Analyzing the Energy Efficiency of
Cluster Scheduling Schemes
by Probabilistic Model Checking*

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner @risc.jku.at

Tamds Bérczes

Faculty of Informatics

University of Debrecen, Hungary
berczes.tamas @inf.unideb.hu
Addm Téth

Faculty of Informatics

University of Debrecen, Hungary
adamtoth102 @ gmail.com

December 15, 2014

Abstract

We report in this paper on our results of modeling and analyzing with the probabilistic
model checker PRISM the energy efficiency of various cluster scheduling schemes. These
schemes were originally introduced by Do, Vu, Tran, and Nguyen in their paper “A gener-
alized model for investigating scheduling schemes in computational clusters” and analyzed
by simulation there. Our investigations with PRISM validate the reported results and also
subsequent results that were achieved with the performance analysis tool MOSEL-2. Fur-
thermore, some measures that could be determined by simulation but not with MOSEL-2
could be also derived with PRISM.

*Supported by the project HU 10/2012 of the Austrian Academic Exchange Service (OAD) and by the TAMOP-
4.2.2.C-11/1/KONV-2012-0001 project. This project has been supported by the European Union, co-financed by
the European Social Fund.

mailto:Wolfgang.Schreiner@risc.jku.at
mailto:berczes.tamas@inf.unideb.hu
mailto:adamtoth102@gmail.com

Contents

=

Introduction

2. Infinite Source Models
3. Finite Source Models
4. Conclusions

A. The Infinite Source Models
Al ClassQUEUE i e e e
A.2. Common Queue withDVFS

B. The Finite Source Models
B.1. ClassQueue e e e e e
B.2. Separate Queue e

1. Introduction

In this paper we extend our investigations started in [6] on modeling and analyzing various
scheduling schemes for computational clusters that were originally presented in [2] and analyzed
be simulation there. We apply in our investigations the probabilistic model checker PRISM [3,
5] by constructing and solving precise mathematical system models. While in [6] we have
dealt with timing properties, we focus in this paper on the energy consumption properties of
the proposed scheduling schemes. To make this presentation self-contained, with repeat our
introduction from [6]:

The system presented in [2] consists of K classes of servers; the servers in each
class have identical performance and energy consumption; typically, the higher the
performance of a server is, the more energy it consumes. The devised scheduling
schemes are based on a ranking of server classes, either by high performance (HP)
or by energy efficiency (EE). Roughly speaking, when a new job arrives, highly
ranked servers are preferred over lowly ranked ones. In more detail, there are three
schemes:

1. Separate Queue Scheme: each server has a separate queue from which it ac-
cepts and processes jobs. A new job is placed into the shortest queue; if there
are multiple such queues, the queue of the most highly ranked server is chosen.

2. Class Queue Scheme: each server class has a separate queue from which the
servers of this class accept and process jobs. A new job is placed into the
shortest queue; if there are multiple such queues, the queue of the most highly
ranked class is chosen.

3. Common Queue Scheme: there is a single common queue from which all
servers accept and process jobs. A new job is forwarded to the most highly
ranked free server; if there is no such server, the job is placed into the common
queue.

The various schemes are compared in [2] with respect to various criteria for both
the HP and the EE ranking. The paper assumes an infinite source model where
jobs arrive with a constant rate A that is determined to establish a desired system
utilization U in the range of 50% to 90%.

In this paper, we undertake to analyze the models with respect to the energy related measures
presented in [2], in particular the average amount of energy consumed per job in the different
schemes under different ranking criteria; we also investigate the effect of applying Dynamic
Voltage/Frequency Scaling (DVFS) discussed in that paper. While in [2] only infinite source
models are discussed, we generalize our investigations also to the finite source case (based on
the models that we have previously introduced in [6]); this allows us to compare the results we
those presented in the forthcoming paper [7] where the finite source models are described and
analyzed with the help of the performance modeling tool MOSEL-2 [1].

The rest of the paper is organized as follows: in Section 2, we present the infinite source
models and their analysis while in Section 3 we extend our considerations to the finite source

case. In Section 4, we present our conclusions and discuss further work. Appendix A contains
the full listing of the infinite source models and of the properties that were used for the analysis;
Appendix B contains the corresponding listings for the finite source variants.

2. Infinite Source Models

In this section, we extend the timing analysis of some of the infinite source models presented
in [6] to the analysis of the energy consumption of the proposed cluster scheduling schemes. This
analysis corresponds to the analysis originally presented in [2] based on a couple of measures
described below.

Preliminaries Let K be the number of server classes and let M (i) be the number of servers of
class i. Let P, ; be the power consumption of each server of class i when the server is active,
i.e., busy with processing a job; let P;; ; be the power consumption of the server when it is idle,
i.e., not processing a job. Let a; ;(#) denote the sum of active time periods of server j in class i
until time ¢; let ¢; ;(#) be the corresponding sum of idle time periods. Then the average energy
consumption per job when idle servers are not switched off (but function in the idle state with
lower power) until the departure time ¢,, of job n is

K M (i) M (i)
AE o swiren(n) := (1/n) - Z Poac,i - Z ai,j(tn) + Pia,i - Z Li,j(tn)
i=1 j=1 j=1

and the average energy consumption per job when idle servers are switched off is

K M(i)

AEyich-og(n) := (1/n) - Y | Paci+) @i j(tn)

i=1 j=1

The corresponding long term average energy consumption per job are
AEo—switch = nh_)nolo AE o—switen(n)
AEswitch—oﬁ” = nh_)ngo AEswitch—ojf(n)

Our core goal in this paper is to determine these long term values.

