Some Lessons Learned on Writing Predicate Logic Proofs in Isabelle/Isar

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)
Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

October 30, 2014

Abstract

We describe our experience with the use of the proving assistant Isabelle and its proof development language Isar for formulating and proving formal mathematical statements. Our focus is on how to use classical predicate logic and well established proof principles for this purpose, bypassing Isabelle's meta-logic and related technical aspects as much as possible. By a small experiment on the proof of (part of a) verification condition for a program, we were able to identify a number of important patterns that arise in such proofs yielding to a workflow with which we feel personally comfortable; the resulting guidelines may serve as a starting point for a the application of Isabelle/Isar for the "average" mathematical user (i.e, a mathematical user who is not interested in Isabelle/Isar per se but just wants to use it as a tool for computer-supported formal theory development).

Contents

1 Introduction 3
2 Premises 4
3 Decomposing Goals 6
3.1 Decomposition of Compound Goals 6
3.2 Unfolding Definitions in Goals 7
3.3 Proving Multiple Goals 8
3.4 Proving Existential Goals 9
3.5 Proving by Case Distinction 11
4 Deriving Knowledge 11
4.1 Expanding Definitions 12
4.2 Instantiating Universal Knowledge 13
4.3 Applying Existential Knowledge 13
4.4 Closing Proofs 14
5 Conclusions 14
A Isabelle Theory (Formatted) 16
B Isabelle Theory (Plain) 25

1 Introduction

Isabelle [3] is a very well known and widely used proof assistant; its proof development language Isar [8] allows to write formally checked proofs that are still readable by humans and indeed resemble to a certain extent manually developed proofs. However, as for most computer-supported theorem proving tools, the learning curve for mastering Isabelle/Isar is pretty steep.

This is the case although there exists an abundance of material on Isabelle/Isar, in particular the survey [6] on programming and proving in Isabelle/HOL, the book [7] that mostly serves as the "manual" for the tool, the reference manual [8] on Isabelle/Isar, papers [5, 4] on the practical use of the language, and on the automatic proof methods in the system [1]. However, this information is partially overlapping, partially reflects the state of the art at different times throughout the long history of the system (much information focuses on the application of Isabelle proof methods and tactics in proof development rather on the more recent Isar language), partially it is on different level of abstraction (much material focuses use of individual logical rules in Isabelle/HOL which is rarely needed in practical proof development any more); partially the intended target audience are people interested in Isabelle per se rather than average mathematical users that just want to get their job done.

The author of this paper experienced the situation that, despite the existence of a lot of learning material, he had a hard time to extract that information that really interested him: how to use Isabelle/Isar for the purpose of formulating and proving mathematical statements in classical predicate logic. Ultimately we started a small experimental learning session by formulating some proving problem that arose in the context of program verification [2]. We used this problem in order to investigate how to develop a proof with Isabelle/Isar in a way that corresponds to our manual proof development (rather than in that way that Isabelle/Isar would like us lead us). In this paper, we deliberately do not explain the content of this proving problem, since it does not contribute to the purpose of our explication but just serves as the "raw material" from which our observations were extracted. Of course, the results may be shaped a bit by this material, but actually we don't think too much.

This paper documents the (preliminary) state of our investigations. It is subsequently structured as follows: we start by setting out in Section 2 our premises on how we would like to use Isabelle/Isar. In Section 3, we describe the patterns we have found useful for the "top-down" decomposition of proof goals to subgoals, i.e., those steps that are usually performed first in a proof. In Section 4, we describe the patterns we have found useful for the "bottom-up" derivation of new knowledge from existing knowledge, i.e, those steps by which we ultimately discharge the various subgoals. In Section 5, we give our overall conclusions. Appendix A lists the Isabelle/HOL theory that we have elaborated in the context of this experiment in pretty-printed form; Appendix B lists the corresponding plain text.

Our experiments were performed with the Isabelle 2014 distribution using the recommended jEdit interface. Undoubtedly expert Isabelle users may be able to outline better practices than those outlined in this paper or correct some factual errors of our presentation; if so, we would be very much interested to hear about these.

2 Premises

The premises of our considerations are as follows:

1. We want to state theorems by formulas in predicate logic, not in the Isabelle meta-logic. For instance, we want to state and prove a predicate-logic theorem

theorem VC1 :

```
    \(" \forall(t:: \operatorname{address})(s::\) store \()\). pre \(t s \wedge \operatorname{null}(\operatorname{left}(s t)) \longrightarrow \operatorname{post}(\operatorname{right}(s t)) s t s "\)
```

without getting too much involved with the details (and even the very existence) of the Isabelle meta-logic. While for the goals and purposes of Isabelle, the existence of an object-logic independent meta-logic is important, the differentiation between two logical levels is irritating for the average mathematical user.
In particular, we do not want to state and prove the corresponding meta-logic theorem

```
theorem VC1 :
    fixes t :: "address" and s :: "store"
    assumes "pre t s" and "null(left(s t))"
    shows "post (right(st)) st s"
```

even if this seems to be the recommendation of Isabelle experts (and most theorems in Isabelle-related documentation are formulated in that style).
This kind of meta-logic statements may appear also in the syntactic form

```
theorem VC1 :
```

$" \wedge(t::$ address $)(s::$ store $) . \llbracket p r e t s ; \operatorname{null}(\operatorname{left}(s t)) \rrbracket \Longrightarrow \operatorname{null}(l e f t(s t)) "$
which may be abbreviated to
theorem VC1 :
" $\wedge(t::$ address $)(s::$ store $)$. pre $t>\operatorname{null}(l e f t(s t)) \Longrightarrow \operatorname{null(left}(s t)) "$
or even to
theorem VC1 :
$" p r e(t:: \operatorname{address})(s::$ store $) \Longrightarrow \operatorname{null}(\operatorname{left}(s t)) \Longrightarrow \operatorname{null}(\operatorname{left}(s t)) "$
Still we are not interested in formulating and proving such statements which actually express rules of the Isabelle meta-logic, not theorems in the object-level predicate logic. We don't want to be bothered by having to explain to readers and users of our theorems the difference between the object-level logical connective \longrightarrow and the meta-logic arrow \Longrightarrow. We just want to state and prove predicate logic statements. We are interested in Isabelle because (and as far as) it is a mean to achieve this goal; the use of Isabelle is for us not a mean in itself.
2. We would like to use the Isabelle/Isar proof language to develop proofs in the usual "topdown" style that is common in mathematical practice by repeatedly reducing goals to smaller subgoals ("backward proofs"); only if no further reduction is possible, "bottomup" steps are applied to infer new knowledge from existing knowledge until the current subgoal can be proved ("forward proofs").

However, the typically presented Isar proof skeleton

```
theorem formula
proof
    assume \mp@subsup{\mathrm{ assumption }}{1}{}\mathrm{ and ... and assumption }
    from ...have formula ( by ...
    from ...have formula 2 by ...
    from ...have formula n by ...
    from ...show goal by ...
qed
```

only presents one top-down step: the proof of formula is by an (typically implicitly selected) rule reduced to the proof of the meta-logic statement

$$
\text { assumption }_{1} \Longrightarrow \ldots \Longrightarrow \text { assumption }_{m} \Rightarrow \text { goal }
$$

Subsequently, from the assumptions by bottom-up steps gradually additional knowledge formula $_{1}, \ldots$, formula $_{n}$ is derived from which ultimately goal can be shown. However, this presentation has some problems:

- The rule implicitly selected by Isabelle/Isar is a logical introduction rule that gets rid only of the outermost logical symbol (quantifier or connective); the further reduction of the goal is not shown.
- The goal formula is only mentioned in the last line of the derivation; we don't see from the beginning to which goal we (by the application of the rule) are actually heading.
Proof scripts in this style thus don't really convey much of the intuition that guided the development of the proof.

Our goal is to determine how Isabelle/Isar can be used in top-down proof development such that the generated proofs are actually presented also in the style in which they were originally developed.
3. We want to elaborate how with the minimum amount of knowledge about inference rules and proof methods available in Isabelle/Isar, the main types of logical inference used in mathematical practice can be performed. Apart from the top-down goal decomposition steps mentioned above, these compromise in particular

- the usage of universally quantified knowledge by explicit instantiation,
- the usage of existentially quantified knowledge for introducing new constants,
- the proof of existentially quantified goals by explicit instantiation,
- the replacement of defined functions and predicates in knowledge and goals.

