

Theorem 3.1. Let F be a set of freshness formulas and ∇ be a freshness context. Then
Ctx pF q Ď ∇ iff ∇ $ a#t for all a#t P F .



88 Chapter 3 Anti-Unification for Ranked Terms with Binders

Proof. By the structural induction over t, exploiting the similarity between the rules
of Ctx and the definition of the freshness predicate #.

Corollary 3.2. Ctx pF q “ K iff there is no freshness context that would justify all
formulas in F .

Definition 3.11 (Context substitution application). The application of a substitution
σ to a freshness context ∇ is defined by ∇σ “ Ctx pta#xσ | a#x P ∇uq. When ∇σ ‰ K,
we call ∇σ the instance of ∇ under σ.

Example 3.5. We illustrate the application of the substitution σ “ tx ÞÑ b.fpa, bq,
y ÞÑ pa bq¨xu to the freshness context ∇ “ tc#x, a#yu. The algorithm Ctx is initialized
by the state tc#b.fpa, bq, a#pa bq¨xu; H. Now we apply the rules as long as possible:

tc#b.fpa, bq, a#pa bq¨xu; H
ùñAbs-Ctx 2 tc#fpa, bq, a#pa bq¨xu; H
ùñDec-Ctx tc#a, c#b, a#pa bq¨xu; H
ùñ2

Del-Ctx ta#pa bq¨xu; H
ùñSus-Ctx H; tb#xu

Therefore tb#xu is the instance of ∇ under σ.

Lemma 3.3. σ respects ∇ iff ∇σ ‰ K.

Proof. (ñ) Assume that σ respects ∇, i.e., for all x, FA-spxσqX ta | a#x P ∇u “ H. It
follows that, for all a#x P ∇, xσ is so that a only appears in suspensions. Therefore,
when applying Ctx pta#xσ | a#x P ∇uq “ Ctx pta1#t1, . . . , an#tnuq we know that, for
all ai#ti, 1 ď i ď n holds ai R FA-sptiq. For that reason, the application of Ctx will
never lead to a freshness formula of the form a#a, which would lead to K.

(ð) Assume that ∇σ “ Ctx pta1#t1, . . . , an#tnuq “ Γ. Since a freshness formula of
the form a#a would lead to K, we know that, for all ai#ti, 1 ď i ď n, ai does not
appear freely in ti, i.e., ai R FA-sptiq.

It is not hard to see that (a) if σ respects ∇, then σ respects any ∇1 Ď ∇, and (b) if
σ respects ∇ and ϑ respects ∇σ, then σϑ respects ∇ and p∇σqϑ “ ∇pσϑq.

Definition 3.12 (Term-in-context). A term-in-context is a pair x∇, ty of a freshness
context ∇ and a nominal term t.

Definition 3.13 (Instantiation ordering). A term-in-context x∇1, t1y is more general
than a term-in-context x∇2, t2y, written x∇1, t1y ĺ x∇2, t2y

:, if there exists a substitu-
tion σ, which respects ∇1, such that ∇1σ Ď ∇2 and ∇2 $ t1σ “α t2. Similarly, we
write ∇ $ t1 ĺ t2

: if there exists a substitution σ such that ∇ $ t1σ “α t2. Two
terms-in-context p1 and p2 are equigeneral, written p1 » p2, iff p1 ĺ p2 and p2 ĺ p1.
The strict part of ĺ is denoted by ă, i.e., p1 ă p2 iff p1 ĺ p2 and not p2 ĺ p1. We also
write ∇ $ t1 » t2 iff ∇ $ t1 ĺ t2 and ∇ $ t2 ĺ t1.

:For the sake of simplicity, we write ĺ instead of using the logically consistent notation ĺ“α .
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Example 3.6. We demonstrate this relations on some examples:

§ xta#xu, fpaqy » xH, fpaqy. We can use tx ÞÑ bu for the substitution applied to
the first pair.

§ xH, fpxqy ĺ xta#xu, fpxqy (with σ “ Id), but not xta#xu, fpxqy ĺ xH, fpxqy.
§ xH, fpxqy ĺ xta#yu, fpyqy with σ “ tx ÞÑ yu.

§ xta#xu, fpxqy ­ĺ xH, fpyqy, because in order to satisfy ta#xuσ Ď H, the substi-
tution σ should map x to a term t which contains neither a (freely) nor variables.
But then H $ fptq “α fpyq does not hold. Hence, together with the previous
example, we get xH, fpyqy ă xta#xu, fpxqy.

§ xta#xu, fpxqy ­ĺ xta#xu, fpaqy. Notice that σ “ tx ÞÑ au does not respect ta#xu.
§ xtb#xu, pa bq¨xy ĺ xtc#xu, pa cq¨xy with the substitution σ “ tx ÞÑ pa bqpa cq¨xu.

Hence, we get xtb#xu, pa bq¨xy » xtc#xu, pa cq¨xy, because the ľ part can be
shown with the help of the substitution tx ÞÑ pa cqpa bq¨xu.

Definition 3.14. A term-in-context xΓ, ry is called a generalization of two
terms-in-context x∇1, ty and x∇2, sy if xΓ, ry ĺ x∇1, ty and xΓ, ry ĺ x∇2, sy. It is
a least general generalization, (lgg in short) of x∇1, ty and x∇2, sy if there is no
generalization xΓ1, r1y of x∇1, ty and x∇2, sy which satisfies xΓ, ry ă xΓ1, r1y.

3.1.2 Nominal Anti-Unification from Type Zero to Type Unitary

If we have an infinite number of atoms in the language, the relation ă is not well-
founded: xH, xy ă xta#xu, xy ă xta#x, b#xu, xy ă ¨ ¨ ¨ . As a consequence, two
terms-in-context may not have an lgg and not even a minimal complete set of gen-
eralizations:

Example 3.7. Let p1 “ xH, a1y and p2 “ xH, a2y be two terms-in-context where a1 and
a2 are atoms of the same sort and a1 ‰ a2. Then in any complete set of generalizations
of p1 and p2 there is an infinite chain xH, xy ă xta3#xu, xy ă xta3#x, a4#xu, xy ă ¨ ¨ ¨ ,
where ta1, a2, a3, . . .u is the set of all atoms of the same sort of the language.

The following theorem characterizes the generalization type of nominal anti-
unification:

Theorem 3.4. The problem of anti-unification for terms-in-context is of type zero.

Proof. Recall Definition 1.3: A theory is of generalization type zero iff there exists a
pair of terms within the considered theory that does not have an mcg. Given a partially
ordered set, Baader [8] showed that, in the case of unification types, it suffices to prove
that there is an element p0 such that for all elements p0 ĺ p there exists an element p1

so that p ă p1. We use this result in our proof. More precisely, we consider a complete
set of generalizations G of the two terms-in-context p1 and p2 from Example 3.7 with
respect to a countably infinite set of atoms A of the corresponding sort. There will be
a unique most general term-in-context in G which plays the role of p0, namely xH, xy.
Then we show that for all p P G (with xH, xy ĺ p) there exists p1 P G so that p ă p1.
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Since the atoms a1 and a2 (from Example 3.7) are not equal, their meet is a suspension
of the form π¨x. Every pair of suspensions π¨x and ρ¨y is equivalent with respect to
the instantiation ordering: π¨xtx ÞÑ π´1ρ¨yu “ ρ¨y, and vise versa. W.l.o.g., we choose
Id ¨x as representative of their meet.

The set of all finite subsets of Azta1, a2u is denoted by A. (Notice that a freshness
context is finite by Definition 3.7.) It follows that G “ txta1#x | a1 P A1u, xy | A1 P Au
is a complete set of generalizations for the two terms-in-context p1 and p2.

Let x∇, xy P G be arbitrary but fixed. We know that ∇ is finite. Since A is countably
infinite, there exists x∇Y ta1#xu, xy P G so that x∇, xy ă x∇Y ta1#xu, xy.

Hence, p1 and p2 do not have a minimal complete set of generalizations.

The reason is one can make terms-in-context less and less general by adding freshness
constraints for the available (infinitely many) atoms. However, if we restrict the set of
atoms which can be used in the generalizations to be fixed and finite, then the anti-
unification problem becomes unitary. (We do not prove this property here, it will follow
from Theorem 3.11 and Theorem 3.12 in subsection 3.1.8.)

Definition 3.15 (A-based). We say that, respectively, a term t, a freshness context ∇,
a permutation π is based on a set of atoms A, iff Aptq Ď A, Ap∇q Ď A, Apπq Ď A.
A term-in-context x∇, ty is based on A if both t and ∇ are based on it. An A-based
permutation defines a bijection from A to A.

Definition 3.16 (A-based lgg). If p1 and p2 are A-based terms-in-context, then their
A-based generalizations are terms-in-context which are generalizations of p1 and p2
and are based on A. An A-based lgg of A-based terms-in-context p1 and p2 is a
term-in-context p, which is an A-based generalization of p1 and p2 and there is no
A-based generalization p1 of p1 and p2 which satisfies p ă p1.

The problem we would like to solve is the following:

Given: Two nominal terms t and s of the same sort, a freshness context ∇, and a
finite set of atoms A such that t, s, and ∇ are based on A.

Find: A term r and a freshness context Γ, such that the term-in-context xΓ, ry is an
A-based least general generalization of the terms-in-context x∇, ty and x∇, sy.

Our anti-unification problem is parametric on the set of atoms we consider as the
base, and finiteness of this set is crucial to ensure the existence of an lgg.

Discussion about the set A. Before we give the algorithm which solves the stated
problem, we want to discuss how an A-based lgg of two terms-in-context depends on
the set of atoms A. We start the discussion with an example:

Example 3.8. Let t “ a.b, s “ b.a, ∇ “ H, A1 “ ta, bu, and A2 “ ta, b, cu. Then
xH, xy is an A1-based lgg of x∇, ty and x∇, sy, and xtc#xu, c.xy is an A2-based lgg of
them. Obviously, tc#xu $ x ĺ c.x but not tc#xu $ c.x ĺ x.

The reason why xH, xy is an A1-based lgg of x∇, ty and x∇, sy in Example 3.8 is that
the only possible A1-based permutations are pa bq and Id. Since the atom b occurs



3.1 Anti-Unification for Nominal Terms 91

freely in t and a occurs freely in s, we can neither use pa bq for α-equivalent renaming
of atoms in t nor can we use it to α-equivalently rename atoms in s.

When considering the set A2 as the base, we can rename t “α pa cq‚t “ c.b and
similarly we can use s “α pb cq‚s “ c.a. This leads to the A2-based lgg xtc#xu, c.xy.

Our observation naturally leads to the following two questions:

§ Given two finite sets of atoms A1 and A2 with A1 Ď A2 and two A1-based
terms-in-context x∇, ty and x∇, sy.

§ Given an A1-based lgg xΓ1, r1y and an A2-based lgg xΓ2, r2y of x∇, ty and x∇, sy.
§ Can we get Γ2 $ r1 » r2 if there are enough atoms in A1?

§ If yes, how many atoms do we need in A1?

To answer this questions we introduce the notations of a saturated set of atoms.
Let t, s be nominal terms, ∇ be a freshness context, and A be a set of atoms. The
maximal subset of A, fresh for t, s, and ∇, denoted FreshpA, t, s,∇q, is defined as
AzpAptq YApsq YAp∇qq.

Definition 3.17. We say that a set of atoms A is saturated for A-based t, s and ∇,
if |FreshpA, t, s,∇q| ě minp}t}Abs , }s}Absq.

We will prove later (see Theorem 3.14) that the following conjecture holds. It answers
the questions posed above:

Conjecture 3.1. Let A1 and A2 be two finite sets of atoms with A1 Ď A2 such that
the A1-based terms-in-context x∇, ty and x∇, sy have an A1-based lgg xΓ1, r1y and an
A2-based lgg xΓ2, r2y. If A1 is saturated for t, s,∇, then Γ2 $ r1 » r2.

In other words, this result answers the following question:

Given: Nominal terms t, s and a freshness context ∇.

Question: How to choose a set of atoms A so that

(a) t, s, ∇ are A-based and

(b) the term r in the A-based lgg xΓ, ry of x∇, ty and x∇, sy generalizes s and t in
the “best way”, maximally preserving similarities and uniformly abstracting
differences between s and t.

Answer: Besides all the atoms Aptq YApsq YAp∇q, the set A should contain at least
m more atoms, where m “ mint}t}Abs , }s}Absu.

In the following subsection we introduce a rule-based algorithm that computes an
A-based lgg for two A-based nominal terms and an A-based freshness context. The
algorithm is parametric on the finite set of atoms A.

3.1.3 Nominal Anti-Unification Algorithm GN

We need to redefine the data structure of an anti-unification equation. It is similar to
the one from subsection 2.1.2:
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Definition 3.18 (Anti-unification equation). An anti-unification equation, AUE in
short, is a triple x : t fi s, where x, t, s have the same sort. The variable x is called a
generalization variable.

We say that a set P of AUEs is based on a finite set of atoms A, if for all x : t fi s P P ,
the terms t and s are based on A. The anti-unification algorithm has two global
parameters and consists of four transformation rules that transform quadruples by rule
application into quadruples of the same form.

Definition 3.19 (Nominal anti-unification algorithm). The nominal anti-unification
algorithm is formulated in a rule-based way working on tuples P ; S; Γ; σ and two global
parameters A and ∇, where

§ P and S are sets of AUEs such that if x : t fi s P P Y S, then this is the sole
occurrence of x in P Y S;

§ P is the set of AUEs to be solved;

§ A is a finite set of atoms;

§ The freshness context ∇ does not constrain generalization variables;

§ S is a set of already solved AUEs (the store);

§ Γ is a freshness context (computed so far) which constrains generalization vari-
ables;

§ σ is a substitution (computed so far) mapping generalization variables to nominal
terms;

§ P , S, ∇, and Γ are A-based.

We call such a tuple a state and the algorithm is called GN, where N stands for
nominal. The rules below operate on states.

In the transformation rules, we use the symbol y for fresh variables of the correspond-
ing sorts. The symbol Ÿ stands for disjoint union.

Dec: Decomposition

tx : hpt1, . . . , tmq fi hps1, . . . , smqu ŸP ; S; Γ; σ
ùñ ty1 : t1 fi s1, . . . , ym : tm fi smu Y P ; S; Γ; σtx ÞÑ hpy1, . . . , ymqu,

where h is a function symbol or an atom and m ě 0.

Abs: Abstraction

tx : a.t fi b.su ŸP ; S; Γ; σ ùñ ty : pc aq‚t fi pc bq‚su Y P ; S; Γ; σtx ÞÑ c.yu,
where c P A and ∇ $ c#a.t and ∇ $ c#b.s.

Sol: Solving

tx : t fi su ŸP ; S; Γ; σ ùñ P ; tx : t fi su Y S; ΓY Γ1; σ,
if none of the previous rules is applicable, i.e., one of the following conditions hold:

(a) both terms have distinct heads: Topptq ‰ Toppsq, or
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(b) both terms are suspensions: t “ π1 ¨y1 and s “ π2 ¨y2, where π1, π2 and y1, y2 are
not necessarily distinct, or

(c) both are abstractions and rule Abs is not applicable: t “ a.t1, s “ b.s1 and there
is no atom c P A satisfying ∇ $ c#a.t1 and ∇ $ c#b.s1.

The set Γ1 is defined as Γ1 :“ ta#x | a P A ^ ∇ $ a#t ^ ∇ $ a#su.

Mer: Merging

P ; tx : t1 fi s1, z : t2 fi s2u ŸS; Γ; σ ùñ
P ; tx : t1 fi s1u Y S; Γtz ÞÑ π¨xu; σtz ÞÑ π¨xu,

where π is an Aptt1, s1, t2, s2uq-based permutation such that ∇ $ π‚t1 “α t2, and
∇ $ π‚s1 “α s2.

Given a finite set of atoms A, two nominal A-based terms t and s, and an A-based
freshness context ∇, to compute A-based generalizations for x∇, ty and x∇, sy, we start
with tx : t fi su; H; H; Id, where x is a fresh variable, and apply the rules as long as
possible. A Derivation is a sequence of state transformations by the rules. The state to
which no rule applies has the form H; S; Γ; σ, where Mer does not apply to S. We call
it the final state. Since we prove uniqueness (modulo ») of the final state of exhaustive
transformations (see Theorem 3.12), we can denote it by GNpA,∇, x : t fi sq, i.e.,
H; S; Γ;σ “ GNpA,∇, x : t fi sq, and we say that the result computed by GN is xΓ, xσy.
The store S contains all the differences of the input terms so that xσσLpSq “α t and
xσσRpSq “α s, where the substitutions σLpSq and σRpSq are defined by:

Definition 3.20. We define two substitutions obtained from a set S of AUEs:

σ
L
pSq ::“ ty ÞÑ t1 | y : t1 fi t2 P Su

σ
R
pSq ::“ ty ÞÑ t2 | y : t1 fi t2 P Su

Note that the Dec rule works also for the AUEs of the form x : a fi a. In the Abs rule,
it is important to have the corresponding c in A. If we take A “ A2 in Example 3.8,
then Abs can transform the AUE between t and s there, but if A “ A1 in the same
example, then Abs is not applicable. In this case the Sol rule takes over, because the
condition (c) of this rule is satisfied.

The condition (b) of Sol helps to compute, e,g, xH, xy for identical terms-in-context
xH, pa bq¨yy and xH, pa bq¨yy. Although one might expect that computing xH, pa bq¨yy
would be more natural, from the generalization point of view it does not matter, because
xH, xy is as general as xH, pa bq¨yy.

Merging requires to solve the so called equivariance problem, that is, decide whether
there is a permutation π so that ∇ $ π‚t “α s for some t, s, and ∇. In subsection 3.1.5
we show an algorithm which solves this problem:.

3.1.4 Illustration of the Algorithm GN

Before introducing the algorithm that constructively solves the equivariance decision
problem, we illustrate its usage with the help of some examples.

:Notice that we can compose t “ fpt1, s1q and s “ fpt2, s2q to satisfy the condition in Mer.
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Example 3.9. Let t “ fpa, bq, s “ fpb, cq, ∇ “ H, and A “ ta, b, c, du. Then GN
performs the following transformations:

tx : fpa, bq fi fpb, cqu; H; H; Id
ùñDec ty : a fi b, z : b fi cu; H; H; tx ÞÑ fpy, zqu

ùñ2
Sol H; ty : a fi b, z : b fi cu; tc#y, d#y, a#z, d#zu; tx ÞÑ fpy, zqu

ùñMer H; ty : a fi bu; tc#y, d#yu; tx ÞÑ fpy, pa bqpb cq¨yqu

Hence, p “ xtc#y, d#yu, fpy, pa bqpb cq¨yqy is the computed result. It generalizes
the input pairs: p ĺ x∇, ty and p ĺ x∇, sy. From the final store S “ ty : a fi bu
we get the substitutions σ

L
pSq “ ty ÞÑ au and σ

R
pSq “ ty ÞÑ bu so that

fpy, pa bqpb cq¨yqσ
L
pSq “α t and fpy, pa bqpb cq¨yqσ

R
pSq “α s. Note that xtc#yu,

fpy, pa bqpb cq¨yqy would also be an A-based generalization of x∇, ty and x∇, sy, but
it is strictly more general than p.

Example 3.10. We give three more examples to illustrate how GN computes A-based
lggs for two A-based terms and an A-based freshness context:

§ Let t “ fpb, aq, s “ fpy, pa bq¨yq, ∇ “ tb#yu, and A “ ta, bu. Then GN computes
the term-in-context xH, fpz, pa bq¨zqy. It generalizes the input pairs.

§ Let t “ fpgpxq, xq, s “ fpgpyq, yq, ∇ “ H, and A “ H. It is a first-order
anti-unification problem. GN computes xH, fpgpzq, zqy. It generalizes the input
pairs.

§ Let t “ fpa.b, xq, s “ fpb.a, yq, ∇ “ tc#xu, A “ ta, b, c, du. Then GN computes
the term-in-context p “ xtc#z1, d#z1u, fpc.z1, z2qy. It generalizes the input pairs:
p ĺ x∇, ty and p ĺ x∇, sy. From the store we get σ

L
pSq “ tz1 ÞÑ b, z2 ÞÑ xu

and σRpSq “ tz1 ÞÑ a, z2 ÞÑ yu so that pσLpSq “ xH, fpc.b, xqy and pσLpSq “
xH, fpc.a, yqy. We have t “α fpc.b, xq and s “α fpc.a, yq.

3.1.5 Deciding Equivariance: The Algorithm E

Computation of π in the condition of the rule Mer above requires an algorithm that
solves the following problem:

Given: Nominal terms t, s and a freshness context ∇.

Find: An Aptt, suq-based permutation π such that ∇ $ π‚t “α s.

This is the problem of deciding whether t and s are equivariant with respect to ∇. In
this Section we describe a rule-based algorithm that solves this problem, called E . Note
that our problem differs from the problem of equivariant unification considered in [25]:
We do not solve unification problems, since we do not allow variable substitution. We
only look for permutations to decide equivariance constructively and provide a dedicated
algorithm for that.

The algorithm E works on tuples of the form E; ∇; A; π (also called states) where

§ E is a set of equivariance equations of the form t „ s where t, s are nominal terms,
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§ ∇ is a freshness context,

§ A is a finite set of available atoms,

§ π is a permutation (computed so far).

The algorithm is split into two phases. The first one is a simplification phase where
function applications, abstractions and suspensions are decomposed as long as possible.
The second phase is the permutation computation, where given a set of equivariance
equations between atoms of the form a „ b we compute the permutation which will be
returned in case of success. The rules of the first phase are the following:

Dec-E: Decomposition

tfpt1, . . . , tmq „ fps1, . . . , smqu ŸE; ∇; A; Id ùñ tt1 „ s1, . . . , tm „ smu Y E; ∇;
A; Id.

Alp-E: Alpha Equivalence

ta.t „ b.su ŸE; ∇; A; Id ùñ tpć aq‚t „ pć bq‚su Y E; ∇; A; Id,
where ć is a fresh atom of the same sort as a and b.

Sus-E: Suspension

tπ1 ¨x „ π2 ¨xu ŸE; ∇; A; Id ùñ tπ1‚a „ π2‚a | a P A^ a#x R ∇u Y E; ∇; A; Id.

The rules of the second phase are the following:

Rem-E: Remove

ta „ bu ŸE; ∇; A; π ùñ E; ∇; Aztbu; π, if π‚a “ b.

Sol-E: Solve

ta „ bu ŸE; ∇; A; π ùñ E; ∇; Aztbu; pπ‚a bqπ, if π‚a, b P A and π‚a ‰ b.

Note that in Alp-E, ć is fresh means that ć R A and, therefore, ć will not appear in π.
These atoms are an auxiliary means which play a role during the computation but do
not appear in the final result.

Given nominal terms t, s, and a freshness context ∇. We construct the initial state
tt „ su; ∇; Aptt, suq; Id and apply the above rules successively. We will prove that
when the rules transform a state into H; ∇; A; π, then π is an Aptt, suq-based permu-
tation such that ∇ $ π‚t “α s. We call this state the success state. When no rule
is applicable to a state E1; ∇1; A1; π1, and the set of equations in E1 is not empty, we
will also prove that there is no solution. This state is called the failure state. We say
that E returns (or computes) the result K in the case of failure and π if we reach the
success state.

3.1.6 Illustration of the Algorithm E

Before discussing the properties of E , we illustrate its usage on a couple of examples.

Example 3.11. To decide the equivariance problem of E “ ta „ a, a.pa bqpc dq¨x „ b.xu
with respect to the freshness context ∇ “ ta#xu by the algorithm E, we create the initial
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state ta „ a, a.pa bqpc dq¨x „ b.xu; ta#xu; ta, b, c, du; Id and apply the transformation
rules exhaustively:

ta „ a, a.pa bqpc dq¨x „ b.xu; ta#xu; ta, b, c, du; Id
ùñ Alp-E ta „ a, pé aqpa bqpc dq¨x „ pé bq¨xu; ta#xu; ta, b, c, du; Id
ùñ Sus-E ta „ a, é „ é, c „ d, d „ cu; ta#xu; ta, b, c, du; Id
ùñ Rem-E té „ é, c „ d, d „ cu; ta#xu; tb, c, du; Id
ùñ Rem-E tc „ d, d „ cu; ta#xu; tb, c, du; Id
ùñ Sol-E td „ cu; ta#xu; tb, cu; pc dq
ùñ Rem-E H; ta#xu; tbu; pc dq.

Hence, the permutation pc dq is the result computed by E.

Example 3.12. We show the results of applying E on some more examples:

§ For E “ ta.fpb, xq „ b.fpa, xqu and ∇ “ ta#xu, E returns K.

§ For E “ ta.fpb, pa bq¨xq „ b.fpa, xqu and ∇ “ ta#xu, E returns pb aq.
§ For E “ ta.b.pa bqpa cq¨x “ b.a.pa cq¨xu and ∇ “ H, E returns Id.

§ For E “ ta.b.pa bqpa cq¨x “ a.b.pb cq¨xu and ∇ “ H, E returns K.

3.1.7 Properties of the Algorithm E

Theorem 3.5 (Termination). The procedure E terminates on any input.

Proof. We define the complexity measure of a quadruple E; ∇; A; π as a tuple of multi-
sets pM1pEq,M2pEqq, where M1pEq is the number of function symbols, plus the number
of abstractions, plus the number of suspensions, and M2pEq is the sum of the lengths of
the terms in the problem. The measures are compared by the well-founded lexicographic
ordering. Each rule strictly reduces the complexity. Notice that Alp-E removes two ab-
stractions but may increasse the length of some (already existing) suspensions.

The Soundness Theorem for E states that, indeed, the permutation the algorithm
computes shows that the input terms are equivariant:

Theorem 3.6 (Soundness). Let tt „ su; ∇; A; Id ùñ˚ H; ∇; A1; π be a derivation
in E, then π is an A-based permutation such that ∇ $ π‚t “α s.