To determine such quantities, PRISM allows to define a reward structure r = (p,t) which
assigns to every state s a reward p(s) > 0 and to every transition s — s” a reward ¢(s, s_’) > 01[4].
Given an execution path w = So_ — §1 — sp--- that traverses the states sg, 51, 52 . .., we may
thus define the reward

Ji—1 Ji—1
Xe<i@) =) (1 plsi) +u(siseen)) + [t = Y ti| - plsy,)
i=0 i=0
accumulated on that path up to time ¢ where #; denotes the time that the system stays in state s;.
Intuitively, this execution accumulates for every transition s; — ;41 the state reward ¢; - p(s;)
and the transition reward ¢(s;, S;4+1). B
The PRISM model checker allows by a query

R{"r"}=7? [S]

to determine the quantity
lim (1/1) - Exp(Xc <)

where Exp(X) denotes the expectation of random variable X with respect to the probability
measure determined by the system, i.e., intuitively the expected value of the reward with respect
to all possible execution paths.

Class Queue Model Appendix A.1 lists the PRISM version of the “class queue” model for
K =3 classes of M = 8 servers each; the state variables g1, g2, g3 determine the number of jobs
assigned to class 1,2, 3, respectively. We define the state rewards

rewards "TE_noswitch"
true:
pacl*min(M,ql) + pac2*min(M, q2) + pac3*min(M,q3) +
pidl*max(0,M-ql) + pid2*max(®,M-q2) + pid3*max(0®,M-q3);
endrewards

rewards "TE_switchoff"
true:
pacl*min(M,ql) + pac2*min(M,q2) + pac3*min(M,q3);
endrewards

which assign to each of the min(M, g;) active servers of class i the active energy consump-
tion P, ; and to each of the max(0, M — g;) idle servers the idle energy consumption P;; ;. The
PRISM queries

"TE_noswitch": R{"TE_noswitch"}=? [S] ;
"TE_switchoff": R{"TE_switchoff"}=? [S] ;

thus determine the quantities

nll_)n'olo(l/l‘n) ‘1 - AEpo—switen()
nh—{%o(l/tn) ‘n- AEswitch—oﬁ"(n)

respectively, i.e., the expected energy consumption rate of the system (Joule/second = Watt).
To determine the average energy consumption of the system per processed job (Joule/job =
Watt second/job), we define the transition rewards

rewards "done"
[donel] true : 1;
[done2] true : 1;
[done3] true : 1;

endrewards

which assign to every transition by which a job is terminated a value 1; the PRISM query

"done": R{"done"}=? [S] ;

thus determines the quantity
lim (1/t,) - n
n—0oo

By the queries

"AE_noswitch": "TE_noswitch"/"done";
"AE_switchoff": "TE_switchoff"/"done";

we can thus determine the desired values

hmn—)oo(l/tn) ‘n- AEno—switch(”)
hmn—wo(l/tn) ‘n

limn—mo(l/tn) n- AEswitch—()jf(n)
hmn—wo(l/tn) tn

AEno—switch = lim AEno—switch(”) =
n—co

AEswitch—off = nh_)néo AEswitch—oﬁ(n) =

The top row of diagrams in Figure 1 represent the energy consumption for the class queue
scheme and the EE (energy efficiency) policy respectively HP (high performance) policy; the
results correspond very closely to those presented in Figures 10 and 11 of [2].

Common Queue Model Appendix A.2 lists the PRISM version of the corresponding “com-
mon queue” model! for K = 3 classes of M = 8 servers each; here the variables ¢, g2, ¢3
represent the number of servers in classes 1,2, 3 to which new jobs have been assigned on ar-
rival and that thus are active. This simplifies the state rewards to

rewards "TE_noswitch"
true:
pacl#*ql + pac2*q2 + pac3*q3 +
pidl*(M-ql) + pid2*(M-q2) + pid3*(M-q3);

endrewards

rewards "TE_switchoff"
true:
pacl*ql + pac2*q2 + pac3*q3;

endrewards
However, servers that become idle may also process jobs from a common queue (represented by
system variable g) to which jobs have been assigned that did not immediately find a free server.
The system state does not indicate that some of the seemingly “idle” servers may actually process
jobs from the common queue; the state reward may thus underestimate the power consumption of
the system by considering servers as idle that are actually active. To compensate the difference,

we assign to the transitions that indicate the completion of jobs from the common queue the
expected difference in energy consumption:

IThe listed model uses the DVFS parameters discussed in the following subsection.

average energy per job average energy per job average energy per job

response time

2,000
1.800
1,600
1,400
1,200

1,000

2,000
1,800
1,600
1,400
1,200

1,000

1,800

1,600

1,400

1,200

1.000

800

infinite, class. EE

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0,90
u
infinte, common, EE
0.50 0.55 0,60 0.65 0.70 0.75 0.80 0.85 0.90
u
infinite, commaon, EE
05 0.6 07 0.8 0.9
u

infinite, common, EE

2.2

1.8
1.6
1.4
1.2

0.5 0.6 0.7 0.8 0.9

Figure 1: Infinite Source Class/Common Queue (3 - 8 Servers, Q = 24/72)

average energy per job average energy per job average energy per job

response time

2,000
1,800
1,600
1.400
1,200

1,000

2,000
1,800
1,600
1,400
1,200

1,000

1,800

1,600

1,400

1,200

1,000

800

infinite, class, HP

0.50 0,55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

u

infinite, comman, HP

0.50 0,55 0.60 0.65 0.70 0,75 0.80 0.85 0.90

u

infinite, common, HP

infinite, comman, HP

22

18
16
1.4
1.2

rewards "TE_noswitch"
true:

[donelb] true : (pacl-pidl)*(1/mul);

[done2b] true : (pac2-pid2)*(1/mu2);

[done3b] true : (pac3-pid3)*(1/mu3l);
endrewards

rewards "TE_switchoff"
true:

[donelb] true : pacl®*(l/mul);

[done2b] true : pac2*(1l/mu2);

[done3b] true : pac3*(l/mu3);
endrewards

Please note that for each such state transition the power consumption is weighted with the ex-
pected time 1/u; that the server of class i spent in processing the request; the solution is not very
elegant but satisfies its purpose. The second row in Figure 1 depicts the results for the common
queue model; the difference to the class queue model are negligible which corresponds to the
results presented in Figures 10 and 11 of [2].