4. In Isabelle/Isar proof scripts frequently formulas have to be stated that are instances of other formulas (definitions or knowledge) or parts of other formulas (goals). We would like to elaborate how to get hold of these formulas without manual derivation.

3 Decomposing Goals

In this section, we show how by the proof methods auto and unfold compound goals are decomposed to simpler goals and in atomic goals the definitions of predicates can be expanded. We can thus perform the usual first "top-down" steps in a proof.

3.1 Decomposition of Compound Goals

When starting the proof of a theorem such as

```
theorem VC1 :
    "\forall(t::address)(s::store)
        pre t s ^ null (left(s t)) \longrightarrow post (right(s t)) s t s"
```

whose formula still contains universal quantifiers (\forall) and logical connectives $(\wedge, \longrightarrow)$, we do not use the automatically selected decomposition rule which just gets rid of a single logical symbol (in above case, the $\forall t$, leaving a formula of the form $\forall s \ldots$.). Rather we explicitly select the auto rule to apply all the usual decomposition steps at once:

```
theorem VC1 :
    " }\forall(t::address)(s::store)
        pre t s ^ null (left(s t)) \longrightarrow post (right(s t)) s t s"
proof (auto)
    ...
qed
```

The "Output" window of the Isabelle/jEdit interface shows the derived goal

```
goal (1 subgoal):
    1. \t s. pre t s \Longrightarrow null (left (s t)) \Longrightarrow post (right (s t)) s t s
```

By a sequence of fix, assume, and show steps

```
proof (auto)
    fix t s
    assume "pre t s"
    assume "null (left(s t))"
    show "post (right(s t)) s t s"
qed
```

we display the usual first steps of such a proof and also the ultimate goal to be shown (the corresponding subformulas can be copied and pasted from the "Output" window). The resulting proof state is

```
goal (1 subgoal):
    1. post (right (s t)) s t s
```


3.2 Unfolding Definitions in Goals

When proving a goal

```
show "post (right(s t)) s t s"
```

with a defined predicate such as

```
definition post : : "address \(\Rightarrow\) store \(\Rightarrow\) address \(\Rightarrow\) store \(\Rightarrow\) bool" where
    "post t s oldt olds =
        ((stree t s) ^
            (Va::address.ᄀ(nodein a oldt olds) \(\longrightarrow\) s a = olds a) ^
            ( \(\forall \mathrm{k}:: \mathrm{key} .(k e y i n \mathrm{k} \mathrm{t} \mathrm{s}) \longrightarrow\) keyin k oldt olds) \(\wedge\)
            ( \(\forall \mathrm{k}\) : :key. (keyin k oldt olds) \(\longrightarrow\)
                                    (keyin k t s \(\longleftrightarrow\)-minkeyin k oldt olds)))"
```

we apply the unfold rule to expand the definition. If the goal is a subgoal of another proof, we start a corresponding subproof:

```
show "post (right(s t)) s t s"
proof (unfold post_def)
    ...
qed
```

In the "Output" window, then the correspondingly expanded goal is displayed:

```
goal (1 subgoal):
    1. stree (right (s t)) s ^
        (\foralla. ᄀ nodein a t s \longrightarrow s a = s a) ^
        (}\forall\textrm{k}.\mp@code{keyin k (right (s t)) s \longrightarrow keyin k t s) ^
        (\forallk. keyin k t s \longrightarrow keyin k (right (s t)) s = (\neg minkeyin k t s))
```

We may copy and paste this goal into a corresponding show command. Since the goal is a compound formula, we may (as described in the previous section) again apply the auto method for automatic goal decomposition:

```
show "post (right(s t)) s t s"
proof (unfold post_def)
    show
        "stree (right (s t)) s ^
            (Va. ᄀ nodein a t s \longrightarrow s a = s a) ^
            (\forallk. keyin k (right (s t)) s \longrightarrow keyin k t s) ^
            (}\forall\textrm{k}.\mp@code{keyin k t s \longrightarrow keyin k (right (s t)) s = (\neg minkeyin k t s))"
    proof (auto)
            ...
    qed
qed
```


3.3 Proving Multiple Goals

The decomposition of a conjunctive goal formula

```
show
    "stree (right (s t)) s ^
    ( \(\forall\) a. \(\neg\) nodein \(a t s \longrightarrow s a=s a) \wedge\)
    ( \(\forall \mathrm{k} . \mathrm{keyin} \mathrm{k}\) (right (s t)) s \(\longrightarrow\) keyin k t s) \(\wedge\)
    \((\forall \mathrm{k} . \operatorname{keyin} \mathrm{k} \mathrm{t} \mathrm{s} \longrightarrow \text { keyin } \mathrm{k}(r i g h t(\mathrm{~s} \mathrm{t})) \mathrm{s}=(\neg \text { minkeyin } \mathrm{k} \mathrm{t} \mathrm{s}))^{\prime \prime}\)
proof (auto)
    qed
```

results in multiple goals:

```
goal (4 subgoals):
    1. stree (right (s t)) s
    2. \k. keyin k (right (s t)) s \Longrightarrow keyin k t s
    3. \k. keyin k t s m keyin k (right (s t)) s m minkeyin k t s \Longrightarrow False
    4. \k. keyin k t s \Longrightarrow ᄀ minkeyin k t s \Longrightarrow keyin k (right (s t)) s
```

Please note that by the decomposition, the second formula in the conjunction

```
(\foralla. ᄀ nodein a t s }\longrightarrow\textrm{s}a=s\textrm{a}
```

was automatically proved; on the other hand, the proof of the formula

```
( \(\forall \mathrm{k}\). keyin \(\mathrm{k} \mathrm{t} \mathrm{s} \longrightarrow\) keyin k (right \((\mathrm{s} \mathrm{t})\) ) \(\mathrm{s}=(\neg\) minkeyin k t s\()\) )
```

was split into the two subgoals 3 and 4.
The resulting four subgoals are proved by multiple proofs separated by the next command (the individual subformulas can be copied and pasted from the "Output" window):

```
show
    "stree (right (s t)) s ^
    (\foralla. ᄀ nodein a t s \longrightarrow s a = s a) ^
    (Vk. keyin k (right (s t)) s \longrightarrow keyin k t s) ^
    (}\forall\textrm{k}.\mp@code{keyin k t s < keyin k (right (s t)) s = ( }\neg\mathrm{ minkeyin k t s))"
proof (auto)
    show "stree (right (s t)) s"
next
    fix k
    assume "keyin k (right (s t)) s"
    show "keyin k t s"
    ext
    fix k
    assume "keyin k t s"
    assume "keyin k (right (s t)) s"
    assume "minkeyin k t s"
    show False
```

```
next
    fix k
    assume "keyin k t s"
    assume "\neg minkeyin k t s"
    show "keyin k (right (s t)) s"
qed
```

Each proof thus follows the previously outlined decomposition strategies.

3.4 Proving Existential Goals

When proving an existential goal such as

```
show "\existsp n. nodepath p n t s ^ p n = a"
```

we start the proof with proof - which does not decompose the goal any further but starts a "bottom-up" proof (see Section 4):

```
show "\existsp n. nodepath p n t s ^ p n = a"
proof -
...
qed
```

The proof requires the derivation of an instance of the formula where the existentially quantified variables are replaced by concrete witness terms. In order to avoid writing the formula instance we may introduce auxiliary schematic variables for these terms such that we can copy and paste the formula from the output window and just replace the quantified variables by the schematic variables:

```
show "\existsp n. nodepath p n t s ^ p n = a"
proof -
    let ?p = "cons t p"
    let ?n = "n+1"
    have "nodepath ?p ?n t s ^ ?p ?n = a"
    from this show ?thesis by blast
qed
```

The part "..." denotes the proof of the formula instance, e.g. in above case by selecting the automatic goal decomposition

```
show "\existsp n. nodepath p n t s ^ p n = a"
proof -
    let ?p = "cons t p"
    let ?n = "n+1"
    have "nodepath ?p ?n t s ^ ?p ?n = a"
    proof (auto)
```

```
    end
    from this show ?thesis by blast
qed
```

Please note the last line where the procedure blast is invoked to prove that the derived formula is an instance of the existential goal formula (denoted by the predefined name ?thesis). The procedure auto does here not suffice; in certain situations, even a stronger proof procedure might be required (see the following section).