Proof. We assume the success state with π being the computed permutation. Since
Sol-E is the only rule which adds a new swapping to π and the swapped atoms are
required to be from A, π is A-based.

The proof is by induction on the length of the derivation, and then, by case analysis
on the applied rule. Let Γ be the freshness environment containing all statements ć#x
form by a fresh atom ć introduced along all the derivation and a variable x of the initial
equation.

For any transformation step E; ∇; A; π ùñ E1; ∇; A1; π1 we will prove that if ∇Y

Γ $ π1‚t1i “α s
1
i, for any t1i „ s1i P E

1, then ∇ Y Γ $ π‚ti “α si for any ti „ si P E,
for any possible applied rule. By induction, we will have ∇ Y Γ $ π‚t “α s for the
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initial equivariance equation t „ s. Since Γ is not relevant to prove t “α s, we have
also ∇ $ π‚t “α s.

Soundness of Dec-E: From ∇ $ π‚t1 “α s1, . . . ,∇ $ π‚tn “α sn, follows di-
rectly, by the theory of alpha-equivalence ∇ $ fpπ‚t1, ¨ ¨ ¨ , π‚tnq “α fps1, ¨ ¨ ¨ , snq
and by the rule of swapping application π‚fpt1, ¨ ¨ ¨ , tnq “ fpπ‚t1, ¨ ¨ ¨ , π‚tnq, that
∇ $ π‚fpt1, ¨ ¨ ¨ , tnq “α fps1, ¨ ¨ ¨ , snq. In this case the permutation, the set of atoms
and the freshness context are not transformed by the rule.

Soundness of Alp-E: Let ∇ be a freshness context containing Γ, in particular ć#x
for any variable x P Vpt, sq. Assume ∇ $ πpa ćq‚t “α pb ćq‚s by induction hypothesis.
From this, using “α-abs-1 and the fact that π does not affect to ć, we can deduce
∇ $ π‚c.pa ćq‚t “α c.pb ćq‚s. We can also construct a proof for ∇ $ ć#t and ∇ $ ć#s.
Therefore, using “α-abs-2, we can deduce ∇ $ ć.pa ćq‚t “α a.t and ∇ $ ć.pb ćq‚s “α b.s.
Now using the lemmas about the transitivity of “α and additivity of permutation
application:

If ∇ $ t “α s and ∇ $ s “α u then ∇ $ t “α u
If ∇ $ t “α s then ∇ $ π‚t “α π‚s

we can deduce ∇ $ π‚pa.tq “α b.s. This proof proves the soundness of Alp-E. Notice
that π does not change in this rule.

Soundness of Sus-E: By induction hypothesis, assume ∇ $ π π1‚a “α π2‚a, for any
atom a such that a P A and a#x R ∇. Assume also Γ Ă ∇, hence, for all fresh atoms,
we have ć#x P ∇. The rest of atoms b are not fresh and satisfy b R A and b#x R ∇.
Since π1 and π2 only affect to atoms from A or fresh:, and π is A-based, we have
π π1‚b “ π2‚b “ b. Therefore, ∇ $ π π1‚a “α π2‚a, for any atom a#x R ∇, and by
“α-susp we deduce ∇ $ π π1 ¨x “α π2 ¨x.

In the second phase we have to take into account that, in all derivations of the form
E; ∇; A; π ùñ˚ H; ∇; A1; π1π, permutation π1 only affects to atoms from A. This can
be proved by inspection of the rules.

Soundness of Rem-E: Let be the complete derivation as follows

ta „ bu ŸE; ∇; A; π ùñ

E; ∇; Aztbu; π ùñ˚

H; ∇; A1; π1π

By induction hypothesis, π1π solves E. Since the rule has been applied we also have
π‚a “ b. Now, the property above proves π1‚b “ b, since b R Aztbu. Therefore
π1π‚a “ b.

Soundness of Sol-E: let the derivation be:

ta „ bu ŸE; ∇; A; π ùñ

E; ∇; Aztbu; pπ‚a bqπ ùñ˚

H; ∇; A1; π1pπ‚a bqπ

By induction hypothesis, π1pπ‚a bqπ solves E. Since b R Aztbu, we have π1‚b “ b. Hence
π1pπ‚a bqπ‚a “ π1‚b “ b, and the computed permutation also solves the equivariance
equation a „ b.

:Notice that π1 and π2 can only contain swappings of the original equation (i.e. A-based) and
swappings introduced by Alp-E.
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We now prove an invariant lemma that is needed in order to prove Theorem 3.8.

Lemma 3.7 (Invariant Lemma). Let A be a finite set of atoms, E1 be a set of equiv-
ariance equations for terms based on A, π1 be an A-based permutation and A1 Ď A.
Let E1; ∇; A1; π1 ùñ E2; ∇; A2; π2 be any step performed by a rule in E. Let
Γ “ tć#x | x P VpE1q, ć is a fresh variableu. Let µ be an A-based permutation such
that ∇Y Γ $ µ‚t “α s, for all t „ s P E1. Then

1. ∇Y Γ $ µ‚t1 “α s
1, for all t1 „ s1 P E2.

2. If µ´1‚b “ π
´1
1 ‚b, for all b P AzA1, then µ´1‚b “ π

´1
2 ‚b, for all b P AzA2.

Proof. By case distinction on the applied rule.
Dec-E: The proposition is obvious.
Alp-E: In this case it follows from the definitions of “α and permutation application.
Sus-E: In this case t “ τ1 ¨x, s “ τ2 ¨x, and by the assumption we have ∇ $

µτ1 ¨x “α τ2 ¨x. By the definition of “α, it means that we have a#x P ∇, for all atoms a
such that µτ1‚a ‰ τ2‚a. Hence, for all a P A with a#x R ∇ we have ∇ $ µτ1‚a “α τ2‚a.
This implies that µ also solves the equations in E2, hence item 1 of the lemma.

Item 2 of the lemma is trivial for these three rules, since A1 “ A2 and π1 “ π2 “ Id.
Rem-E: The item 1 is trivial. To prove the item 2, note that t “ a, s “ b, π1 “ π2

and we only need to show µ´1‚b “ π
´1
2 ‚b. By the assumption we have ∇ $ µ‚a “α b.

Since a and b are atoms, the latter simply means that µ‚a “ b. From the rule condition
we also know that π1‚a “ b. From these two equalities we get µ´1‚b “ a “ π

´1
2 b.

Sol-E: The item 1 is trivial also in this case. To prove the item 2, note that t “ a,
s “ b, π2 “ pπ1‚a bqπ1 and we only need to show µ´1‚b “ π

´1
2 ‚b. By the assumption we

have ∇ $ µ‚a “α b, which means that µ‚a “ b and, hence, a “ µ´1‚b. As for π
´1
2 ‚b, we

have π
´1
2 ‚b “ π

´1
1 pπ1‚a bq‚b “ π

´1
1 ‚pπ1‚aq “ a. Hence, we get µ´1‚b “ a “ π

´1
2 ‚b.

Theorem 3.8 (Completeness). Let A be a finite set of atoms, t, s be A-based terms, and
∇ be a freshness context. If ∇ $ µ‚t “α s holds for some A-based permutation µ, then
there exists a derivation tt „ su; ∇; A; Id ùñ˚ H; Γ; A1; π, obtained by an execution
of E, such that π‚a “ µ‚a for any atom a P FAptq.

Proof. First show that under the conditions of the theorem, if tt „ su; ∇; A; Id ùñ˚

H; Γ; A2; π is a derivation obtained by an execution of M, then π‚a “ µ‚a, for any
atom a P FAptq. Afterwards we prove that (under the conditions of the theorem) there
is no failing derivation with the rules of M starting from tt „ su; ∇; A; Id. Since all
derivations are finite, it will imply the existence of tt „ su; ∇; A; Id ùñ˚ H; Γ; A2; π.

Let tt „ su; ∇; A; Id ùñ˚ E1; Γ1; A1; π1 ùñ˚ H; Γ; A2; π be a derivation, where
E1; Γ1; A1; π1 is the first state in the second phase of the algorithm. It means that E1

contains equations between atoms only, and the atoms of t (except, maybe, some bound
ones which disappear after the application of the Alp-E rule) appear in the left hand
sides of equations in E. By Lemma 3.7, Γ1 $ µ‚a1 “α a2, for all a1 „ a2 P E

1. By
Theorem 3.6 and Lemma 3.7 the same is true for π. Therefore, Γ1 $ µ‚a1 “α π‚a1, for
all a1 „ a2 P E

1. For atoms, ∇ $ a “α b iff a “ b. Hence, we get µ‚a1 “ π‚a1, for
all a1 P S, where FAptq Ď S Ď Aptq. It proves π‚a “ µ‚a, for all a P FAptq, when the
desired successful derivation exists.
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Now we show that no derivation with the rules of M starting from tt „ su; ∇; A; Id
fails. Assume by contradiction that there exists such a failing derivation. Let E1; ∇1;
A1; π1 be the final state in it, to which no rule applies. Analyzing the rules in M, one
can easily conclude that it can be caused by one of the following two cases:

1. E1 contains an equivariance equation of the form fpt1, . . . , tnq „ gps1, . . . , smq,
where f ‰ g.

2. E1 contains an equivariance equation of the form a „ b, where π1‚a ‰ b, such that
π1‚a R A1 or b R A1.

In the first case, by Lemma 3.7 ∇ $ µ‚fpt1, . . . , tnq “α gps1, . . . , smq should hold, but
f ‰ g forbids it. Hence, this case is impossible.

Now we analyze the second case. Consider each condition.
Condition 1: π1‚a R A1. Then either π1‚a is a fresh atom, or π1‚a P AzA1.

§ π1‚a is a fresh atom: Since π1 does not affect fresh atoms, we get a ‰ b. On the
other hand, we have Γ1 $ µ‚a “α b and, hence, µ‚a “ b, because µ‚a and b are
atoms. Since µ is A-based, b R A implies a “ b. A contradiction.

§ π1‚a P AzA1: By Lemma 3.7 we get µ´1π1‚a “ π1´1π1‚a “ a. Therefore, π1‚a “ µ‚a
and we get µ‚a ‰ b, which contradicts Γ1 $ µ‚a “α b, because µ‚a and b are
atoms.

Condition 2: b R A1. Then either b is a fresh atom, or b P AzA1.

§ b is a fresh atom: We obtain a contradiction by a reasoning similar to the case
when π1‚a is a fresh atom.

§ b P AzA1: The atom b has been removed from the set of atoms in the derivation
earlier either at Sus-E, Rem-E, or Sol-E step, which indicates that there is c P AzA1
such that c “ π1´1‚b. Moreover, c ‰ a. From Lemma 3.7 we get c “ µ´1‚b which,
together with c ‰ a, implies µ‚a ‰ b. But it contradicts Γ1 $ µ‚a “α b.

The obtained contradiction proves that no derivation with the rules of M starting
from tt „ su; ∇; A; Id fails.

3.1.8 Properties of the Algorithm GN

Theorem 3.9 (Termination). The procedure GN terminates on any input (provided
that the computation of π in the Merge rule terminates).

Proof. We associate to each state P ; S; Γ; σ its measure, a triple pn,MpP q,MpSqq,
where n is a number of abstractions in P , and MpUq is a multiset defined for a set of
AUEs U as follows:

MpUq :“ t|s| ` |t| | x : t fi s P Uu.

Measures are compared lexicographically. Obviously, each rule in GN strictly reduces it.
The ordering is well-founded. In the conditions of the rules, proving atomic freshness
formulas from freshness contexts terminates. Computation of π in the Merge rule
terminates by Theorem 3.5. Hence, GN terminates.
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The Soundness Theorem states that the result computed by GN is indeed an A-based
generalization of the input terms-in-context:

Theorem 3.10 (Soundness). Given terms t and s and a freshness context ∇, all based
on a finite set of atoms A, if tx : t fi su; H; H; ε ùñ` H; S; Γ; σ is a derivation
obtained by an execution of GN, then xΓ, xσy is an A-based generalization of x∇, ty
and x∇, sy.

Proof. Since all atoms introduced by the rules of GN in Γ and σ are from A, xΓ, xσy is
A-based. To prove that xΓ, xσy generalizes both x∇, ty and x∇, sy, we use well-founded
induction on the length of derivations. In fact, we will prove a more general statement:

Assume P0; S0; Γ0; ϑ0 ùñ
` H; Sn; Γn; ϑ0ϑ1 ¨ ¨ ¨ϑn is a derivation in GN (with ∇

and A) with the following property: If z0 : t0 fi s0 P S0, then a#z0 P Γ0 for an a P A
iff ∇ $ a#t0 and ∇ $ a#s0. Notice that requiring this property does not imply a
lose of generality: our algorithm starts with no equation in the store, and each time an
equation is moved to the store the Sol rule adds the required freshness constraints (by
inspection of Sol). Moreover, freshness constraints are only removed from the freshness
context when Mer removes the corresponding equation from the store (by inspection of
Mer). Then for any z0 : t0 fi s0 P P0 Y S0 we have xΓnzΓ0, z0ϑ1 ¨ ¨ ¨ϑny ĺ x∇, t0y and
xΓnzΓ0, z0ϑ1 ¨ ¨ ¨ϑny ĺ x∇, s0y.

Assume the statement is true for any derivation of the length l ă n and prove it
for a derivation P0; S0; Γ0; ϑ0 ùñ

` H; Sn; Γn; ϑ0ϑ1 ¨ ¨ ¨ϑn of the length n. Below the
composition ϑiϑi`1 ¨ ¨ ¨ϑk is abbreviated as ϑki with k ě i.

Let z0 : t0 fi s0 be an AUE selected for transformation from P0 Y S0. We consider
each rule:

Dec: z0 “ x, t0 “ hpt1, . . . , tmq, s0 “ hps1, . . . , smq, Γ1 “ Γ0, and ϑ1 “ tx ÞÑ
hpy1, . . . , ymqu. By the induction hypothesis (IH), xΓnzΓ1, yiϑ

n
2 y ĺ x∇, tiy and xΓnzΓ1,

yiϑ
n
2 y ĺ x∇, siy for all 1 ď i ď m. Hence by definition of ĺ for terms-in-context, there

exist substitutions σ and ϕ such that:

§ ϑn2σ and ϑn2ϕ respect ΓnzΓ1,

§ pΓnzΓ1qσ Ď ∇ and pΓnzΓ1qϕ Ď ∇, and

§ ∇ $ yiϑ
n
2σ “α ti and ∇ $ yiϑ

n
2ϕ “α si for all 1 ď i ď m.

Finally, since ϑ1 “ tx ÞÑ hpy1, . . . , ymqu and ΓnzΓ0 “ ΓnzΓ1, we obtain xΓnzΓ0, z0ϑ
n
1 y ĺ

x∇, t0y and xΓnzΓ0, z0ϑ
n
1 y ĺ x∇, s0y.

Abs: z0 “ x, t0 “ a.t, s0 “ b.s, Γ1 “ Γ0, and ϑ1 “ tx ÞÑ c.yu, where ∇ $ c#a.t
and ∇ $ c#b.s. P1 contains the AUE y : pc aq‚t fi pc bq‚s. By the IH, xΓnzΓ1, yiϑ

n
2 y ĺ

x∇, pc aq‚ty and xΓnzΓ1, yiϑ
n
2 y ĺ x∇, pc bq‚sy hence ∇ $ yϑn2σ “α pc aq‚t and ∇ $

yϑn2ϕ “α pc bq‚s for some σ and ϕ that in addition satisfy the other properties (as
above) for ĺ. Then, since we also have that ∇ $ c#a.t and ∇ $ c#b.s we can prove,
with the “α-abs rules, that ∇ $ c.yϑn2σ “α a.t and ∇ $ c.yϑn2ϕ “α b.s. Finally,
since ϑ1 “ tx ÞÑ c.yu and ΓnzΓ0 “ ΓnzΓ1, we obtain xΓnzΓ0, z0ϑ

n
1 y ĺ x∇, t0y and

xΓnzΓ0, z0ϑ
n
1 y ĺ x∇, s0y.
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Sol: z0 “ x, t0 “ t, s0 “ s, Γ1zΓ0 “ ta#x | a P A,∇ $ a#t, and ∇ $ a#su and
ϑ1 “ ε. By the IH we have that pΓnzΓ1qσ Ď ∇, pΓnzΓ1qϕ Ď ∇, ∇ $ xϑn2σ “α t, and
∇ $ xϑn2ϕ “α s for some σ and ϕ respecting ΓnzΓ1.

Since ϑ1 “ ε, from the IH we get ∇ $ xϑn1σ “α t. To show that pΓnzΓ0qσ Ď ∇ take
a#y P ΓnzΓ0 for some a.

§ If a#y P ΓnzΓ1, then ta#yuσ Ď ∇ by the IH,

§ otherwise, if a#y R ΓnzΓ1, then a#y P Γ1zΓ0 with x “ y and xϑn2 “ x. By the
IH, ∇ $ xσ “α t, besides, we know ∇ $ a#t. Therefore, we know ∇ $ a#xσ,
which by Theorem 3.1 implies ta#xuσ “ ta#yuσ Ď ∇. Thus, pΓnzΓ0qσ Ď ∇.

Hence, we proved xΓnzΓ0, xϑ
n
1 y ĺ x∇, ty, which is the same as xΓnzΓ0, z0ϑ

n
1 y ĺ

x∇, t0y. xΓnzΓ0, z0ϑ
n
1 y ĺ x∇, s0y can be proved analogously.

Mer: First, we show that the following holds: For all k ě 0, If zk : tk fi sk P Sk and
c#zk P Γk for a c P A, then ∇ $ c#tk and ∇ $ c#sk.

Proceed by induction on k. If k “ 0, then it follows from the assumption on P0; S0;
Γ0; ϑ0. Assume it is true for k and show it for k ` 1. Take zk`1 : tk`1 fi sk`1 P Sk`1.
We have two alternatives: Either zk`1 : tk`1 fi sk`1 has been a subject of the Mer rule
at this step, or not. If not, then either it was already in Sk or was introduced at this
step. In either case, by IH or because it has been introduced with Sol rule, if c#zk P Γk
for a c P A, then ∇ $ c#tk and ∇ $ c#sk. If zk`1 : tk`1 fi sk`1 was a subject of
the Mer rule, then there exists some uk : rk fi qk P Sk, such that ∇ $ πk‚tk`1 “α rk,
∇ $ πk‚sk`1 “α qk. Moreover, for all d#uk P Sk we now have π

´1
k

‚d#zk`1 P Sk`1, and
all c#zk`1 P Sk are retained in Sk`1. For these c’s, since zk`1 : tk`1 fi sk`1 P Sk, by the
induction hypothesis we have ∇ $ c#tk`1 and ∇ $ c#sk`1. As for π

´1
k

‚d#zk`1 P Sk`1,
here we need to show ∇ $ π

´1
k

‚d#tk`1 and ∇ $ π
´1
k

‚d#sk`1. By the induction
hypothesis we know ∇ $ d#rk. Then ∇ $ π

´1
k

‚d#π
´1
k

‚rk and since ∇ $ πk‚tk`1 “α rk,
we get ∇ $ π

´1
k

‚d#tk`1. ∇ $ π
´1
k

‚d#sk`1 can be shown similarly, using ∇ $ d#qk.
Now we turn to proving the Mer case itself. In this case, there exist x : t1 fi s1 P S0,

y : t2 fi s2 P S0, and π such that ∇ $ π‚t1 “α t2 and ∇ $ π‚s1 “α s2. Moreover, by
the construction of the derivation, x : t1 fi s1 is either retained in Sn, or is removed
from there because there exist an AUE z : tn fi sn P Sn and a permutation ρ such that
∇ $ ρ‚tn “α t1, ∇ $ ρ‚tn “α s1, and xϑn1 “ ρ¨z. We can turn these two cases into
one, permitting z “ x, tn “ t1, sn “ s1, and ρ “ Id to cover also the first case.

Therefore, we can say that there exists a AUE z : tn fi sn P Sn such that for some
permutation ρ, xϑn1 “ xϑn2 “ ρ¨z, yϑn1 “ π‚xϑn2 “ πρ¨z, ΓnzΓ0 “ tpπρq´1a#z | a#y P
Γ0u, ∇ $ πρ‚tn “α t2, ∇ $ πρ‚sn “α s2, ∇ $ ρ‚tn “α t1, and ∇ $ ρ‚sn “α s1.

We want to prove xΓnzΓ0, z0ϑ
n
1 y ĺ x∇, t0y. First, we take σ such that zσ “ tn and

show pΓnzΓ0qσ Ď ∇. For this, we try to prove tb#uuσ Ď ∇ for all b#u P ΓnzΓ0. By
the IH, we have tb#uuσ Ď ∇ for all b#u P ΓnzΓ1. Note that zσ “ tn does not restrict
generality, because if u “ z, then by the proposition we proved at the beginning of the
Mer case we have that b#u P ΓnzΓ1 implies ∇ $ b#tn.

Therefore, tb#uuσ “ Ctx ptb#zσuq “ Ctx ptb#tnuq and by Theorem 3.1 we indeed
have tb#uuσ Ď ∇. Now assume b#u P pΓnzΓ0qzpΓnzΓ1q. Then b#u P Γn X pΓ1zΓ0q.
That means, b#u “ π´1‚a#x, where a#y P Γ0. Moreover, the AUE x : t1 fi s1 has
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been retained in Sn. From the latter we have, in fact, z “ x, tn “ t1, and sn “ s1.
Then tb#uuσ “ Ctx ptπ´1‚a#xσ | a#y P Γ0uq “ Ctx pta#π‚t1 | a#y P Γ0uq. On the
other hand, from the assumption on P0; S0; Γ0; ϑ0 we know that for all a#y P Γ0 we
have ∇ $ a#t2, from which by ∇ $ π‚t1 “α t2 we get ∇ $ a#π‚t1. Hence, we can
apply Theorem 3.1 to Ctx pta#π‚t1 | a#y P Γ0uq, obtaining tb#uuσ Ď ∇ also in this
case. Hence, pΓnzΓ0qσ Ď ∇.

It remains to prove ∇ $ z0ϑ
n
1σ “α t0. First, assume z0 “ x, t0 “ t1, s0 “ s1.

Then we have ∇ $ z0ϑ
n
2σ “α t0, because z0ϑ

n
2σ “ ρ‚zσ “ ρ‚tn and we know that

∇ $ ρ‚tn “α t1. Since z0ϑ
n
2 “ z0ϑ

n
1 , we get ∇ $ z0ϑ

n
1σ “α t0. Hence, we proved

xΓnzΓ0, z0ϑ
n
1 y ĺ x∇, t0y for this case. xΓnzΓ0, z0ϑ

n
1 y ĺ x∇, s0y can be proved similarly.

Now let z0 “ y, t0 “ t2, s0 “ s2 and prove again ∇ $ z0ϑ
n
1σ “α t0. Then z0ϑ

n
1σ “

πρ‚zσ “ πρ‚tn. But we have already seen that ∇ $ πρ‚tn “α t2. Hence, ∇ $

z0ϑ
n
1σ “α t0 is proved. It implies xΓnzΓ0, z0ϑ

n
1 y ĺ x∇, t0y for this case.

xΓnzΓ0, z0ϑ
n
1 y ĺ x∇, s0y can be proved similarly.

The Completeness Theorem states that for any given A-based generalization of two
input terms-in-context, GN can compute one which is at most as general than the
given one.

Theorem 3.11 (Completeness). Given terms t and s and freshness contexts ∇ and Γ,
all based on a finite set of atoms A. If xΓ, ry is an A-based generalization of x∇, ty and
x∇, sy, then there exists a derivation tx : t fi su; H; H; ε ùñ` H; S; Γ1; σ obtained by
an execution of GN, such that xΓ, ry ĺ xΓ1, xσy.

Proof. By structural induction on r. We can assume without loss of generality that
xΓ, ry is an lgg of x∇, ty and x∇, sy.

Let r be an atom a. Then t “ s “ a. Therefore, the Dec rule gives xH, ay as the
computed answer. To show that xΓ, ay ĺ xH, ay, it is enough to take a substitution σ
such that xσ ‰ b for each b#x P Γ. Note that it is not necessary b P A.

Let r be an abstraction c.r1. Then t “ a.t1, s “ b.s1, c P A, ∇ $ c#t, ∇ $ c#s, and
xΓ, r1y is an A-based generalization of x∇, t1y and x∇, s1y. In this case, the Abs rule can
be applied, which gives ty : pc aq‚t1 fi pc bq‚s1u; H; H; σ1, where σ1 “ tx ÞÑ c.yu. By
the induction hypothesis, we can compute Γ1 and σ2 such that xΓ, r1y ĺ xΓ1, yσ2y. Let
σ “ σ1σ2. We get xΓ, ry “ xΓ, c.r1y ĺ xΓ1, c.yσ2y “ xΓ1, xσy.

Let r be a suspension π¨z. Since xΓ, ry is an lgg of x∇, ty and x∇, sy, the context Γ
contains all constraints π´1‚a#z such that ∇ $ a#t and ∇ $ a#s, and the following
alternatives are possible:

(a) t and s have distinct heads: Topptq ‰ Toppsq, or

(b) t and s are both suspensions: t “ π1 ¨y1 and s “ π2 ¨y2, where π1, π2 and y1, y2
are not necessarily distinct, or

(c) t and s are abstractions, but A does not contain an appropriate fresh atom to
uniformly rename the bound atoms in t and s.