Dynamic Voltage/Frequency Scaling Dynamic Voltage/Frequency Scaling (DVES) is a tech-
nique where the execution frequency of a processor is deliberately reduced in order to save
energy at the price of simultaneously reducing its performance. In [2], the impact of DVFS
is analyzed by adjusting the performance/power consumption figures for active processors ac-
cording to published specifications (about 70% of full performance/power). The common queue
model presented in Appendix A.2 reflects these data.

The third row of diagrams in Figure 1 depicts the energy consumption of the common queue
model and switch-off with both DVFS employed and not employed; the results correspond to
those presented in Figure 13 of [2]. The bottom row of diagrams in Figure 1 depicts the con-
sequences of DVFS with respect to service response time; the results correspond to Figure 12
of [2].

As can be seen from these results, by the application of DVFS the response time increases by
about 40% in proportion to the reduced processor frequency (1/0.7 = 1.4) which is as expected.
On the other side, the average amount of energy consumed per job is only slightly decreased.
Actually, if the reduction in both performance and power were indeed the same, there would
be no reduction in the average consumption at all (because the decreased amount of energy per
time consumed would be exactly compensated by the correspondingly increased execution time
of a job). The only reason why there is some improvement in the average energy consumption
is that the reduction in power is slightly higher than that of execution frequency (68.8% versus
70.4%); only the relative difference (2.3%) is responsible for the slight average reduction. This
simple explanation which shows that the results concerning DVFS are not really very deep was
not given in [2], thus it is unclear whether the authors have actually understood this relationship.

3. Finite Source Models

In [6] we have adapted the infinite source models presented in [2] to the finite source case; in
this section we extend the analysis of some of these models to consider energy consumption. In
the forthcoming paper [7] a similar analysis is performed with the performance modeling tool
MOSEL-2.

The analysis of both the class queue model and the common queue model presented in Sec-
tion 2 can be easily transferred to the finite source case; in this section we also discuss the
separate queue model. In this model, every server j of class i has a separate queue modeled
by the system variable ¢g; ;. We can model the performance consumption of the system by a
corresponding state reward

rewards "TE_noswitch"

qll = 0 : pidil;
qll > 0 : pacl;
ql2 = 0 : pidl;
ql2 > 0 : pacl;
ql3 = 0 : pidi;
ql3 > 0 : pacl;
endrewards

rewards "TE_switchoff"
qll > ® : pacl;
ql2 > 0 : pacl;
ql3 > 0 : pacl;

endrewards

which accumulates for every active server of class i the power consumption P,.; and corre-
spondingly for every idle server the power consumption Pjg ;.

The first and the third rows of diagrams in Figure 2 depict the amount of energy consumed
per time unit for both the class queue and the separate queue models; the results correspond to
those presented in Figures 3.10-3.17 of [7].

However, while in [7] with MOSEL-2 only the energy consumption rate could be analyzed,
we can also analyze (as described in the previous section) the average energy per job by utilizing
transition rewards. For the class queue model this transition reward remains the same; for the
separate queue model it becomes

rewards "done"
[donell] true : 1;
[donel2] true : 1;
[donel3] true : 1;

endrewards

total energy

average energy per job

total energy

average energy per job

finite, class, EE finite, class, HP

10,000 10,000
8,000 > 8,000
=
6,000 £ 6000
T
4,000 3 4,000
2,000 2,000
0 0
0.0 o0l @02 03 04 05 06 0.0 0l ©02 03 04 05 06
lambda lambda
finite, class, EE finite, class. HP
8,000
-5 8,000
7.000 27,000
6,000 & 6.000
5,000 & 15,000
4,000 % 4,000
3,000 g 3,000
2,000 @ 2,000, =
- e —a—
1,000 |+ 2 1,000
0 0
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.1 0.2 0.3 0.4 0.5 0.6
lambda lambda
finite, separate, EE finite, separate, HP
10,000
10,000
8,000 = 8,000
=
6,000 § 5,000
4,000 K]
3 4,000
2,000 2,000
0 0
00 01 02 03 04 05 06 0.0 0.1 0.2 0.3 0.4 0.5 0.6
lambda lambda
finite, separate, EE finite, separate, HP
10.000 £ 10,000
8,000 2 8000
&
6,000 g 6000
@
4,000 @ 4000
g
2,000 (e g 5 2,000
g ——
0 0
0.0 o0l @02 03 04 05 06 0.0 0.1 0.2 0.3 0.4 0.5 0.6
lambda lambda

Figure 2: Finite Source Class/Separate Queue (3 - 3 Servers, N = 36, Q = 24/4)

10

where to each transition indicating the termination of a job a transition rate of 1 is assigned. The
corresponding results are depicted in the second and fourth row of Figure 2.

4. Conclusions

This paper has extended our previous analysis of the timing properties of various cluster schedul-
ing schemes to the energy consumption properties. The property description and querying lan-
guage of PRISM has proved to be very well up to this task; this has allowed us to validate the
results that were previously determined by simulation by actual calculations.