In the case of a formula with a single existentially quantified variable one might also invoke the implicitly selected decomposition rule which replaces the existentially quantified variable by a schematic variable such that only the value of this variable and the truth of the resulting instance has to be established. For instance

```
show "\existsa. nodein a t s ^ key (s a) = k"
proof
qed
```

leads to the proof goal

```
goal (1 subgoal):
    1. nodein ?a t s ^ key (s ?a) = k
```

such that we might continue the proof with

```
show "\existsa. nodein a t s ^ key (s a) = k"
proof
    let ?a = "..."
    show "nodein ?a t s ^ key (s ?a) = k"
    proof (auto)
        ...
    qed
qed
```

However, then the witness term for ? a must not depend on any value obtained during the proof. On the contrary, in the format described above we may for instance write

```
show "\existsa. nodein a t s ^ key (s a) = k"
proof -
    from ... obtain a where ...
    have "nodein a t s ^ key (s a) = k"
    proof (auto)
        ...
    qed
    from this show ?thesis by auto
qed
```

which is not allowed in the more special format. In order to avoid to keep in mind a second proof format that only can be applied in certain situations, we don't use it any further.

3.5 Proving by Case Distinction

We may split a proof of a statement like

```
show "child (case i of \(0 \Rightarrow t \mid \operatorname{Suc} x \Rightarrow p x\) )
    (case \(i+1\) of \(0 \Rightarrow t \mid \operatorname{Suc} x \Rightarrow p x\) ) \(s "\)
```

by the usual technique of "case distinction" as follows

```
show "child (case i of 0 # t | Suc x = p x)
    (case i + 1 of 0 = t | Suc x = p x) s"
proof (cases)
    assume cond: "i=Q"
    from ... show ?thesis ...
next
    assume cond: "i\not=0"
    from ... show ?thesis ...
qed
```

Since the goal is not changed by the application of case distinction, we don't mention it explicitly at the beginning of each subproof, unless some more decomposition step is to be applied. In that case, we may write the proof also in the format

```
show "child (case i of 0 # t | Suc x = p x)
    (case i + 1 of 0 # t | Suc x = p x) s"
proof (cases)
    assume cond: "i=0"
    show ?thesis
    proof ...
        ...
    qed
next
    assume cond: "i\not=0"
    show ?thesis
    proof ...
    qed
qed
```


4 Deriving Knowledge

In this section, we describe how the usual "bottom-up" steps of expanding definitions and applying quantified knowledge can be performed to derive new knowledge; we also describe the application of the automatic proof methods provided by Isabelle to close the proofs.

4.1 Expanding Definitions

The need to expand function definitions did not arise in our example proofs, since the auto command expanded these automatically.

As for predicate definitions, in a situation where we know some atomic formula, e.g.

```
assume pre: "pre t s"
```

the definition of the corresponding predicate

```
definition pre :: "address }=>\mathrm{ store }=>\mathrm{ bool" where
    "pre t x = (stree t x ^ \negnull t)"
```

may be expanded by applying the command

```
from pre pre_def[of "t" "s"] have
    "stree t x ^ \negnull t" by auto
```

where the optional of clause may be used to give the actual arguments for the formal parameters of the predicate. Apart from simplifying the task of the proving procedure, the explicit instantiation has the advantage that by placing in the Isabelle/jEdit interface the cursor before the token have the knowledge

```
picking this:
    pre t s
    pre t s = (stree t s ^ ᄀ null t)
```

is displayed from which the instantiated definition can just be copied and pasted into the proof script. The resulting knowledge may be also immediately decomposed such as in

```
from pre pre_def[of "t" "s"] have
    pre1: "stree t s" and
    pre2: "\neg null t" by auto
```

Sometimes the procedure auto is too weak to infer the correctness of the claimed instantiation; in such situations, the more powerful procedure metis may be used instead. However, metis seems to have problems of deriving multiple goals simultaneously; we thus have to write

```
from pre3 tree_def[of "t" "s"] have
    pre5: " \(\forall \mathrm{p} . \quad \neg\) ipath p t s)" by metis
from pre3 tree_def[of "t" "s"] have
    pre6: " \(\forall \mathrm{p} 1 \mathrm{p} 2 \mathrm{n} 1 \mathrm{n} 2\). nodepath p1 n1 t s \(\wedge\)
                nodepath \(\mathrm{p} 2 \mathrm{n} 2 \mathrm{t} \mathrm{s} \wedge \mathrm{p} 1 \mathrm{n} 1=\mathrm{p} 2 \mathrm{n} 2 \longrightarrow\)
```


to derive the two parts of the conjunctive formula that results from the instantiation of definition

```
definition tree :: "address }=>\mathrm{ store }=>\mathrm{ b bool" where
    "tree t s =
        ((\forallp::path. \negipath p t s) ^
            (\forall(p1::path) (p2::path) (n1::nat) (n2::nat).
                nodepath p1 n1 t s ^ nodepath p2 n2 t s ^
                p1 n1 = p2 n2 }
                    n1 = n2 ^ (\foralli::nat. i < n1 \longrightarrow p1 i = p2 i)))"
```


4.2 Instantiating Universal Knowledge

Given a universally quantified knowledge formula, we may obtain an instantiation of this formula only by constructing the instantiation manually. However, to reduce typing overhead schematic variables for the instantiation terms may be used. For instance, the commands

```
let ?q1 ="cons t p1" and ?q2 ="cons t p2" and ?m1 ="n1+1" and ?m2 ="n2+1"
from pre6 have
    "nodepath ?q1 ?m1 t s ^ nodepath ?q2 ?m2 t s ^ ?q1 ?m1 = ?q2 ?m2 \longrightarrow
        ?m1 = ?m2 ^ (\foralli<?m1. ?q1 i = ?q2 i)" by blast
```

create an instance of the previously derived formula

```
from ... have
    pre6: "(\forallp1 p2 n1 n2. nodepath p1 n1 t s ^ nodepath p2 n2 t s ^
                p1 n1 = p2 n2 \longrightarrow
                        n1 = n2 ^ (\foralli<n1. p1 i = p2 i))" by metis
```

By placing the cursor on the line from pre6 have we get in the output window a copy of the formula

```
picking this:
    \forallp1 p2 n1 n2. nodepath p1 n1 t s ^ nodepath p2 n2 t s ^
        p1 n1 = p2 n2 \longrightarrow n1 = n2 ^ ( }\forall\textrm{i}<\textrm{n}1. p1 i = p2 i)
```

whose body may be copied and pasted into the have clause and the variables be replaced by the schematic variables denoting the instantiation values.

4.3 Applying Existential Knowledge

Given an existentially quantified knowledge formula, we may obtain a constant corresponding to the quantified variable by the obtain command. For instance, we may write in a proof

```
from ... have
    "(\existsa. nodein a (right (s t)) s ^ key (s a) = k)" by ...
from this obtain a where "nodein a (right (s t)) s /\ "key (s a) = k" by auto
```

The knowledge derived about the formula may be also immediately decomposed respectively specialized such as in

```
from ... have
    "(ヨa. nodein a (right (s t)) s ^ key (s a) = k)" by ...
from this obtain a where
    a3: "nodein a (right (s t)) s" and
    a4: "key (s a) = k" by auto
```

By placing the cursor on the line from this obtain a where we e get in the output window a copy of the formula
picking this:
ヨa. nodein a (right (s t)) s ^ key (s a) $=\mathrm{k}$
whose body may be copied and pasted into the have clause and the variables be replaced by the schematic variables denoting the instantiation values.

4.4 Closing Proofs

For closing proofs we may apply the following automatic procedures provided by Isabelle:
by auto This is a quick strategy that subsumes simplification (as provided by simp) with a small amount of proof search. It is the default strategy we use most of the time.
by blast If auto fails, we try blast which is a fast tableau prover directly written in ML.
sledgehammer/metis If also blast fails, we apply sledgehammer which uses external automated provers (notably E, SPASS, and Vampire) to discover a proof. When applied via the Isabelle/jEdit interface (buttons "Sledgehammer/Apply"), the command may take a minute or so: if a proof is discovered, a line of the form

```
by (metis rules)
```

is displayed where rules is a list of rules that were used in the proof.
The form of the result is that of a call of the internal resolution prover metis to which the list of rules is passed as an argument; by double-clicking on this line, the command is inserted into the proof script; the resulting call of metis is then typically able to quickly reconstruct the externally discovered proof and discharge of the goal.