These alternatives give exactly the conditions of the Sol rule. Hence, we can apply
it, getting H; tx : t fi su; Γ1; σ, where Γ1 “ ta#x | a P A ^∇ $ a#t ^∇ $ a#su and
σ “ ε. Then xΓ, ry ĺ xΓ1, xσy, which can be confirmed by the substitution tz ÞÑ π´1 ¨xu.
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Let r be a term fpr1, . . . , rnq. Then t “ fpt1, . . . , tnq, s “ fps1, . . . , snq, and xΓ, riy
is a generalization of x∇, tiy and x∇, siy. We proceed by the Dec rule, obtaining
tyi : ti fi si | 1 ď i ď nu; H; H; tx ÞÑ fpy1, . . . , ynqu. By the induction hypothesis,
we can construct derivations D1, . . . , Dn computing the substitutions σ1, . . . , σn, re-
spectively, such that xΓ, riy ĺ xΓ1i, yiσiy for 1 ď i ď n. We combine these derivations,
together with the initial Dec step, into one derivation of the form D “ tx : t fi su;
S0; Γ10; σ0 ùñ tyi : ti fi si | 1 ď i ď nu; S1; Γ11; σ0σ1 ùñ

˚ H; Sn; Γ1n; σ0σ1 ¨ ¨ ¨σn,
where Γ10 “ Γ11 “ H, σ0 “ ε, and σ1 “ tx ÞÑ fpy1, . . . , ynqu. If r does not con-
tain the same variable more than once, xΓ, riy ĺ xΓ1i, yiσiy for all 1 ď i ď n imply
xΓ, ry “ xΓ, fpr1, . . . , rnqy ĺ xΓ1, fpy1, . . . , ynqy “ xΓ1, xσy. If r contains the same vari-
able at positions I1 and I2 (in subterms of the form π1 ¨z and π2 ¨z), it indicates that

(a) the path to I1 is the same (modulo bound atom renaming) in t and s. It equals
(modulo bound atom renaming) the path to I1 in r, and

(b) the path to I2 is the same (modulo bound atom renaming) in t and s. It equals
(modulo bound atom renaming) the path to I2 in r.

(c) there exists a substitution ϑ1, which respects Γ, such that Γ $ π1 ¨zϑ1 “α τ1‚t|I1

and Γ $ π2‚zϑ1 “α τ2‚t|I2 , where τ1 and τ2 are permutations which rename atoms
bound in t by fresh ones,

(d) there exists a substitution ϑ2, which respects Γ, such that Γ $ π1‚zϑ2 “α ρ1‚s|I1

and Γ $ π2‚zϑ2 “α ρ2‚s|I2 , where ρ1 and ρ2 are permutations which rename atoms
bound in s by fresh ones,

Then, because of (a) and (b), we should have two AUEs in Sn: One, between (re-
named variants of) t|I1 and s|I1 , and the other one between (renamed variants of) t|I2

and s|I2 . The possible renaming of bound atoms is caused by the fact that Abs might
have been applied to obtain the AUEs. From (c) and (d) we know that τ1, τ2, ρ1, ρ2
are the names of those renaming permutations. Let those AUEs be z1 : τ1‚t|I1 fi ρ1‚s|I1

and z2 : τ2‚t|I2 fi ρ2‚s|I2 .
From (c) we get Γ $ zϑ1 “α π

´1
1 τ1‚t|I1 and Γ $ zϑ1 “α π

´1
2 τ2‚t|I2 , which imply

Γ $ π
´1
1 τ1‚t|I1 “α π

´1
2 τ2‚t|I2 and, finally, Γ $ π2π

´1
1 ‚τ1‚t|I1 “α τ2‚t|I2 . Similarly, from

(d) we get Γ $ π2π
´1
1 ρ1‚s|I1 “α ρ2‚s|I2 .

That means, we can make the step with the Mer rule for z1 : τ1‚t|I1 fi ρ1‚s|I1 and
z2 : τ2‚t|I2 fi ρ2‚s|I2 with the substitution σ11 “ tz2 ÞÑ π2π

´1
1 ¨z1u. We can repeat this

process for all duplicated variables in r, extending D to the derivation tx : t fi su; S0;
Γ10; σ0 ùñ tyi : ti fi si | 1 ď i ď nu; S1; Γ11; σ0 ùñ

˚ H; Sn; Γ1n; σ0σ1 ¨ ¨ ¨σn ùñ
` H;

Sn`m; Γ1n`m; σ0σ1 ¨ ¨ ¨σnσ
1
1 ¨ ¨ ¨σ

1
m, where σ11, . . . , σ

1
m are substitutions introduced by the

applications of the Mer rule. Let σ “ σ0σ1 ¨ ¨ ¨σnσ
1
1 ¨ ¨ ¨σ

1
m and Γ1 “ Γ1n`m. By this

construction, we have xΓ, ry ĺ xΓ1, xσy, which finishes the proof.

Depending on the selection of AUEs to perform a step, there can be different deriva-
tions in GN starting from the same AUE, leading to different generalizations. The next
theorem states that all those generalizations are the same modulo variable renaming
and α-equivalence.

Theorem 3.12 (Uniqueness Modulo »). Let t and s be terms and ∇ be a freshness
context that are based on the same finite set of atoms. Let tx : t fi su; H; H; ε ùñ` H;
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S1; Γ1; σ1 and tx : t fi su; H; H; ε ùñ` H; S2; Γ2; σ2 be two maximal derivations in
GN. Then xΓ1, xσ1y » xΓ2, xσ2y.

Proof. It is not hard to notice that if it is possible to change the order of applications
of rules (but sticking to the same selected AUEs for each rule) then the result remains
the same (modulo fresh variable and atom names): Let D1 and D2 be two two-step
derivations D1 “ P1; S1; Γ1; σ1 ùñR1 P2; S2; Γ2; σ1ϑ1 ùñR2 P3; S3; Γ3; σ1ϑ1ϑ2 and
D2 “ P1; S1; Γ1; σ1 ùñR2 P 12; S12; Γ12; σ1ϑ2 ùñR1 P 13; S13; Γ13;σ1ϑ2ϑ1, where R1 and
R2 are (not necessarily different) rules and each of them transforms exactly the same
AUE(s) in both D1 and D2. Then these AUE(s) are already present in P1 Y S1: They
are introduced neither by R1 nor by R2. Therefore, Dompϑ2q X Ranpϑ1q “ Dompϑ1q X
Ranpϑ2q “ H. Moreover, if we assume that the fresh variables and atoms introduced
by the rules are the same in both derivations, then P3 “ P 13, S3 “ S13, Γ3 “ Γ13, and
σ1ϑ1ϑ2 “ σ1ϑ2ϑ1.

Decomposition, Abstraction, and Solving rules transform the selected AUE in a
unique way. We show that it is irrelevant in which order we decide equivariance in
the Merging rule.

Let P ; tz : t1 fi s1, y : t2 fi s2u ŸS; Γ; σ ùñ P ; tz : t1 fi s1u ŸS; Γty ÞÑ π¨zu;
σty ÞÑ π¨zu be the merging step with ∇ $ π‚t1 “α t2 and ∇ $ π‚s1 “α s2. If we do
it in the other way around, we would get the step P ; tz : t1 fi s1, y : t2 fi s2u ŸS; Γ;
σ ùñ P ; ty : t2 fi s2u ŸS; Γtz ÞÑ π´1 ¨yu; σtz ÞÑ π´1 ¨yu.

Let ϑ1 “ σϕ1 with ϕ1 “ ty ÞÑ π¨zu and ϑ2 “ σϕ2 with ϕ2 “ tz ÞÑ π´1 ¨yu.
Our goal is to prove that xΓϕ1, xϑ1y » xΓϕ2, xϑ2y. For this, we need to prove both
xΓϕ1, xϑ1y ĺ xΓϕ2, xϑ2y and xΓϕ2, xϑ2y ĺ xΓϕ1, xϑ1y.

First, prove xΓϕ1, xϑ1y ĺ xΓϕ2, xϑ2y. We should find such a ϕ that Γϕ1ϕ Ď Γϕ2 and
Γϕ2 $ xϑ1ϕ “α xϑ2.

Take ϕ “ ϕ2. Note that for any term t, we have Γϕ2 $ tϕ1ϕ2 “α tϕ2, because
ϕ1ϕ2 “ tz ÞÑ ππ´1 ¨yu and we have Γϕ2 $ ππ´1 ¨y “α y. Therefore, Γϕ2 $ xϑ1ϕ “α
xσϕ1ϕ2 “α xσϕ2 “α xϑ2 holds.

As for Γϕ1ϕ Ď Γϕ2, note that ϕ2 respects Γϕ1, because it replaces a variable with
a suspension and the Ctx algorithm will have to apply only Sus-E rule. We introduce
notations Γu and Γu for any freshness context Γ and a variable u, denoting Γu :“ ta#u |
a#u P Γu and Γu :“ ΓzΓu. Then Γϕ1 “ Γy Y Γyϕ1 and Γϕ2 “ Γz Y Γzϕ2.

Under this notation, Γϕ1ϕ2 “ Γyϕ2 Y Γyϕ1ϕ2. Take Γyϕ2. We have Γyϕ2 “
pΓyzpΓyqzq Y ppΓyqzqϕ2 “ pΓyzΓzq Y Γzϕ2. Since Γz X Γzϕ2 “ H, the we obtain
pΓyzΓzq Y Γzϕ2 “ pΓy Y Γzϕ2qzΓz. As for Γyϕ1ϕ2, it is easy to see that Γyϕ1ϕ2 “ Γy.

Hence, we get Γϕ1ϕ2 “ ppΓy Y Γzϕ2qzΓzq Y Γy. Since Γz X Γy “ H, we get ppΓy Y
Γzϕ2qzΓzq Y Γy “ ppΓy Y Γzϕ2q Y ΓyqzΓz “ pΓ Y Γzϕ2qzΓz. Since Γzϕ2 X Γz “ H, we
get pΓY Γzϕ2qzΓz “ pΓzΓzq Y Γzϕ2. Hence, Γϕ1ϕ2 “ Γz Y Γzϕ2 “ Γϕ2.

We proved xΓϕ1, xϑ1y ĺ xΓϕ2, xϑ2y.
With a similar reasoning we can show xΓϕ2, xϑ2y ĺ xΓϕ1, xϑ1y.

Theorems 3.10, 3.11, and 3.12 imply that nominal anti-unification is unitary: For any
A-based ∇, t, and s, there exists an A-based lgg of x∇, ty and x∇, sy, which is unique
modulo » and can be computed by the algorithm GN.

We already discussed the relation between the set of atoms A we consider as the base
of an lgg of two A-based terms-in-context. Now we turn to proving Conjecture 3.1.
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Lemma 3.13. Let A1 and A2 be two finite sets of atoms with A1 Ď A2 such that
the A1-based terms-in-context x∇, ty and x∇, sy have an A1-based lgg xΓ1, r1y and an
A2-based lgg xΓ2, r2y. Then Γ2 $ r1 ĺ r2.

Proof. xΓ1, r1y and xΓ2, r2y are unique modulo ». Let Di be the derivation in GN that
computes xΓi, riy, i “ 1, 2. The number of atoms in A1 and A2 makes a difference in
the rule Abs: If there are not enough atoms in A1, an Abs step in D2 is replaced by a Sol
step in D1. It means that for all positions I of r1, r2|I is also defined. Moreover, there
might exist a subterm r1|I , which has a form of suspension, while r2|I is an abstraction.
For such positions, r1|I ĺ r2|I . For the other positions J of r1, r1|J and r2|J may differ
only by names of generalization variables or by names of bound atoms.

Another difference might be in the application of Sol in both derivations: It can
happen that this rule produces a larger Γ1 in D2 than in D1, when transforming the
same AUE.

Hence, if there are positions I1, . . . , In in r1 such that r1|Ik “ πk ¨x, then there exists
a substitution σx such that Γ2 $ πi ¨xσx “α r2|Ik , 1 ď k ď n. Taking the union of all
σx’s where x P Vpr1q, we get σ with the property Γ2 $ r1σ “α r2.

Recall Example 3.8 which illustrates that we can not replace Γ2 $ r1 ĺ r2 with
Γ2 $ r1 » r2 in Lemma 3.13. The following theorem corresponds to Conjecture 3.1:

Theorem 3.14. Under the conditions of Lemma 3.13, if A1 is saturated for t, s,∇,
then Γ2 $ r1 » r2.

Proof. Let Di be the derivation in GN that computes xΓi, riy, i “ 1, 2. Note that in
each of these derivations, the number of Abs steps does not exceed mint}t}Abs , }s}Absu.
Since A1 is saturated for t, s,∇ and A1 Ď A2, A2 is also saturated for t, s,∇. Hence,
whenever an AUE between two abstractions is encountered in the derivation Di, there
is always c P A1 available which satisfies the condition of the Abs rule. Therefore, such
AU-E’s are never transformed by Sol. We can assume without loss of generality that the
sequence of steps in D1 and D2 are the same. we may also assume that we take the same
fresh variables, and the same atoms from FreshpA1, t, s,∇q in the corresponding steps
in D1 and D2. Then the only difference between these derivations is in the Γ’s, caused
by the Sol rule which might eventually make Γ2 larger than Γ1. The σ’s computed
by the derivations are the same and, therefore, r1 and r2 are the same (modulo the
assumptions on the variable and fresh atom names). Hence, Γ2 $ r1 » r2.

3.1.9 Complexity Analysis of E and GN

We represent a permutations π as two hash tables. One for the permutation itself, we
call it Tπ, and one for the inverse of the permutation, called Tπ´1 . The key of a hash
tables is an atom and we associate another atom, the mapping, with it. For instance
the permutation π “ pa bqpa cq is represented as Tπ “ ta ÞÑ c, b ÞÑ a, c ÞÑ bu and
Tπ´1 “ ta ÞÑ b, b ÞÑ c, c ÞÑ au. We write Tπpaq to obtain from the hash table Tπ the
atom which is associated with the key a. If no atom is associated with the key a then
Tπpaq returns a. We write Tπpa ÞÑ bq, to set the mapping such that Tπpaq “ b. As
the set of atoms is small, we can assume a perfect hash function. It follows, that both
defined operations are done in constant time, leading to constant time application of
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a permutation. Swapping application to a permutation pa bqπ is also done in constant
time in the following way: Obtain c “ Tπ´1paq and d “ Tπ´1pbq and perform the
following updates:

(a) Tπpc ÞÑ bq and Tπpd ÞÑ aq,
(b) Tπ´1pb ÞÑ cq and Tπ´1pa ÞÑ dq.

We also represent set membership of atoms to a set of atoms A with a hash table PA
from atoms to Booleans such that PA paq “ true iff a P A. We also have a list LA of
the atoms representing the entries of the table such that PA paq “ true to easily know
all atoms in A.

Finally we also represent set membership of freshness constraints to a freshness en-
vironment ∇ with a hash table P∇.

Theorem 3.15. Given a set of equivariance equations E, and a freshness context ∇.
Let m be the size of ∇, and let n be the size of E. The algorithm E has Opn2`mq time
complexity.

Proof. Collecting the atoms from E in a separate set A does not affect the space
complexity and can be done in time Opnq. The freshness environment ∇ will not be
modified by rule applications and membership test in the rule Sus-E can be done in
constant time. We only have to construct the corresponding hash tables in time Opmq.
We analyze complexity of both phases.

For the first phase, notice that all rules can be applied only Opnq many times, since
Dec-E removes two function symbols and Alp-E two abstraction, and Sus-E two suspen-
sions. The resulting equations after this phase only contain atoms. However, notice
that the size of these equations is not necessarily linear. Every time we apply Alp-E
a new swapping is applied to both subterms. This swappings may increase the size of
suspensions occurring bellow the abstraction. Since there are Opnq many suspensions
and Opnq many abstractions, the final size of suspensions is Opn2q. This is the size of
the atom equations at the beginning of the second phase. We can see that the appli-
cation of Dec-E rule has Op1q time complexity (with the appropriate representation of
equations).

The application of Alp-E rule requires to find a fresh atom not in A, this can be done
in constant time. Later, a swapping has to be applied twice. Swapping application
requires traversing the term hence has Opnq time complexity. The application of Sus-
E requires to traverse LA (Opnq) and check for freshness membership in P∇ (Op1q).
Finally it has to add equations like pπ1‚a “α π2q, this requires to build Tπ1 and Tπ2

that can be done in Opnq time complexity and allow us to build each equation in Op1q
time. Summing up, this phase has Opn2q time complexity.

For the second phase, notice that both rules Rem-E and Sol-E remove an equation
and do not introduce any other one. Hence, potentially having Opn2q many equations
in this phase, these equations can be applied Opn2q may times. We construct a hash
table Tπ for π that will be maintained and used by both rules. Each application has
time complexity Op1q. Rem-E uses Tπ to check for applicability and if it is applied, it
only removes b from A, hence updating PA (notice that we do not care about LA in
this second phase of the algorithm). Sol-E uses PA and Tπ to check for applicability
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and if it is applied, it only removes b from A (hence updating PA), and updates Tπ.
Summing up, this phase maintains the overall Opn2q time complexity.

Theorem 3.16. The nominal anti-unification algorithm GN has Opn5q time complexity
and Opn4q space complexity, where n is the input size.

Proof. By design of the rules and theorem 3.12 we can arrange a maximal derivation like
tx0 : t0 fi s0u; H; H; Id ùñ˚

Dec,Abs,Sol H; Sl; Γl; σl ùñ˚
Mer H; Sm; Γm; σm, postponing

the application of Mer until the end. Rules Dec, Abs and Sol can be applied Opnq many
times. However, notice that every application of Abs may increase the size of every
suspension below. Hence, the size of the store Sl is Opn2q, although it only contain Opnq
equations, after an exhaustive derivation tx0 : t0 fi s0u; H; H; Id ùñ˚

Dec,Abs,Sol H; Sl;
Γl; σl.

Now we turn to analyzing the transformation phase H; Sl; Γl; σl ùñ˚
Mer H; Sm;

Γm; σm. Let Sl “ tx1 : t1 fi s1, . . . , xk : tk fi sku and ni be the size of Xi : ti fi si,
1 ď i ď k, then

řk
i“1 ni “ Opn2q and k “ Opnq. From theorem 3.15 we know that

solving the equivariance problem for two AUEs xi : ti fi si and xj : tj fi sj and an
arbitrary freshness context ∇ requires Oppni ` njq

2 `mq time and space, where m is
the size of ∇ with m “ Opnq.

Merging requires to solve this problem for each pair of AUEs. This leads to the time
complexity

řk
i“1

řk
j“i`1Oppni`njq

2`mq ď Op
řk
i“1

řk
j“1pni`njq

2q`Op
řk
i“1

řk
j“1mq.

The second sum is
řk
i“1

řk
j“1m “ k2m “ Opn3q. Now we estimate an upper bound

for the sum
řk
i“1

řk
j“1pni`njq

2 “
řk
i“1

řk
j“1 n

2
i `

řk
i“1

řk
j“1 2ninj `

řk
i“1

řk
j“1 n

2
j ď

řk
i“1 kn

2
i ` 2

´

řk
i“1 ni

¯´

řk
j“1 nj

¯

`
řk
i“1p

řk
j“1 njq

2 ď kp
řk
i“1 niq

2 ` 2Opn2qOpn2q `
řk
i“1Opn

2q “ kOpn2q2`2Opn2q2`kOpn2q2 “ Opn5q, resulting into the stated bounds.
The space is bounded by the space required by a single call to the equivariance

algorithm with an imput of size Opn2q, hence Opn4q.

The problem of anti-unification for nominal terms-in-context is sensitive to the set
of atoms permitted in generalizations: If this set is infinite, there is no least general
generalization. Otherwise there exists a unique lgg. If this set is finite and satisfies
the notion of being saturated, defined in the paper, then the lgg retains the common
structure of the input nominal terms maximally.

3.2 Anti-Unification for Lambda Terms

For higher-order terms, in general, there is no unique higher-order lgg. Therefore, spe-
cial classes have been considered for which the uniqueness is guaranteed (see related
work in the introduction). Here, we give an algorithm that computes a unique (mod-
ulo »“α) higher-order pattern generalization for two arbitrary lambda terms in the
simply-typed calculus. Higher-order pattern are λ-terms where the arguments of free
variables are distinct bound variables. They have been introduced by Miller [59] and
gained popularity because of their attractive combination of expressive power and good
computational behavior. Our anti-unification algorithm is formulated in a rule-based
manner. It runs in Opn2q time and requires Opnq space, where n is the size of the
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two input terms. The algorithm can be a useful ingredient for refactoring and clone
detection tools for languages that are based on simply-typed lambda calculus. We will
illustrate this usage scenario for the programming language λProlog (see, e.g., Nadathur
and Miller [63]) in subsection 3.2.3. Example 3.13 shows two λ-terms and their least
general higher-order pattern generalization.

Example 3.13. The term t “ λz1.λz2.gpXpz1, z2q, Xpz2, z1qq is a higher-order
pattern generalization of the two terms t1 “ λx1.λx2.gpfpx1, x2q, fpx2, x1qq and
t2 “ λy1.λy2.gphpy2, λy3.fpy3, y1qq, hpy1, λy4.fpy4, y2qqq. The first term can be obtained
from the generalization by replacing the variable X with the lambda term λx.λy.fpx, yq
and the second term by replacing X with λx.λy.hpy, λz.fpz, xqq. Figure 3.4 shows the
tree representations of the two terms t1, t2, and their higher-order pattern generaliza-
tion t.

λx1.

λx2.

g

f f

x1 x2 x2 x1

λy1.

λy2.

g

h h

y2 λy3. y1 λy4.

f f

y3 y1 y4 y2

λz1.

λz2.

g

X X

z1 z2 z2 z1

generalize

Figure 3.4: Two λ-terms and their higher-order pattern lgg.

3.2.1 Simply-Typed Lambda Terms (Preliminaries)

Characters that denote function symbols, terms, substitutions, etc. are the same as in
the previous chapters. Previously used notations, like Vptq, etc., that trivially generalize
to the language of simply-typed lambda terms are used without defining them again.
Standard notions of the simply-typed λ-calculus, like α-conversion, β-reduction, η-long
β-normal form, etc. are defined as usual (see, e.g., Dowek [31]).

Definition 3.21 (Higher-order signature). In higher-order signatures we have a set
of basic types and a set of function symbols. We denote basic types by δ. Function
symbols have a type given by the grammar:

τ ::“ δ | τ Ñ τ

where Ñ is associative to the right.
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Definition 3.22 (λ-terms). Given a countably infinite set of term variables V: and a
signature Σ. λ-terms are built using the grammar

t ::“ x | c | λx.t | t1 t2

where x is a variable and c is a constant.

A term t is said to have type τ if either:

§ t is a constant of type τ ,

§ t is a variable of type τ ,

§ t “ pt1 t2q and t1 has type τ 1 Ñ τ and t2 has type τ 1 for some type τ 1,

§ t “ λx.t1, the variable x has type τ 1, the term t1 has type τ2 and τ “ τ 1 Ñ τ2.

A term t is said to be well-typed if there exists a type τ such that t has type τ . In this
case τ is unique and is called the type of t. The set of well-typed terms constructed
over Σ and V is denoted by T pΣ,Vq, or simply by T if the concrete instances of Σ and
V are unimportant.

Definition 3.23 (Depth of a term). The depth of a term t, denoted Depthptq is defined
recursively as follows:

Depthpxq “ Depthpcq “ 1,
Depthpλx.tq “ 1`Depthptq,
Depthpt1 t2q “ maxpDepthpt1q,Depthpt2qq.

Definition 3.24 (Free variables). We denote by FVptq the set of all variables which
occur freely in t:

FVpxq “ txu, FVpcq “ H,
FVpλx.tq “ FVptqztxu,
FVpt1 t2q “ FVpt1q Y FVpt2q.

A variable x in t is said to be bound if t contains a subterm λx.t1. To increase
readability, we use uppercase letters X,Y, Z to denote free variables and lowercase
letters x, y, z for bound variables. Notice that a variable can be bound and free in
a term, for this case either style is fine. Terms of the form p. . . ph t1q . . . tmq, where
h is a constant or a variable, will be written as hpt1, . . . , tmq, and terms of the form
λx1. ¨ ¨ ¨ .λxn.t as λx1, . . . , xn.t. We use #»x as a short-hand for x1, . . . , xn, e.g., λ #»x .t.
Terms are assumed to be well-typed and in η-long β-normal form. Therefore, all terms
have the form λx1, . . . , xn.hpt1, . . . , tmq, where n,m ě 0, t1, . . . , tm have also this form,
and the term hpt1, . . . , tmq has a basic type.

In contrast to the definition of a top symbol (or head of a term) from section 3.1, we
do not take abstraction into account for the top symbol of a lambda term.

Definition 3.25 (Top symbol). For a term t “ λx1, . . . , xn.hpt1, . . . , tmq with n,m ě 0,
its head (or top symbol) is defined as Topptq “ h.

:We assume that V contains countably infinite term variables of each type.
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Positions in λ-terms are defined with respect to their tree representation in the usual
way, as string of integers. For instance, in the term fpλx.λy.gpλz.hpz, y, xqq, λu.gpuqq,
the symbol f stands in the position ε, the occurrence of λx. stands in the position 1,
the bound occurrence of y in 1¨1¨1¨1¨1¨2, the bound occurrence of u in 2¨1¨1, etc. We
denote the subterm at position I of a term t by t|I , e.g., fpλx.gpxq, λu.gpuqq|2¨1 “ gpuq.

The path to a position in a λ-term is defined as the sequence of symbols from the
root to the node at that position (not including) in the tree representation of the term.
For instance, the path to the position 1¨1¨1¨1¨1 in fpλx.λy.gpλz.hpz, y, xqq, λu.gpuqq is
f, λx, λy, g, λz.

Definition 3.26 (Higher-order pattern). A higher-order pattern is a λ-term where,
when written in η-long β-normal form, all free variable occurrences are applied to lists
of pairwise distinct (η-long forms of) bound variables.

Example 3.14. For instance, λx.fpXpxq, Y q, fpc, λx.xq and λx.λy.Xpλz.xpzq, yq are
patterns, while λx.fpXpXpxqq, Y q, fpXpcq, cq and λx.λy.Xpx, xq are not.

Definition 3.27 (Substitution). A substitution is a mapping σ : V Ñ T pΣ,Vq from
variables to terms of the same type, which is identity almost everywhere. Capturing of
free variables is avoided by renaming of bound variables.

