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Abstract

Non-uniform hypergraphs appear in various domains of computer science as in
the satisfiability problems and in data analysis. We analyse a general model
where the probability for an edge of size t to belong to the hypergraph depends
of a parameter ωt of the model. It is a natural generalization of the models
of graphs presented in [1] and in [2]. The present paper follows the same gen-
eral approach based on analytic combinatorics. We show that many analytic
tools developed for the analysis of graphs can be extended surprisingly well to
non-uniform hypergraphs. More specifically, we analyze their typical structure
before and near the birth of the complex components, that are the connected
components with more than one cycle, and derive the asymptotic number of
sparse connected hypergraphs as their complexity, defined as the excess, in-
creases. Although less natural than the number of edges, this parameter allows
a precise description of the structure of hypergraphs. Finally, we compute some
statistics of the model to link number of edges and excess.

Keywords: Hypergraph, phase transition, analytic combinatorics

1. Introduction

In the seminal article [3], Erdös and Rényi discovered an abrupt change
of the structure of a random graph when the number of edges reaches half
the number of vertices. It corresponds to the emergence of the first connected
component with more than one cycle, immediately followed by components with
even more cycles. The combinatorial analysis of those components improves the
understanding of the objects modeled by graphs and has application in the
analysis and the conception of graph algorithm. The same motivation holds
for hypergraphs which are used, among others, to represent databases and xor-
formulas.

IThis work was partially founded by the ANR Boole, the ANR Magnum and the University
Paris Diderot, Sorbonne Paris Cité.
This is the long version of the homonym paper accepted in the proceedings of IWOCA 2013.
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Much of the literature on hypergraphs is restricted to the uniform case, where
all the edges contain the same number of vertices. In particular, the analysis of
the birth of the complex component in terms of the size of the component and
the order of the phase transition can be found in [4], [5], [6], [7] and [8].

There is no canonical choice for the size of a random edge in a hypergraph;
thus several models have been proposed. One is developed in [9], where the size
of the largest connected component is obtained using probabilistic methods. It
is our opinion that to be general, a non-uniform hypergraph model needs one
parameter for each possible size of edges, in order to quantify how often those
edges appear. In [10], Darling and Norris define such a model, the Poisson
random hypergraphs model, and analyze its structure via fluid limits of pure
jump-type Markov processes.

We have not found in the literature much use of the generating function of
non-uniform hypergraphs to investigate their structure, and we intend to fill
this gap. However, similar generating functions have been derived in [11] for a
different purpose: Gessel and Kalikow use it to give a combinatorial interpre-
tation for a functional equation of Bouwkamp and de Bruijn. The underlying
hypergraph model is a natural generalization of the multigraph process.

In Section 2 we introduce the hypergraph models, the probability distribu-
tion and the corresponding generating functions. The important notion of excess
is also defined. Section 3 is dedicated to the asymptotic number of hypergraphs
with n vertices and excess k. Some statistics on the random hypergraphs are
derived, including the limit distribution of the number of edges under some
technical condition. Section 4 focuses on hypergraphs with small excess, which
are composed only of trees and unicycle components with high probability. The
critical excess at which the first complex component appears is obtained in Sec-
tion 5. For a range of excess near and before this critical value, we compute the
probability that a random hypergraph contains no complex component. The
classical notion of kernel is introduced for hypergraphs in Section 6. It is then
used to derive the asymptotic of connected hypergraphs with n vertices and
fixed excess k.

We derive in Section 7 the structure of random hypergraphs in the critical
window, and obtain a surprising result: although the critical excess is generally
different for graphs and hypergraphs, both models share the same structure dis-
tribution exactly at their respective critical excess. Finally, we give an intuitive
explanation of the birth of the giant component in Section 8.

2. Presentation of the Model

In this paper, a hypergraph G is a multiset E(G) of m(G) edges. Each
edge e is a multiset of |e| vertices in V (G), where |e| ≥ 2. The vertices of the
hypergraph are labelled from 1 to n(G). We also set l(G) for the size of G,
defined by

l(G) =
∑

e∈E(G)

|e| =
∑

v∈V (G)

deg(v).
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Figure 1: Hypergraph with n = 5 vertices, m = 3 edges, excess k = 0, size l = 8
and NumbSeq = 432. There is one cycle, which links the vertices 2 and 3.

Those notions are illustrated in figure 1.
The notion of excess was first used for graphs in [12], then named in [2], and

finally extended to hypergraphs in [13]. The excess of a connected component C
is always greater or equal to −1. It expresses how far from a tree it is: C is a tree
if and only if its excess is −1, contains exactly one cycle if its excess is 0, and
is said to be complex if its excess is strictly positive. Intuitively, a connected
component with high excess is “hard” to treat for a backtracking algorithm.
The excess k(G) of a hypergraph G is defined by

k(G) = l(G)− n(G)−m(G).

A hypergraph may contain several copies of the same edge and a vertex may
appear more than once in an edge; thus we are considering multihypergraphs.
A hypergraph with no loop nor multiple edge is said to be simple. Let us recall
that a sequence is by definition an ordered multiset. We define NumbSeq(G) as
the number of sequences of nonempty sequences of vertices that lead to G.
For example, one of the sequences that lead to the hypergraph of figure 1
is (5, 3, 4), (3, 2), (2, 1, 3), but (5, 1, 4), (1, 2), (2, 3, 1) would describe a different
hypergraph. If G is simple, then NumbSeq(G) is equal to m(G)!