To all these procedures the facts to be used are passed by the from clause of a proof command; sledgehammer additionally uses the definitions and lemmas in the current scope and is thus also able to detect missing facts that should be also listed (in addition to those facts that are needed from the standard Isabelle libraries).

5 Conclusions

By the small "self-exercise" sketched in this paper, we were able to determine a strategy by which we feel comfortable to elaborate proofs with the Isabelle proof assistant using the Isar proof development language. In particular, we were able to extract from the plenitude of sources available for Isabelle/Isar those parts that are most relevant for our purpose, the development of theorems and proofs in classical logic in a style that closely resembles our usually preferred practice. Undoubtedly there are still many further aspects that need to be elaborated for proving with special theories (we did not e.g. not discuss induction or special quantifiers). However, at least with the predicate logic aspect we now feel reasonably familiar. Further work with the tool will certainly bring additions/revisions to our personal preferences and recommendations; we will then update this paper correspondingly.

We hope that by the results presented in this document, others may experience a somewhat less steep path towards the use of Isabelle/Isar for common mathematical practice.

References

[1] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic Proof and Disproof in Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors, Frontiers of

Combining Systems (FroCoS 2011), volume 6989 of LNCS, pages 12-27. Springer, 2011. http://www21.in.tum.de/~nipkow/pubs/frocos11.pdf.
[2] Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich. Implementation-level Verification of Algorithms with KeY. Software Tools for Technology Transfer, 16, 2014. http://link. springer.com/article/10.1007\%2Fs10009-013-0293-y.
[3] Isabelle, 2014. http://isabelle.in.tum.de/index.html.
[4] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors, Types for Proofs and Programs (TYPES 2002), volume 2646 of LNCS, pages 259-278. Springer, 2003. http://www21.in.tum.de/~nipkow/pubs/types02.pdf.
[5] Tobias Nipkow. A Tutorial Introduction to Structured Isar Proofs, 2008. http:// citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.8443.
[6] Tobias Nipkow. Programming and Proving in Isabelle/HOL, August 2014. http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/ prog-prove.pdf.
[7] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, August 2014. http://isabelle.in.tum.de/doc/ tutorial.pdf.
[8] Makarius Wenzel. The Isabelle/Isar Reference Manual, August 2014. http://isabelle. in.tum.de/doc/isar-ref.pdf.

A Isabelle Theory (Formatted)

```
theory Trees
imports Main
begin
```

- Trees.thy: verification of an imperative tree algorithm
— Given: a pointer t to the root of a non-empty binary search tree
- (not necessarily balanced).
- Verify that the procedure (deleteMin) removes the node with the
- minimal key from the tree.
- See Section 5 of Daniel Bruns et al:
- Implementation-level verification of algorithms with KeY
- Int J Softw Tools Technol Transfer, Springer, 17 November 2013
— DOI 10.1007/s10009-013-0293-y, http://dx.doi.org/10.1007/s10009-013-0293-y
- (c) 2014, Wolfgang Schreiner (Wolfgang.Schreiner@risc.jku.at)
— Research Institute for Symbolic Computation (RISC)
- Johannes Kepler University, Linz, Austria
— keys
type_synonym key ="int"
— addresses
type_synonym address ="nat"
definition null :: "address => bool" where "null $x=(x=0)$ "
— nodes: key, left and right pointer
type_synonym node ="key * address * address"
fun key : : "node \Rightarrow key" where
"key (x,_,_) = x"
fun left :: "node => address" where
"left (_, x,_) = x"
fun right :: "node => address" where
"right (_,_,x) = x"
- generic sequences
type_synonym 'a seq ="nat => 'a"
— stores
type_synonym store ="node seq"
-paths
type_synonym path = "address seq"
fun head :: "path \Rightarrow address" where
"head $p=p(\mathbb{O})$ "
fun tail :: "path \Rightarrow path" where
"tail p = ($\lambda n:$:nat. p (n+1))"
fun cons : : "address \Rightarrow path \Rightarrow path" where
"cons a $p=(\lambda n$: : nat. case n of $\theta \Rightarrow$ a $\mid \operatorname{Suc}(n \theta) \Rightarrow p n \theta)$ "
fun put : : "path \Rightarrow nat \Rightarrow address \Rightarrow path" where
"put $p \mathrm{k} a=(\lambda n:$ nat. if $n=k$ then $a \operatorname{else} p k$)"
—a2 is child of a1
definition child :: "address \Rightarrow address \Rightarrow store \Rightarrow bool" where
"child a1 a2 $s=(a 2=\operatorname{left}(s \quad a 1) \vee a 2=\operatorname{right}(s a 1)) "$
— path element $\mathrm{p}(\mathrm{i}+1)$ is child of $\mathrm{p}(\mathrm{i})$
definition children : : "path \Rightarrow nat \Rightarrow store \Rightarrow bool" where
"children p i $s=\operatorname{child}(p i)(p(i+1)) s "$
— p is an infinite path starting from t
definition ipath :: "path \Rightarrow address \Rightarrow store \Rightarrow bool" where
"ipath p t s =
($p(\theta)=t \wedge$
(\forall i::nat. \neg null(p i)) ^
(\forall i::nat. children p i s))"
— p is a path of length n starting from t
definition path :: "path \Rightarrow nat \Rightarrow address \Rightarrow store \Rightarrow bool" where
"path $p n t s=$
($p(\theta)=t \wedge$
(\forall i::nat. $i<n \longrightarrow \neg \operatorname{null}(p i)) \wedge$
(\forall i::nat. $i<n \longrightarrow$ children $p i s)$)"
— p is a path of length n starting from t leading to a node
definition nodepath $::$ "path \Rightarrow nat \Rightarrow address \Rightarrow store \Rightarrow bool" where "nodepath $p n t s=((p a t h p n t s) \wedge \neg \operatorname{null}(p n)) "$
- t is a tree
definition tree :: "address \Rightarrow store \Rightarrow bool" where
— no infinite paths respectively cycles and
- no sharing of nodes in multiple paths, also prevents cycles

"tree t s =

```
((\forallp::path. ᄀipath p t s) ^
(\forall (p1::path) (p2::path) (n1::nat) (n2::nat).
nodepath p1 n1 t s ^ nodepath p2 n2 t s ^
```

p1 n1 = p2 n2 \longrightarrow
n1 = n2 $\wedge(\forall i:: n a t . ~ i<n 1 \longrightarrow p 1 i=p 2 i)))^{\prime \prime}$
— t is a search tree with unique keys
definition stree : : "address \Rightarrow store \Rightarrow bool" where
"stree t s =
((tree $t s) \wedge$
(\forall ($\mathrm{p}:$:path) (n: :nat).
nodepath $p(n+1) t s \longrightarrow$
(let a1 $=(p n)$ in let $a 2=(p(n+1))$ in
let $n 1=s(a 1)$ in let $n 2=s(a 2)$ in
$(a 2=\operatorname{left}(n 1) \longleftrightarrow \operatorname{key}(n 2)<\operatorname{key}(n 1)))))^{\prime \prime}$