As it turns out, for the determination of the desired measures not only state rewards but also
transition rewards were required in order to relate a state-based quantity (energy consumed per
time unit) to an event-based property (number of jobs consumed per time unit). The richer
property description and querying language of PRISM thus has allowed to produce more results
than would be possible with previously used tools such as MOSEL-2.

By our work, essentially all the measures derived by simulation, both time-related and energy-
related, could be also derived by actual calculations. In further work, we may undertake the
investigation of not yet considered properties in this and other models.

References

[1] K. Begain, G. Bolch, and Herold H. Practical Performance Modeling Application of the
MOSEL Language. Kluwer Academic Publisher, 2012.

[2] Tien v. Do, Binh T. Vu, Xuan T. Tran, and Anh P. Nguyen. “A Generalized Model for
Investigating Scheduling Schemes in Computational Clusters”. In: Simulation Modelling
Practice and Theory 37 (2013), pp. 30-42.

[3] M. Kwiatkowska, G. Norman, and D. Parker. “PRISM 4.0: Verification of Probabilistic
Real-time Systems”. In: Proc. 23rd International Conference on Computer Aided Verifi-
cation (CAV’11). Ed. by G. Gopalakrishnan and S. Qadeer. Vol. 6806. Lecture Notes in
Computer Science. Springer, 2011, pp. 585-591.

[4] Marta Kwiatkowska, Gethin Norman, and David Parker. “Stochastic Model Checking”.
In: Formal Methods for the Design of Computer, Communication and Software Systems:
Performance Evaluation (SFM’07). Ed. by M. Bernardo and J. Hillston. Vol. 4486. Lecture
Notes in Computer Science (Tutorial Volume). Springer, June 2007, pp. 220-270.

[5] David A. Parker, ed. PRISM — Probabilistic Symbolic Model Checker. Department of

Computer Science, University of Oxford, UK. 2013. urL: http: //www.prismmodelchecker.

org.

[6] Wolfgang Schreiner, Tamds Bérczes, and Adam T6th. Analyzing Cluster Scheduling Schemes
by Probabilistic Model Checking. Technical Report. Johannes Kepler University Linz, Aus-
tria: Research Institute for Symbolic Computation (RISC), Sept. 2014. urL: http://www.
risc.jku.at/publications/download/risc_5059/main.pdf.

11

http://www.prismmodelchecker.org
http://www.prismmodelchecker.org
http://www.risc.jku.at/publications/download/risc_5059/main.pdf
http://www.risc.jku.at/publications/download/risc_5059/main.pdf

[7]1 Adéam Téth. Véges forrdsii klaszter hdlézatok hatékonysdg analizise (Analysing the perfor-
mance of finite-source networks of clusters, in Hungarian). Technical Report. To appear.
University of Debrecen, Hungary: Department of Computer Science, 2015.

12

A. The Infinite Source Models

A.1. Class Queue

A
// InfiniteClassHP.prism

// A scheduling model for computational clusters.

//

// The model is the "class queue" model with

// "high-performance priority" described in

//
// Tien v. Do, Binh t. Vu, Xuan T. Tran, Anh P. Nguyen:
// "A generalized model for investigating scheduling schemes in

// computational clusters", Simulation Modelling Practice and

// Theory, 37 (2013), 30-42.

//

// Authors: Berczes Tamas <berczes.tamas@inf.unideb.hu> and

// Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

//

// Copyright (C) 2014 Department of Informatics Systems and Networks,
// University of Debrecen, Debrecen, Hungary (http://irh.inf.unideb.hu)
// and Research Institute for Symbolic Computation, Johannes Kepler
// University, Linz, Austria Chttp://www.risc.jku.at)

[

// checking parameters: "sparse", "Gauss", default epsilon

// continuous time markov chain (ctmc) model
ctme

e

// system parameters

/] == oo

// system utilization (50%, 60%, 70%, 80%, 90%)
const double UO;

// queue size
const int Q = 24;

// number of server classes and number of servers per class
const int K = 3;
const int M = §;

// arrival rates
const double lambda = U®*M*(rpl+rp2+rp3);

// ranking based on performance
const double rpl = 1.0;
const double rp2 = 0.82;
const double rp3 = 0.43;

// ranking based on energy efficiency
const double rel = 0.64;

13

6;

const double re2 0.6
const double re3 = 1.0
// active power consumption per class
const double pacl® = 1700;
const double pac20 = 1275;
const double pac30 = 457;

// idle power consumption per class

const double pidl0® = 364;
const double pid20 = 331;
const double pid30® = 108;

// reduced power consumption in DVFS mode
const double pfsl® = 1169;
const double pfs20 = 881;
const double pfs30 = 317;

/] e

// system parameters according to chosen ranking

// service rates according to chosen ranking
const double mul = rpl;
const double mu2 = rp2;
const double mu3 = rp3;

// active power consumption according to chosen ranking
const double pacl = paclQ;
const double pac2 = pac20;
const double pac3 = pac30;

// idle power consumption according to chosen ranking
const double pidl = pidl0;
const double pid2 = pid20;
const double pid3 = pid30;

// reduced power consumption according to chosen ranking
const double pfsl = pfsl0;
const double pfs2 = pfs20;
const double pfs3 = pfs30;

J] e
// system model

/] == oo

module System
gl: [0..Q] init 0;
g2: [0..Q] init O;
g3: [0..Q] init O;

[donel] ql > 0@ -> min(M,ql)*mul : (ql’ = ql-1);
[done2] g2 > 0 -> min(M,q2)*mu2 : (g2’ = q2-1);
[done3] g3 > 0 -> min(M,q3)*mu3 : (q3’ = g3-1);

14

[] true -> lambda :