∏
e∈E(G) |e|!,

otherwise it is smaller. We associate to any family F of hypergraphs the gener-
ating function

F (z, w, x) =
∑
G∈F

NumbSeq(G)

m(G)!

 ∏
e∈E(G)

ω|e|

|e|!

wm(G)xl(G) z
n(G)

n(G)!
(1)

where ωt marks the edges of size t, w the edges, x the size of the graph and z
the vertices. Therefore, we count hypergraphs with a weight κ

κ(G) =
NumbSeq(G)

m(G)!

∏
e∈E(G)

ω|e|

|e|!
(2)

that is the extension to hypergraphs of the compensation factor defined in Sec-
tion 1 of [2]. If F is a family of simple hypergraphs, then we obtain the simpler
and natural expression

F (z, w, x) =
∑
G∈F

( ∏
e∈E(G)

ω|e|

)
wm(G)xl(G) z

n(G)

n(G)!
. (3)

Remark that the generating function of the subfamily of hypergraphs of excess k
is [yk]F (z/y, w/y, xy), where [xn]

∑
k akx

k denotes the coefficient an.
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We define the exponential generating function of the edges as

Ω(z) :=
∑
t≥2

ωt
zt

t!
.

From now on, the (ωt) are considered as a bounded sequence of nonnegative real
numbers with ω0 = ω1 = 0. The value ωt represents how likely an edge of size t
is to appear. Thus, for graphs we get Ω(z) = z2/2, for d-uniform hypergraphs
(i.e. with all edges of size d) we have Ω(z) = zd/d!, for hypergraphs with sizes
of edges restricted to a set S we have Ω(z) =

∑
s∈S z

s and for hypergraphs
with weight 1 for all size of edge Ω(z) = ez − 1 − z. To simplify the saddle
point proofs, we also suppose that Ω(z)/z cannot be written as f(zd) for an
integer d > 1 and a power serie f with a non-zero radius of convergence. This
implies that eΩ(z)/z is aperiodic. Therefore, we do not treat the important, but
already studied, case of d-uniform hypergraphs for d > 2.

The generating function of all hypergraphs is

hg(z, w, x) =
∑
n

ewΩ(nx) z
n

n!
. (4)

This expression can be derived from (1) or using the symbolic method pre-
sented in [14]. Indeed, Ω(nx) represents an edge of size marked by x and n
possible types of vertices, and ewΩ(nx) a set of edges. For the family of simple
hypergraphs,

shg(z, w, x) =
∑
n

(∏
t

(1 + ωtx
tw)(

n
t)

)
zn

n!
. (5)

Similar expressions have been derived in [11]. The authors use them to give
a combinatorial interpretation of a functional equation of Bouwkamp and de
Bruijn.

A hypergraph with n vertices and m labelled edges can be represented by
a (n,m)-matrix M with nonnegative integer coefficients, the coefficient Mv,e be-
ing the number of occurences of the vertex v in the edge e. In this representation,
multigraphs correspond to matrices where the sum of the coefficients on each
column is equal to 2. Simple hypergraphs correspond to matrices with {0, 1}
coefficients that do not contain two identical columns. Let us consider a hy-
pergraph G and a matrix representation M of it. A hypergraph H is said to
be the dual of G if the transpose MT of M represents it. In other words, H
is obtained from G by reversing the roles of vertices and edges, of degrees and
sizes of the edges. Therefore, the choice of weighting the edges depending of
their size can be transposed into weights on the vertices with respect to their
degrees. Figure 2 displays a dual of the hypergraph of figure 1. This notion will
be usefull in the proof of Theorem 8.

Comparing (1) with (3), simple hypergraphs may appear more natural than
hypergraphs. But their generating function is more intricate, their matrix repre-
sentations satisfy more complex constraints and the asymptotic results on hyper-
graphs can often be extended to simple hypergraphs. Furthermore, experience
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Figure 2: One of the duals of the hypergraph of figure 1. The vertex c, of degree 3, corresponds
to the edge (3, 4, 5), of size 3, in figure 1.

has shown that multigraphs appear as often as simple graphs in applications.
This is why we do not confine our study to simple hypergraphs.

So far, we have adopted an enumerative approach of the model, but there is
a corresponding probabilistic description. Let us define HGn,k (resp. SHGn,k)
as the set of hypergraphs (resp. simple hypergraphs) with n vertices and ex-
cess k, equipped with the probability distribution induced by the weights (2).
Therefore, the hypergraph G occurs with probability κ(G)/

∑
H∈HGn,k

κ(H).

3. Hypergraphs with n Vertices and Excess k

In this section, we derive the asymptotic of hypergraphs and simple hyper-
graphs with n vertices and global excess k. This result is interesting by itself
and is a first step to find the excess k at which the first component with strictly
positive excess is likely to appear. Statistics on the number of edges are also
derived.

Theorem 1. Let λ be a strictly positive real value and k = (λ − 1)n, then the
sum of the weights of the hypergraphs in HGn,k is

hgn,k ∼
nn+k

√
2πn

e
Ω(ζ)
ζ n

ζn+k

1√
ζ Ω′′(ζ)− λ

where Ψ(z) denotes the function Ω′(z)− Ω(z)
z and ζ is defined by Ψ(ζ) = λ. A

similar result holds for simple hypergraphs:

shgn,k ∼
nn+k

√
2πn

e
Ω(ζ)
ζ n

ζn+k

exp
(
−ω

2
2ζ

2

4 − ζ Ω′′(ζ)
2

)
√
ζ Ω′′(ζ)− λ

.