- a is the address of a node in tree t
definition nodein : : "address \Rightarrow address \Rightarrow store \Rightarrow bool" where


```
-k is a key in tree t
definition keyin :: "key }=>\mathrm{ address }=>\mathrm{ store }=>\mathrm{ bool" where
    "keyin k t s = (\exists (a::address). nodein a t s ^ key (s a) = k)"
- k is the minimum key in tree t
definition minkeyin :: "key }=>\mathrm{ address }=>\mathrm{ store }=>\mathrm{ bool" where
    "minkeyin k t s = (keyin k t s ^ ᄀ(\exists k0::key. k0 < k ^ keyin k0 t s))"
_ precondition of deleteMin
definition pre :: "address }=>\mathrm{ store }=>\mathrm{ b bool" where
    _ input is a non-null search tree
    "pre t x = (stree t x ^ \negnull t)"
- postcondition of deleteMin
definition post :: "address }=>\mathrm{ store }=>\mathrm{ address }=>\mathrm{ store }=>\mathrm{ bool" where
    - the output is a search tree
    - only the nodes in the input tree may have been changed
    - the only keys in the output tree are those from the input tree
    - a key from the input tree is in the output tree iff it is not the minimum key
    "post t s oldt olds =
        ((stree t s) ^
        (\forall a::address.\neg(nodein a oldt olds) }\longrightarrow s a = olds a) ^
        (\forallk::key.(keyin k t s) }\longrightarrow\mathrm{ keyin k oldt olds) ^
        (\forallk::key.(keyin k oldt olds) }
                    (keyin k t s \longleftrightarrow \negminkeyin k oldt olds)))"
- Predecessor function and corresponding lemmas
```

```
fun Pre :: "nat \(\Rightarrow\) nat" where
```

fun Pre :: "nat \Rightarrow nat" where
"Pre i = (THE x::nat.(Suc x=i))'
"Pre i = (THE x::nat.(Suc x=i))'
lemma haspre :
lemma haspre :
" \forall i::nat. $i \neq 0 \longrightarrow$ ($\boldsymbol{\theta} x:$ nat. Suc $x=i$)"
" \forall i::nat. $i \neq 0 \longrightarrow$ ($\boldsymbol{\theta} x:$ nat. Suc $x=i$)"
proof (auto)
proof (auto)
fix i: :nat
fix i: :nat
assume "(0) < i"
assume "(0) < i"
show " $\exists x$. Suc $x=i$ " by (metis ‘ $0<i$ ' gr0_conv_Suc)
show " $\exists x$. Suc $x=i$ " by (metis ‘ $0<i$ ' gr0_conv_Suc)
qed
qed
lemma ispre :
lemma ispre :
'Vi::nat. i $\neq 0 \longrightarrow$ Suc(Pre i) $=i^{\prime \prime}$
'Vi::nat. i $\neq 0 \longrightarrow$ Suc(Pre i) $=i^{\prime \prime}$
proof (auto)
proof (auto)
fix i: :nat
fix i: :nat
assume "() < i"
assume "() < i"
moreover from this haspre have "($\exists \mathrm{x}$. Suc $\mathrm{x}=\mathrm{i})$ " by auto
moreover from this haspre have "($\exists \mathrm{x}$. Suc $\mathrm{x}=\mathrm{i})$ " by auto
ultimately show "Suc (THE x. Suc $x=i$) $=i$ " by auto
ultimately show "Suc (THE x. Suc $x=i$) $=i$ " by auto
qed

```
qed
```

— Lemma (childpath)

```
lemma childpath:
    " \(\forall\) (t::address)(s::store) (p::path)(n::nat)(t0::address).
        \(\neg\) null \(t \wedge\) child \(t\) tQ \(s \wedge\) nodepath \(p n t 0 s \longrightarrow\) nodepath (cons \(t p)(n+1) t s^{\prime \prime}\)
proof (auto)
    fix \(t s p n t 0\)
    assume pre2: "ᄀ null t"
    assume pre3: "child \(t\) t@ s"
    assume pre4: "nodepath \(p\) n tQ s"
    show "nodepath (case_nat \(t\) p) (Suc n) t s"
    proof (unfold "nodepath_def")
        show "path (case_nat t p) (Suc n) t s \(\wedge\)
                    \(\neg\) null (case Suc \(n\) of \(0 \Rightarrow t \mid\) Suc \(x \Rightarrow p x\) )"
        proof (auto)
            show "path (case_nat t p) (Suc n) t s"
            proof (unfold path_def)
                show " (case 0 of \(0 \Rightarrow t \mid\) Suc \(x \Rightarrow p x)=t \wedge\)
                            ( \(\forall\) i<Suc n. ᄀ null (case i of \(0 \Rightarrow t \mid \operatorname{Suc} x \Rightarrow p x)\) ) \(\wedge\)
                                ( \(\forall i<\) Suc n. children (case_nat \(t p\) ) i s)"
                    proof (auto)
                        fix \(i\)
                    assume "i < Suc n"
                        assume "null (case i of \(0 \Rightarrow t \mid\) Suc \(x \Rightarrow p x\) )"
                        from this pre2 pre4 nodepath_def show "False"
                            by (metis 'i < Suc n’ less_Suc_eq_⿴_disj old.nat.simps(4) old.nat.simps(5) path_def)
                    next
                            fix \(i\)
                            assume "i < Suc n"
                            show "children (case_nat \(t\) ) i \(s\) "
                            proof (unfold "children_def")
                            from pre3 pre4 nodepath_def[of " \(p\) " " \(n\) " "tQ" "s"] have
                        4: "path \(p\) n tQ \(s\) " and
                        5: " \(\neg\) null ( \(p \mathrm{n}\) )" by auto
                        show "child (case i of \(0 \Rightarrow t \mid\) Suc \(x \Rightarrow p x\) )
                            (case \(i+1\) of \(0 \Rightarrow t \mid \operatorname{Suc} x \Rightarrow p x\) ) \(s^{\prime \prime}\)
                        proof (cases)
                            assume cond: " \(i=0\) "
                        from pre3 cond 4 path_def children_def child_def have
                                "child \(t\) ( \(p 0\) ) s" by auto
                            from this cond show ?thesis by auto
                    next
                            assume cond: " \(i \neq 0\) "
                            from pre3 cond 4 path_def children_def child_def ispre have
                                    "child (p (Pre i)) ( \(p\) i) s"
                            by (metis Suc_eq_plus1 ' \(i\) < Suc n' less_Suc_eq_0_disj old.nat.inject)
                            from this cond show ?thesis by (metis Suc_eq_plus1 ispre old.nat.simps(5))
                    qed
                    qed
                    qed
            qed
        next
            from pre4 nodepath_def show "null ( \(p \mathrm{n}\) ) \(\Longrightarrow\) False" by metis
        qed
    qed
qed
```