(a1’ =
@l <M | (2> M&g3>M&ql <=2 &gl <=9g3)) &ql <Q?~?
ql+l : ql) &

(@2’ =
ql >= M & (2 <M | (@3 >>M&g2<ql &g2 <=4a3)) &g2<Q7?
q2+1 : q2) &

(a3’ =
gl >=M&g2>M& (@3 <M | (@3<q9gl &g3 <qg2)) &g3<Q?
q3+1 : q3) ;

endmodule

e

// system rewards

/] e

rewards "stime"
(1 =Q& g2 =Q&q3 =0Q
ql <M ? (1/mul) :
g2 < M ? (1/mu2)
g3 <M ? (1/mu3) :
ql <= g2 & ql <= g3 ? (1/mul)
g2 <= q3 ? (1/mu2)
(1/mu3) ;
endrewards

rewards "qload"
true : ql+q2+q3;
endrewards

rewards "TE_noswitch"
true:
pacl*min(M,ql) + pac2*min(M,qg2) + pac3*min(M,q3) +
pidl*max(®,M-ql) + pid2*max(®,M-qg2) + pid3*max(0,M-q3);
endrewards

rewards "TE_switchoff"
true:
pacl*min(M,ql) + pac2*min(,q2) + pac3*min(M,q3);
endrewards

rewards "done"
[donel] true : 1;
[done2] true : 1;
[done3] true : 1;

endrewards

J]
// InfiniteClass.props

// rejection probability
"reject": S=? [g1 = Q& g2 =Q& g3 =Q1] ;

15

// probability that all servers are busy
"busy": S=? [ql >=M & g2 >=M&qg3 > MN1] ;

// mean service time
"stime": R{"stime"}=? [S] ;

// response time (of accepted jobs)
"qload": R{"qload"}=? [S];
"rtime": "gload"/(lambda*(l-"reject"));

// waiting time (of accepted jobs)

"wtime": "rtime"-"stime";

// expected energy consumption
"TE_noswitch": R{"TE_noswitch"}=? [S] ;
"TE_switchoff": R{"TE_switchoff"}=? [S] ;
// the expected number of finished jobs per time unit
"done": R{"done"}=? [S] ;

// expected energy consumption per job
"AE_noswitch": "TE_noswitch"/"done";
"AE_switchoff": "TE_switchoff"/"done";

A.2. Common Queue with DVFS
J

// InfiniteCommonHP.prism

// A scheduling model for computational clusters.

//

// The model is the "common queue" model with

// "high-performance priority" with "dynamic voltage/frequency scaling"
// described in

//
// Tien v. Do, Binh t. Vu, Xuan T. Tran, Anh P. Nguyen:
// "A generalized model for investigating scheduling schemes in

// computational clusters", Simulation Modelling Practice and

// Theory, 37 (2013), 30-42.

//

// Authors: Berczes Tamas <berczes.tamas@inf.unideb.hu> and

// Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

//

// Copyright (C) 2014 Department of Informatics Systems and Networks,
// University of Debrecen, Debrecen, Hungary (http://irh.inf.unideb.hu)
// and Research Institute for Symbolic Computation, Johannes Kepler
// University, Linz, Austria (http://www.risc.jku.at)
A

// checking parameters: "sparse", "Jacobi", default epsilon

// continuous time markov chain (ctmc) model

16

ctmc

]

// system parameters

/s

// system utilization (50%, 60%, 70%, 80%, 90%)
const double UO;

// arrival rates
const double lambda = U®*8*(rpl+rp2+rp3);

// queue size
const int Q = 72;

// number of server classes and number of servers per class
const int K = 3;
const int M = 8;

// ranking based on performance

const double rpl = 1.0 *(4517449/6419253);
const double rp2 = 0.82*(3706521/5286503);
const double rp3 = 0.43*%(1961557/2790966) ;

// ranking based on energy efficiency
const double rel = 0.64;
const double re2 = 0.66;
const double re3 = 1.0;

// active power consumption per class
const double pacl® = 1700;
const double pac20 1275;
const double pac3® = 457;

// idle power consumption per class
const double pidl0® = 364;
const double pid20 331;
const double pid30® = 108;

// reduced power consumption in DVFS mode
const double pfsl® = 1169;
const double pfs20 881;
const double pfs30 = 317;

/] = e

// system parameters according to chosen ranking

// service rates according to chosen ranking
const double mul = rpl;
const double mu2 = rp2;
const double mu3 = rp3;

// active power consumption according to chosen ranking

17

const double pacl = pfsl0;
const double pac2 = pfs20;
const double pac3 = pfs30;

// idle power consumption according to chosen ranking
const double pidl = pidl0;
const double pid2 = pid20;
const double pid3 = pid30;

A
// system model

module System
q: [0..Q] init O;

ql: [0..M] init O;
g2: [0..M] init O;
g3: [0..M] init O;

(=]

[donela] gl > 0 -> ql*mul : (ql’ = ql-1);
[donelb] ql <M & q > 0 -> (M-gD)*mul : (@’ = q-1);
[done2a] g2 > 0 -> q2*mu2 : (g2’ = g2-1);
[done2b] g2 <M & q > 0 -> (M-g2)*mu2 : (q’ = q-1);

[done3a] g3 > 0 -> g3*mu3 : (g3’ = g3-1);
[done3b] g3 <M & q >0 -> (M-g3)*mu3 : (q’ = q-1);

[] true -> lambda :
(qa’ =
ql =M&g2=M&qg3=M&qg<Q?
g+l @ @ &
(ql’ =
ql < M ?
ql+l : ql) &
(q2’ =
ql =M & g2 <M?
q2+1 : q2) &
(a3’ =
ql =M & g2 =M&Qq3 <M?
a3+l : q3);
endmodule