More precisely, if k = (λ−1)n+xn2/3 where x is bounded, then the two previous

asymptotics are multiplied by a factor exp
(

−x2

2(ζ Ω′′(ζ)−λ)n
1/3 + x3

6
ζ2 Ω′′′(ζ)+λ
(ζ Ω′′(ζ)−λ)3

)
.

Proof. With the convention (1), the sum of the weights of the hypergraphs
with n vertices and excess k is

n![znyk] hg(z/y, 1/y, y) = n![znyk]
∑
n

e
Ω(ny)
y

(z/y)n

n!
= nn+k[yn+k]e

Ω(y)
y n.
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The asymptotic is then extracted using the large power scheme presented in [14].

Remark that Ψ(z) =
∑
t ωt(t − 1) z

t−1

t! has nonnegative coefficients, so there is
a unique solution of Ψ(ζ) = λ, and that Ψ(ζ) = λ implies ζ Ω′′(ζ)− λ > 0.

For simple hypergraphs, the coefficient we want to extract from (5) is now

[yn+k]
∏
t

(1 + ωty
t−1)(

n
t) =

nn+k

2iπ

∮
exp

(∑
t

(
n
t

)
log
(

1 + ωt
(
y
n

)t−1
)) dy

yn+k+1
.

The sum in the exponential can be rewritten

Ω(y)

y
n+
∑
t

(
n

t

)(
log(1 + ωt

( y
n

)t−1

)− ωt
( y
n

)t−1
)
−
(
nt

t!
−
(
n

t

))
ωt

( y
n

)t−1

which is Ω(y)
y n − ω2

2y
2

4 − yΩ′′(y)
2 + O(1/n) when y is bounded (we use here the

hypothesis that ω0 = ω1 = 0). In the saddle point method, y is close to ζ, which
in our case is fixed with respect to n. Therefore,

n![znyk] shg

(
z

y
,

1

y
, y

)
∼ exp

(
−ω

2
2ζ

2

4
− ζ Ω′′(ζ)

2

)
hgn,k .

The constraint k = (λ− 1)n+ xn2/3 is equivalent to k = (λ̄− 1)n with λ̄ =
λ + xn−1/3. Since x is bounded, so is λ̄ and the first part of the theorem can
be applied. Let us consider the solution ζ̄ of Ψ(ζ̄) = λ̄. With the help of maple,
we find

e
n

Ω(ζ̄)

ζ̄

ζ̄n+k
=
en

Ω(ζ)
ζ

ζn+k
exp

(
− x2n1/3

2(ζ Ω′′(ζ)− λ)
+
x3

6

ζ Ω′′′(ζ) + λ

(ζ Ω′′(ζ)− λ)3
+O(n−1/3)

)
.

The factor exp
(
−ω

2
2ζ

2

4 − ζ Ω′′(ζ)
2

)
is the asymptotic probability for a hyper-

graph in HGn,k to be simple. For graphs, with Ω(z) = z2/2 and λ = 1/2, we
obtain the same factor e−3/4 as in [2].

We study the evolution of hypergraphs as their excess increases. This choice
of parameter is less natural than the number of edges, but it significantly simpli-
fies the equations. On the other hand, we can compute statistics on the number
of edges of hypergraphs with n edges and excess k.

Theorem 2. Let Ψ(z) and ζ be defined as in Theorem 1, and G a random
hypergraph in HGn,k or in SHGn,k with k = (λ − 1)n, then the number m of
edges of G admits a limit law that is gaussian with parameters

E =
Ω(ζ)

ζ
n,

V =

(
Ω(ζ)

ζ
− λ2

ζ Ω′′(ζ)− λ

)
n

6



if V is non-zero. Whether this condition is satisfied or not, the asymptotic
expectations and factorial moments of the number m of edges are

En,k(m) ∼ Ω(ζ)
ζ n,

∀t ≥ 0, En,k
(
m(m− 1) . . . (m− t)

)
∼
(

Ω(ζ)
ζ n

)t+1

.

Reversely, the expectation and variance of the excess k of a random hyper-
graph with n vertices and m edges are

En,m(k) = nm
Ω′(n)

Ω(n)
− n−m,

Vn,m(k) =
nm

Ω(n)

(
nΩ′′(n)− nΩ′(n)2

Ω(n)
+ Ω′(n)

)
.

Proof. Let us recall that if pt denotes the probability that a discrete random
variable X takes the value t and f(z) =

∑
n pnz

n, then the expectation of X
is f ′(1) and its kth factorial moment is E(X(X−1) . . . (X−k)) = ∂t+1f(1). By
extraction from (4), the generating functions of the hypergraphs with n vertices
and excess k (resp. m edges) and of the simple hypergraphs in SHGn,k are

hgn,k(w) = nn+k[yn+k]ew
Ω(y)
y n,

hgn,m(y) =
Ω(ny)m

yn+mm!
,

shgn,k(w) = nn+k[yn+k]ew
Ω(y)
y ne−

yΩ′′(y)
2 w−ω

2
2y

2

4 w2+O(1/n)

where w and y mark respectively the number of edges and the excess. There-
fore, the probability generating function corresponding to the distribution of m
is hgn,k(w)/ hgn,k(1), and similarly for k. The asymptotics are then derived as
in the proof of Theorem 1.