Any substitution σ can be extended to a mapping σ̂ : T Ñ T that can be applied
to lambda terms so that capturing of free variables is avoided. By alpha equivalence,
we can enforce that a bound variable is distinct from a given finite set of variables.
The notion of substitution domain and range are defined similarly to subsection 2.1.1.
Substitution application is defined by induction on the structure of terms:

tσ̂ ::“

$

’

’

’

’

&

’

’

’

’

%

σpXq if t “ X,
c if t “ c,
λx.pt1σ̂1q if t “α λx.t

1 so that x R VpRanpσ1qq
where σ1 is defined by tY ÞÑ σpY q | Y P Dompσqztxuu

t1σ̂ t2σ̂ if t “ pt1 t2q.

To simplify the notation, we do not distinguish between a substitution σ and its
extension σ̂. We write #»xσ for x1σ, . . . , xnσ, if #»x “ x1, . . . , xn. Similarly, for a set of
terms S, we define Sσ “ ttσ | t P Su.

We denote mappings from variables to variables of the same type by π, ρ, µ and use
the notation π :: rX ÞÑ Y s to recursively define a mapping: Let π1 “ π :: rX ÞÑ Y s, then

π1 ::“
"

π1pZq “ Y if Z “ X,
π1pZq “ πpZq if Z ‰ X.

The identity mapping is denoted by Id. We use rX1 ÞÑ Y1, . . . , Xn ÞÑ Yns as a shortcut
for Id :: rX1 ÞÑ Y1s :: . . . :: rXn ÞÑ Yns, where all the Xi’s are pairwise disjoint. Since
variables are terms, we can use such mappings as a definition of a variable renaming
substitution. To simplify the notation, we implicitly convert them into substitutions
whenever we use the postfix notation. For instance, trX1 ÞÑ Y1, . . . , Xn ÞÑ Yns implicitly
denotes the application of the substitution tX1 ÞÑ Y1, . . . , Xn ÞÑ Ynu to the term t.
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A term t is more general that a term s, written s ĺ“α t, if there exists a substitution
σ such that sσ “α t. The strict part of this relation is denoted by ă“α . The relation
ĺ“α is a partial order and generates the equivalence relation which we denote by »“α .
To simplify the notation, we drop the subscript for the equivalence relation “α and
write, e.g., ĺ instead of ĺ“α in the current section.

Definition 3.28 (Higher-order pattern generalization). A term t is called a gener-
alization of two terms t1 and t2 if t ĺ t1 and t ĺ t2. It is a higher-order pattern
generalization (pattern generalization in short) if additionally t is a higher-order pat-
tern. It is a least general higher-order pattern generalization, (pattern lgg in short), of
t1 and t2, if there is no pattern generalization s of t1 and t2 which satisfies t ă s.

3.2.2 Anti-Unification Algorithm for Lambda Terms GP

Here we consider a variant of higher-order anti-unification problem, where the input
terms are arbitrary lambda terms in η-long β-normal form and the output is a high-
er-order pattern. We present a rule-based anti-unification algorithm that solves the
following problem:

Given: Higher-order terms t and s of the same type in η-long β-normal form.

Find: A least general higher-order pattern generalization of t and s.

We are looking for a higher-order pattern r which is least general among all high-
er-order patterns which generalize t and s. There can still be a generalization of t
and s which is strictly less general than r, but is not a higher-order pattern. For in-
stance, if t “ λx, y.fphpx, x, yq, hpx, y, yqq and s “ λx, y.fpgpx, x, yq, gpx, y, yqq, then
r “ λx, y.fpY1px, yq, Y2px, yqq is a higher-order pattern lgg of t and s. However, the
term λx, y.fpZpx, x, yq, Zpx, y, yqq, which is not a higher-order pattern, is less general
than r and generalizes t and s.

Definition 3.29 (Anti-unification equation). An anti-unification equation (AUE) is a
triple Xp #»x q : t fi s where

§ λ #»x .Xp #»x q, λ #»x .t, and λ #»x .s are terms of the same type,

§ λ #»x .Xp #»x q is a higher-order pattern,

§ t and s are in η-long β-normal form,

§ X is a variable that does neither occur in t nor in s.

The variable X is called a generalization variable. The term Xp #»x q is called the gener-
alization term.

Definition 3.30 (Higher-order pattern anti-unification algorithm). The higher-order
anti-unification algorithm that computes pattern generalizations is formulated in a
rule-based manner. It works on triples of the form P ; S; σ, where

§ P is the set of AUEs to be solved (the problem set);

§ S is a set of already solved AUEs (the store);
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§ σ is a substitution (computed so far) mapping variables to patterns.

§ for all Xp #»x q : t fi s P P Y S holds that X occurs in P Y S only once.

We call such a tuple a state and the algorithm is called GP, where P stands for the
fact that we compute pattern generalizations. The four transformation rules of the
algorithm, which are defined below, operate on states.

Remark 3.1. One assumption we make on the set P Y S is that each occurrence of
λ binds a distinct name variable (in other words, all names of bound variables are
distinct). By alpha equivalence, this assumption does not impose a loss of generality.

In the transformation rules, we use the symbol Y for a fresh variable of the corre-
sponding type and the symbol Ÿ stands for disjoint union.

Dec: Decomposition

tXp #»x q : hpt1, . . . , tmq fi hps1, . . . , smqu ŸP ; S; σ ùñ
tY1p

#»x q : t1 fi s1, . . . , Ymp
#»x q : tm fi smuYP ; S; σtX ÞÑ λ #»x .hpY1p

#»x q, . . . , Ymp
#»x qqu,

where h is a constant or h P #»x .

Abs: Abstraction

tXp #»x q : λy.t fi λz.su ŸP ; S; σ ùñ
tY p #»x , yq : t fi stz ÞÑ yuu Y P ; S; σtX ÞÑ λ #»x , y.Y p #»x , yqu.

Sol: Solve

tXp #»x q : t fi su ŸP ; S; σ ùñ P ; tY p #»y q : t fi su Y S; σtX ÞÑ λ #»x .Y p #»y qu,

where t and s are of a basic type, Topptq ‰ Toppsq or Topptq “ Toppsq “ Z R #»x , and
#»y is a subsequence of #»x consisting of the variables that appear freely in t or in s.

Mer: Merge

P ; tXp #»x q : t1 fi t2, Zp
#»z q : s1 fi s2u ŸS; σ ùñ

P ; tXp #»x q : t1 fi t2u Y S; σtZ ÞÑ λ #»z .Xp #»xπqu,

where π : t #»xu Ñ t #»z u is a bijection, extended as a substitution, with t1π “α s1 and
t2π “α s2.

To compute generalizations for terms t and s, we start with the initial state
tX : t fi su; H; Id, where X is a fresh variable, and apply the rules as long as pos-
sible. The state to which no rule applies has the form H; S; σ, where Mer does not
apply to S. It is called the final state. We will prove termination, soundness, and
completeness of GP, as well as uniqueness of the final state (modulo »“α) in subsec-
tion 3.2.7. The unique final state for two terms t and s to be generalized is denoted by
GPpX : t fi sq, where X is the fresh generalization variables. The pattern generalization
that corresponds to a final state H; S; σ “ GPpX : t fi sq is Xσ “ r and the store S
contains all the differences of the input terms so that rσLpSq “α t and rσRpSq “α s,
where the substitutions σLpSq and σRpSq are defined by:

Definition 3.31. We define two substitutions obtained from a set S of AUEs:

σLpSq ::“ tY ÞÑ λ #»y .t1 | Y p
#»y q : t1 fi t2 P Su

σRpSq ::“ tY ÞÑ λ #»y .t2 | Y p
#»y q : t1 fi t2 P Su
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Discussion of the Algorithm. One can easily verify that a triple obtained from
P ; S; σ by applying any of the transformation rules of GP to a state is indeed a state:
For each expression Xp #»x q : t fi s P P Y S, the terms Xp #»x q, t and s have the same
type, λ #»x .Xp #»x q is a higher-order pattern, s and t are in η-long β-normal form, and
X does not occur in t and s. Moreover, all generalization variables are distinct and
substitutions map variables to patterns. The property that each occurrence of λ in
P Y S binds a unique variable is also maintained. It guarantees that in the Abs rule,
the variable y is fresh for s. After the application of the rule, y will appear nowhere
else in P Y S except Y p #»x , yq and, maybe, t and s.

The idea of the store S is to keep track of already solved AUEs in order to reuse
in generalizations an existing variable. The Mer rule merges variables that can be
reused. This is important, since we aim at computing lggs. Merging requires to solve
a matching problem tt1 „ s1, t2 „ s2u with the mapping π which bijectively maps the
variables from #»x to the variables from #»y . In general, when we want to find a solution
of a matching problem M , which bijectively maps variables from a finite set D to a
finite set R, we say that we are looking for a permuting matcher of M from D to R.
The sets D and R are supposed to have the same cardinality.

Note that a permuting matcher, if it exists, is unique. It follows from the fact that
there can be only one capture-avoiding renaming of free variables which matches a
higher-order term to another. Since M is a matching problem for higher-order terms
with free variables from D and their potential values from R, it can have at most one
such matcher. An algorithm that computes it is given in subsection 3.2.4 below.

3.2.3 Illustration of the Algorithm GP

Before introducing the algorithm that constructively solves the decision problem of
the existence of a permuting matcher, we illustrate the algorithm GP on a couple of
examples.

Example 3.15. Let t “ λx, y.fpUpgpxq, yq, Upgpyq, xqq and s “ λx1, y1.fphpy1, gpx1qq,
hpx1, gpy1qqq. Then GP performs the following transformations:

tX : λx, y.fpUpgpxq, yq, Upgpyq, xqq fi λx1, y1.fphpy1, gpx1qq, hpx1, gpy1qqqu;H; Id
ùñ2

Abs tX
1px, yq : fpUpgpxq, yq, Upgpyq, xqq fi fphpy, gpxqq, hpx, gpyqqqu;H;

tX ÞÑ λx, y.X 1px, yqu

ùñDec tY1px, yq : Upgpxq, yq fi hpy, gpxqq, Y2px, yq : Upgpyq, xq fi hpx, gpyqqu;H;
tX ÞÑ λx, y.fpY1px, yq, Y2px, yqq, . . . u

ùñSol tY2px, yq : Upgpyq, xq fi hpx, gpyqqu; tY1px, yq : Upgpxq, yq fi hpy, gpxqqu;
tX ÞÑ λx, y.fpY1px, yq, Y2px, yqq, . . . u

ùñSol H; tY1px, yq : Upgpxq, yq fi hpy, gpxqq, Y2px, yq : Upgpyq, xq fi hpx, gpyqqu;
tX ÞÑ λx, y.fpY1px, yq, Y2px, yqq, . . . u

ùñMer H; tY1px, yq : Upgpxq, yq fi hpy, gpxqqu

tX ÞÑ λx, y.fpY1px, yq, Y1py, xqq, . . . , Y2 ÞÑ λx, y.Y1py, xqu

The computed higher-order pattern is r “ λx, y.fpY1px, yq, Y1py, xqq. It generalizes
the input terms t and s and the store S “ tY1px, yq : Upgpxq, yq fi hpy, gpxqqu con-
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tains all the differences so that rσ
L
pSq “ rtY1 ÞÑ λx, y.Upgpxq, yqu “ t and rσ

R
pSq “

rtY1 ÞÑ λx, y.hpy, gpxqqu “ s.

Example 3.16. Two more examples illustrating the generalizations computed by GP:

§ For λx, y, z.gpfpx, zq, fpy, zq, fpy, xqq and λx1, y1, z1.gphpy1, x1q, hpx1, y1q, hpz1, y1qq,
GP computes their generalization λx, y, z.gpY1px, y, zq, Y1py, x, zq, Y1py, z, xqq

§ For λx, y.fpλz.Upz, y, xq, Upx, y, xqq and λx1, y1.fpλz1.hpy1, z1, x1q, hpy1, x1, x1qq,
GP computes their generalization λx, y.fpλz.Y1px, y, zq, Y2px, yqq.

Example 3.17. In order to illustrate how GP can be used to detect clones of code pieces
that are based on λ-terms, we borrow an example from Miller and Nadathur [60]. There,
they give some tail recursive programs with the indention to use λProlog to transform
them into iterative programs. We use those examples of tail recursive programs for
another purpose: We aim at finding the similarities and, based on the generalization
result, we suggest to refactor the two programs into one generalized version that can be
easily reused. Figure 3.5 shows the two programs.

In order to represent simple recursive schemes, the constants fixpt and cond are
introduced in [60] in the following way:

@x ppfixpt xq “ px pfixpt xqqq

@x@y ppcond truth x yq “ xq

@x@y ppcond false x yq “ yq

We consider the following two pieces of programs to illustrate the use case of embed-
ding GP in a refactoring tool for languages like λProlog:

fixptpλfact.λn.λm.condpeqp0, nq,m, factpsubpn, 1q,multpn,mqqqq
fixptpλsum.λn.λm.condpeqp0, nq,m, sumpsubpn, 1q, addpm, 1qqqq

Figure 3.5: Two programs represented as simply-typed λ-terms.

Figure 3.6 shows the generalization (modulo bound variable renaming) computed
by GP for the two input terms from Figure 3.5. From the store S of the corre-
sponding final state we get the substitutions σLpSq “ tX ÞÑ λx.λy.multpx, yqu and
σRpSq “ tX ÞÑ λx.λy.addpy, 1qu.

fixptpλfun.λn.λm.condpeqp0, nq,m, funpsubpn, 1q,Xpn,mqqqq

Figure 3.6: Generalization of the programs from Figure 3.5.

The generalization λ-term can easily be used in a λProlog predicate that instantiates
the variable X (in addition to other variables that get instantiated by the λ-term itself
and its arguments) by a given function, e.g., λx.λy.addpy, 1q. Therefore, we suggest to
use the generalized version for the sake of reusability in languages like λProlog.

The results computed by GP are higher-order pattern generalizations of the input
terms. We will prove it formally, when we establish soundness of GP. The computed
results are, in fact, pattern lggs. We will prove this fact in Theorem 3.25. The other
properties of GP are also discussed later in subsection 3.2.7.
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3.2.4 Computation of Permuting Matchers: The Algorithm M

In this section we describe the algorithm M to compute permuting matchers. It is a
rule-based algorithm working on quintuples of the form D; R; M ; ρ; π (called state)
where

§ D is a set of domain variables,

§ R is a set of range variables,

§ D and R have the same cardinality,

§ M is a set of matching problems of the form ts1 „ t1, . . . , sm „ tmu,

§ ρ and π are mappings from variables to variables (computed so far).

The mapping ρ is supposed to keep bound variable renamings to deal with abstrac-
tions, while in π we compute the permuting matcher to be returned in case of success.
Like in the rules for GP, also here each occurrence of λ in the problem set M binds a
unique variable. Furthermore, all the bound variables are distinct from the variables
in D YR. The three transformation rules of the algorithm are the following:

Dec-M: Decomposition

D; R; thpt1, . . . , tmq „ gps1, . . . , smqu ŸM ; ρ; π ùñ
D; R; tt1 „ s1, . . . , tm „ smu YM ; ρ; π,

where each of h and g is a constant or a variable, h R D, g R R, and hπ “ gρ.

Abs-M: Abstraction

D; R; tλx.t „ λy.su ŸM ; ρ; π ùñ D; R; tt „ su YM ; ρ :: rx ÞÑ ys; π.

Per-M: Permuting

txu ŸD; tyu ŸR; txpt1, . . . , tmq „ yps1, . . . , smqu ŸM ; ρ; π ùñ
D; R; tt1 „ s1, . . . , tm „ smu YM ; ρ; π :: rx ÞÑ ys,

where x and y have the same type.

The input for M is initialized in the Mer rule, which needs to compute a bijection
π : t #»xu Ñ t #»z u such that t1π “α s1 and t2π “α s2. Notice that, in the sequence #»x
all the occurrences of variable names are pairwise distinct, since bound variables are
assumed to be unique. The same holds for #»z . We proceed in the following way:

We create the set of domain variables D from #»x and the set of range variables R
from #»z . Then we create the initial state D; R; tt1 „ s1, t2 „ s2u; Id; Id and apply the
rules Dec-M, Abs-M and Per-M exhaustively. If no rule applies to a state D; R; M ; ρ; π
with M ‰ H, then it is transformed into K, called the failure state. The quintuple
D; R; H; ρ; π is called the success state. No rule applies to it either. When M reaches
the success state, we say that M computes the permuting matcher π. When M reaches
the failure state, we say that it fails. The result computed by M is K in the case of
failure and π if we reach the success state. We denoted this result by MpD,R,Mq.



116 Chapter 3 Anti-Unification for Ranked Terms with Binders

3.2.5 Illustration of the Algorithm M

Before we turn to discussing the properties of M, we illustrate its usage on some
examples.

Example 3.18. To compute the permuting matcher of txpy, zq „ xpz, yq,
Xpy, λu.uq „ Xpz, λv.vqu from tx, y, zu to tx, y, zu by M, we create the initial
state tx, y, zu; tx, y, zu; txpy, zq „ xpz, yq, Xpy, λu.uq „ Xpz, λv.vqu; Id; Id and apply
the transformation rules exhaustively:

tx, y, zu; tx, y, zu; txpy, zq „ xpz, yq, Xpy, λu.uq „ Xpz, λv.vqu; Id; Id
ùñPer-M ty, zu; ty, zu; ty „ z, z „ y,Xpy, λu.uq „ Xpz, λv.vqu; Id; rx ÞÑ xs

ùñPer-M tzu; tyu; tz „ y,Xpy, λu.uq „ Xpz, λv.vqu; Id; rx ÞÑ x, y ÞÑ zs

ùñPer-M H; H; tXpy, λu.uq „ Xpz, λv.vqu; Id; rx ÞÑ x, y ÞÑ z, z ÞÑ ys

ùñDec-M H; H; ty „ z, λu.u „ λv.vu; Id; rx ÞÑ x, y ÞÑ z, z ÞÑ ys

ùñDec-M H; H; tλu.u „ λv.vu; Id; rx ÞÑ x, y ÞÑ z, z ÞÑ ys

ùñAbs-M H; H; tv „ uu; ru ÞÑ vs; rx ÞÑ x, y ÞÑ z, z ÞÑ ys

ùñDec-M H; H; H; rv ÞÑ us; rx ÞÑ x, y ÞÑ z, z ÞÑ ys

From the computed mapping we obtain rx ÞÑ x, y ÞÑ z, z ÞÑ ys. One can easily see that
it is a permuting matcher of txpy, zq „ xpz, yq, Xpy, λu.uq „ Xpz, λv.vqu from tx, y, zu
to tx, y, zu.

Example 3.19. To compute the permuting matcher of txpz, zq „ xpz, yq, fpyq „ fpzqu
from tx, y, zu to tx, y, zu by M, we create the initial state and apply the transformation
rules exhaustively:

tx, y, zu; tx, y, zu; txpz, zq „ xpz, yq, fpyq „ fpzqu; Id; Id
ùñDec-M tx, y, zu; tx, y, zu; txpz, zq „ xpz, yq, y „ zu; Id; Id
ùñPer-M ty, zu; ty, zu; tz „ z, z „ y, y „ zu; Id; rx ÞÑ xs

ùñPer-M tyu; tyu; tz „ y, y „ zu; Id; rx ÞÑ x, z ÞÑ zs.

The derivation by M fails because no more rule is applicable to the nonempty set of
matching problems.

3.2.6 Properties of the Algorithm M

The algorithm M maintains the following invariants:

Lemma 3.17 (Invariant 1). For each tuple D; R; M ; ρ; π in a derivation performed
by M, the sets D and R have the same number of elements.

Proof. In the initial state, D and R have the same number of elements because this
is implied by the condition in the rule Mer which causes computation of permuting
matcher. The only rule that changes D and R is Per-M and it removes one element of
both sets.
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Lemma 3.18 (Invariant 2). For each tuple D; R; tt1 „ s1, . . . , tm „ smu; ρ; π in a
derivation performed by M, D Ď

Ťm
i“1 FVptiq and R Ď

Ťm
i“1 FVpsiq.

Proof. In the initial tuple this property holds, because the tuple originates from the
AUEs in the store of the anti-unification algorithm. AUEs enter the store only with
the Solve rule, which makes sure that the list of variables given as arguments to the
generalization variable appear in the terms to be generalized. Furthermore, during the
derivation in M, the rules do not violate the invariant property:

§ In the case of Dec-M, the condition h R D and g R R keeps this property intact.

§ For Abs-M it is true because of the assumption that all bound variables are distinct
from the variables in DYR. This assumption is fulfilled by the initial assumption
of the anti-unification algorithm that all the bound variables are unique.

§ For Per-M it is obvious.

Lemma 3.19 (Invariant 3). For each tuple Di; Ri; Mi; ρi; πi in a derivation performed
by M starting from D; R; M ; ρ; π, the following equalities hold: Di Y Dompπiq “ D
and Ri Y Ranpπiq “ R.

Proof. The initial tupleD0; R0; M0; ρ0; π0 has this property, becauseD0 “ D, R0 “ R,
and π0 “ Id. During the derivation, the rules either keep Di and Ri unchanged, or
remove one element from each, obtaining in this way Di`1 and Ri`1, and adding to
πi`1 a pair consisting of those elements. Hence, the property is maintained during the
derivation.

Theorem 3.20 (Termination). The algorithm M terminates on any input.

Proof. Each rule strictly reduces the multiset of sizes of matching problems M in the
tuples it operates on. Since each tuple D; R; M ; ρ; π with M ‰ H can be transformed
by one of the rules or leads to failure, the final state in the derivation is either the
success or the failure state.

Theorem 3.21 (Soundness). If M computes a mapping π for a given tuple D; R; M ;
Id; Id, then π is a permuting matcher of M from D to R.

Proof. Obviously, π maps variables from D to R. It follows from the way how the Per-M
rule constructs π. The differences between t and s for t „ s P M are either repaired
by the bindings from π constructed by Per-M, or the differences are α-equivalences
repaired by the bindings from ρ constructed by Abs-M, or the failure occurs since no
rule can be applied. The Dec-M rule only applies if the heads are the same symbols
(under ρ and π) and those symbols cannot be permuted, since h R D and g R R.

The bijection property is more involved: The Per-M rule (namely, the fact that it
removes x and y from D and R) guarantees that there is an injective mapping from a
subset of D onto a subset of R. Since all variables of D (resp. R) appear freely in the
left (resp. right) hand sides of equations in M (the second invariant), each derivation
either stops with failure, or eventually reduces D and R to H by applications of Per-M
(see the first invariant, the same number of elements in D and R). The latter, by the
third invariant, means that there is an injective mapping from D onto R, expressed
by π. Hence, π is a bijection from D to R and M is sound.
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Theorem 3.22 (Completeness). If there exists a permuting matcher of M from D
to R, then M computes it and it is unique.

Proof. Uniqueness follows from the fact that there can be only one capture-avoiding
renaming of free variables which matches a higher-order term to another. Since we have
already proved soundness of M, we have only to show that if there exists a permuting
matcher of M from D to R, then M does not fail for D; R; M ; Id; Id. Let µ be such a
matcher. Then tµ “ s for all t „ s PM . This means that, if t has a form hpt1, . . . , tnq,
then s should be gps1, . . . , snq and hµ “ g , tiµ “ si for all 1 ď i ď n. If t has a form
λx.t1, then s should be of the form λy.s1 and t1µ “ s1ty ÞÑ xu.

Assume by contradiction that M fails. That means that there exists the state
Dk; Rk; tt „ su ŸMk; ρk; πk to which no rule applies. Since the steps performed by M
before it either decompose the terms argumentwise (Dec-M and Per-M), or remove ab-
straction (Abs-M), by the definitions of matcher and substitution application we should
have tµ “ sρk. This equation means that t and s have the same types. Hence, the
only case why no rule in M applies to the state is that t and s should be, respectively,
of the form hpt1, . . . , tnq and gps1, . . . , smq with hπk ‰ gρk, where h R Dk or g R Rk.
Because of the uniqueness of the matcher, xπk “ xµ, for all x P DzDk. On the other
hand, hµ “ gρk, because µ matches t to sρk.

Hence, we have h P Dk. This also implies that g P Rk because µ is a bijection from
D to R and hµ “ gρk “ g . (Notice that R is disjoint from all bound variables.) Now
Per-M is applicable and we have a contradiction to the assumption that no rule applies
to Dk; Rk; tt „ su ŸMk; ρk; πk. The obtained contradiction shows that if there exists
a permuting matcher of M from D to R, then M does not fail for D; R; M ; Id; Id,
which implies completeness of M.

Remark 3.2. The algorithm M is an extended alpha-equivalence test. It searches
for a renaming of variables from the domain D into the range R while deciding al-
pha-equivalence.

3.2.7 Properties of the Algorithm GP

Theorem 3.23 (Termination). The procedure GP, which uses M to compute permuting
matchers, terminates for all input terms t and s.

Proof. We define the complexity measure of the triple P ; S; σ as a pair of multisets
pMpP q,MpSqq, where the multiset MpLq is defined as

MpLq “ tminpDepthptq,Depthpsqq | Xp #»x q : t fi s P Lu

for any L. Measures are compared lexicographically. Obviously, each rule in GP strictly
reduces it. The ordering is well-founded. The procedure M in the rule Mer is termi-
nating. Hence, GP terminates.

Theorem 3.24 (Soundness). If tX : t fi su;H; Id ùñ˚ H;S;σ is a derivation in GP,
then

(a) Xσ is a higher-order pattern in η-long β-normal form,
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(b) Xσ ĺ t and Xσ ĺ s.

Proof. To prove that Xσ is a higher-order pattern, we use the facts that first, X is
a higher order pattern and, second, at each step P1; S1; ϕ ùñ P2; S2; ϕϑ if Xϕ is a
higher-order pattern, then Xϕϑ is also a higher-order pattern. The latter property
follows from stability of patterns under substitution application and from the fact that
substitutions in the rules map variables to higher-order patterns. As for Xσ being in
η-long β-normal form, this is guaranteed by the series of applications of the Abs rule,
even if Dec introduces an AUE whose generalization term is not in this form. It finishes
the (sketch of the) proof of (a).