/] == e

// system rewards

/]

rewards "stime"
1(q=Q&ql=M&qg2=M&q3 =M
gl <M ? (1/mul) :
g2 <M ? (1/mu2) :
q3 < M ? (1/mu3) :
(1/mul); // higher value

18

// (1/mu2); // medium value
// (1/mu3); // lower value
endrewards

rewards "qload"
true : q+ql+q2+q3;
endrewards

rewards "TE_noswitch"
true:
pacl*ql + pac2*q2 + pac3*q3 +
pidl*(M-ql) + p1d2 M-g2) + pid3*(M-q3);
[donelb] true : (pacl-pidl)*(1l/mul);
[done2b] true : (pac2-pid2)*(1/mu2);
[done3b] true : (pac3-pid3)*(1l/mu3);
endrewards

rewards "TE_switchoff"
true:
pacl*ql + pac2*q2 + pac3*q3;
[donelb] true : pacl*(l/mul);
[done2b] true : pac2*(1l/mu2);
[done3b] true : pac3*(1l/mu3);
endrewards

rewards "done"
[donela] true :
[donelb] true :
[done2a] true :
[done2b] true :
[done3a] true :
[done3b] true :

endrewards

e

e

// InfiniteCommon.props

e

// rejection probability
"reject": S=? [q=Q&ql =M&Qq2=M&q3 =M1 ;

// mean service time
"stime": (R{"stime"}=? [S 1)/(1-"reject") ;

// mean response time
"rtime": (R{"qload"}=? [S])/(lambda*(1-"reject"));

// waiting time
"wtime": max(®, "rtime"-"stime");

// expected energy consumption

"TE_noswitch": R{"TE_noswitch"}=? [S] ;
"TE_switchoff": R{"TE_switchoff"}=? [S] ;

19

// the expected number of finished jobs per time unit
"done": R{"done"}=? [S] ;

// expected energy consumption per job
"AE_noswitch": "TE_noswitch"/"done";
"AE_switchoff": "TE_switchoff"/"done";

B. The Finite Source Models

B.1. Class Queue

e
// FiniteClassHP.prism

// A scheduling model for computational clusters.

//

// The model is a finite source version of the "class queue" model with
// "high-performance priority" described in

//
// Tien v. Do, Binh t. Vu, Xuan T. Tran, Anh P. Nguyen:
// "A generalized model for investigating scheduling schemes in

// computational clusters", Simulation Modelling Practice and
// Theory, 37 (2013), 30-42.

// Authors: Berczes Tamas <berczes.tamas@inf.unideb.hu> and

// Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

//

// Copyright (C) 2014 Department of Informatics Systems and Networks,
// University of Debrecen, Debrecen, Hungary (http://irh.inf.unideb.hu)
// and Research Institute for Symbolic Computation, Johannes Kepler

// University, Linz, Austria (http://www.risc.jku.at)

/]

// checking parameters: "sparse", "Gauss", default epsilon

// continuous time markov chain (ctmc) model
ctmc

/]

// system parameters

T

// arrival rates
const double lambda;

// queue size
const int Q = 24;

// number of server classes and number of servers per class
const int K 3;
const int M 3;

// population size

20

const int N = 36;

// ranking based on performance
const double rpl = 1.0;
const double rp2 = 0.82;
const double rp3 = 0.43;

// ranking based on energy efficiency
const double rel = 0.64;
const double re2 = 0.66;
const double re3 = 1.0;

// active power consumption per class
const double pacl® = 1700;
const double pac20 1275;
const double pac30 = 457;

// idle power consumption per class
const double pidl0® = 364;
const double pid20 331;
const double pid30 108;

// reduced power consumption in DVFS mode
const double pfsl® = 1169;
const double pfs20 = 881;
const double pfs30 = 317;

/] e

// system parameters according to chosen ranking

// service rates according to chosen ranking
const double mul = rpl;
const double mu2 = rp2;
const double mu3 = rp3;

// active power consumption according to chosen ranking
const double pacl = paclQ;
const double pac2 = pac20;
const double pac3 = pac30;

// idle power consumption according to chosen ranking
const double pidl = pidl0;
const double pid2 = pid20;
const double pid3 = pid30;

// reduced power consumption according to chosen ranking
const double pfsl = pfsl0;
const double pfs2 = pfs20;
const double pfs3 = pfs30;

T

// system model
[

21

module Sources
sources: [0..N] init N;

[server] sources > 0 -> lambda*sources : (sources’ = sources-1);
[donel] sources < N -> (sources’ = sources+1);
[done2] sources < N -> (sources’ = sources+1);
[done3] sources < N -> (sources’ = sources+1);
endmodule

module System
ql: [0..Q] init O;
g2: [0..Q] init O;
g3: [0..Q] init 0;

[donel] g1 > 0 -> min(M,ql)*mul : (ql’ = ql-1);
[done2] g2 > 0 -> min(M,qg2)*mu2 : (q2’ = q2-1);
[done3] g3 > 0 -> min(M,q3)*mu3 : (g3’ = q3-1);
[server] !(ql = Q& g2 =Q& g3 =Q ->
(a1’ =
@l <M | (2> M&ag3>M&ql <=q9g2 &ql <=qg3)) &gl <Q?
gql+l : ql) &
(a2’ =
gl >= M & (@2 <M | (@3> M&qq2 <9l & q2<=9g3)) &g2<Q?
g2+1 : q2) &
(a3’ =
ql >= M & g2 >=M & (@3 <M | (@3 <ql &g3 <qg2)) &q3 <Q7?
q3+1 : q3);
endmodule
J
// system rewards
[/ mmm e

rewards "stime"
'(q1 =Q&92=Q&q3 =0
gl <M ? (1/mul) :
q2 < M ? (1/mu2)
g3 < M ? (1/mu3) :
ql <= g2 & ql <= g3 ? (1/mul)
g2 <= q3 ? (1/mu2) :
(1/mu3) ;
endrewards

rewards "qload"
true : ql+q2+93;
endrewards

rewards "TE_noswitch"
true:
pacl*min(M,ql) + pac2*min(M,q2) + pac3*min(M,q3) +
pidl*max(0®,M-ql) + pid2*max(0,M-g2) + pid3*max(0,M-q3);
endrewards