To prove the normal limit distribution of the number of edges in HGn,k, we
write

hgn,k(es)

hgn,k
= enA(s)+B(s)

(
1 +O

(
n−1/2

))
where

A(s) =
Ω(ζ)

ζ
s+

(
Ω(ζ)

ζ
− λ2

ζ Ω′′(ζ)− λ

)
s2

2
+O(s3)

and apply a lemma of Hwang [15] that can also be found in [14] as Lemma IX.1.

The condition V 6= 0 for the limit law of the number of edges in a hypergraph
from HGn,k to be gaussian is not always satisfied. For example, the variance for
graphs is 0, since all the graphs with n vertices and excess k have exactly k+n
edges.
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4. Subcritical Hypergraphs

We follow the conventions established in [16]: a walk of a hypergraph G
is a sequence v0, e1, v1, . . . , vt−1, et, vt where for all i, vi ∈ V (G), ei ∈ E(G)
and {vi−1, vi} ⊂ ei. A path is a walk in which all vi and ei are distinct. A walk
is a cycle if all vi and ei are distinct, except v0 = vt. Connectivity, trees and
rooted trees are then defined in the usual way.

A unicycle component is a connected hypergraph that contains exactly one
cycle. We also define a path of trees as a path that contains no cycle, plus a
rooted tree hooked to each vertex, except to the two ends of the path. It can
equivalently be defined as an unrooted tree with two distinct marked leaves.

Lemma 3. Let T , U , V and P denote the generating functions of rooted trees,
unrooted trees, unicycle components and paths of trees, using the variable z to
mark the number of vertices, then

T (z) = zeΩ′(T (z)), (6)

U(z) = T (z) + Ω(T (z))− T (z) Ω′(T (z)), (7)

V (z) =
1

2
log

1

1− T (z) Ω′′(T (z))
, (8)

P (z) =
Ω′′(T (z))

1− T (z) Ω′′(T (z))
. (9)

Proof. Those expressions can be derived using the symbolic method presented
in [14]. The generating function of edges is Ω(z). If one vertex is marked, it
becomes zΩ′(z) and zΩ′′(z) if another vertex is deleted. Equation (6) means
that a rooted tree is a vertex (the root) and a set of edges from which a vertex
has been removed and the other vertices replaced by rooted trees. Equation (7)
is a classical consequence of the dissymmetry theorem described in [17] and
studied in [18]. It can be checked that z∂zU = T , which, in a symbolic method,
means that a tree with a vertex marked is a rooted tree. Unicycle components
are cycles of rooted trees, which implies (8).

Combining the enumeration of hypergraphs with the enumeration of forests,
we can investigate the birth of the first cycle and the limit distribution of the
number of cycles in a hypergraph with small excess.

Theorem 4. Let Ψ(z) denote the function Ω′(z)− Ω(z)
z , τ be implicitly defined

by τ Ω′′(τ) = 1 and Λ = Ψ(τ). Let us consider an excess k = (λ−1)n where 0 <
λ < Λ and the value ζ such that Ψ(ζ) = λ.

With high probability, a hypergraph in HGn,k or SHGn,k contains no com-
ponent with two cycles. The limit distribution of the number of cycles of such a
hypergraph follows a Poisson law of parameter

1

2
log

(
1

1− ζ Ω′′(ζ)

)
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if the hypergraph is in HGn,k, and

1

2
log

(
1

1− ζ Ω′′(ζ)

)
− ω2

2ζ
2

4
− ζ Ω′′(ζ)

2

if it is in SHGn,k.

Proof. Let THGn,k denote the set of hypergraphs in HGn,k that contains
only trees and unicycle components. The excess of a tree is −1, the excess
of a unicycle component is 0. Since the excess of a hypergraph is the sum of
the excesses of its components, each hypergraph in THGn,k contains exactly −k
trees. The generating function of the number of cycles in hypergraphs of THGn,k

is

n![zn]
U(z)−k

(−k)!
euV (z) =

n!

(−k)!

1

2iπ

∮
(T+Ω(T )−T Ω′(T ))−ke

u
2 log

(
1

1−T Ω′′(T )

)
dz

zn+1

where u marks the cycles. We use the large power Theorem VIII.8 of [14] to
extract the asymptotic. For k = (λ − 1)n, after the change of variable z → T ,
the dominant saddle point is characterized by Ψ(ζ) = λ. The computations lead
to

n![zn]
U(z)−k

(−k)!
euV (z) ∼ nn+k

√
2πn

e
Ω(ζ)
ζ n

ζn+k

e
u−1

2 log
(

1
1−T Ω′′(T )

)
√
ζ Ω′′(ζ)− λ

.

Dividing by the cardinality of HGn,k derived in Theorem 1, we obtain the gen-
erating function of the limit probabilities of the number of cycles in THGn,k:∑

t

P(G ∈ THGn,k and has t cycles | G ∈ HGn,k)ut = e
u−1

2 log
(

1
1−T Ω′′(T )

)
.

For u = 1, it is equal to 1, so with probability tending to 1, a hypergraph
in HGn,k has no component with more than one cycle. For u = eit, we recognize

the characteristic function of a Poisson law with parameter 1
2 log

(
1

1−T Ω′′(T )

)
.

The same computations hold for the analysis of simple hypergraphs, except

the generating function V (z) has to be replaced by V (z) − T Ω′′(T )
2 − ω2

2T
2

4 to
avoid loops and multiple edges (in unicycle components, those can only be two
edges of size 2).

More informations on the length of the first cycle and the size of the com-
ponent that contains it could be extracted, following the approach of [1].