Proving (b) is more involved. First, we prove that if P1; S1; ϕ ùñ P2; S2; ϕϑ is one
step, then for any Xp #»x q : t fi s P P1 Y S1, we have Xp #»x qϑ ĺ t and Xp #»x qϑ ĺ s. Note
that if Xp #»x q : t fi s was not transformed at this step, then this property trivially holds
for it. Therefore, we assume that Xp #»x q : t fi s is selected and prove the property for
each rule:

Dec: Here t “ hpt1, . . . , tmq, s “ hps1, . . . , smq, and ϑ “ tX ÞÑ λ #»x .hpY1p
#»x q,

. . . , Ymp
#»x qqu. Then Xp #»x qϑ “ hpY1p

#»x q, . . . , Ymp
#»x qq. Let σ1 and σ2 be substi-

tutions defined, respectively, by Yiσ1 “ λ #»x .ti and Yiσ2 “ λ #»x .si for all 1 ď i ď m.
Such substitutions obviously exist since the Y ’s introduced by the Dec rule are
fresh. Then Xp #»x qϑσ1 “ hpt1, . . . , tmq, Xp #»x qϑσ2 “ hps1, . . . , smq and, hence,
Xp #»x qϑ ĺ t and Xp #»x qϑ ĺ s.

Abs: Here t “ λy1.t
1, s “ λy2.s

1, and ϑ “ tX ÞÑ λ #»x , y.X 1p #»x , yqu. Then Xp #»x qϑ “
λy.X 1p #»x , yq. Let σ1 “ tX 1 ÞÑ λ #»x , y.t1u and σ2 “ tX 1 ÞÑ λ #»x , y.s1u. Then
Xp #»x qϑσ1 “ λy.t1 “ t, Xp #»x qϑσ2 “ λy.s1 “ s, and, hence, Xp #»x qϑ ĺ t and
Xp #»x qϑ ĺ s.

Sol: We have ϑ “ tX ÞÑ λ #»x .Y p #»y qu, where #»y is the subsequence of #»x consisting of
the variables that appear freely in t or s. Let σ1 “ tY ÞÑ λ #»y .tu and σ2 “
tY ÞÑ λ #»y .su. Then Xp #»x qϑσ1 “ t, Xp #»x qϑσ2 “ s, and, hence, Xp #»x qϑ ĺ t and
Xp #»x qϑ ĺ s.

If Mer applies, then there exists Y p #»y q : t1 fi s1 P S1 such that Mpt #»xu, t #»y u,
t „ t1, s „ s1q is a permuting matcher π, and ϑ “ tY ÞÑ λ #»y .Xp #»xπqu. Then Xp #»x qϑ ĺ t
and Xp #»x qϑ ĺ s obviously hold. As for the Y p #»y q : t1 fi s1, let σ1 “ tX ÞÑ λ #»x .tu
and σ2 “ tX ÞÑ λ #»x .su. Then Y p #»y qϑσ1 “ pλ #»x .tqp #»xπq “ tπ “ t1, Y p #»y qϑσ2 “
pλ #»x .sqp #»xπq “ sπ “ s1, and, hence, Y p #»y qϑ ĺ t1 and Y p #»y qϑ ĺ s1.

Now, we proceed by induction on the length of derivation l. In fact, we will prove
a more general statement: If P0; S0; ϑ0 ùñ

˚ H; Sn; ϑ0ϑ1 ¨ ¨ ¨ϑn is a derivation in GP,
then for any Xp #»x q : t fi s P P0YS0 we have Xp #»x qϑ1 ¨ ¨ ¨ϑn ĺ t and Xp #»x qϑ1 ¨ ¨ ¨ϑn ĺ s.

When l “ 1, it is exactly the one-step case we just proved. Assume that the statement
is true for any derivation of the length n and prove it for a derivation P0; S0; ϑ0 ùñ P1;
S1; ϑ0ϑ1 ùñ

˚ H; Sn; ϑ0ϑ1 ¨ ¨ ¨ϑn of the length n` 1.

Below the composition ϑiϑi`1 ¨ ¨ ¨ϑk is abbreviated as ϑki with k ě i. Let Xp #»x q : t fi
s be an AUE selected for transformation at the current step. (Again, the property
trivially holds for the AUEs which are not selected.) We consider each rule:
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Dec: t “ hpt1, . . . , tmq, s “ hps1, . . . , smq and Xp #»x qϑ1
1 “ hpY1p

#»x q, . . . , Ymp
#»x qq. By

the induction hypothesis, Yip
#»x qϑn2 ĺ ti and Yip

#»x qϑn2 ĺ si for all 1 ď i ď m. By
construction of ϑn2 , if there is U P FVpRanpϑn2 qq, then there is an AUE of the form
Up #»u q : t1 fi s1 P Sn. Let σ (resp. ϕ) be a substitution which maps each such U to
the corresponding t1 (resp. s1). Then Yip

#»x qϑn2σ “ ti and Yip
#»x qϑn2ϕ “ si. Since

Xp #»x qϑn1 “ hpY1p
#»x q, . . . , Ymp

#»x qqϑn2 , we get that Xp #»x qϑn1σ “ t, Xp #»x qϑn1ϕ “ s,
and, hence, Xp #»x qϑn1 ĺ t and Xp #»x qϑn1 ĺ s.

Abs: Here t “ λy1.t
1, s “ λy2.s

1, Xp #»x qϑ1
1 “ λy.X 1p #»x , yq, and P1 contains the AUE

X 1p #»x , yq : t1ty1 ÞÑ yu fi s1ty2 ÞÑ yu. By the induction hypothesis, X 1p #»x , yqϑn2 ĺ

t1ty1 ÞÑ yu and X 1p #»x , yqϑn2 ĺ s1ty1 ÞÑ yu. Since Xp #»x qϑn1 “ λy.X 1p #»x , yqϑn2 and
due to the way how y was chosen, we finally get Xp #»x qϑn1 ĺ λy.t1ty1 ÞÑ yu “ t
and Xp #»x qϑn1 ĺ λy.s1ty2 ÞÑ yu “ s.

Sol: We have Xp #»x qϑ1
1 “ Y p #»y q where Y is in the store. By the induction hypothesis,

Y p #»y qϑn2 ĺ t and Y p #»y qϑn2 ĺ s. Therefore, Xp #»x qϑn1 ĺ t and Xp #»x qϑn1 ĺ s.

For Mer, there exists Y p #»y q : t1 fi s1 P S0 such that Mpt #»xu, t #»y u, t „ t1, s „ s1q
is a permuting matcher π, and ϑ1

1 “ tY ÞÑ λ #»y .Xp #»xπqu. By the induction hy-
pothesis, Xp #»x qϑn1 “ Xp #»x qϑn2 ĺ t and Xp #»x qϑn1 “ Xp #»x qϑn2 ĺ s. These imply
that Xp #»xπqϑn1 ĺ t1 and Xp #»xπqϑn1 ĺ s1, which, together Y ϑn1 “ Xp #»xπq, yields
Y p #»y qϑn1 ĺ t1and Y p #»y qϑn1 ĺ s1.

Hence, the result computed by GP for X : t fi s generalizes both t and s. We call
Xσ, a generalization of t and s computed by GP.

Theorem 3.25 (Completeness). Let λ #»x .t1 and λ #»x .t2 be higher-order terms and λ #»x .s
be a higher-order pattern such that λ #»x .s is a generalization of both λ #»x .t1 and λ #»x .t2.
Then λ #»x .s ĺ Xσ, where Xσ is a generalization computed by GP for X : λ #»x .t1 fi λ #»x .t2.

Proof. By structural induction on s. We can assume without loss of generality that
λ #»x .s is an lgg of λ #»x .t1 and λ #»x .t2. We also assume that it is in the η-long β-normal
form.

If s is a variable, then there are two cases: Either s P #»x , or s R #»x . In the first
case, we have s “ t1 “ t2. The Dec rule gives σ “ tX ÞÑ λ #»x .su and, hence, λ #»x .s ĺ

λ #»x .Xp #»x qσ “ s. In the second case, either Toppt1q ‰ Toppt2q, or Toppt1q “ Toppt2q R
#»x . Sol is supposed to give us σ “ tX ÞÑ λ #»x .X 1p

#»

x1qu, where
#»

x1 is a subsequence

of #»x consisting of variables occurring freely in t1 or in t2. But
#»

x1 should be empty,
because otherwise s would not be just a variable (remember that λ #»x .s is an lgg of
λ #»x .t1 and λ #»x .t2 in the η-long β-normal form). Hence, we have σ “ tX ÞÑ λ #»x .X 1u and
λ #»x .s ĺ λ #»x .Xp #»x qσ, because sts ÞÑ X 1u “ Xp #»x qσ.

If s is a constant c, then t1 “ t2 “ c. We can apply the Dec rule, obtaining σ “
tX ÞÑ λ #»x .cu and, hence, s “ c ĺ Xp #»x qσ “ c. Therefore, λ #»x .s ĺ λ #»x .Xp #»x qσ.

If s “ λx.s1, then t1 and t2 must have the forms t1 “ λx.t11 and t2 “ λy.t12, and s1

must be an lgg of t11 and t12. Abs gives a new state tX 1p #»x , xq : t11 fi t12tx ÞÑ yuu;H;σ1,
where σ1 “ tX ÞÑ λ #»x , x.X 1p #»x , xqu. By the induction hypothesis, we can compute a
substitution σ2 such that λ #»x , x.s1 ĺ λ #»x , x.X 1p #»x , xqσ2. Composing σ1 and σ2 into σ, we
have Xp #»x qσ “ λx.X 1p #»x , xqσ2. Hence, we get λ #»x .s “ λ #»x .λx.s1 ĺ λ #»x .λx.X 1p #»x , xqσ2 “
λ #»x .Xp #»x qσ.
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Finally, assume that s is a compound term hps1, . . . , snq. If h R #»x is a variable, then
s1, . . . , sn are distinct variables from #»x (because λ #»x .s is a higher-order pattern). That
means that s1, . . . , sn appear freely in t1 or t2. Moreover, either Toppt1q ‰ Toppt2q, or
Toppt1q “ Toppt2q “ h . In both cases, we can apply the Sol rule to obtain σ “ tX ÞÑ

λ #»x .Y ps1, . . . , snqu. Obviously, λ #»x .s ĺ λ #»x .Xp #»x qσ “ λ #»x .Y ps1, . . . , snq.

If h P #»x or if it is a constant, then we should have Toppt1q “ Toppt2q. As-
sume they have the forms t1 “ hpt11, . . . , t

1
nq and t2 “ hpt21, . . . , t

2
nq. We proceed

by the Dec rule, obtaining tYip
#»x q : t1i fi t2i | 1 ď i ď nu;H;σ0, where σ0 “

tX ÞÑ λ #»x .hpY1p
#»x q, . . . , Ynp

#»x qqu. By the induction hypothesis, we can construct
derivations ∆1, . . . ,∆n computing the substitutions σ1, . . . , σn, respectively, such that
λ #»x .si ĺ λ #»x .Yip

#»x qσi for 1 ď i ď n. These derivations, together with the initial Dec
step, can be combined into one derivation, of the form ∆ “ tXp #»x q : t1 fi t2u;H;σ0 ùñ
tYip

#»x q : t1i fi t2i | 1 ď i ď nu;H;σ0 ùñ
˚ H;Sn;σ0σ1 ¨ ¨ ¨σn.

If s does not contain duplicate variables free in λ #»x .s, then the construction of ∆ and
the fact that λ #»x .si ĺ λ #»x .Yip

#»x qσi for 1 ď i ď n guarantee λ #»x .s ĺ λ #»x .Xp #»x qσ0σ1 ¨ ¨ ¨σn.
If s contains duplicate variables free in λ #»x .s (e.g., of the form λ # »u1.Zp

#»z1q and λ # »u2.Zp
#»z2q,

where #»z1 and #»z2 have the same length) at positions I and J , it indicates that

(a) t1|I and t1|J differ from each other by a permutation of variables bound in t1,

(b) t2|I and t2|J differ from each other by the same (modulo variable renaming) per-
mutation of variables bound in t2,

(c) the path to position I is the same (modulo bound variable renaming) in t1 and t2.
It equals (modulo bound variable renaming) the path to position I in s, and

(d) the path to position J is the same (modulo bound variable renaming) in t1 and t2.
It equals (modulo bound variable renaming) the path to position J in s.

Then, because of (c) and (d), we should have two AUEs in Sn: One, between (re-
named variants of) t1|I and t2|I , and the other one between (renamed variants of) t1|J
and t2|J . The possible renaming of variables is caused by the fact that Abs might have
been applied to obtain the AUEs. Let those AUEs be Zp #»z1q : r1

1 fi r2
1 and Z 1p #»z2q : r1

2 fi

r2
2. The conditions (a) and (b) make sure that Mpt #»z1u, t

#»z2u, tr
1
1 „ r1

2, r
2
1 „ r2

2uq is a
permuting matcher π, which means that we can apply the rule Mer with the substitu-
tion σ11 “ tZ

1 ÞÑ λ #»z2.Zp
#»z1πqu. We can repeat this process for all duplicated variables

in s, extending ∆ to the derivation ∆1 “ tXp #»x q : t1 fi t2u;H;σ0 ùñ tYip
#»x q : t1i fi

t2i | 1 ď i ď nu;H;σ0 ùñ
˚ H;Sn;σ0σ1 ¨ ¨ ¨σn ùñ

˚ H;Sn`m;σ0σ1 ¨ ¨ ¨σnσ
1
1 ¨ ¨ ¨σ

1
m,

where σ11, . . . , σ
1
m are substitutions introduced by the applications of the Mer rule. Let

σ “ σ0σ1 ¨ ¨ ¨σnσ
1
1 ¨ ¨ ¨σ

1
m. By this construction, we have λ #»x .s ĺ λ #»x .Xp #»x qσ. It finishes

the proof, since #»x .Xp #»x qσ “ #»x .pXσqp #»x q “ Xσ.

Depending which AUE is selected to perform a step, there can be different derivations
in GP starting from the same AUE, leading to different generalizations. The next
theorem states that all those generalizations are equivalent.

Theorem 3.26 (Uniqueness Modulo »“α). Let tX : t fi su; H; Id ùñ˚ H; S1; σ1 and
tX : t fi su; H; Id ùñ˚ H; S2; σ2 be two maximal derivations in GP from X : t fi s.
Then Xσ1 » Xσ2.
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Proof. It is not hard to notice that if it is possible to change the order of applications
of rules (but sticking to the same selected AUEs for each rule) then the result remains
the same: If ∆1 “ P1; S1; σ1 ùñR1 P2; S2; σ1ϑ1 ùñR2 P3; S3; σ1ϑ1ϑ2 and ∆2 “ P1;
S1; σ1 ùñR2 P 12; S12; σ1ϑ2 ùñR1 P 13; S13; σ1ϑ2ϑ1 are two two-step derivations, where
R1 and R2 are (not necessarily different) rules and each of them transforms the same
AUE(s) in both ∆1 and ∆2, then P3 “ P 13, S3 “ S13, and σ1ϑ1ϑ2 “ σ1ϑ2ϑ1 (modulo the
names of fresh variables).

Decomposition, Abstraction, and Solve rules transform the selected AUE in a unique
way. We show that it is irrelevant in which order we perform matching in the Merge
rule.

Let P ; tZp #»z q : t1 fi s1, Y p
#»y q : t2 fi s2u ŸS; σ ùñ P ; tZp #»z q : t1 fi s1u ŸS;

σtY ÞÑ λ #»y .Zp #»z πqu be the merging step with π “ Mpt #»z u, t #»y u, tt1 „ t2, s1 „ s2uq. If
we do it in the other way around, we would get the step P ; tZp #»z q : t1 fi s1, Y p

#»y q : t2 fi

s2u ŸS; σ ùñ P ; tY p #»y q : t2 fi s2u ŸS; σtZ ÞÑ λ #»z .Y p #»y µqu, where µ “ Mpt #»y u,
t #»z u, tt2 „ t1, s2 „ s1uq. But µ “ π´1, because of bijection.

Let ϑ1 “ σρ1 with ρ1 “ tY ÞÑ λ #»y .Zp #»z πqu and ϑ2 “ σρ2 with ρ2 “ tZ ÞÑ

λ #»z .Y p #»y π´1qu. Our goal is to prove that Xϑ1 » Xϑ2. For this, we have to prove
two inequalities: Xϑ1 ĺ Xϑ2 and Xϑ2 ĺ Xϑ1. To show Xϑ1 ĺ Xϑ2, we first need to
prove the equality:

λ #»y .Zp #»z πqρ2 “ λ #»y .Y p #»y q. (3.1)

Its left hand side is transformed as λ #»y .Zp #»z πqρ2 “ λ #»y .Zp #»z πqtZ ÞÑ λ #»z .Y p #»y π´1qu “
λ #»y .pλ #»z .Y p #»y π´1qp #»z πqq. β-reduction of λ #»z .Y p #»y π´1qp #»z πq replaces each occurrence of
zi P

#»z in Y p #»y π´1q with ziπ, which is the same as applying π to Y p #»y π´1q. Since
#»y π´1π “ #»y , we get λ #»y .pλ #»z .Y p #»y π´1qp #»z πqq “ λ #»y .Y p #»y π´1πq “ λ #»y .Y p #»y q and (3.1)
is proved.

Next, starting from Xϑ1ρ2, we can transform it as Xϑ1ρ2 “ Xσρ1ρ2 “

XσtY ÞÑ λ #»y .Zp #»z πqρ2, Z ÞÑ λ #»z .Y p #»y π´1qu “by (3.1) XσtY ÞÑ λ #»y .Zp #»z πqρ2, Z ÞÑ

λ #»z .Y p #»y π´1qu “ XσtY ÞÑ λ #»y .Y p #»y q, Z ÞÑ λ #»z .Y p #»y π´1qu “ XσtY ÞÑ λ #»y .Y p #»y qutZ ÞÑ
λ #»z .Y p #»y π´1qu. At this step, since the equality“ is αβη-equivalence, we can omit the ap-
plication of the substitution tY ÞÑ λ #»y .Y p #»y qu and proceed: XσtY ÞÑ λ #»y .Y p #»y qutZ ÞÑ
λ #»z .Y p #»y π´1qu “ XσtZ ÞÑ λ #»z .Y p #»y π´1qu “ Xσρ2Xϑ2. Hence, we got Xϑ1ρ2 “ Xϑ2,
which implies Xϑ1 ĺ Xϑ2.

Xϑ2 ĺ Xϑ1 can be proved analogously. Hence, Xϑ1 » Xϑ2, which means that
it is irrelevant in which order we perform matching in the Merge rule. Therefore,
no matter how different derivations are constructed, the computed generalizations are
equivalent.

Hence, for given terms t and s, the anti-unification algorithm GP computes their
generalization, a higher-order pattern, which is less general than any other higher-order
pattern which generalizes t and s.

3.2.8 Complexity Analysis of M and GP

Now we turn to discussing the computational behavior of the algorithms introduced
in this section. In both algorithms, we assume that each bound variable is unique,
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i.e., it does neither occur freely in a term nor exists another binding for the same
variable name. This assumption does not impose a loss of generality neither does it
effect the computational behavior of the algorithms: If the input does not satisfy the
condition each bound variable to be unique, we can rename the variables before calling
GP (resp. M). It can be done in linear time, using a “chained-like” hash table whose
buckets are stacks (instead of linked lists of chained hash tables) for variable renaming,
and traversing the terms in preorder.

Theorem 3.27. The algorithm M has linear space and time complexity in the size of
the input.

Proof. For the input consisting of the sets of domain variables D, range variables R,
and matching equations M , the size is the cardinality of D plus the cardinality of R
plus the number of symbols in M .

The terms to be matched can be represented as trees in the standard way. The sets
D and R can be encoded as hash tables. These representations occupy space linear to
the size of the input. The space can grow at most twice by representing renaming and
permuting substitutions as hash tables. Hence, the space complexity is linear.

As for the time complexity, we can see that the algorithm visits each node of the trees
to be matched at most once. We perform the following linear time steps: Collecting
the set of bound variables Vr appearing in the right sides of matching equations in M ,
constructing the initial hash tables TD and TR for D and R (we can assume that the
hash functions are perfect), and constructing two hash tables for the mappings. The
one for computing the permuting matcher is denoted by Tπ. Its set of keys is D. We
can reuse the same hash function as for TD. Each address in Tπ is initialized with null.
Another table, Tρ, is designed for renaming of bound variables. Its set of keys is Vr.
We assume a perfect hash function also here.

The operations performed at each node are the following ones:

By Dec-M: Look up the values for h in TD and for g in TR, to make sure that h R D
and g R R. If the test fails, the rule is not applicable.

Next, if h R D and g R R, then look up the value for h in Tπ, look up the value
for g in Tρ, and compare them with each other. If the values of h or g are not
found in the tables, then just use the corresponding value (i.e., h or g) in the
comparison.

By Abs-M: Modifying an entry in Tρ: For a mapping ry ÞÑ xs, we put x in the table
at the address corresponding to the hash index of y: Tρrhashpyqs “ x. Since all
bound variables are distinct, we will not have to modify the same entry in Tρ
again.

By Per-M: Modifying an entry for x in Tπ: For a mapping rx ÞÑ ys, we put y in the
address corresponding to the hash index of x: Tπrhashpxqs “ y. As we destroy
the entries for x in TD and for y in TR, we will not modify the same entry again.

All our hash functions are perfect. Searching, insertion and deletion in hash tables
with perfect hash functions are done in constant time. We assume that two alphabet
symbols can be compared in constant time. Hence, all the operations performed by M
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at each node of the input trees are done in constant time. It implies that M has linear
time complexity.

Theorem 3.28 (Complexity of GP). The algorithm GP, when using M to compute
permuting matchers, has space complexity Opnq and time complexity Opn2q, where n is
the size (the number of symbols) of input.

Proof. By design of the rules and Theorem 3.26 we can first apply the rules Dec and
Abs exhaustively. Afterwards we apply Sol as long as possible, such that the ap-
plications of the Mer rule are postponed till the end. Doing so, we get a maximal
derivation like P0;H; Id ùñ˚

Dec,Abs Pk;H;σk ùñ˚
Sol H;Sl;σl ùñ˚

Mer H;Sm;σm where
P0 “ tX0 : t0 fi s0u.

As X0σm is the final result, we keep only the mapping X0 ÞÑ ri in σi and omit all
the others for all 0 ď i ď m. The rules Dec, Abs, and Sol introduce unique occurrences
of fresh variables at every application, therefore every free variable appears only once
in ri, for i ď l.

Phase ùñ˚
Dec,Abs: In the first phase we share the representation of arguments (the ab-

stracted bound variables) which are applied to one of the introduced fresh variables. For
instance, the two applications Y1p

#»x q and Y2p
#»x q point to the same argument vector #»x .

Furthermore we use linked lists to avoid copying the variable vectors when applying the
Abs rule (e.g. using y :: #»x , were arguments are stored in reverse order). This sharing is
used for the problem set as well as for the mapping in our substitution. The substitu-
tion composition σitX ÞÑ λ #»x .hpY1p

#»x q, . . . , Ymp
#»x qqu, which is needed in the Dec rule,

is equivalent to replacing the subterm Xp #»x q in ri with hpY1p
#»x q, . . . , Ymp

#»x qq. Similarly,
the substitution composition σtX ÞÑ λ #»x , y.X 1p #»x , yqu used by Abs is equivalent to re-
placing Xp #»x q by λy.X 1p #»x , yq. As X only appears once and we share representation of
arguments, these compositions of subtitutions can be done in linear time on the size
of σ. The renaming stz ÞÑ yu in the Abs rule can also be done in linear time on the
size of s. Along this phase, the size of σ, and the size of any AUE is bounded by n.
Moreover, the sum of the sizes of terms t and s of all the AUEs Xp #»x q : t fi s is also
bounded by n. Therefore, these rule applications can be done in linear time on the size
of the original problem.

Phase ùñ˚
Sol: In the second phase, the arguments of generalization variables are

narrowed. As only those argument variables which appear in one of the terms of an
AUE are kept, the reduced argument vector #»y is bound by the size of the respective
terms t and s. There is no need to share the representation of those narrowed argument
vectors anymore. The representation of #»y can be constructed without reusing the
representation of #»x in linear time on the size of the AUE Xp #»x q : t fi s, hence on n.
The substitution composition σtX ÞÑ λ #»x .Y p #»y qu used by Sol is equivalent to replacing
the subterm Xp #»x q by Y p #»y q. Again, like in the previous phase, this composition can
be done in linear time.

Since #»y is bound by the size of the respective terms t and s, after applying Sol
exhaustively, the entire state, namely the store, is of size Opnq.