— Lemma (treeright)

```
lemma treeright :
    "\forall (t::address)(s::store). tree t s ^ \negnull t \longrightarrow tree (right(s t)) s"
proof (auto)
    fix ts
    assume pre1: "tree t s"
    assume pre2: "\negnull t"
    show "tree (right(s t)) s"
    proof (unfold tree_def)
        from pre1 tree_def[of "t" "s"] have
            pre5: "(\forallp. ᄀ ipath p t s)" by metis
        from pre1 tree_def[of "t" "s"] have
            pre6: "(\forallp1 p2 n1 n2. nodepath p1 n1 t s ^ nodepath p2 n2 t s ^
                p1 n1 = p2 n2 \longrightarrow
                    n1 = n2 ^(\foralli<n1. p1 i = p2 i))" by metis
    show "(\forallp. ᄀ ipath p (right (s t)) s) ^
                * p1 p2 n1 n2.
                            nodepath p1 n1 (right (s t)) s ^ nodepath p2 n2 (right (s t)) s ^
                                    p1 n1 = p2 n2 \longrightarrow
                                    n1 = n2 ^(*i<n1. p1 i = p2 i))"
        proof (auto)
            fix p
            assume a1: "ipath p (right (s t)) s"
            show False
            proof -
                from a1 ipath_def[of "p" "right (s t)" "s"] have
                n1: "(p 0 = right (s t) ^ (\foralli. ᄀ null (p i)) ^
                    (\foralli. children p i s))" by auto
                    let ?p0 ="cons t p"
                    have "ipath ?p0 t s"
                proof (unfold ipath_def)
                show "cons t p O = t ^ (\foralli. ᄀ null (cons t pi)) ^
                        (*i. children (cons t p) i s)"
                proof (auto)
                            fix i
                            assume "null (case i of 0 # t | Suc x = p x)"
                            from this pre2 n1 show False by (metis Nitpick.case_nat_unfold)
                        next
                            fix i
                            show "children (case_nat t p) i s"
                            proof (unfold children_def)
                                from n1 children_def child_def show
                                    "child (case i of 0 # t | Suc x m p x)
                                    (case i + 1 of 0 # t | Suc x = p x) s"
                                    by (metis Suc_eq_plus1 lessI less_Suc_eq_O_disj old.nat.simps(4) old.nat.simps(5))
                    qed
                    qed
                    qed
```

```
        from this pre5 show False by auto
    qed
next
    fix p1 p2 n1 n2
    assume 1: "nodepath p1 n1 (right (s t)) s"
    assume 2: "nodepath p2 n2 (right (s t)) s"
    assume 3: "p1 n1 = p2 n2"
    show "n1 = n2"
    proof -
        let ?q1 ="cons t p1" and ?q2 ="cons t p2" and ?m1 ="n1+1" and ?m2 ="n2+1"
        from pre6 have
            "nodepath ?q1 ?m1 t s ^ nodepath ?q2 ?m2 t s ^ ?q1 ?m1 = ?q2 ?m2 \longrightarrow
                ?m1 = ?m2 ^ (*i<?m1. ?q1 i = ?q2 i)" by blast
        from this show "n1 = n2"
        proof (auto)
            assume "n1 f= n2"
            from pre2 1 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
            by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)
        next
            assume "n1 f n2"
            from pre2 2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
            by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)
        next
            assume "n1 f n2"
            from 3 show "p1 n1 = p2 n2" by auto
        qed
    qed
next
    fix p1 p2 n1 n2 i
    assume 1: "nodepath p1 n1 (right (s t)) s"
    assume 2: "nodepath p2 n2 (right (s t)) s"
    assume 3: "p1 n1 = p2 n2"
    assume 4: "i < n1"
    show "p1 i = p2 i"
    proof -
        let ?q1 ="(cons t p1)" and ?q2 ="(cons t p2)"
        let ?m1 ="n1+1" and ?m2 ="n2+1"
        from pre6 have
            "nodepath ?q1 ?m1 t s ^ nodepath ?q2 ?m2 t s ^ ?q1 ?m1 = ?q2 ?m2 \longrightarrow
                ?m1 = ?m2 ^ (\foralli<?m1. ?q1 i = ?q2 i)" by blast
    from this show ?thesis
    proof (auto)
        assume "p1 i f p2 i"
        from 1 pre2 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
        by (metis One_nat_def add_Suc_right cons.simps
                        monoid_add_class.add.right_neutral pre2)
        next
        assume "p1 i # p2 i"
        from 2 pre2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
        by (metis One_nat_def add_Suc_right cons.simps
                        monoid_add_class.add.right_neutral pre2)
        next
```

```
                    assume "p1 i f p2 i"
                    from 3 show "p1 n1 = p2 n2" by auto
                next
                    assume 5: "\foralli<Suc n2. (case i of 0 # t | Suc x m p1x) =
                    (case i of 0 # t | Suc x = p2 x)"
                    assume 6: "n1 = n2"
                    from 5 6 show "p1 i = p2 i" by (metis "4"Suc_less_eq old.nat.simps(5))
                    qed
            qed
        qed
    qed
qed
```

— Lemma (keyinright)

```
lemma keyinright:
    "\forall (t::address)(s::store)(k::key). \negnull t ^ keyin k (right (s t)) s - m keyin k t s"
proof (auto)
    fix t s k
    assume pre2: "\negnull t"
    assume a1: "(keyin k (right(s t)) s)"
    show "keyin k t s"
    proof (unfold keyin_def)
        show "\existsa. nodein a t s ^ key (s a) = k"
        proof -
            from a1 keyin_def[of "k" "(right(s t))" "s"] have
                a2: "(\existsa. nodein a (right (s t)) s ^ key (s a) = k)" by auto
            from a2 obtain a where
                a3: "nodein a (right (s t)) s" and
                a4: "key (s a) = k" by auto
            from a3 nodein_def[of "a" "right (s t)" "s"] obtain "p" "n" where
                a5: "nodepath p n (right (s t)) s" and
                a6: "p n = a" by auto
            have "nodein a t s ^ key (s a) = k"
            proof (auto)
                show "nodein a t s"
                proof (unfold nodein_def)
                    show "\existsp n. nodepath p n t s ^ p n = a"
                        proof -
                        let ?p = "cons t p"
                        let ?n = "n+1"
                        have "nodepath ?p ?n t s ^ ?p ?n = a"
                        proof (auto)
                        from childpath nodepath_def children_def child_def pre2 a5 a6 show
                        "nodepath (case_nat t p) (Suc n) t s" by (metis Suc_eq_plus1 cons.simps)
                                    next
                                    from cons_def a6 show "p n = a" by auto
                                    qed
                                    from this show ?thesis by blast
                    qed
                    qed
            next
                    from a4 show "key (s a) = k" by auto
```

```
            qed
            from this show ?thesis by auto
        qed
    qed
qed
    static Tree deleteMin(Tree t) {
    Tree p = t.left;
    if (p == null)
        t = t.right;
    else {
        Tree p2 = t;
        Tree tt = p.left;
        while (tt != null) {
            p2 = p; p = tt; tt = p.left;
        }
        p2.left = p.right;
    }
    return t;
}
```

- Verification Condition 1
- correctness of first program path in which store is not changed
— assume pre; $\mathrm{p}=\mathrm{t}$. left; assume $\mathrm{p}==$ null; $\mathrm{t}=\mathrm{t}$.right; assert post;

```
theorem VC1 :
    "\forall (t::address)(s::store). pre t s ^ null (left(s t)) \longrightarrow post (right(s t)) s t s"
proof (auto)
    fix ts
    assume pre: "pre t s"
    assume "null (left(s t))"
    show "post (right(s t)) s t s"
    proof (unfold post_def)
        from pre pre_def[of "t" "s"] have
            pre1: "stree t s" and
            pre2: "\neg null t" by auto
        from pre1 stree_def[of "t" "s"] have
            pre3: "tree t s" and
            pre4: "\forallp n. nodepath p (n + 1) t s \longrightarrow
                                    (let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
                                    (a2 = left n1) = (key n2 < key n1))" by auto
            from pre3 tree_def[of "t" "s"] have
            pre5: "(\forallp. ᄀ ipath p t s)" by metis
            from pre3 tree_def[of "t" "s"] have
                pre6: "(\forallp1 p2 n1 n2. nodepath p1 n1 t s ^ nodepath p2 n2 t s^ p1 n1 = p2 n2 \longrightarrow
                    n1 = n2 ^ ( ( i<n1. p1 i = p2 i))" by metis
            show
            "stree (right (s t)) s ^
```

```
        (\foralla. ᄀ nodein a t s \longrightarrow s a = s a) ^
        (\forallk. keyin k (right (s t)) s \longrightarrow keyin k t s) ^
        (*k. keyin k t s Meyin k (right (s t)) s = ( ᄀ minkeyin k t s))"
        proof (auto)
        - subproof
        show "stree (right(s t)) s"
        proof (unfold stree_def)
            show
            "tree (right (s t)) s ^
                (\forallp n. nodepath p (n + 1) (right (s t)) s \longrightarrow
                (let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
                    (a2 = left n1) = (key n2 < key n1)))"
            proof (auto)
                from treeright pre2 pre3 show "tree (right (s t)) s" by auto
            next
                fix p n
                assume "nodepath p (Suc n) (right (s t)) s"
                from this pre4 nodepath_def childpath child_def pre2
                show "let a2 = p (Suc n); n1 = s (p n) in (a2 = left n1) = (key (s a2) < key n1)"
                by (metis Suc_eq_plus1 cons.simps old.nat.simps(5))
            qed
        qed
        - subproof
        next
        fix }
        assume "keyin k (right (s t)) s"
        from keyinright pre2 this show "keyin k t s" by auto
        - subproof
        next
        fix k
        assume "keyin k t s"
        assume "keyin k (right (s t)) s"
        assume "minkeyin k t s"
        show False sorry
        - subproof
        next
        fix k
        assume "keyin k t s"
        assume "\neg minkeyin k t s"
        show "keyin k (right (s t)) s" sorry
        qed
    qed
qed
end
```