5. Birth of the complex components

Let us recall that a connected hypergraph is complex if its excess is strictly
positive. In order to locate the global excess k at which the first complex
component appears, we compare the asymptotic numbers of hypergraphs and
hypergraphs with no complex component.
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Theorem 6 describes the limit probability for a hypergraph not to contain
any complex component. A phase transition occurs when k

n reaches the critical
value Λ−1, defined in Theorem 4. On an analytic point of view, this corresponds
to the coalescence of two saddle points. In this context, the large power scheme
ceases to apply, so we replace it by the following general theorem, borrowed
from [19] (see also Theorem IX.16 of [14] for discussions and links with the
stable laws of probability theory) and adapted for our purpose (in the original
theorem, µ = 0). It is also close to Lemma 3 of [2].

Theorem 5. We consider a generating function H(z) with nonnegative coeffi-
cients and a unique isolated singularity at its radius of convergence ρ. We also
assume that it is continuable in ∆ := {z | |z| < R, z /∈ [ρ,R]} and there is
a λ ∈]1; 2[ such that H(z) = σ − h1(1 − z/ρ) + hλ(1 − z/ρ)λ + O((1 − z/ρ)2)
as z → ρ in ∆. Let k = σ

h1
n+xn1/λ with x bounded, then for any real constant µ

[zn]
Hk(z)

(1− z/ρ)µ
∼ σkρ−n 1

n(1−µ)/λ
(h1/hλ)(1−µ)/λG

(
λ, µ;

h
1+1/λ
1

σh
1/λ
λ

x

)
(10)

where G(λ, µ;x) = 1
λπ

∑
k≥0

(−x)k

k! sin
(
π 1−µ+k

λ

)
Γ
(

1−µ+k
λ

)
.

Proof. In the Cauchy integral that represents [zn] Hk(z)
(1−z/ρ)µ we choose for the

contour of integration a positively oriented loop, made of two rays of angle±π/(2λ)
that intersect on the real axis at ρ− n−1/λ, we set z = ρ(1− tn−1/λ)

[zn]
Hk(z)

(1− z/ρ)µ
∼ −σkρ−n

2iπn(1−µ)/λ

∫
t−µe

hλ
h1
tλe−x

h1
σ tdt

The contour of integration comprises now two rays of angle ±π/λ intersecting
at −1. Setting u = tλhλ/h1, the contour transforms into a classical Hankel
contour, starting from −∞ over the real axis, winding about the origin and
returning to −∞.

−σkρ−n

2iπn(1−µ)/λ

1

λ
(h1/hλ)(1−µ)/λ

∫ (0)

−∞
eue−xu

1/λh
1+1/λ
1 /(σh

1/λ
λ )u

1−µ
λ −1du

Expanding the exponential, integrating termwise, and appealing to the comple-
ment formula for the Gamma function finally reduces this last form to (10).

Theorem 6. Let Ψ(z), τ and Λ be defined as in Theorem 4, G(λ, µ;x) as in
Theorem 5 and γ = 1 + τ2 Ω′′′(τ). We consider an excess k = (Λ− 1)n+ xn2/3

where x is bounded. Then the sum of the weights of the hypergraphs in HGn,k

with no complex component is equivalent to

nn+k

√
2πn

e
Ω(τ)
τ n

τn+k

1√
1− Λ

√
3π

2
e
− x2

2(1−Λ)
n1/3− x3

6(1−Λ)2 G

(
3

2
,

1

4
;−32/3γ1/3x

2(1− Λ)

)
. (11)
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For simple hypergraphs, this sum is

nn+k

√
2πn

e
Ω(τ)
τ n

τn+k

exp
(
− 1

2 −
ω2

2τ
2

4

)
√

1− Λ

√
3π

2
e
− x2

2(1−Λ)
n1/3− x3

6(1−Λ)2 G

(
3

2
,

1

4
;−32/3γ1/3x

2(1− Λ)

)
.

Proof. For k = (λ − 1)n, there are two saddle points in T : one implicitly
defined by Ψ(ζ) = λ and the other at ζ = τ . Those two saddle points coalesce
when λ = Ψ(τ). When k is around its critical value (Λ − 1)n, we apply The-
orem 5. The Newton-Puiseux expansions of T , eV and U can be derived from
Lemma 3

T (z) ∼ τ − τ
√

2

γ

√
1− z/ρ,

eV (z) ∼ (2γ)−1/4(1− z/ρ)−1/4,

U(z) = τ(1−Ψ(τ))− τ(1− z/ρ) + τ
2

3

√
2

γ
(1− z/ρ)3/2 +O(1− z/ρ)2,

where ρ = τe−Ω′(τ). Using Theorem 5, we obtain

thgn,k ∼
n!

(−k)!

√
3

2

(τ(1− Λ))−k

ρn
√
n

G

(
3

2
,

1

4
;−32/3γ1/3x

2(1− Λ)

)
which reduces to (11).

As in the proof of Theorem 4, in the analysis of simple hypergraphs, the

generating function V (z) is replaced by V (z)− T Ω′′(T )
2 − ω2

2T
2

4 .

Combining Theorems 1 and 6, we deduce that when k = (λ− 1)n+O(n1/3)
with λ < Λ, the probability that a random hypergraph in HGn,k has no complex
component approaches 1 as n tends towards infinity. When k = (Λ − 1)n +
O(n1/3), this limit becomes

√
2/3 because G(2/3, 1/4; 0) is equal to 2/(3

√
π).