The number of applications of the rules Dec, Abs, and Sol is bounded by the size of
the input. Since each of the rule applications require time Opnq, all this together leads
to Opn2q time complexity and Opnq space complexity for the first two phases.
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Phase ùñ˚
Mer: The space complexity of the store tX1p

# »x1q : s1 fi t1, . . . , Xkp
# »xkq :

sk fi tku is Opnq. Let ni be the size of Xip
#»xiq : si fi ti, for all 1 ď i ď k. From Theo-

rem 3.27 we know that solving the matching problem MpD, R, tsi „ sj , ti „ tjuq with
D “ t #»xiu and R “ t #»xju has space and time complexity Opni`njq, for any 1 ď i ă j ď k.
The third phase requires to solve this problem for each pair of AUEs. This leads to the
time complexity

řk
i“1

řk
j“i`1Opni`njq ď Op

řk
i“1

řk
j“1 ni`njq “ Op

řk
i“1 kni`nq “

Opkn` knq ď Opn2q for all the applications of MpD, R, tsi „ sj , ti „ tjuq together.
As there are only Opnq many AUEs in the store and one AUE is removed for each

success case of MpD, R, tsi „ sj , ti „ tjuq, there are at most Opnq substitution compo-
sitions at the third phase. We choose the following strategy for the merging phase: Fix
one AUE tXip

#»xiq : si fi tiu and merge it with all the other AUEs, such that the general-
ization variable Xi gets duplicated in the substitution for each success case. With this
strategy, it is guaranteed, that for each success case only one generalization variable
will be replaced by the substitution composition. Note, that the fixed AUE will never
be removed, but for each success case, the other AUE which is merged with the fixed
one will be removed. We can choose this strategy because matchability of AUEs forms
an equivalence relation. E.g., for the store tX1p

# »x1q : s1 fi t1, . . . , Xkp
# »xkq : sk fi tku, we

first fix X1p
# »x1q : s1 fi t1 and try to match it with tXjp

#»xjq : sj fi tju, for all 2 ď j ď k.
If a certain AUE, say tXip

#»xiq : si fi tiu, matches, then we remove it from the store
and compose σtXi ÞÑ λ #»xi.X1p

# »x1πqu. With this strategy Xi is unique in σ. Afterwards
X1p

# »x1q : s1 fi t1 is not touched anymore. Now we fix X2p
# »x2q : s2 fi t2 from the remain-

ing store and try to match it with tXjp
#»xjq : sj fi tju, for all 3 ď j ď k. Note that all

those AUEs have not been merged yet. And so on. The uniqueness of the generalization
variable Xj again leads to linear time for one substitution composition. This concludes
the proof of Opn2q time complexity for the merging phase. It is easy to see, that the
space is reduced by merging two AUEs. Putting everything together, gives the claimed
complexity result.

3.2.9 A Remark on Untyped Lambda Terms

One can observe that GP can be adapted with a relatively little effort to work on untyped
terms that are in β-normal form (cf. the formulation of the unification algorithm both
for untyped and simply-typed patterns in [65]). One thing to be added is lazy η-
expansion: The AUE of the form Xp #»x q : λy.t fi hps1, . . . , smq should be transformed
into Xp #»x q : λy.t fi λz.hps1, . . . , sm, zq for a fresh z. (Dually for abstractions in the
right hand side.) The expansion should be performed both in GP and M. In addition,
Sol needs an extra condition for the case when Topptq “ Toppsq but the terms have
different number of arguments such as, e.g., in fpa, xq and fpb, x, yq.
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Chapter 4

A Library of Anti-Unification Algorithms

The open-source library described in this chapter offers anti-unification algorithms
for unranked terms, nominal terms, and simply-typed lambda terms. Generalization
problems in these theories arise in many areas of the computer sciences and compu-
tational mathematics, for instance, in proof generalization or analogical reasoning in
higher-order or nominal logic, in learning or refactoring λ-Prolog and α-Prolog pro-
grams, in detection of similarities in XML documents or in pieces of software code,
etc. (see section 1.1). Therefore, the algorithms provided by the library can be a valu-
able ingredient for tools that need to solve such generalization problems. We provide
implementations of the following algorithms:

§ first-order unranked anti-unification GR from section 2.1 with term variables [54],

§ higher-order unranked anti-unification G2V
a from section 2.2,

– its extension to G4V
a from section 2.3 is straightforward and will be demon-

strated in section 4.4,

§ anti-unification for nominal terms GN from section 3.1,

– its subalgorithm for deciding equivariance E from subsection 3.1.5,

§ anti-unification for simply-typed lambda terms GP from section 3.2,

– its subalgorithm for searching a permuting matcher M from subsection 3.2.4.

The library is written in Java and freely available under the conditions of the GNU
Lesser General Public License (LGPL). All these algorithms can be accessed from the
Web page of the SToUT project: http://www.risc.jku.at/projects/stout/. Each
of them has a separate Web page with a convenient Web interface to try the algorithm
online. There is also a brief explanation of the syntax and some examples. Besides
using the Web interface, the user may try also a shell version of each algorithm, or
download the sources, or embed the algorithm in her/his own project.

The algorithms GN and GP compute a unique result, as well as their subalgorithms
which are needed to compute least general generalizations. In contrast to that, the
algorithms GR, G2V

a , and G4V
a compute complete sets of generalizations. In the current

implementation, the minimization step is not performed automatically. Nevertheless,
the user can easily perform this step by a recursive call of the respective anti-unificaiton
algorithm itself.

In this chapter, for each algorithm mentioned above we explain the Web interface,
discuss the implemented strategy for rule applications, and illustrate how the algorithm
can be embedded in users projects.

http://www.risc.jku.at/projects/stout/
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4.1 Structure of the Library

We describe the structure of the library in a bit more detail. It consists of four
Java libraries for four anti-unification algorithms (urau.jar, urauc.jar, nau.jar, and
hoau.jar), which have the same structure. There is one main package which starts
with the name at.jku.risc.stout, followed by a short abbreviation for the imple-
mented algorithm: urau, urauc, nau, or hoau. The abbreviation stands for, respec-
tively, unranked anti-unification (GR), unranked anti-unification with context vari-
ables (G2V

a ), nominal anti-unification (GN), and higher-order anti-unification (GP).

at.jku.risc.stout . . .

algo

AntiUnify
AntiUnifyProblem
AntiUnifySystem
DebugLevel

data

EquationSystem
InputParser
NodeFactory

atom

FunctionSymbol
Variable

util

DataStructureFactory

Figure 4.1: Package structure
of the Java library

Under the main package there are three subpackages,
namely algo, data and util. The data package has
one subpackage of its own, which is called data.atom.
Figure 4.1 illustrates the package structure. Notice
that it does not contain all the Java classes but a se-
lection of those we consider important for using the
library. The main package is irrelevant for using the
library, as it only contains some test cases and the user
interfaces. For instance, the GWT: entry points which
are used in the Web frontend. Nevertheless, the source
code might be interesting as those Java classes serve
as reference implementations of the library.

As the name suggests, the package algo contains
the algorithmic part of the library. There is a Java
class named AntiUnify which serves as entry point
of the respective anti-unification algorithm. The data

package contains some Java classes which are needed to
build the term structure. Furthermore, it includes the
equation system which consists of some term pairs, and
it offers a default implementation of an input parser,
named InputParser. The Java class EquationSystem
is implemented in a generic way, so that it can be used
for different types of equation systems. In the util

package there are some utility classes like DataStructureFactory which is used by
the library to instantiate structures (e.g., lists, queues, maps, sets). The user of the
library is free to choose an arbitrary implementation for all of those data structures,
which might have some advantages on the performance of the provided algorithms. The
package data.atom contains the atomic building blocks for constructing the terms.

4.2 First-Order Unranked Anti-Unification

The unranked first-order anti-unification algorithm with hedge variables and term vari-
ables has been introduced in [54], section 5. It is an extended version of the algorithm
GR which we discussed in section 2.1. We call it G2V

R , following the standard nota-

:GWT stands for Google Web Toolkit. It is used to translate the Java source code into JavaScript
in order to present the algorithms on the Web.
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tion used throughout this work. The 2V stands for the two different kinds of variables
and R stands for the rigidity function. Before discussing the implementation, we give
the necessary definitions. Definition 4.1 is an extension of the terms and hedges from
section 2.1. It introduces term variables in addition to the hedge variables which have
been considered in Definition 2.1.

Definition 4.1 (Terms and hedges). Given pairwise disjoint countable sets of unranked
function symbols F (symbols without fixed arity), hedge variables VH, and term vari-
ables VT, we define terms and hedges by the following grammar:

t ::“ x | fps̃q (term)
s ::“ t | x̃ (hedge element)
s̃ ::“ s1, . . . , sn (hedge)

where x P VT, f P F , x̃ P VH, and n ě 0.

A Substitution is defined by a mapping from term variables to terms and from hedge
variables to hedges which is identity almost everywhere (see subsection 2.3.1). For
instance, tx ÞÑ fpaq, x̃ ÞÑ pgpy, bq, cq, ỹ ÞÑ εu defines such a substitution. Applying it
to fpx, x̃, ỹq gives fpfpaq, gpy, bq, cq. Positions, alignments, rigidity functions, etc. are
defined as in subsection 2.1.2.

RT-generalizations are defined similarly to R-generalizations with the exception that
consecutive term variables are allowed. In section 2.1 we did not consider term variables.
Hence, Definition 4.2 relaxes the first item of Definition 2.12.

Definition 4.2 (RT-generalization). Given two variable-disjoint hedges s̃ and q̃ and
the rigidity function R, we say that a hedge g̃ that generalizes both s̃ and q̃ is their
RT-generalization, if either RpTopps̃q,Toppq̃qq “ H and g̃ is a hedge variable, or there
exists an alignment a1xi1, j1y ¨ ¨ ¨ anxin, jny P RpTopps̃q,Toppq̃qq such that the following
conditions are fulfilled:

1. If the sequence g̃ contains a pair of horizontal consecutive variables, then both of
them are term variables.

2. If we remove all hedge variables that occur as elements of g̃, we get a sequence of
the form a1pg̃1q, . . . , anpg̃nq.

3. For every 1 ď k ď n, there exists a pair of sequences s̃k and q̃k such that s̃|ik “
akps̃kq, q̃|jk “ akpq̃kq and g̃k is an RT-generalization of s̃k and q̃k.

The implemented anti-unification algorithm solves the following problem:

Given: Two variable-disjoint hedges s̃ and q̃ and the rigidity function R.

Find: A complete set of RT-generalizations for s̃, q̃ and R.

For instance, tpgpa, aq, x̃, fpgpaq, gpỹqqq, px̃, gpx, xq, fpgpaq, gpz̃qqqu is the minimal
complete set of RT-generalization of the hedges pgpa, aq, gpb, bq, fpgpaq, gpaqqq and
pgpa, aq, fpgpaq, gqq, where R computes longest common subsequences.

Web page. The implementation of unranked rigid anti-unification is available from
http://www.risc.jku.at/projects/stout/software/urau.php.

http://www.risc.jku.at/projects/stout/software/urau.php
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4.2.1 Explanation of the Web Interface for the Algorithm G2V
R

The input form of the Web page of the first-order rigid unranked anti-unification algo-
rithm consists of five rows:

Figure 4.2: The input form of the Web presentation of the algorithm G2V
R .

In the first row, the anti-unification problem should be given. It consists of some anti-
unification equations, separated by semicolons. Each anti-unification equation consists
of two hedges, with =^= in between. The second row contains a drop-down menu to
chose a rigidity function. Currently, the only two possibilities are longest common
subsequence and longest common substring.

Furthermore, in the third row, one can specify the minimal alignment length l. We
define RlpTopps̃q,Toppq̃qq :“ ta : |a| ě l, a P RpTopps̃q,Toppq̃qqu as the rigidity function
which corresponds to a given rigidity function R satisfying the length restriction. The
implementation uses Rl and for any R holds R0 “ R. By unchecking the check-box
from the fourth row, the user can specify to only compute the RT-generalization for
the first alignment which is returned by the rigidity function Rl (nondeterministically).

In the last row, the output format can be specified. One can choose form a drop-
down box between simple, verbose and progress. The first choice only shows some
basic facts and the computed RT-generalizations. The verbose output format shows
some additional information, like the differences at the input hedges. By choosing the
progress output format, all the debug information will be shown to the user.

4.2.2 Implemented Transformation Strategy for G2V
R

Here, we show the strategy that is used by the implementation in order to exhaustively
transform a given set of AUEs P with respect to a given rigidity function R into a set
of final states. The implementation invokes a given callback function H as soon as a
final state is reached. We use Ÿ for disjoint union.

1 // INPUT:
2 P Ð Given s e t o f AUEs
3 R Ð Given r i g i d i t y func t i on
4 H Ð Given c a l l b a c k func t i on
5 // COMPUTE:
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6 VP Ð Set o f g e n e r a l i z a t i o n v a r i a b l e s from P
7 Q Ð Set o f s t a t e s i n i t i a l i z e d by {pP,H, Idq}
8 While Q ‰ H

9 State Ð pP, S, σq Ÿ Q
10 While State .P ‰ H

11 Fix AUE p Ð x̃ : s̃ fi q̃ from State .P
12 A Ð RpTopps̃q,Toppq̃qq
13 I f A “ H
14 Transform State ùñ

p
R-Sol-H State

15 Else

16 Transform State ùñ
p, a ŸA
R-Dec-H State

17 While A ‰ H

18 Transform State ùñ
p, a1 ŸA
R-Dec-H State 1 Y Q

19 For each x̃ : s̃ fi q̃ in State .S
20 I f s̃ “ q̃ “ ε

21 Transform State ùñ
x̃ : s̃fiq̃
R-Clr-S State

22 For each x̃ : s̃ fi q̃ in State .S
23 I f |s̃| “ |q̃| and a l l e lements o f s̃ and q̃ are terms

24 Transform State ùñ
x̃ : s̃fiq̃
Nar-FO State

25 For each p Ð ξ : s̃ fi q̃ in State .S
26 For each p1 Ð ξ1 : s̃1 fi q̃1 in State .S
27 I f p ‰ p1 & s̃ “ s̃1 & q̃ “ q̃1

28 Transform State ùñ
p, p1

R-Mer-S State
29 // CALLBACK:
30 For each x̃ in VP
31 H( State , x̃)

Listing 4.1: The implemented strategy for G2V
R .

The lines 1–4 in Listing 4.1 define the input assumptions. In line 6, generaliza-
tion variables are collected from the set of input AUEs in order to apply the callback
function (line 30 and 31) to the final State and each of that variables. A generaliza-
tion that corresponds to an input AUE can be obtained by applying State.σ to the
generalization variable.

Since the rigidity function computes a set of alignments (see line 12), the algorithm is
nondeterministic. The set Q which is declared in line 7 is used to collect the states of the
branching algorithm. The statement at line 9 selects and removes a state from Q. Then
this state is transformed exhaustively. First the rules R-Sol-H and R-Dec-H are applied
as long as possible. The lines 17 and 18 add new branches if R computes more than
one alignment. When the problem set State.P is empty, then R-Sol-H and R-Dec-H
are not applicable anymore. Therefore, we clear the empty AUEs from the store (line
19–21). Afterwards, hedge variables in the generalization which stand for sequences of
terms of the same length in the input hedges can be transformed into a sequence of
term variables. The transformation rule Nar-FO is the same as for the algorithm G4V

a .
The lines 22–24 show its exhaustive application. Afterwards, a generalized version of
the merge rule, similarly to the one of G4V

a , is applied exhaustively.
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For each final state and each generalization variable, the callback function H, which
is provided by the user, is invoked. The user is free to process this result further as
he/she needs. For instance, the minimization step can be performed by invoking G2V

R
again within that callback function.

4.2.3 Using the Algorithm G2V
R in Java

We assume that there are two data sources in1 and in2 available in form of Reader
instances, each of them containing one of the hedges to be generalized. Moreover, the
variable eqSys is of appropriate type and there is a Boolean variable iterateAll which
corresponds to the option “Iterate all possibilities” of the Web interface. We explain
the usage of the library on a code fragment:

1 Rig id i tyFnc rFnc=new RigidityFncSubsequence ( ) . setMinLen (3 ) ;
2 eqSys = new EquationSystem<AntiUnifyProblem >() {
3 public AntiUnifyProblem newEquation ( ) {
4 return new AntiUnifyProblem ( ) ;
5 }
6 } ;
7 new InputParser<>(eqSys ) . parseHedgeEquation ( in1 , in2 ) ;
8 new AntiUnify ( rFnc , eqSys , DebugLevel . SILENT) {
9 public void c a l l b a c k ( AntiUnifySystem res , Var iab le var ) {

10 System . out . p r i n t l n ( r e s . getSigma ( ) . get ( var ) ) ;
11 }
12 } . ant iUn i fy ( i t e r a t e A l l , null ) ;

Listing 4.2: Usage example of the algorithm G2V
R in Java

In the first line a certain rigidity function is instantiated and the minimum alignment
size is set to the value 3. There are two rigidity functions available from the library.
The one which is used in the code fragment computes longest common subsequence
alignments. The other one is called RigidityFncSubstring and computes longest
common substring alignments. It is easy to implement a different rigidity function.
One simply has to extend the base class RigidityFnc which is provided by the library.

The lines 2 to 6 show the instantiation of an equation system which is of type
AntiUnifyProblem. It is used in line 7 to instantiate a parser instance. The men-
tioned input sources are used to create one equation of two hedges, which is added to
the equation system. One could add more equations to the system by just calling the
method parseHedgeEquation(in3, in4) again, where in3 and in4 are input sources
for the two additional hedges.

After specifying the rigidity function and parsing the equation system, the main
algorithm AntiUnify is instantiated using this data (line 8). There is one additional
argument, which specifies the debug level. For production usage we want to silently
compute all the generalizations and process them by a callback function, which is
defined in the lines 9 to 11. For debugging, one must also specify a print stream instead
of null when invoking the algorithm at line 12. The callback function is invoked for each
final state and each generalization variable from the input AUEs. The two arguments of
the callback function, which are provided to the implementor, correspond to a certain
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final state and variable. The first one is of type AntiUnifySystem and contains all the
data which has been collected during the run: The substitution getSigma, the store
getStore and some additional information. The second argument is the generalization
variable. The computed generalization is the value which is associated with this variable
in the substitution. Line 10 prints this generalization.

During the anti-unification process, fresh variables are introduced. They are named
by a sequence number which is put between a prefix and a suffix. The counter
for generating the number sequence is static and can be reset by calling the func-
tion NodeFactory.resetCounter. The prefix and the suffix for fresh term variables
and also for fresh hedge variables can be specified by the user. Therefore the class
NodeFactory offers four static variables, named PREFIX_FreshTermVar, SUFFIX_Fresh
TermVar, PREFIX_FreshHedgeVar and SUFFIX_FreshHedgeVar.

4.3 Higher-Order Unranked Anti-Unification 2V

In this section we discuss an implementation of the algorithm G2V
a from section 2.2.

Recall the definition of the unranked terms, hedges, and contexts that have been con-
sidered there.

Definition 2.18 (Terms, hedges, contexts). Given pairwise disjoint countable sets of
unranked function symbols F (symbols without fixed arity), hedge variables VH, context
variables VC, and a special symbol ˝ (the hole), we define terms, hedges, and contexts
by the following grammar:

t ::“ fps̃q (term)

s ::“ t | x̃ | X̃ps̃q (hedge element)
s̃ ::“ s1, . . . , sn (hedge)

c̃ ::“ s̃1, ˝, s̃2 | s̃1, fpc̃q, s̃2 | s̃1, X̃pc̃q, s̃2 (context)

where f P F , x̃ P VH, X̃ P VC, and n ě 0.

In order to get a one-to-one correspondence between an admissible alignment and
a generalization (modulo ») we introduced the notion of a rigid hedge and restricted
the computed generalizations to be rigid hedges. We recall the two definitions of rigid
hedges and rigid generalizations from section 2.2.

Definition 2.27 (Rigid hedge). A hedge s̃ is rigid if the following conditions hold:

1. No context variable in s̃ applies to the empty hedge.

2. s̃ doesn’t contain consecutive hedge variables.

3. s̃ doesn’t contain vertical chains of (context): variables.

4. s̃ doesn’t contain context variables with a hedge variable as the first or the last
argument (i.e., no subterms of the form X̃px̃, . . . q and X̃p. . . , x̃qq.

:Vertical chains that consist of a context variable and a hedge variable are barred by item 4.
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Definition 2.28 (Rigid generalization). Given two variable-disjoint hedges s̃, q̃ and
their admissible alignment a, a rigid hedge g̃ is called a rigid generalization of s̃ and q̃
with respect to a, if g̃ is a supporting generalization of s̃ and q̃ with respect to a so that:

5. There are substitutions σ, ϑ with g̃σ “ s̃ and g̃ϑ “ q̃ such that all the contexts in
σ and ϑ are singleton contexts.

The implemented anti-unification algorithm solves the following problem:

Given: Two variable-disjoint hedges s̃ and q̃ and their admissible alignment a.

Find: A least general rigid generalization of s̃ and q̃ with respect to a.

For instance, X̃pa, bq is a rigid generalization of fpgpa, b, cqq and pa, bq with respect to
ax1¨1¨1, 1ybx1¨1¨2, 2y, while X̃pa, b, x̃q and X̃pỸ pa, bqq are not.

Web page. The unranked higher-order anti-unification algorithm is available from
http://www.risc.jku.at/projects/stout/software/urauc.php.

4.3.1 Explanation of the Web Interface for the Algorithm G2V
a

The input form of the Web page of unranked higher-order anti-unification consists of
five rows, where the first, the fourth and the last row are equal to those of the unranked
first-order anti-unification Web interface.

Figure 4.3: The input form of the Web presentation of the algorithm G2V
a .

In the second row, the alignment computation can be chosen. The only two possi-
bilities are longest admissible alignments and the input of an alignment by hand. If
the user selects the computation of longest admissible alignments, then the program
automatically generates the set of all admissible alignments with maximum length, and
the corresponding supporting generalizations are computed. Otherwise, the user has
to specify an alignment in the input box next to the drop-down menu.

In the third row one can specify, whether or not to justify the computed general-
ization. For justification of a generalization g̃, the recorded differences of the input
hedges s̃, q̃ are used to obtain two substitutions σ, ϑ. Then the program tests whether
g̃σ “ s̃ and g̃ϑ “ q̃ holds. The justification fails if this is not the case.

http://www.risc.jku.at/projects/stout/software/urauc.php
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4.3.2 Implemented Transformation Strategy for G2V
a

Before we demonstrate the usage of the library on some Java code fragments, we give
an overview of the strategy which is used in the implementation.

1 // INPUT:
2 E Ð Given s e t o f hedge equat ions ts̃1 fi q̃1, . . . , s̃n fi q̃nu
3 A Ð Given al ignment computation func t i on
4 H Ð Given c a l l b a c k func t i on
5 // COMPUTE:
6 For each equat ion s̃ fi q̃ in E
7 For each admi s s ib l e al ignment a in Aps̃, q̃q
8 State Ð pP, S, σq Ð ptx̃ : s̃ fi q̃; X̃ : ˝ fi ˝; au, H, tx̃ ÞÑ X̃px̃quq
9 While State .P ‰ H

10 Fix AUE pi Ð x̃i : s̃i fi q̃i; X̃i : c̃i fi d̃i; ai from State .P
11 I f ai “ e
12 Transform State ùñ

pi
Sol-H State

13 Else I f ai “ a1xj1, j2y . . . amxj1¨Im, j2¨Jmy with j1, j2 P N
14 Transform State ùñ

pi
App-A State

15 Else I f ai “ a1xj¨I1, J1y . . . amxj¨Im, Jmy with I1 ‰ ε
16 Transform State ùñ

pi
Abs-L State

17 Else I f ai “ a1xI1, j¨J1y . . . amxIm, j¨Jmy with J1 ‰ ε
18 Transform State ùñ

pi
Abs-R State

19 Else
20 Transform State ùñ

pi
Spl-H State

21 For each pi Ð tx̃i : s̃i fi q̃i; X̃i : c̃i fi d̃iu in State .S

22 I f | c̃i | ą 1 or | d̃i | ą 1
23 Transform State ùñ

pi
Res-C State

24 For each pi Ð tx̃i : s̃i fi q̃i; X̃ : c̃i fi d̃iu in State .S

25 I f s̃i “ q̃i “ εi & c̃i “ d̃i “ ˝
26 Transform State ùñ

pi
Clr-S State

27 For each pi Ð tx̃i : s̃i fi q̃i; X̃i : c̃i fi d̃iu in State .S

28 For each pj Ð tx̃j : s̃j fi q̃j ; X̃j : c̃j fi d̃ju in State .S

29 I f pi ‰ pj & s̃i “ s̃j & q̃i “ q̃j & c̃i “ c̃j & d̃i “ d̃j
30 Transform State ùñ

pi,pj
Mer-S State

31 // CALLBACK:
32 H( State , x̃)

Listing 4.3: The implemented strategy for G2V
a .

The lines 1–4 in Listing 4.3 define the input assumptions. The alignment computation
is a parameter of the algorithm and has to be provided by the user. Two prototype
implementations are available from the library. For each AUE in the input set E, the
alignment computation function will be invoked (line 6). Its return type is an Iterator,
from which admissible alignments are pulled one by one (line 7). Line 8 shows how the
initial system is constructed from one hedge equation and one alignment. The library
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uses a customizable factory pattern, the so called class NodeFactory, to generate fresh
variables, e.g. x̃, X̃.

Afterwards the rules Sol-H, App-A, Abs-L, Abs-R, and Spl-H are applied exhaustively,
as shown at the lines 9–20. For each iteration, an arbitrary AUE from P is fixed and
a rule which is applicable for this AUE is determined.

For the following transformation of the store (lines 21–30), the rules Res-C, Clr-S, and
Mer-S, are applied exhaustively, one after another. (Note that Res-C might introduce
empty AUEs. Therefore Clr-S applications have to follow.)

Line 31 shows how the callback function, which is provided by the user, is invoked,
following an exhaustive system transformation. The user is free to process this re-
sult further as he/she needs. Obviously, State.σ applied to x gives the computed
generalization, but also the store is available via State.S.

4.3.3 Using the Algorithm G2V
a in Java

To embed G2V
a into another Java program, the first thing to do is to create an

EquationSystem of type AntiUnifyProblem. Listing 4.4 shows how to create a new
equation system.

1 eqSys = new EquationSystem<AntiUnifyProblem >() {
2 public AntiUnifyProblem newEquation ( ) {
3 return new AntiUnifyProblem ( ) ;
4 }
5 } ;

Listing 4.4: Creation of an equation system of type AntiUnifyProblem.