22

rewards "TE_switchoff"
true:
pacl*min(M,ql) + pac2*min(M,q2) + pac3*min(M,q3);
endrewards

rewards "done"
[donel] true : 1;
[done2] true : 1;
[done3] true : 1;

endrewards

J e
// InfiniteClass.props

B

// rejection probability
"reject": S=? [@1 = Q& g2 =Q&q3=Q1] ;

// probability that all servers are busy
"busy": S=? [ql >=M & g2 >=M& g3 >=M1] ;

// mean service time
"stime": R{"stime"}=? [S] ;

// response time (of accepted jobs)
"qload": R{"qload"}=? [S 1;
"rtime": "qload"/(lambda*(l-"reject"));

// waiting time (of accepted jobs)
"wtime": "rtime"-"stime";

// expected energy consumption
"TE_noswitch": R{"TE_noswitch"}=? [S] ;
"TE_switchoff": R{"TE_switchoff"}=? [S] ;
// the expected number of finished jobs per time unit
"done": R{"done"}=? [S] ;

// expected energy consumption per job
"AE_noswitch": "TE_noswitch"/"done";
"AE_switchoff": "TE_switchoff"/"done";

B.2. Separate Queue

[/ e

// FiniteSeparateHP.prism

// A scheduling model for computational clusters.

//

// The model is a finite source version of the "separate queue" model with
// "high-performance priority" described in

//
// Tien v. Do, Binh t. Vu, Xuan T. Tran, Anh P. Nguyen:
// "A generalized model for investigating scheduling schemes in

23

// computational clusters", Simulation Modelling Practice and

// Theory, 37 (2013), 30-42.

//

// Authors: Berczes Tamas <berczes.tamas@inf.unideb.hu> and

// Wolfgang Schreiner <Wolfgang.Schreiner@risc.jku.at>

//

// Copyright (C) 2014 Department of Informatics Systems and Networks,
// University of Debrecen, Debrecen, Hungary (http://irh.inf.unideb.hu)
// and Research Institute for Symbolic Computation, Johannes Kepler
// University, Linz, Austria (http://www.risc.jku.at)

/]

// check with sparse (1GB), "Jacobi", default epsilon

// continuous time markov chain (ctmc) model
ctmc

/]

// system parameters

// arrival rates
const double lambda;

// queue size
const int Q = 4;

// population size
const int N = 36;

// number of server classes and number of servers per class
const int K = 3;
const int M = 3;

// ranking based on performance
const double rpl = 1.0;
const double rp2 = 0.82;
const double rp3 = 0.43;

// ranking based on energy efficiency
const double rel = 0.64;
const double re2 = 0.66;
const double re3 = 1.0;

// active power consumption per class
const double pacl® = 1700;
const double pac20 = 1275;
const double pac30 457;

// idle power consumption per class
const double pidl0® = 364;
const double pid20 331;
const double pid30 108;

24

// reduced power consumption in DVFS mode
const double pfsl® = 1169;
const double pfs20 881;
const double pfs30 = 317;

/]

// system parameters according to chosen ranking

/] s

// service rates according to chosen ranking
const double mul = rpl;
const double mu2 rp2;
const double mu3 = rp3;

// active power consumption according to chosen ranking
const double pacl = pacl0;
const double pac2 = pac20;
const double pac3 = pac30;

// idle power consumption according to chosen ranking
const double pidl = pidl0;
const double pid2 = pid20;
const double pid3 = pid30;

A
// system model

/]

module Sources
sources: [0..N] init N;

[server] sources > 0 -> lambda*sources : (sources’ = sources-1);
[donell] sources < N -> (sources’ = sources+l);
[donel2] sources < N -> (sources’ = sources+1l);
[donel3] sources < N -> (sources’ = sources+1l);
[done21] sources < N -> (sources’ = sources+l);
[done22] sources < N -> (sources’ = sources+l);
[done23] sources < N -> (sources’ = sources+1l);
[done31] sources < N -> (sources’ = sources+1l);
[done32] sources < N -> (sources’ = sources+l);
[done33] sources < N -> (sources’ = sources+l);

endmodule

module Servers
qll: [0..Q] init O;
gql2: [0..Q] init 0;
gql3: [0..Q] init O;

g21: [0..Q] init O;
g22: [0..Q] init 0;
g23: [0..Q] init O;

g31: [0..Q] init O;

q32: [0..Q] init O;
g33: [0..Q] init 0;

25

[donell] g11 > O -> mul :
[donel2] gl12 > O -> mul :
[donel3] ql13 > ® -> mul :

[done21] g21 > 0 -> mu2 :
[done22] g22 > ® -> mu2 :
[done23] g23 > 0 -> mu2 :

[done31] g31 > ® -> mu3 :
[done32] g32 >
[done33] g33 > 0 -> mu3 :

[=]
1
\%

[server] !(gqll = Q & ql2

(ql1’ =
qll
qll
qll
qll

(q12’ =
ql2
ql2
ql2
ql2

(q13’ =
ql3
ql3
ql3
ql3

(g21’ =
q2l
q21
q2l
q2l

(22’ =
q22
q22
q22
q22

(q23’ =
q23
q23
q23
q23

(@31’ =
q31
q31
q31
q31l

q21 = Q & q22

g3l = Q & g32 =

<= qll & ql1
<= q21 & ql1
<= q31 & ql1
< Q7?7 qll+l :