B Isabelle Theory (Plain)

theory Trees
imports Main
begin"
_- "Trees.thy: verification of an imperative tree algorithm
-- "
-- "Given: a pointer t to the root of a non-empty binary search tree"
-- " (not necessarily balanced).'
-- "Verify that the procedure (deleteMin) removes the node with the"
-- "minimal key from the tree."
_ _ '
-- "See Section 5 of Daniel Bruns et al:
-- "Implementation-level verification of algorithms with KeY "
-- "Int J Softw Tools Technol Transfer, Springer, 17 November 2013"
-- "DOI 10.1007/s10009-013-0293-y, http://dx.doi.org/10.1007/s10009-013-0293-y
--
-- "(c) 2014, Wolfgang Schreiner (Wolfgang.Schreiner@risc.jku.at)
-- "Research Institute for Symbolic Computation (RISC)"
-- "Johannes Kepler University, Linz, Austria "
"
-- "keys"
type_synonym key ="int"
-- "addresses"
type_synonym address ="nat"
definition null : : "address => bool" where
"null $x=(x=0) "$
-- "nodes: key, left and right pointer"
type_synonym node ="key * address * address"
fun key : : "node \<Rightarrow> key" where
"key (x,_,_) = x"
fun left : : "node => address" where
"left (_, x,_) = x"
fun right : : "node => address" where
"right (_,_,x) = x"
-- "generic sequences"
type_synonym 'a seq ='nat => 'a"
-- "stores"
type_synonym store ="node seq"
-- "paths"
type_synonym path = "address seq"
fun head :: "path $\backslash<$ Rightarrow $>$ address" where
"head $p=p(\theta)$ "
fun tail :: "path \<Rightarrow> path" where
"tail $p=(\backslash<l a m b d a>n:$ nat. $p(n+1)) "$
fun cons : : "address \<Rightarrow> path \<Rightarrow> path" where
"cons a $\mathrm{p}=(\backslash<$ lambda $>\mathrm{n}$: : nat. case n of $\theta \backslash<$ Rightarrow $>$ a $\mid \operatorname{Suc}(\mathrm{n} \theta) \backslash<$ Rightarrow $>\mathrm{p} n \theta)$ "
fun put : : "path \<Rightarrow> nat $\backslash<$ Rightarrow $>$ address \<Rightarrow $>$ path" where
"put $\mathrm{p} \mathrm{k} \mathrm{a}=(\backslash<\operatorname{lambda>n::nat.~if~} \mathrm{n}=\mathrm{k}$ then a else p k)"
-- "a2 is child of a1"
definition child :: "address \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"child a1 a2 s = (a2 = left (s a1) \<or> a2 = right(s a1))"

```
-- "path element p(i+1) is child of p(i)"
definition children :: "path \<Rightarrow> nat \<Rightarrow> store \<Rightarrow> bool" where
    "children p i s = child (p i) (p (i+1)) s"
-- "p is an infinite path starting from t"
definition ipath :: "path \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
    "ipath p t s =
        (p(0) = t \<and>
            (\<forall>i::nat. \<not>null(p i)) \<and>
            (\<forall>i::nat. children p i s))"
-- "p is a path of length n starting from t"
definition path :: "path \<Rightarrow> nat \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
    "path p n t s =
        (p(0) = t \<and>
            (\<forall>i::nat. i < n \<longrightarrow> \<not>null(p i)) \<and>
            (\<forall>i::nat. i < n \<longrightarrow> children p i s))"
-- "p is a path of length n starting from t leading to a node"
definition nodepath :: "path \<Rightarrow> nat \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
    "nodepath p n t s = ((path p n t s) \<and> \<not>null(p n))"
_- "t is a tree"
definition tree :: "address \<Rightarrow> store \<Rightarrow> bool" where
-- "no infinite paths respectively cycles and"
-- "no sharing of nodes in multiple paths, also prevents cycles"
"tree t s =
        (C\<forall>p::path. \<not>ipath p t s) \<and>
            (\<forall>(p1::path) (p2::path) (n1::nat) (n2::nat).
            nodepath p1 n1 t s \<and> nodepath p2 n2 t s \<and>
            p1 n1 = p2 n2 \<longrightarrow>
                n1 = n2 \<and> (\<forall>i::nat. i < n1 \<longrightarrow> p1 i = p2 i)))"
```

-- "t is a search tree with unique keys"
definition stree :: "address \<Rightarrow> store \<Rightarrow> bool" where
"stree t s =
((tree t s) \<and>
(\<forall>(p::path)(n::nat).
nodepath $\mathrm{p}(\mathrm{n}+1) \mathrm{t} \mathrm{s} \backslash<$ longrightarrow $>$
(let a1 = (p n) in let a2 = (p ($\mathrm{n}+1$)) in
let $\mathrm{n} 1=\mathrm{s}(\mathrm{a} 1)$ in let $\mathrm{n} 2=\mathrm{s}(\mathrm{a} 2)$ in
(a2 = left(n1) \<longleftrightarrow> key(n2) < key(n1)))))"
-- "a is the address of a node in tree t"
definition nodein : : "address \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where

-- "k is a key in tree t"
definition keyin :: "key \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"keyin k t s = (\<exists>(a::address). nodein a t s \<and> key (s a) = k)"
-- "k is the minimum key in tree t"
definition minkeyin :: "key \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"minkeyin k t s = (keyin k t s \<and> \<not>(\<exists>k0::key. k0 < k \<and> keyin k0 t s))"
-- \{* precondition of deleteMin *\}
definition pre :: "address \<Rightarrow> store \<Rightarrow> bool" where
-- "input is a non-null search tree"
"pre t x = (stree t x \<and> \<not>null t)"
-- "postcondition of deleteMin"
definition post :: "address \<Rightarrow> store \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
-- "the output is a search tree"
-- "only the nodes in the input tree may have been changed"
-- "the only keys in the output tree are those from the input tree"
-- "a key from the input tree is in the output tree iff it is not the minimum key"
"post t s oldt olds =
((stree t s) \<and>
($<$ forall>a: address. $\backslash<n o t>($ nodein a oldt olds) \<longrightarrow> s a = olds a) \<and>
(\backslash <forall>k::key. (keyin k t s) \<longrightarrow> keyin k oldt olds) \<and>
(\<forall>k::key. (keyin k oldt olds) \<longrightarrow>
(keyin k t s \<longleftrightarrow> \<not>minkeyin k oldt olds)))"
 _"
-- "Predecessor function and corresponding lemmas"

fun Pre :: "nat \<Rightarrow> nat" where
"Pre $i=($ THE $x:$:nat. (Suc $x=i)$)"
lemma haspre :
"\<forall>i::nat. i \<noteq> 0 \<longrightarrow> (\<exists>x::nat. Suc x=i)"
proof (auto)
fix i::nat
assume "0 < i"
show "\<exists>x. Suc $x=1 "$ by (metis '0 < i' gro_conv_Suc)
qed
lemma ispre :
"\<forall>i::nat. i \<noteq>0 \<longrightarrow> Suc(Pre i) = i"
proof (auto)
fix i::nat
assume "0 < i"
moreover from this haspre have "(\<exists>x. Suc $x=i) "$ by auto
ultimately show "Suc (THE x. Suc $x=i$) $=i$ " by auto
qed