It is remarkable that this value does not depend on Ω, therefore it is the same
as in [1] for graphs. However, the evolution of this probability between the
subcritical and the critical ranges of excess depends on the (ωt).

Corollary 7. Let τ , Λ and γ be defined as in Theorem 6. For k = (λ − 1)n
and λ < Λ, a hypergraph in HGn,k or in SHGn,k has no complex component with
high probability. For k = (Λ− 1)n+ xn2/3 with x bounded, the limit probability
that such a hypergraph has no complex component is√

3π

2
exp

(
−x3γ

6(1− Λ)3

)
G

(
3

2
,

1

4
;−32/3γ1/3x

2(1− Λ)

)
where G is the function defined in Theorem 5.

Proof. From the second assertion of Theorem 1 we deduce the asymptotic
number of hypergraphs in HGn,k when k = (1− Λ)n+ xn2/3

hgn,k ∼
nn+k

√
2πn

e
Ω(τ)
τ n

τn+k

e
−x2

2(1−Λ)
n1/3+ x3

6
γ−1+Λ

(1−Λ)3

√
1− Λ

.

11



Equation 11 divided by this estimation of hgn,k leads to the result announced.
The computations are the same to simple hypergraphs.

Theorem 5 does not apply whenH(z) is periodic. This is why we restricted Ω(y)/y
not to be of the form f(zd) where d > 1 and f(z) is a power serie with a strictly
positive radius of convergence. An unfortunate consequence is that Theorems 1
and 6 do not apply to the important but already analyzed case of d-uniform
hypergraphs. However, the expression of the critical excess is still valid. For

the d-uniform hypergraphs, Ω(z) = zd

d! , Ψ(z) = (d−1)
d! zd−1 and τd−1 = (d− 2)!,

so we obtain k = 1−d
d n for the critical excess, which corresponds to a number

of edges m = n
d(d−1) , a result already derived in [9].

6. Kernels and Connected Hypergraphs

In the seminal articles [12] and [20], Wright establishes the connection be-
tween the asymptotic of connected graphs with n vertices and excess k and the
enumeration of the connected kernels, which are multigraphs with no vertex of
degree less than 3. This relation was then extensively studied in [2] and the
notions of excess and kernels were extended to hypergraphs in [13].

A kernel is a hypergraph with additional constraints that ensure that:

• each hypergraph can be reduced to a unique kernel,

• the excesses of a hypergraph and its kernel are equal,

• for any integer k, there is a finite number of kernels of excess k,

• the generating function of hypergraphs of excess k can be derived from
the generating function of kernels of excess k.

Remark that the two last requirements oppose each other: the third one impose
the kernels to be simple, but the fourth one means they should keep trace
of the structure of the hypergraph. Following [13], we define the kernel of a
hypergraph G as the result of the repeated execution of the following operations:

1. delete all the vertices of degree ≤ 1,

2. delete all the edges of size ≤ 1,

3. if two edges (a, v) and (v, b) of size 2 have one common vertex v of degree 2,
delete v and replace those edges by (a, b),

4. delete the connected components that consist of one vertex v of degree 2
and one edge (v, v) of size 2.

The following theorem has already been derived for uniform hypergraphs
in [13]. We give a new and more general proof. We also define clean kernels and
derive an expression for their generating function. As we will see in the proof
of Theorem 10, with high probability the kernel of a random hypergraph in the
critical window is clean.

12



Theorem 8. The number of kernels of excess k is finite and each of them con-
tains at most 3k edges of size 2. We say that a kernel is clean if this bound is
reached. The generating functions of connected clean kernels of excess k is

ck(1 + ω3z
2)2kω3k

2 z2k (12)

where ck = [z2k] log
∑
n

(6n)!
(3!)2n23n(3n)!

z2n

(2n)! and the variables w and x have been

omitted.

Proof. By definition, k+n+m =
∑
e∈E |e| =

∑
v∈V deg(v). By construction,

the vertices (resp. edges) of a kernel have degree (resp. size) at least 2, so

k + n+m ≥ 3m−m2, (13)

k + n+m ≥ 3n− n2, (14)

where n2 (resp. m2) is the number of vertices of degree 2 (resp. edges of size 2).
Furthermore, each vertex of degree 2 belongs to an edge of size at least 3, so

k + n+m ≥ 2m2 + n2. (15)

Summing those three inequalities, we obtain 3k ≥ m2.
This bound is reached if and only if (13), (14) and (15) are in fact equalities.

Therefore, the vertices (resp. edges) of a clean kernel have degree (resp. size) 2
or 3, each vertex of degree 2 belongs to exactly one edge of size 3 and all the
vertices of degree 3 belongs to edges of size 2. Consequently, any connected
clean kernel can be obtained from a connected cubic multigraph with 2k ver-
tices through substitutions of vertices of degree 3 by groups of three vertices
of degree 2 that belong to a common edge of size 3. This means that if f(z)
represent the cubic multigraphs where z marks the vertices, then the generat-
ing function of clean kernels is f(z + ω3z

3). The generating function of cubic

multigraphs of excess k is (6k)!
(3!)2k23k(3k)!

z2k

(2k!) , and a cubic multigraph is a set of

connected cubic multigraphs, so the value (2k)!ck defined in the theorem is the
sum of the weights of the connected cubic multigraphs.

To prove that the total number of kernels of excess k is bounded, we introduce
the dualized kernels, which are kernels where each edge of size 2 contains a vertex
of degree at least 3. This implies the dual inequality of (15) k+n+m ≥ 2n2+m2

that leads to 7k ≥ n+m. Finally, each dualized kernel matches a finite number
of normal kernels by substitution of an arbitrary set of vertices of degree 2 by
edges of size 2.