< qll & ql2
<= q21 & ql2
<= q31 & ql2
< Q7? ql2+1 :

< qll & ql13
<= q21 & ql3
<= q31 & ql13
< Q 7?7 ql3+1

< qll & qg21
<= q21 & qg21
<= q31 & 21
< Q7?7 q2l+1 :

< qll & g22
< q21 & g22
<= q31 & q22
< Q7?7 q22+1 :

< qll & g23
< q21 & g23
<= q31 & 23
< Q7?7 q23+1 :

< qll & g31
< q21 & g31
<= q31 & g31
< Q7?7 q31+1 :

mu3 :

(qll’
(q12’
(q13’

(q21’
(q22’
(923’

(a30’
(gq32’
(q33’

o
o0 0
Ro Ro Qo

<= ql2
<= q22
<= q32

qll)

<= ql2
<= q22
<= q32

ql2)

< ql2
<= q22
<= q32

1 ql3)

< ql2
<= q22
<= q32

az2l)

< ql2
<= 22
<= q32

az22)

< ql2
< q22
<= q32
q23)

< ql2
< q22
<= q32
a3l)

qll-1);
ql2-1);
ql3-1);

q21-1);
q22-1);
q23-1);

q31-1);
q32-1);
= q33-1);

ql3 =
q23 =
q33 =

Qo Qo Qo Qo

Qo Qo Qo Qo

Qo Qo Qo Qo Qo Qo Qo Qo

Qo Qo Qo Qo

Qo Qo Qo Qo

qll
qll
qll

ql2
ql2
ql2

ql3
ql3
ql3

q2l
q21
q2l

q22
q22
q22

q23
q23
q23

q31l
q31
q31

ql3
q23
q33

ql3
q23
q33

ql3
q23
q33

ql3
q23
q33

ql3
q23
q33

ql3
q23
q33

26

(a32’ =

q32 < qll & g32 < ql2 & g32 < ql3 &
q32 < 921 & 932 < @22 & q32 < Q23 &
q32 < q31 & g32 <= @32 & g32 <= @33 &
q32 < Q ? g32+1 : g32) &
(33’ =
q33 < qll & g33 < ql2 & g33 < ql3 &
q33 < 921 & g33 < @22 & q33 < 23 &
q33 < aq31 & g33 < 32 & q33 <=q33 &
q33 < Q ? q33+1 : g33) ;
endmodule
J] =
// system rewards
A
rewards "stime"
1(ql1 = Q&ql2 =Q&ql3 =Q¢&
21 = Q & g22 = Q& g23 =Q &
q31 = Q& @g32=Q&qg33 =Q)

min(gqll, ql2, ql3) <=
min(q21, 922, 23,
q31, q32, q33) ? (1/mul)
min(g21, 22, q23) <=
min(q31, g32, g33) ? (1/mu2) : (1/mu3);
endrewards

rewards "sources"
true : sources;

endrewards

rewards "TE_noswitch"

qll = 0 : pidl;
qll > 0 : pacl;
ql2 = 0 : pidl;
ql2 > 0 : pacl;
ql3 = 0 : pidl;
ql3 > 0 : pacl;
g2l = 0 : pid2;
g2l > 0 : pac2;
q22 = 0 : pid2;
q22 > 0 : pac2;
q23 = 0 : pid2;
q23 > 0 : pac2;
g3l = 0 : pid3;
q31l > 0 : pac3;
q32 = 0 : pid3;
q32 > 0 : pac3;
g33 = 0 : pid3;
q33 > 0 : pac3;
endrewards

rewards "TE_switchoff"
qll > 0 : pacl;

27

ql2 > 0 : pacl;
ql3 > 0 : pacl;
q2l > 0 : pac2;
gq22 > 0 : pac2;
q23 > 0 : pac2;
q3l > 0 : pac3;
q32 > 0 : pac3;
q33 > 0 : pac3;
endrewards

rewards "done"
[donell] true :
[donel2] true :
[donel3] true :
[done21] true :
[done22] true :
[done23] true :
[done31] true :
[done32] true :
[done33] true :

endrewards

e e e e

A
// InfiniteSeparate.props

/] == oo

// rejection probability
"reject": S=? [

qll =Q & ql2 =Q&ql3 =Q&
@21 = Q& q22 =Q & q23 = Q &
931 =Q & q32=Q&g33=Q1] ;

// mean service time (not considering rejection)
"stime": R{"stime"}=? [S] ;

// mean service time
"stime®": "stime"/(1-"reject") ;

// number of currently not serviced sources
"sources": R{"sources"}=? [S];

// response time (not considering rejection)
"rtime": (N/"sources"-1)/lambda;

// response time
"rtime®": "rtime"/(1-"reject™);

// waiting time (not considering rejection)

"wtime": "rtime"-"stime";

// waiting time
"wtime®": "wtime"/(1-"reject");

// expected energy consumption

28

"TE_noswitch": R{"TE_noswitch"}=? [S] ;
"TE_switchoff": R{"TE_switchoff"}=? [S] ;

// the expected number of finished jobs per time unit
"done": R{"done"}=? [S] ;

// expected energy consumption per job

"AE_noswitch": "TE_noswitch"/"done";
"AE_switchoff": "TE_switchoff"/"done";

29

	Introduction
	Infinite Source Models
	Finite Source Models
	Conclusions
	The Infinite Source Models
	Class Queue
	Common Queue with DVFS

	The Finite Source Models
	Class Queue
	Separate Queue