After instantiating the equation system, some equations should be added to the
empty system. A convenient way to do this is by using the class InputParser, as
shown in Listing 4.5. It takes two arbitrary Reader instances, e.g. in1 and in2, each
representing one input hedge, creates a new Equation, and adds the equation to a given
set of equations, e.g. eqSys. Depending on the context of the library integration, those
hedges may also be composed manually.

1 new InputParser<>(eqSys ) . parseHedgeEquation ( in1 , in2 ) ;

Listing 4.5: Parsing two given hedges in1 and in2, and putting them into eqSys.

For invoking the main algorithm G2V
a , we assume that the variable aFnc is an

alignment computation function. All alignment computation functions are of the ab-
stract type AlignFnc. The library offers two such functions: The first one, called
AlignFncLAA, computes longest admissible alignments (see section 2.2.8). The other
one is AlignFncInput and can be used to specify a certain admissible alignment for
one given anti-unification equation. AlignFncInput only works for a singleton equation
system. Listing 4.6 shows how the anti-unification algorithm can be invoked using the
built equation system.

1 new AntiUnify ( aFnc , eqSys , DebugLevel . SILENT) {
2 public void c a l l b a c k ( AntiUnifySystem sy , Var iab le x ) {
3 System . out . p r i n t l n ( sy . getSigma ( ) . get ( x ) ) ;
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4 }
5 } . ant iUn i fy ( true , false , null ) ;

Listing 4.6: Sample code for calling the algorithm G2V
a .

The third argument of AntiUnify (line 1) defines the verbosity of the computa-
tion. For production use, normally one wants to silently compute the generalization.
Whoever, if the debug level differs from SILENT, then also a PrintStream has to be pro-
vided in line 5 as third argument instead of null. By the first argument of the method
antiUnify, the alignment iteration can be turned off, such that only one generalization
is computed for each equation. The second argument in line 5 specifies, whether or not
to justify the computed generalization. The justification works in the following way:

Let g̃ be a generalization of an input equation s̃ fi q̃ obtained by our anti-unification
algorithm, and let S be the corresponding store. (In the demonstration code the store
can be obtained by sy.getStore().) The recorded differences in S are used to obtain
two substitutions σLpSq and σRpSq. The justification fails if either g̃σLpSq ‰ s̃ or
g̃σRpSq ‰ q̃.

Last but not least, the lines 2–4 show a very simple implementation of a callback
function, which prints the generalization xσ to the standard output stream, for each
generalization variable x which corresponds to one of the input equations.

4.4 Higher-Order Unranked Anti-Unification 4V
Here, we aim at extending the algorithm G2V

a with the two additional transformation
rules Nar-FO and Nar-HO that introduce term variables and function variables. Before
we discuss the implementation of the new rules, we recall the definition of the considered
term language as well as the relaxed notion of a rigid hedge from section 2.3:

Definition 2.35 (Terms, hedges, contexts). Given pairwise disjoint countable sets of
unranked function symbols F (symbols without fixed arity), term variables VT, function
variables VF, hedge variables VH, context variables VC, and a special symbol ˝ (the hole),
we define terms, hedges, and contexts by the following grammar:

t ::“ x | fps̃q | F ps̃q (term)

s ::“ t | x̃ | X̃ps̃q (hedge element)
s̃ ::“ s1, . . . , sn (hedge)
c̊ ::“ fps̃1, ˝, s̃2q | F ps̃1, ˝, s̃2q (bounded context)

c̃ ::“ s̃1, ˝, s̃2 | s̃1, fpc̃q, s̃2 | s̃1, F pc̃q, s̃2 | s̃1, X̃pc̃q, s̃2 (context)

where f P F , x P VT, F P VF, x̃ P VH, X̃ P VC, and n ě 0.

Definition 2.38 (Rigid hedge). A hedge s̃ is rigid if the following conditions hold:

1. No higher-order variable in s̃ applies to the empty hedge.

2. If s̃ contains consecutive first-order variables, then both of them are term variables.

3. If s̃ contains a vertical chain of variables, then both of them are function variables.

4. s̃ doesn’t contain higher-order variables with a first-order variable as the first or
the last argument.
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The problem we intend to solve remains the same as in the previous section except
for the new kinds of variables considered in the generalization.

4.4.1 Implementation of the Anti-Unification Algorithm G4V
a

First of all, we need to introduce term variables and hedge variables. For the sake of
simplicity, we extend the class HedgeVariable which is provided by the library in order
to obtain a class TermVariable that has the same behavior. Similarly, we extend the
class ContextVariable in order to obtain a class FunctionVariable with the same be-
havior. Hence, TermVariable is a subclass of HedgeVariable and FunctionVariable

is a subclass of ContextVariable. It follows that the implementation of the rule Mer-S
works for all kinds of variables, as well as other classes (e.g., Substitution) which ex-
pect the variables to be of the types HedgeVariable and ContextVariable. One can
restrict the usage of TermVariable and FunctionVariable by throwing an exception
for misuse. This can be done by extending the class Substitution and checking for
ill-typed mappings. Notice that this implementations of term variables and function
variables are already available from the library.

Now we have to extend the anti-unification algorithm, that is, we need to extend the
class AntiUnifySystem. It already offers two methods narFO and narHO for two rules
Nar-FO and Nar-HO. They are dummy methods and need to be implemented. Recall
the definitions of Nar-FO and Nar-HO:

Nar-FO: Narrowing First-Order Variables

P ; tx̃ : pt1, . . . , tnq fi ps1, . . . , snq; X̃ : ˝ fi ˝u ŸS; σ ùñ

P ; tyi : ti fi si; Ỹi : ˝ fi ˝ | 1 ď i ď nu Y S; σtx̃ ÞÑ py1, . . . , ynqu,

where n ě 1 and yi’s, Ỹi’s are fresh. ti’s and si’s are terms.

Nar-HO: Narrowing Higher-Order Variables

P ; tx̃: ε fi ε; X̃ : H1ps̃1, ...Hnps̃n, ˝, s̃1nq..., s̃
1
1q fi G1pq̃1, ...Gnpq̃n, ˝, q̃1nq..., q̃

1
1qu ŸS;σ ùñ

P ; tỹi: ε fi ε; Fi : Hips̃i, ˝, s̃1iq fi Gipq̃i, ˝, q̃1iq | 1 ď i ď nuYS;σtX̃ ÞÑ F1p...Fnp˝q...qu,

where n ě 1 and ỹi’s, Fi’s are fresh. Hi’s and Gi’s are from F Y VF.

The class AntiUnifySystem already contains a Boolean field called narrowVariables

to enable the two additional rules. If this variable is set to true, then, at the very end
of the transformation sequence (line 31 in Listing 4.3), the two methods narFO and
narHO are called. Both of them should return a Boolean value. If one methods returns
true, then the rule Mer-S will be applied again exhaustively. Listing 4.7 shows the
class AntiUnifySystem4V that extends the algorithm G2V

a .

1 public class AntiUnifySystem4V extends AntiUnifySystem {
2 private S u b s t i tu t i o n sigma ;
3 public AntiUnifySystem4V ( EquationSystem<AntiUnifyProblem>
4 problemSet , S ub s t i tu t i o n sigma ) {
5 super ( problemSet , sigma ) ;
6 this . sigma = sigma ;
7 narrowVar iables = true ;
8 }
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9 protected boolean narFO( List<VariableWithHedges> storeS ,
10 DebugLevel debugLevel , PrintStream debugOut ) {
11 boolean storeUpdated = fa l se ;
12 // TODO: implement Nar-FO
13 return storeUpdated ;
14 }
15 protected boolean narHO( List<VariableWithHedges> storeQ ,
16 DebugLevel debugLevel , PrintStream debugOut ) {
17 boolean storeUpdated = fa l se ;
18 // TODO: implement Nar-HO
19 return storeUpdated ;
20 }
21 }

Listing 4.7: Extending the algorithm G2V
a in order to obtain G4V

a .

Before we turn to discussing the implementation for narFO and narHO we update
the class AntiUnify which is the entry point of the anti-unification algorithm G2V

a .
It should use the class AntiUnifySystem4V instead of AntiUnifySystem. This can
be archived easily, since the instantiation of AntiUnifySystem may be overridden by
extending the class AntiUnify and overriding the method createSystem. Listing 4.8
illustrates the implementation of the new entry point for the algorithm G4V

a .

1 public class AntiUnify4V extends AntiUnify {
2 public AntiUnify4V ( AlignFnc aFnc , EquationSystem
3 <AntiUnifyProblem> sys , DebugLevel debugLevel ) {
4 super ( aFnc , sys , debugLevel ) ;
5 }
6 protected AntiUnifySystem createSystem (
7 EquationSystem<AntiUnifyProblem> eqSys ) {
8 return new AntiUnifySystem4V ( eqSys ,new S u b s t i tu t i o n ( ) ) ;
9 }

10 }
Listing 4.8: Entry point for the algorithm G4V

a .

Recall that we mentioned the possibility of extending the class Substitution in order
to check for ill-typed mappings. In line 8, the identity substitution σ is instantiated.
This is the substitution which holds the generalization. An extended version can be
passed to AntiUnifySystem4V easily.

Now we turn to implementing Nar-FO and Nar-HO. We do not discuss the two
arguments debugLevel and debugOut because their sole purpose is to provide logging
mechanisms. The argument storeS is a list of tuples of a hedge variable and two
hedges. Similarly, storeQ is a list of tuples of a context variable and two contexts. For
convenience reasons, the algorithm’s store is split into two parts in the implementation.

In narFO we have to iterate over the storeS, check whether the length of both hedges
is the same, and ensure that all the elements in both hedges are terms, i.e., there are
neither hedge variables nor context variables. If this is the case, then we remove the
current element from the list and create new AUEs with term variables. We add those
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newly created AUEs to storeS and instantiate the hedge variable in sigma with the
sequence of term variables. (Notice that sigma is a field of AntiUnifySystem4V.)

It remains to implement narHO. Again, one has to iterate over the store storeQ and
check for applicability of the rule. The position of the hole of a context Pos˝pc̃q can
be obtained by calling the method c̃.getHoleIdxRec() on a certain context object c̃.
This method returns an object of type IntList which is an integer sequence. With
this information, it is trivial to check if the two holes appear at the same level at the
contexts. For computational reasons, the sequence in IntList is in reverse order to the
position of the hole.

1 protected boolean narHO( List<VariableWithHedges> storeQ ,
2 DebugLevel debugLevel , PrintStream debugOut ) {
3 boolean updated = fa l se ;
4 for ( int i = storeQ . s i z e ( ) ´ 1 ; i >= 0 ; i´´) {
5 VariableWithHedges eq = storeQ . get ( i ) ;
6 Hedge l e f t = eq . g e tLe f t ( ) ;
7 Hedge r i g h t = eq . getRight ( ) ;
8 I n t L i s t idxL = l e f t . getHoleIdxRec ( ) ;
9 I n t L i s t idxR = r i g h t . getHoleIdxRec ( ) ;

10 i f ( idxL . s i z e == idxR . s i z e ) {
11 boolean conditionOK = true ;
12 for ( int j = idxL . s i z e ; conditionOK && ´́ j > 0 ; ) {
13 TermNode le ftTerm = l e f t . get ( ( int ) idxL . va lue s [ j ] ) ;
14 TermNode rightTerm= r i g h t . get ( ( int ) idxR . va lue s [ j ] ) ;
15 conditionOK =
16 ! ( le f tTerm . getAtom ( ) instanceof ContextVar )
17 && ! ( rightTerm . getAtom ( ) instanceof ContextVar ) ;
18 l e f t = leftTerm . getHedge ( ) ;
19 r i g h t = rightTerm . getHedge ( ) ;
20 }
21 i f ( conditionOK ) {
22 // TODO: Decompose c o n t e x t
23 updated = true ;
24 }
25 }
26 }
27 return updated ;
28 }

Listing 4.9: Following the integer sequence to the hole.

Listing 4.9 shows the source code of checking the conditions for applicability of
Nar-HO. In line 4 we iterate over the store so that removing and adding elements
at the end of the list storeQ does not effect the iteration process. In the lines 8 and
9 we obtain the indexes of the holes in reverse order. If both are of the same length
(line 10), then we check the following condition of the rule Nar-HO: Hi’s and Gi’s are
from F Y VF. This is done by the for loop in the lines 12–20. Decomposition (line 22)
can be done in a similar manner, by using such a for loop. Afterwards the AUE that
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has been decomposed can be removed from storeQ, new AUEs with function variables
should be added, and the context variable has to be instantiated in the substitution
sigma by a chain of function variables.

Merging of function variables and term variables is done automatically after returning
true from narFO or narHO.

4.5 Anti-Unification for Nominal Terms

Before we turn to discussing the implementation, we recall the major definitions of
permutations, nominal terms, freshness contexts, and A-based terms-in-context. Under
the assumption that the set of atoms permitted in generalizations is finite, there is a
unique lgg modulo variable renaming and α-equivalence.

Definition 3.2 (Nominal term). Given disjoint sets of countably infinite term vari-
ables V:, countably infinite atoms A;, and a signature Σ.

A swapping pa bq is a pair of atoms a, b P A of the same sort. A permutation is a
(possibly empty) sequence of swappings. Nominal terms are given by the grammar:

t ::“ fpt1, . . . , tnq | a | a.t | π¨x

where f is an n-ary function symbol, a is an atom, π is a permutation, and x is a
variable. They are called respectively application, atom, abstraction, and suspension.

A freshness context ∇ is a finite set of pairs of the form a#x stating that the in-
stantiation of x cannot contain free occurrences of a. A term-in-context is a pair x∇, ty
of a freshness context ∇ and a term t. A term-in-context x∇, ty is based on a set of
atoms A, if all the atoms which occur in t and ∇ are elements of A.

The implemented anti-unification algorithm solves the following problem:

Given: Two nominal terms t1 and t2 of the same sort, a freshness context ∇, and a
finite set of atoms A such that x∇, t1y and x∇, t2y are based on A.

Find: A term-in-context xΓ, ty which is also based on A, such that xΓ, ty is a least
general generalization of x∇, t1y and x∇, t2y.

For instance, for t1 “ fpb, aq, t2 “ fpX, pa bq¨Xq, ∇ “ tb#Xu, and A “ ta, bu, the
algorithm computes the lgg of x∇, t1y and x∇, t2y, which is xH, fpY, pa bq¨Y qy.

Web page. The nominal anti-unification algorithm is available from
http://www.risc.jku.at/projects/stout/software/nau.php.

4.5.1 Explanation of the Web Interface for the Algorithm GN

The input form of the Web interface to the nominal anti-unification algorithm consists
of five rows shown below, where the first, the fourth and the fifth row are similar to
the first, third and fifth explained in subsection 4.3.1.

:We assume that V contains countably infinite variables of each sort of atoms and sort of data.
;We assume that A contains countably infinite atoms of each sort of atoms.

http://www.risc.jku.at/projects/stout/software/nau.php
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Figure 4.4: The input form of the Web presentation of the algorithm GN.

All the anti-unification equations share the same freshness context ∇, which can be
specified in the second row. The computed term-in-context is a generalization of x∇,
ty and x∇, sy for every anti-unification equation t =^= s.

As all the terms-in-context x∇, ty and x∇, sy obtained by anti-unification equations
t =^= s have to be based on the same set of atoms A, all the atoms which appear in
the anti-unification problem as well as those from ∇ are assumed to be elements of A.
In the third row, the user may specify some additional atoms which are in A.

4.5.2 Implemented Transformation Strategy for GN

We illustrate the strategy that is used by the implementation in order to exhaustively
transform a given set of AUEs P with respect to a given freshness context ∇ into a set
of final states. A set A of additional atoms may be provided as input. Notice that all
the atoms from P and ∇ are automatically collected. The implementation invokes a
given callback function H as soon as a final state is reached.

1 // INPUT:
2 P Ð Given s e t o f AUEs
3 ∇ Ð Given f r e s h n e s s context
4 A Ð Given s e t o f a d d i t i o n a l atoms
5 H Ð Given c a l l b a c k func t i on
6 // COMPUTE:
7 A1 Ð ApP q YAp∇q YA
8 VP Ð Set o f g e n e r a l i z a t i o n v a r i a b l e s from P
9 State Ð pP, S,Γ, σq were S Ð H and Γ Ð H and σ Ð Id

10 While State .P ‰ H

11 Fix AUE p Ð x : t fi s from State .P
12 I f Topptq “ Toppsq “ a and a P A1 Y F
13 Transform State ùñ

p
Dec State

14 Else I f t “ a.t1 and s “ a.s1
15 Transform State ùñ

p, a
Abs State

16 Else I f t “ a.t1 , s “ b.s1 , ∇ $ c#a.t1 , ∇ $ c#b.s1 , and c P A1
17 Transform State ùñ

p, c
Abs State
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18 Else
19 Transform State ùñ

p
Sol State

20 For each p1 in State .S
21 For each p2 in State .S ztp1u
22 π Ð Compute permutation o f p1 and p2
23 I f π ‰ K

24 Transform State ùñ
p1, p2, π

Mer State
25 // CALLBACK:
26 For each x in VP
27 H( State , x) ;

Listing 4.10: The implemented strategy for GN.

The lines 1–5 in listing 4.10 define the input assumptions. All the atoms and general-
ization variables are collected in, respectively, line 7 and line 8. Those variables are later
used in the CALLBACK: block (lines 25–27), which invokes the given callback function
H for every collected variable x, such that x State.σ is the resulting generalization for
the input AUE corresponding to x. Line 9 shows how the state is initialized. The first
transformation iteration starts at line 10, where an arbitrary AUE is fixed (line 11) as
long as there is an AUE in the problem set P . We know that, for a fixed AUE from P ,
either Abs, Dec, or Sol is applicable. The lines 12–19 show the entire procedure, which
computes ùñ˚

Abs,Dec,Sol to transform the state so that P “ H. The sole purpose of the
statements in line 14–15 is to increase the performance of Abs. The lines 20–24 show
the merging process ùñ˚

Mer, which invokes the subalgorithm E for each pair of AUEs in
the store S (line 22). The strategy used to perform the subalgorithm is demonstrated
in subsection 4.5.4. It returns K iff the permutation computation fails.

4.5.3 Using the Algorithm GN in Java

To explain the library usage on a code example, we again assume the existence of
two Reader instances in1 and in2 which contain the nominal terms to be generalized.
Furthermore, we assume that there is a Reader instance inA for reading atoms and inN

for the freshness context. Both of them are assumed to be comma separated sets, e.g.,
inN = {a#X,b#Y,...} and inA = {c,d,...}, where the braces are optional. The data
source inA only specifies extra atoms, which do nor appear in in1, in2 and inN.

1 f ina l NodeFactory f a c t o r y = new NodeFactory ( ) ;
2 eqSys = new EquationSystem<AntiUnifyProblem >() {
3 public AntiUnifyProblem newEquation ( NominalTerm t ,

NominalTerm s ) {
4 return new AntiUnifyProblem ( t , s , f a c t o r y ) ;
5 }
6 } ;
7 FreshnessCtx nablaIn = new InputParser ( f a c t o r y )
8 . parseEquationAndCtx ( in1 , in2 , inA , inN , eqSys ) ;
9 new AntiUnify ( eqSys , nablaIn , DebugLevel . SILENT, f a c t o r y ) {

10 public void c a l l b a c k ( AntiUnifySystem res , Var iab le var ) {
11 System . out . p r i n t l n ( r e s . getNablaGen ( ) ) ;
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12 System . out . p r i n t l n ( r e s . getSigma ( ) . get ( var ) ) ;
13 }
14 } . ant iUn i fy ( false , null ) ;

Listing 4.11: Usage example of the algorithm GN in Java

In contrast to the other libraries, an instance of NodeFactory is needed, which we create
in line 1. The lines 2 to 6 demonstrate the creation of an equation system.

All the input sources are parsed at the lines 7 and 8. The new equation is added to
eqSys and the parsed freshness context is returned. Moreover, the factory instance re-
members all the parsed atoms regardless of the input source they come from. More equa-
tions may be added eqSys by calling the method parseEquation(in1, in2, eqSys)

from InputParser. Atoms and freshness contexts can also be parsed separately.

Line 11 shows that, additionally to the substitution and store, the generated freshness
context is provided by the instance res of the class AntiUnifySystem.

Again, one can specify how fresh variables and fresh atoms are named. In contrast to
the other three libraries, this functionality is implemented by private instance variables
of NodeFactory and appropriate getter and setter methods.

4.5.4 Implementation of E for Deciding Equivariance

The nominal equivariance algorithm tests whether two terms differ from each other only
by a permutation and a renaming of bound atom, i.e., if they are equivariant. Equivari-
ance problem arises, for instance, in the course of generalization of the terms-in-context
p1 “ xH, fpa, bqy and p2 “ xH, fpb, cqy, where the atoms permitted in the generaliza-
tion are a, b, and c, then the term-in-context xtc#X, a#Y u, fpX,Y qy generalizes p1
and p2, but it is not least general. To compute the latter, we need to reflect the fact
that generalizations of the atoms are related to each other: One can be obtained from
the other by the permutation pb cqpc aq. This leads to a least general generalization
xtc#Xu, fpX, pb cqpc aq¨Xqy.

The equivariance decision algorithm solves the following problem:

Given: A set of equations of the form t „ s, a freshness context ∇, and a finite set of
atoms A such that all x∇, ty and x∇, sy are based on A.

Find: A permutation π of variables from A such that for all equations t „ s, π¨t is
α-equivalent to s with respect to ∇, if such a π exists. Otherwise report failure.

For instance, in the example above, the permutation pb cqpc aq was computed by the
equivariance algorithm for ta „ b, b „ cu, A “ ta, b, cu, and ∇ “ H.

Web page. The equivariance decision algorithm is available from
http://www.risc.jku.at/projects/stout/software/nequiv.php.

4.5.4.1 Explanation of the Web Interface for the Algorithm E

The input form is nearly the same as the one for nominal anti-unification. Figure 4.5
shows the Web input form.

http://www.risc.jku.at/projects/stout/software/nequiv.php
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Figure 4.5: The input form of the Web presentation of the algorithm E .

There are two differences: The row to specify extra atoms is missing, because the
computed permutation must only permute atoms which appear in the problem set and
further on, terms of an equivariance equation are separated by = instead of =^=.

4.5.4.2 Implemented Transformation Strategy for E

We discuss the rule application strategy which is used by the implementation of E . The
input is a set of equivariance equations E and a freshness context ∇. It is split into
two phases where the second phase starts at line 20 of Listing 4.12.

1 // INPUT:
2 E Ð Given s e t o f equ iva r i ance equat ions
3 ∇ Ð Given f r e s h n e s s context
4 // COMPUTE:
5 E1 Ð H s e t o f atom equat ions
6 State Ð pE,∇,A, πq were A Ð ApEq YAp∇q and π Ð Id
7 While State .E ‰ H

8 Fix equ iva r i ance problem p Ð t „ s from State .E
9 I f t “ a.t1 and s “ b.s1

10 Fix f r e s h atom ć R A
11 Transform State ùñ

p, ć
Alp-E State

12 Else I f Topptq “ Toppsq “ f and f P F
13 Transform State ùñ

p
Dec-E State

14 Else I f Topptq “ Toppsq “ x and x P V
15 Transform State ùñ

p
Sus-E State

16 Else I f t “ a and s “ b
17 Move p from State .E to E1

18 Else
19 Return K

20 State Ð pE1,∇,A, πq
21 While State .E1 ‰ H

22 Fix atom equat ion p Ð a „ b from State .E1

23 I f π‚a “ b
24 Transform State ùñ

p
Rem-E State
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25 Else I f π‚a, b P A
26 Transform State ùñ

p
Sol-E State

27 Else
28 Return K

29 Return State . π

Listing 4.12: The implemented strategy for E .

In line 5, an empty set of atom equations is initialized. This set is used for the second
phase of the algorithm. In the first phase (line 9–15) the equivariance problems are
reduced to atom equations. The latter ones are moved into a separate set, in the lines
16 and 17 of the first phase. If an equivariance equation is not an atom equation and
none of the rules Alp-E, Dec-E, and Sus-E is applicable, then it is irreducible. Therefore,
K is returned in this case (line 18–19).

In line 20, the second phase is initialized with the set of atom equations that have
been collected during phase one. Afterwards the rules Rem-E and Sol-E are applied
exhaustively (line 23–26). If none of the two rules is applicable for an atom equation,
then there is no appropriate permutation and K is returned (line 27–28). If State.E1

can be transformed into H, then the computation of π succeeded.

4.5.4.3 Using the Algorithm E in Java

We assume to have data sources for two nominal terms in1 and in2, and another one
for a freshness context, called inN, similarly to the nominal anti-unification algorithm.
Moreover, we assume that an equation system eqSys has already been instantiated
and that a NodeFactory instance, called factory, exists. We explain the usage of the
library on the following code fragment:

1 InputParser pa r s e r = new InputParser ( f a c t o r y ) ;
2 par s e r . parseEquation ( in1 , in2 , eqSys ) ;
3 FreshnessCtx nablaIn = par se r . parseNabla ( inN ) ;
4 Co l l e c t i on <? extends Atom> atomSet = f a c t o r y
5 . getAllByType ( f a c t o r y . classAtom ) ;
6 Permutation p i = new Equivar iance ( eqSys , atomSet , nablaIn )
7 . compute ( fac tory , false , DebugLevel . SILENT, null ) ;
8 System . out . p r i n t l n ( p i ) ;

Listing 4.13: Usage example of the algorithm E in Java

In line 1 the parser instance is created, which afterwards is used to parse the equation
and the freshness context from the input sources. The lines 4 and 5 demonstrate how
one can obtain the collected set of atoms from the NodeFactory instance.

Later in line 6 this set is needed to instantiate a class named Equivariance, which
encapsulates the computation of a permutation pi. The computation returns null, if
no permutation exists for the input. The class Permutation contains two mappings
from atoms to atoms (Map<Atom, Atom>): The permutation itself can be obtained by
calling getPerm and the inverse permutation, which can be obtained by getInverse.
Furthermore the class Permutation provides some methods to work with permutations
and swappings.
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4.6 Anti-Unification for Lambda Terms

We demonstrate the implementation of the algorithm GP from section 3.2 which works
on simply-typed λ-terms: It takes as input two such terms of the same type, in η-long
β-normal form, and returns their least general pattern generalization. Patterns here
mean higher-order patterns à la Miller [59]. The input terms are not required to be
patterns. Again, we start with recalling the most important definitions.