The previous theorem gives a way to construct all connected hypergraphs of
fixed excess k from a finite set of kernels. This allows us to derive the asymptotic
number of connected hypergraphs with fixed excess. The corresponding result
for uniform hypergraphs can be found in [13].
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Theorem 9. Let Ck(z) denote the generating function of connected hypergraphs
with excess k, then near its dominant singularity ρ, we have

Ck(z) ∼ ck
( √

γ

23/2τ

)k
(1− z/ρ)−3k/2

where ck is defined in Theorem 8, τ is the solution of τ Ω′′(τ) = 1, ρ = τe−Ω′(τ)

and γ = 1 + τ2 Ω′′′(τ). The number of connected hypergraphs with excess k
and n vertices is

n![zn]Ck(z) ∼ ck
√

2π

Γ
(

3k
2

) ( √γ
23/2τ

)k (
e

ρ

)n
nn+(3k−1)/2.

The same results apply to connected simple hypergraphs.

Proof. Theorem 8 implies that the generating function of the connected ker-
nels of excess k is a multivariate polynomial with variables z, ω2, ω3, . . .. Let
us write it as the sum of two polynomials, Pk and Qk, one corresponding to
clean kernels and the other to the rest of the kernels of excess k. According
to Theorem 8, Pk is equal to ck(1 + ω3z

2)2kω3k
2 z2k. By definition of the clean

kernels, the degree of Qk with respect to ω2 is strictly less than 3k.
One can develop a kernel into a hypergraph by adding rooted trees to its

vertices, replacing its edges of size 2 by paths of trees and adding rooted trees
into the edges of size greater than 2. This matches the following substitutions in

the generating function of kernels: z ← T (z), w2 ← Ω′′(T )
1−T Ω′′(T ) and wt ← Ω(t)(T )

for all t > 2. Applying this substitution to Pk+Qk, we obtain for the generating
functions Ck(z) of connected hypergraphs of excess k

Ck(z) = ck(1 + z2 Ω′′′(T (z)))2k

(
Ω′′(T (z))

1− T (z) Ω′′(T (z))

)3k

z2k + . . .

where the “. . .” hides terms with a denominator 1−T (z) Ω′′(T (z)) at a power at
most 3k − 1. The Puiseux developments already derived for the proof of Theo-
rem 6, lead to the expression stated in the theorem, from which the asymptotic
enumeration result follows.

We now prove that the result holds for connected simple hypergraphs. As
shown in the first part of the proof, we can restrict our investigation to hyper-
graphs with clean kernels. Among them, let us consider the set of connected
hypergraphs with excess k that are not simple. Each one contains a loop or
two edges of size 2 linking the same vertices. Therefore, the kernel of each of
them has at least one edge of size 2 that is not replaced by a (non-empty) path
of threes in the hypergraph. It follows that the generating function of those
hypergraphs has a denominator 1 − T (z) Ω′′(T (z)) at a power at most 3k − 1,
so the cardinality of this set is negligible compared to the number of connected
hypergraphs with excess k.

An other and more intuitive way to understand it is that at fixed excess,
adding more and more vertices into a kernel, the chances that an edge of size 2
does not break into a non-empty path of threes are negligible.
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To derive a complete asymptotic expansion of connected hypergraphs, one
needs to take into account non-clean kernels. For any fixed k, one can enumerate
all the kernels of excess k (since it is a finite set), then apply the substitution
described in the previous proof to obtain the generating function of all connected
hypergraphs of excess k, from which a complete asymptotic expansion follows.
Although computable, this construction is heavy. The purely analytic approach
of [21], that adresses this problem for graphs, may allow a simpler expression.

The asymptotic enumeration of connected hypergraphs in HGn,k when k
tends toward infinity is more challenging. Since the original result for graphs
of [22], other proofs have been proposed, as [23], which may be generalized to
hypergraphs.

7. Structure of Hypergraphs in the Critical Window

The next theorem describes the structure of hypergraphs with an excess at
or close to the critical value k = (Λ−1)n introduced in Theorem 6. It generalizes
Theorem 5 of [2] about graphs. Interestingly, the result at the critical excess
does not depend on the (ωt).

Theorem 10. Let Ψ(z), τ , Λ and γ be defined as in Theorem 6. Let r1, . . . , rq
denote a finite sequence of integers and r =

∑q
t=1 t rt, then the limit of the

probability for a hypergraph or simple hypergraph with n vertices and global ex-
cess k = (Λ − 1)n + O(n1/3) to have exactly rt components of excess t for t
from 1 to q is (

4

3

)r
r!

(2r)!

√
2

3

cr11

r1!

cr22

r2!
. . .

c
rq
q

rq!
. (16)

where the (ci) are defined as in Theorem 8. For k = (Λ − 1)n + xn2/3 and x
bounded, the limit of this probability is

3−r
cr11

r1!

cr22

r2!
. . .

c
rq
q

rq!

√
3π

2
exp

(
−x3γ

6(1− Λ)3

)
G

(
3

2
,

1

4
+

3r

2
;−32/3γ1/3x

2(1− Λ)

)
.

Proof. Let Ck(z) denote the generating function of connected hypergraphs of
excess k. From Theorem 9, when z tends towards the dominant singularity ρ
of T (z),

Ck(z) ∼ ck
( √

γ

23/2τ

)k
(1− z/ρ)−3k/2.