Definition 3.22 (λ-terms). Given a countably infinite set of term variables V: and a
signature Σ. λ-terms are built using the grammar

t ::“ x | c | λx.t | t1 t2

where x is a variable and c is a constant.

Terms like p. . . ph t1q . . . tmq are written as hpt1, . . . , tmq and terms of the form
λx1. ¨ ¨ ¨ .λxn.t as λx1, . . . , xn.t.

Definition 3.26 (Higher-order pattern). A higher-order pattern is a λ-term where,
when written in η-long β-normal form, all free variable occurrences are applied to lists
of pairwise distinct (η-long forms of) bound variables.

The implemented algorithm solves the following problem:

Given: Higher-order terms t1 and t2 of the same type in η-long β-normal form.

Find: A least general higher-order pattern generalization of t1 and t2.

For instance, if t1 “ λx, y.fphpx, x, yq, hpx, y, yqq and t2 “ λx, y.fpgpx, x, yq, gpx, y, yqq,
then t “ λx, y.fpXpx, yq, Y px, yqq is a higher-order pattern lgg of t1 and t2.

Web page. The implementation of the anti-unification algorithm is available from
http://www.risc.jku.at/projects/stout/software/hoau.php.

4.6.1 Explanation of the Web Interface for the Algorithm GP

The implementation slightly differs from the theoretical algorithm: In addition to
simply-typed terms, it can also take untyped input. It has an advantage that the
user does not necessarily have to supply types, but has a disadvantage that the terms
may not be typeable or normalizable. Figure 4.6 shows the input form of the Web
interface that consists of four rows.

In the first row, the anti-unification problem should be given. The problems consist
of one or more anti-unification equations, separated by semicolon. Each such equation
consists of two λ-terms, with =^= in between. The backslash \ is used instead of λ.

In the second row, the maximum recursion depth of the β-reduction can be specified.
This is to avoid infinite chain of reductions for terms like pλx.px xqqpλx.px xqq.

As in subsection 4.3.1, one can choose to justify the computed lgg in the third row.
In the last row, the output format can be specified. One can choose form a drop-

down box between simple, verbose, progress, and progress-origin. The first three

:We assume that V contains countably infinite term variables of each type.

http://www.risc.jku.at/projects/stout/software/hoau.php
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Figure 4.6: The input form of the Web presentation of the algorithm GP.

of them are like those described in subsection 4.2.1. By choosing the output format
progress-origin, all the debug information will be shown to the user, but the original
names of bound variables are used. This is useful for debugging, as all the bound
variables are renamed by the parser, giving them unique names.

4.6.2 Implemented Transformation Strategy for GP

Before we demonstrate the usage of the library on some Java code fragments, we give
an overview of the strategy which is used in the implementation. The implementation
is parametric by a callback function H that is invoked when the final state is reached.

1 // INPUT:
2 P Ð Given s e t o f AUEs
3 H Ð Given c a l l b a c k func t i on
4 // COMPUTE:
5 VP Ð Set o f g e n e r a l i z a t i o n v a r i a b l e s from P
6 State Ð pP, S, σq were S Ð H and σ Ð H

7 While State .P ‰ H

8 Fix AUE p Ð Xp #»x q : t fi s from State .P
9 I f t “ λy.t1 or s “ λz.s1

10 Transform State ùñ
p
Abs State

11 Else I f Topptq “ Toppsq
12 Transform State ùñ

p
Dec State

13 Else
14 Transform State ùñ

p
Sol State

15 For each p1 in State .S
16 For each p2 in State .S ztp1u
17 π Ð Compute permuting matcher o f p1 and p2
18 I f π ‰ K
19 Transform State ùñ

p1, p2, π
Mer State

20 // CALLBACK:
21 For each X in VP
22 H( State , X ) ;

Listing 4.14: The implemented strategy for GP.
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The lines 1–3 in listing 4.14 define the input assumptions. In line 5, the generalization
variables from all the input AUEs are collected. Those variables are later used in
the CALLBACK: block (lines 20–22), which invokes the given callback function H for
every collected variable X, such that X State.σ is the resulting generalization for the
input AUE corresponding to X. Line 6 shows how the state is initialized. The first
transformation iteration starts at line 7, where an arbitrary AUE is fixed (line 8) as
long as there is an AUE in the problem set P . We know that, for a fixed AUE from P ,
either Abs, Dec, or Sol is applicable. The lines 7–14 show the entire procedure, which
computes ùñ˚

Abs,Dec,Sol to exhaustively transform the state. The lines 15–19 show the
merging process ùñ˚

Mer, which invokes the subalgorithm M for each pair of AUEs in
the store S (line 17). The strategy used to perform the subalgorithm is demonstrated in
subsection 4.6.4. It returns K iff the merging fails, or a mapping π : D Ñ R otherwise.

4.6.3 Using the Algorithm GP in Java

To embed GP or M into another Java program, the first thing to do is to create an
EquationSystem. The class EquationSystem is implemented in a generic way and it
is used to represent either a set of AUEs or a set of matching problems. An AUE is
represented by the Java class AntiUnifyProblem and a matching problem by a class
named PermEquivProblem. Listing 4.15 shows how to create a new equation system of
a certain TYPE.

1 EquationSystem<TYPE> eqSys = new EquationSystem<TYPE>(){
2 public TYPE newEquation ( ) {
3 return new TYPE( ) ;
4 } } ;

Listing 4.15: Creation of an equation system of a certain TYPE.

By replacing TYPE with PermEquivProblem or AntiUnifyProblem an equation sys-
tem of appropriate type may be instantiated. One more thing to mention is, that the
standard implementation of AntiUnifyProblem automatically retrieves a unique gener-
alization variable for each instance. The user may extend the class AntiUnifyProblem
to create a new class with different behavior, and use her/his own type instead of TYPE.

After instantiating an equation system of appropriate type, some equations of the
respective type can be added to the empty system. A convenient way to do this is by
using the class InputParser, as shown in listing 4.16.

new InputParser ( ) . parseEquation ( in1 , in2 , eqSys , 1000) ;

Listing 4.16: Parsing two given λ-terms in1 and in2, and putting them into eqSys.

We assume that there are two data sources in1 and in2 available in form of Reader
instances, each of them containing one of the input λ-terms. The implementation does
neither require the input terms to be typed, nor to be in β-normal form. During
the parsing process β-reduction is performed exhaustively. To avoid infinite chain of
reductions for terms like pλx.px xqqpλx.px xqq, the fourth argument defines an upper
bound, to limit the recursive calls of β-reduction. Listing 4.17 shows how the anti-
unification algorithm GP can be invoked using the built equation system.
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1 new AntiUnify ( eqSys , 1000 , DebugLevel . SILENT) {
2 public void c a l l b a c k ( AntiUnifySystem res , Var iab le var ) {
3 System . out . p r i n t l n ( r e s . getSigma ( ) . get ( var ) ) ;
4 } } . ant iUn i fy ( false , null ) ;

Listing 4.17: Sample code for calling the algorithm GP.

Like above, the second argument of AntiUnify (line 1) restricts the number of recur-
sions for β-reduction. As, by our rule definitions, β-reduction only performs variable
renaming, the upper bound should never be reached, if the input is already in β-normal
form. The third argument in line 1 defines the verbosity of the computation. For pro-
duction use, normally one wants to silently compute the generalization. Whoever, if
the debug level differs from SILENT, then also a PrintStream has to be provided in line
4 as second argument instead of null. The first argument in line 4 specifies, whether or
not to justify the computed generalization. For justification of a generalization r, the
recorded differences of the input terms s, t are used to obtain two substitutions ϑ, ϕ,
respectively. The justification fails if either rϑ ‰α s or rϕ ‰α t. Last but not least, the
lines 2 and 3 show a very simple implementation of a callback function, which prints
the generalization xσ to the standard output stream, for each generalization variable x
which corresponds to one of the input AUEs.

4.6.4 Implementation of M for Computing Permuting Matchers

The algorithm GP requires to decide the existence problem of a variable renaming
for two given input terms so that the terms become alpha equivalent. It is needed
to ensure that the computed generalization is least general. Such a problem arises,
e.g., in the course of generalization of the terms t1 “ λx, y, z.fpxpy, zq, xpz, yqq and
t2 “ λx, y, z.fpXpy, λu.uq, Xpz, λv.vqq. To see if the same variable can be used in the
generalization of the arguments of t1 and t2, we have to check whether there exists a
variable renaming π such that xpy, zqπ “ xpz, yq and Xpy, λu.uqπ fi Xpz, λv.vq.

The algorithm that performs such a test is integrated in the implementation of GP,
but we provide access to it separately as well, due to the fact that the problem is
interesting, may appear in various contexts, and having a tool to solve it is useful.

The algorithm solves the following problem:

Given: A set of equations of the form t „ s where t and s are λ-terms, and two sets of
variables, the domain D and the range R.

Find: A variable renaming π : D Ñ R, such that tπ is α-equivalent to s for all equations
t „ s, if it exists. Otherwise report failure.

The generalization problem for t1 and t2 above creates the set of equations
txpy, zq „ xpz, yq, Xpy, λu.uq „ Xpz, λv.vqu, the domain D “ tx, y, zu and the range
R “ tx, y, zu. Then the decision algorithm M constructs and returns the mapping
π “ tx ÞÑ x, y ÞÑ z, z ÞÑ yu. Afterwards, this renaming can be used to answer the
original question of generalization of t1 and t2, obtaining the lgg λx, y, z.fpY px, y, zq,
Y px, z, yqq where, indeed, the variable Y appears twice.

Web page. The permuting matcher decision algorithm is available from
http://www.risc.jku.at/projects/stout/software/hoequiv.php.

http://www.risc.jku.at/projects/stout/software/hoequiv.php
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4.6.4.1 Explanation of the Web Interface for the Algorithm M

The input form of the Web interface to the permuting matcher algorithm consists of
four rows shown below, like illustrated in Figure 4.7.

Figure 4.7: The input form of the Web presentation of the algorithm M.

The first, the third and the fourth row are equivalent, respectively, to the first, the
second and the fourth ones in the interface of GP, described above. (The terms of an
equivariance equation are separated by = instead of =^=.) In the second row, the two
sets of variables which specify the domain and the range should be given.

4.6.4.2 Implemented Transformation Strategy for M

In contrast to the web interface, where the user may enter an arbitrary (untyped)
lambda term that should be reduced to β-normal form if possible, here the input is
assumed to be a lambda term which is already in β-normal form. Therefore, the
argument that defines the maximum recursion depth is not needed.

1 // INPUT:
2 D Ð Given s e t o f domain v a r i a b l e s
3 R Ð Given s e t o f range v a r i a b l e s
4 M Ð Given s e t o f matching problems
5 // COMPUTE:
6 State Ð pD,R,M, ρ, πq were ρ Ð H and π Ð H

7 While State .M ‰ H

8 Fix matching problem p Ð t „ s from State .P
9 I f t “ λy.t1 or s “ λz.s1

10 Transform State ùñ
p
Abs-M State

11 Else I f Topptq P D and Toppsq P R
12 Transform State ùñ

p
Per-M State

13 Else I f Topptq R D and Toppsq R R and Topptqπ “ Toppsqρ
14 Transform State ùñ

p
Dec-M State

15 Else
16 Return K

17 Return State .π

Listing 4.18: The implemented strategy for M.
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Like in listing 4.14, the block INPUT: of listing 4.18 defines the input assumptions. In
line 6 the state is initialized. Afterwards the rules are applied exhaustively. If no rule is
applicable to a certain matching problem, then a permuting matcher does not exist and
K is returned. In the Java implementation K is represented by null. If State.M can
be transformed into H, then the final state has been reached and the implementation
returns the mapping State.π

4.6.4.3 Using the Algorithm M in Java

We explain the usage on a code fragment and assume that there are two data sources
in1 and in2 available in form of Reader instances, each of them contains one of the
λ-terms. There is also an integer variable maxReduce which specifies the maximum
recursion depth of β-reduction.

To use the algorithm M separately, the sets of domain and range variables must be
provided in addition to the equation system. This is an easy task and may be done as
shown in listing 4.19 lines 1–4.

1 Set<Variable> dom = DataStructureFactory . $ . newSet ( ) ;
2 Set<Variable> ran = DataStructureFactory . $ . newSet ( ) ;
3 dom . add (new Var iab le ( ”x ” , null ) ) ;
4 . . .
5 Map<Variable , Variable> pi = new PermEquiv ( eqSys , dom, ran )
6 . compute ( DebugLevel . SILENT, null ) ;
7 System . out . p r i n t l n ( p i ) ;

Listing 4.19: Usage example of the algorithm M in Java

The second argument of the Variable-constructor specifies the type of the variable.
(null is used for untyped variables.) We assume that the set of equations eqSys exists
(e.g., it can be created like illustrated in Listing 4.15). In the lines 4 and 5, the main
algorithm PermEquiv is invoked. In case of failure null is returned and in the success
case pi is a (possibly empty) mapping.
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Chapter 5

Conclusion

This thesis discussed the anti-unification problem for various term languages. We de-
veloped algorithms that solve such problems, illustrated their usage on some examples,
analyzed their properties, and studied their implementation. The work contributes in
the following three major ways to the community:

§ Anti-unification algorithms for unranked terms, simply-typed λ-terms, and nom-
inal terms have been designed. Some of them require to constructively solve a
decision problem in order to merge variables in the generalization. (Merging of
variables is required to compute generalizations that are least general.) We also
designed subalgorithms that solve those problems. We proved the properties and
the complexity bounds of all the developed algorithms, which all are polynomial
in time and space.

§ We showed that under certain conditions the matching problem and the joinability
problem can be solved by a coherent anti-unification algorithm. The algorithms
discussed in this work compute either a unique lgg for two input terms or they
solve the matching problem themselves so that the minimization step can be per-
formed easily. This has the advantage that, when implementing our algorithms,
one does not need to implement an extra algorithm that solves the matching
problem.

§ We implemented all the discussed algorithms in Java and developed a robust and
well engineered open-source software library that is freely available online. We
discussed the strategies that are used in our implementations and illustrated how
those algorithms can be integrated in users projects.

The higher-order anti-unification problem for unranked terms is highly nondetermin-
istic. Therefore the computation has been split into two parts, the skeleton computa-
tion, and the computation of a generalization with respect to a given skeleton. It turned
out that, by imposing a few natural restrictions, the generalization becomes unique for
a given skeleton, and we proved that it can be computed in quadratic time. Since the
skeleton for a given pair of hedges is not unique, a minimization step is needed. How-
ever, the developed algorithm can solve the matching problem as needed to perform the
minimization. The anti-unification algorithms for unranked terms are self-minimizing.

Even though, the generalization problem we consider for nominal terms belongs to
the first-order setting, we showed that without any restrictions, a minimal complete
set of generalizations does not always exist. Therefore we suggest a restriction under
which the problem becomes unitary.



154 Chapter 5 Conclusion

For simply-typed λ-terms, we compute so called higher-order pattern generalizations.
This setting imposes restricted higher-order power and yields a single unique general-
ization for two simply-typed λ-terms. The algorithm can be used to develop refactoring
and clone detection techniques for languages based on λProlog.

5.1 Discussion of Future Research Directions

Naturally, our results give rise to various research directions that may be considered
in the future. In order to discuss some of the possible directions for future research,
we illustrate in Figure 5.1 the subsumption hierarchy of various anti-unification (AU)
problems. The rectangular nodes indicate problems that have not yet been studied.
At the bottom left side of Figure 5.1 there is the syntactic first-order case (SYN-AU).
Following the arrows, it can be generalized, by syntactic higher-order AU (SYN-AU2),
or by order-sorted first-order AU (OS-AU). Both of the latter ones are subsumed by
order-sorted higher-order AU (OS-AU2). On the other side there is the word anti-
unification problem (W-AU). It generalizes to unranked fist-order AU (UR-AU), which
itself is subsumed by unranked higher-order AU (UR-AU2). Unranked and order-sorted
theories can be generalized by regular-expresion order-sorted (REOS) theories, for both,
the first-order case (REOS-AU), and the higher-order case (REOS-AU2).

SYN-AU

OS-AU

REOS-AU

UR-AU

W-AU

SYN-AU2

OS-AU2

REOS-AU2

UR-AU2

Figure 5.1: Subsumption hierarchy of various anti-unification problems.

As illustrated in Figure 5.1, there are some cases of the anti-unification problem
that have not been investigated yet (the rectangular nodes). For the dual unification
problem, the first-order regular-expresion order-sorted case has been studied in [52].
First, those results are interesting from the theoretical point of view, as they give new
insights in the theory itself and establish connections between other theoretical results.
Second, implementations of AU algorithms might be generalized by exploiting this new
insights. It is known, that abstraction and reusability greatly encourage stability and
maintainability of software packages. Therefore the homogenization of various theories
is of great value for the community, from both points of view, the theoretical one, and
the application point of view.



5.1 Discussion of Future Research Directions 155

This leads to one possible direction for future research: the investigation of the anti-
unification problem in the theories REOS-AU and REOS-AU2. Since the additional
typing information in the REOS theories can be seen as a specialization of the unranked
theories, it seems natural to try the following approach:

1. Cut off all the sort information from the input terms.

2. Run one of the algorithms UR-AU or UR-AU2, to obtain an unranked general-
ization term of most general sort.

3. Specialize the sort information towards the input terms as long as possible.

As the computational behavior of this modular approach cannot be foreseen, it might
also be interesting to develop a more direct algorithm.

Another direction for future research within this area could be the investigation of
the above AU problems modulo some equational theories. In contrast to the dual
unification problem, there is little work on anti-unification modulo theories. One of the
rare works considers the theory of OS-AU modulo associativity, commutativity, and
unity [4]. There are actually some application areas, where UR-AU modulo theories
are requested. For this reason, investigating UR-AU modulo commutativity would be
of great value. (Associativity and unity is trivial in this theory.)

Besides developing new algorithms, also the extraction of well-behaving fragments is
important from the application point of view. This becomes more and more important,
as the size of the data increases. For instance, one could try to apply a fragment of
our novel UR-AU2 algorithm (which runs in Opn2q time in the worst case, where n
is the size of the input,) to Big-Data, while other fragments might not be applicable
because of their poor runtime complexity. Since the skeleton computation function
is the parameter of our algorithm, studying and experimenting with different skeleton
computation functions could also be work for the future. There is strong evidence which
suggests that there are even better behaving fragments of UR-AU2, where the runtime
is bound by Opn logpnqq in the worst case [67].

A different direction for future research would be to consider the anti-unification
problem for permissive nominal logic. We suspect that for permissive nominal terms
(PNT), one can use our higher-order anti-unification algorithm from section 3.2 after
translating PNTs into higher-order pattern. The back-translation from higher-order
pattern to PNTs might be easier than the translation back to the nominal terms we
considered in section 3.1.

Yet another direction for future research could be the introduction of skeletons for
λ-terms such that the skeleton computation can be decoupled from the computation of
the generalization, like done in section 2.2. This approach could lead to more accurate
results than restricting generalizations to be higher-order pattern. Then, one could also
think about considering a richer type theory like the calculus of constructions, allowing
higher-order types.

To conclude the discussion about future research directions, we would like to empha-
size that the possibilities within any research area are infinite. This discussion might
be seen as motivation for some possible small steps towards a certain direction.
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Notations

ĺ” instantiation quasi ordering modulo ”
ĺ instantiation quasi ordering where the concrete instance of ” is

either unimportant or clear from the context
»” equivalence relation induced by ĺ”

» equivalence relation induced by ĺ

ă” ĺ” minus »”
ă ĺ minus »
“α alpha equivalence
# freshness predicate
i, j integer (position)
I, J string of positive integers (position)
ε empty sequence (position or hedge)
a, b, c, d, e, f, g, h function symbol
a, b, c, d, e atom
x, y, z, u,X, Y, Z, U term variable
#»x , #»y , #»z sequence of term variables
x̃, ỹ, z̃ hedge variable
F,G,H function variable

X̃, Ỹ , Z̃, Ũ context variable
ξ first-order variable (term variable or hedge variable)
Ξ higher-order variable (function variable or context variable)
H ,G function symbol or function variable
h , g function symbol or higher-order variable
s function symbol or (any type of) variable
h function symbol or atom
λ abstraction, i.e., a variable binding
ν, δ basic sorts, i.e., basic types
τ composite sorts, i.e., composite types
F set of unranked function symbols
Σ Signature of types and ranked function symbols
A set of atoms
V set of all variables
VT set of term variables (individual variables)
VH set of hedge variables
VF set of function variables
VC set of context variables
T pF ,Vq set of hedges constructed over F and V
T pΣ,A,Vq set of nominal terms constructed over Σ,A, and V
T set of terms where the concrete instances of basic components
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are either unimportant or clear from the context
Vp¨q set of all occurring variables
VTp¨q set of occurring term variables
VHp¨q set of occurring hedge variables
VFp¨q set of occurring function variables
VCp¨q set of occurring context variables
Ap¨q set of occurring atoms
t, s, u, q, r term

s̃, q̃, r̃, g̃, h̃ hedge
˝ hole (unit context)

c̃, d̃ context (hedge with hole)

c̊, d̊ bounded context

9c, 9d singleton context
π, ρ,µ, τ permutation of atoms
∇,Γ freshness context
term-in-context pair of a freshness context and a term, written x∇, ty
p term-in-context
σ, ϑ, ϕ substitution
π, ρ, µ mapping from variables to variables
Id identity (e.g., substitution, permutation, mapping)
w string of symbols (word)
| ¨ | cardinality of a set or length of a sequence
} ¨ } size of a term, hedge, or context
} ¨ }Abs number of abstractions in a term
s̃|I term at position I in a hedge s̃

s̃|ji subhedge of s̃ from position i to j (inclusive s̃|i and s̃|j)
Topp¨q string of top symbols (symbols at level 1)
Posp¨q set of all positions of a term or hedge
Possp¨q set of positions of occurrences of s in a term or hedge
Depthp¨q depth of a term
Domp¨q domain of a substitution
Ranp¨q range of a substitution
FVp¨q free variables
FAp¨q free atoms
FA-sp¨q free atoms without considering suspensions
Freshp¨q subset of fresh atoms
a alignment
e empty alignment
R rigidity function
A higher-order alignment computation function
H callback function
Cs set of alignments of a certain length
Ctx minimal freshness context or K if it does not exist
E algorithm to compute equivariance
M algorithm to compute permuting matcher
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GR anti-unification algorithm for hedges T pF ,VHq
G2V

a anti-unification algorithm for hedges T pF ,VH Y VCq
G4V

a anti-unification algorithm for hedges T pF ,VH Y VC Y VT Y VFq
GN anti-unification algorithm for nominal terms T pΣ,A,Vq
GP anti-unification algorithm for simply-typed λ-terms T pΣ,Vq
AUE anti-unification equation
lgg least general generalization
laa longest admissible alignment
mcg minimal complete set of generalizations
dag directed acyclic graph
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[4] Maŕıa Alpuente, Santiago Escobar, Javier Espert, and José Meseguer. A modular
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Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About Maude - A High-
Performance Logical Framework, How to Specify, Program and Verify Systems
in Rewriting Logic, volume 4350 of Lecture Notes in Computer Science, 2007.
Springer. ISBN 978-3-540-71940-3.

[30] Arthur L. Delcher and Simon Kasif. Efficient parallel term matching and anti-
unification. J. Autom. Reasoning, 9(3):391–406, 1992.

[31] Gilles Dowek. Higher-order unification and matching. In John Alan Robinson and
Andrei Voronkov, editors, Handbook of Automated Reasoning, pages 1009–1062.
Elsevier and MIT Press, 2001. ISBN 0-444-50813-9, 0-262-18223-8.

[32] Gilles Dowek, Murdoch James Gabbay, and Dominic P. Mulligan. Permissive
nominal terms and their unification: an infinite, co-infinite approach to nominal
techniques. Logic Journal of the IGPL, 18(6):769–822, 2010. doi: 10.1093/jigpal/
jzq006.

[33] William S. Evans, Christopher W. Fraser, and Fei Ma. Clone detection via
structural abstraction. Software Quality Journal, 17(4):309–330, 2009. doi:
10.1007/s11219-009-9074-y.

[34] Cao Feng and Stephen Muggleton. Towards inductive generalization in higher
order logic. In Derek H. Sleeman and Peter Edwards, editors, ML, pages 154–162.
Morgan Kaufmann, 1992. ISBN 1-55860-247-X.

[35] A. Fornells, E. Armengol, E. Golobardes, S. Puig, and J. Malvehy. Experiences
using clustering and generalizations for knowledge discovery in melanomas do-
main. In Petra Perner, editor, Advances in Data Mining. Medical Applications,
E-Commerce, Marketing, and Theoretical Aspects, volume 5077 of Lecture Notes
in Computer Science, pages 57–71. Springer Berlin Heidelberg, 2008. ISBN 978-3-
540-70717-2. doi: 10.1007/978-3-540-70720-2 5.

[36] Koichi Furukawa, Mutumi Imai, and Randy Goebel. Hyper least general gener-
alization and its application to higher-order concept learning. manuscript draft,
1996.

[37] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002. doi: 10.1007/
s001650200016.



166 Bibliography

[38] Murdoch J. Gabbay. A Theory of Inductive Definitions with alpha-Equivalence.
PhD thesis, University of Cambridge, UK, 2000.

[39] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax
involving binders. In LICS, pages 214–224. IEEE Computer Society, 1999. ISBN
0-7695-0158-3.

[40] Boris A. Galitsky, Josep Lluis De La Rosa, and GáBor Dobrocsi. Mapping syn-
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