The sum of the weights of hypergraphs with global excess k and rt components
of excess t is

n![zn]
Ur−k

(r − k)!
eV
C1(z)r1

r1!

C2(z)r2

r2!
. . .

Cq(z)
rq

rq!

and an application of Theorem 5 ends the proof, with G(3/2, 1/4 + 3r/2; 0) =
2

3
√
π

4rr!
(2r)! . Those computations are the same as in Theorem 6.

In [2] page 52, the authors remark that the theorem holds true when q is un-
bounded, because the sum of the probabilities (16) over all finite sequences (rt)
is 1.
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8. Birth of the Giant Component

Erdős and Rényi [3] analyzed random graphs with a large number n of
vertices and m edges such that m/n tends toward a constant c. They proved
that when c is strictly greater than 1/2, with high probability the graph has a
giant component, which contains a constant fraction of the vertices and has an
excess going to infinity with n. Similar results have been derived for various
models of hypergraphs [9], [4], [5], [6], [7].

We consider random hypergraphs with n vertices and excess k = (λ−1)n. We
have seen in Theorem 4 that when λ < Λ, with high probability the hypergraph
contains only trees and unicyclic components. We also have derived the limit
distribution of the excesses of the components in the critical window, i.e. for
hypergraphs with excess k = (Λ− 1)n+ xn2/3 with x bounded. In this section,
we investigate the case λ > Λ.

Molloy and Reed [24] and Newman, Strogatz and Watts [25] gave an intuitive
explanation of the birth of the giant component in graphs with known degree
distribution1. Starting with a vertex, we can determine the component in which
it lies by exploring its neighbors, then the neighbors of its neighbors and so on.
This branching process is likely to stop rapidly if the expected number of new
neighbors is smaller than 1. On the other hand, the component is likely to be
large if this means is greater than 1. We will not derive results on the giant
component as precise as Erdős and Rényi [3] did. Instead, we explain why
the expected number of new neighbors is smaller than 1 only for subcritical
hypergraphs.

Let us define the excess degree of a vertex v in an edge e as the sum over all
the other edges that contain v of their sizes minus 1

excess degree(v, e) =
∑
v∈ẽ,
ẽ 6=e

(|ẽ| − 1) .

This is the number of neighbors we discover when we arrive at the vertex v
from the edge e, assuming they are distinct. We now prove that the expected
excess degree is smaller than 1 only for subcritical hypergraphs. This provides
an intuitive explanation for the birth of the giant component.

Theorem 11. Let us consider a random hypergraph with n vertices and excess
k = (λ− 1)n, and a uniformly chosen pair (v, e), where the vertex v belongs to
the edge e. With the notations of Theorem 4, the expected excess degree of v in
e is smaller than (resp. equal to or greater than) 1, if λ is smaller than (resp.
equal to or greater than) Λ.

Proof. Let F (u) denote the generating function of the degree excess of a
marked vertex in a marked edge of a hypergraph with n vertices and excess

1We thank an anonymous referee for those references.
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k = (λ − 1)n. The marked vertex and edge represent v and e. Such a hyper-
graph can be decomposed into a hypergraph on n−1 vertices, an edge with one
vertex marked – this is the edge e that contains the vertex v – and a set of edges
with one vertex marked and removed. Those last edges contain the neighbors
of v that are counted by the excess degree. Introducing the variable u to mark
the excess degree of v and the variable y for the excess of the hypergraph, we
obtain

F (u) = [yn+k]e
Ω((n−1)y)

y Ω′(ny)eΩ′(nyu).

After the change of variable ny → y, this expression becomes

F (u) = nn+k[yn+k]en
Ω(y− yn )

y Ω′(y)eΩ′(yu),

which can be approximated by

F (u) = nn+k[yn+k]en
Ω(y)
y −Ω′(y)+O(1/n)Ω′(y)eΩ′(yu).

The expected excess degree of v in e is then F ′(1)/F (1) (see [14, Part C])

E(excess degree) =
F ′(1)

F (1)
=

[yn+k]en
Ω(y)
y −Ω′(y)+O(1/n)Ω′(y)yΩ′′(y)eΩ′(y)

[yn+k]en
Ω(y)
y −Ω′(y)+O(1/n)Ω′(y)eΩ′(y)

.

The asymptotics of the coefficient extractions in the computation of F (1) and
F ′(1) are obtained using the Large Powers Theorem [14, Theorem VIII.8]. The
saddle-point ζ is characterized by

Ψ(ζ) = λ,

and the limit value of the expectation is

lim
n→∞

E(excess degree) = ζΩ′′(ζ).

Let us recall the equalities Λ = Ψ(τ) and τΩ′′(τ) = 1. Since Ψ(z) and zΩ′′(z)
are increasing functions, it follows that when λ is smaller than (resp. equal to or
greater than) Λ, then ζΩ′′(ζ) is smaller than (resp. equal to or greater than) 1.

9. Future Directions

In the present paper, for the sake of the simplicity of the proofs, we restrained
our work to the case where eΩ(z)/z is aperiodic. This technical condition can
be waived in the same way Theorem VIII.8 of [14] can be extended to periodic
functions.

In the model we presented, the weight ωt of an edge only depends on its
size t. For some applications, one may need weights that also vary with the
number of vertices n. It would be interesting to measure the impact of this
modification on the phase transition properties described in this paper.

More generally, the study of the relation to other models, as the one pre-
sented in [10] and [26], could lead to new developments and applications.
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