-- "Lemma (childpath)"
lemma childpath:
" $\backslash<$ forall>(t::address) (s::store) (p::path) (n: :nat) (t0::address).
\<not>null t \<and> child t tQ s \<and> nodepath p n tQ s \<longrightarrow> nodepath (cons t p) (n+1) t s"
proof (auto)
fix t s p n to
assume pre2: "\<not> null t"
assume pre3: "child t tQ s"
assume pre4: "nodepath p n t0 s"
show "nodepath (case_nat t p) (Suc n) t s"
proof (unfold "nodepath_def")
show "path (case_nat t p) (Suc n) t s \<and>
\<not> null (case Suc n of 0 \<Rightarrow> $t \mid S u c x ~ \<R i g h t a r r o w>~ p ~ x) " ~$
proof (auto)
show "path (case_nat t p) (Suc n) t s"
proof (unfold path_def)
show " (case 0 of 0 \<Rightarrow> $t \mid$ Suc x \<Rightarrow> p x) = t \<and>
(\backslash <forall>i<Suc n. \<not> null (case i of 0 \<Rightarrow $t \mid$ Suc $x ~ \<$ Rightarrow p x)) \<and>
(\backslash <forall>i<Suc n. children (case_nat t p) i s)"
proof (auto)
fix i
assume "i < Suc n"
assume "null (case i of $0 \backslash<$ Rightarrow >1 Suc $x \backslash<$ Rightarrow> p x)"
from this pre2 pre4 nodepath_def show "False"
by (metis 'i < Suc n' less_Suc_eq_0_disj old.nat.simps(4) old.nat.simps(5) path_def)

```
            next
                    fix i
                    assume "i < Suc n"
                show "children (case_nat t p) i s"
                    proof (unfold "children_def")
                from pre3 pre4 nodepath_def[of "p" "n" "tQ" "s"] have
                4: "path p n t0 s" and
                5: "\<not> null (p n)" by auto
                show "child (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)
                    (case i + 1 of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x) s"
                    proof (cases)
                    assume cond: "i=0"
                    from pre3 cond 4 path_def children_def child_def have
                    "child t (p 0) s" by auto
                    from this cond show ?thesis by auto
                    next
                        assume cond: "i\<noteq>0"
                from pre3 cond 4 path_def children_def child_def ispre have
                    "child (p (Pre i)) (p i) s"
                by (metis Suc_eq_plus1 'i < Suc n` less_Suc_eq_0_disj old.nat.inject)
                from this cond show ?thesis by (metis Suc_eq_plus1 ispre old.nat.simps(5))
                    qed
                    qed
                qed
            qed
        next
            from pre4 nodepath_def show "null (p n) \<Longrightarrow> False" by metis
        qed
    qed
qed
-- "--------------------------------------------------------------------------------------------------------------------
-- "Lemma (treeright)"
lemma treeright :
    "\<forall>(t::address)(s::store). tree t s \<and> \<not>null t \<longrightarrow> tree (right(s t)) s"
proof (auto)
    fix t s
    assume pre1: "tree t s"
    assume pre2: "\<not>null t"
    show "tree (right(s t)) s"
    proof (unfold tree_def)
        from pre1 tree_def[of "t" "s"] have
            pre5: "(\<forall>p. \<not> ipath p t s)" by metis
        from pre1 tree_def[of "t" "s"] have
            pre6: "(\<forall>p1 p2 n1 n2. nodepath p1 n1 t s \<and> nodepath p2 n2 t s \<and>
                p1 n1 = p2 n2 \<longrightarrow>
                        n1 = n2 \<and> (\<forall>i<n1. p1 i = p2 i))" by metis
        show "(\<forall>p. \<not> ipath p (right (s t)) s) \<and>
            \\<forall>p1 p2 n1 n2.
                nodepath p1 n1 (right (s t)) s \<and> nodepath p2 n2 (right (s t)) s \<and>
                p1 n1 = p2 n2 \<longrightarrow>
                    n1 = n2 \<and> (\<forall>i<n1. p1 i = p2 i))"
        proof (auto)
            fix p
            assume a1: "ipath p (right (s t)) s"
            show False
            proof -
                from al ipath_def[of "p" "right (s t)" "s"] have
```

```
            n1: "(p 0 = right (s t) \<and> (\<forall>i. \<not> null (p i)) \<and>
                (\<forall>i. children p i s))" by auto
    let ?p0 ="cons t p"
    have "ipath ?p0 t s"
    proof (unfold ipath_def)
        show "cons t p 0 = t \<and> (\<forall>i. \<not> null (cons t p i)) \<and>
                (\<forall>i. children (cons t p) i s)"
        proof (auto)
            fix i
            assume "null (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)"
            from this pre2 n1 show False by (metis Nitpick.case_nat_unfold)
        next
            fix i
            show "children (case_nat t p) i s"
            proof (unfold children_def)
                from n1 children_def child_def show
                    "child (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)
                                    (case i + 1 of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x) s"
                    by (metis Suc_eq_plus1 lessI less_Suc_eq_0_disj old.nat.simps(4) old.nat.simps(5))
            qed
        qed
        qed
        from this pre5 show False by auto
    qed
next
    fix p1 p2 n1 n2
    assume 1: "nodepath p1 n1 (right (s t)) s"
    assume 2: "nodepath p2 n2 (right (s t)) s"
    assume 3: "p1 n1 = p2 n2"
    show "n1 = n2"
    proof -
        let ?q1 ="cons t p1" and ?q2 ="cons t p2" and ?m1 ="n1+1" and ?m2 ="n2+1"
        from pre6 have
            "nodepath ?q1 ?m1 t s \<and> nodepath ?q2 ?m2 t s \<and> ?q1 ?m1 = ?q2 ?m2 \<longrightarrow>
                ?m1 = ?m2 \<and> (\<forall>i<?m1. ?q1 i = ?q2 i)" by blast
        from this show "n1 = n2"
        proof (auto)
            assume "n1 \<noteq> n2"
            from pre2 1 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
            by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)
        next
            assume "n1 \<noteq> n2"
            from pre2 2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
            by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)
        next
            assume "n1 \<noteq> n2"
            from 3 show "p1 n1 = p2 n2" by auto
        qed
    qed
next
    fix p1 p2 n1 n2 i
    assume 1: "nodepath p1 n1 (right (s t)) s"
    assume 2: "nodepath p2 n2 (right (s t)) s"
    assume 3: "p1 n1 = p2 n2"
    assume 4: "i < n1"
    show "p1 i = p2 i"
    proof -
        let ?q1 ="(cons t p1)" and ?q2 ="(cons t p2)"
        let ?m1 ="n1+1" and ?m2 ="n2+1"
        from pre6 have
            "nodepath ?q1 ?m1 t s \<and> nodepath ?q2 ?m2 t s \<and> ?q1 ?m1 = ?q2 ?m2 \<longrightarrow>
                ?m1 = ?m2 \<and> (\<forall>i<?m1. ?q1 i = ?q2 i)" by blast
```

```
            from this show ?thesis
            proof (auto)
                    assume "p1 i \<noteq> p2 i"
                    from 1 pre2 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
                    by (metis One_nat_def add_Suc_right cons.simps
                        monoid_add_class.add.right_neutral pre2)
            next
                    assume "p1 i \<noteq> p2 i"
                    from 2 pre2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
                    by (metis One_nat_def add_Suc_right cons.simps
                                    monoid_add_class.add.right_neutral pre2)
            next
                    assume "p1 i \<noteq> p2 i"
                    from 3 show "p1 n1 = p2 n2" by auto
            next
                assume 5: "\<forall>i<Suc n2. (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p1 x)=
                                    (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p2 x)"
                    assume 6: "n1 = n2"
                    from 5 6 show "p1 i = p2 i" by (metis "4"Suc_less_eq old.nat.simps(5))
            qed
        qed
        qed
    qed
qed
-- " ------------------------------------------------------------------------------------------------------------------
    - "Lemma (keyinright)"
lemma keyinright
"\<forall>(t::address)(s::store)(k::key). \<not>null t \<and> keyin k (right (s t)) s \<longrightarrow> keyin k t s"
proof (auto)
    fix t s k
    assume pre2: "\<not>null t"
    assume a1: "(keyin k (right(s t)) s)"
    show "keyin k t s"
    proof (unfold keyin_def)
        show "\<exists>a. nodein a t s \<and> key (s a) = k"
        proof -
            from a1 keyin_def[of "k" "(right(s t))" "s"] have
                a2: "(\<exists>a. nodein a (right (s t)) s \<and> key (s a) = k)" by auto
            from a2 obtain a where
                a3: "nodein a (right (s t)) s" and
                a4: "key (s a) = k" by auto
            from a3 nodein_def[of "a" "right (s t)" "s"] obtain "p" "n" where
                a5: "nodepath p n (right (s t)) s" and
                a6: "p n = a" by auto
            have "nodein a t s \<and> key (s a) = k"
            proof (auto)
                show "nodein a t s"
                proof (unfold nodein_def)
                    show "\<exists>p n. nodepath p n t s \<and> p n = a"
                    proof -
                        let ?p = "cons t p"
                let ?n = "n+1"
                have "nodepath ?p ?n t s \<and> ?p ?n = a"
                proof (auto)
                            from childpath nodepath_def children_def child_def pre2 a5 a6 show
                            "nodepath (case_nat t p) (Suc n) t s" by (metis Suc_eq_plus1 cons.simps)
                    next
                            from cons_def a6 show "p n = a" by auto
                    qed
                    from this show ?thesis by blast
```

```
                qed
                qed
            next
                from a4 show "key (s a) = k" by auto
        qed
        from this show ?thesis by auto
        qed
    qed
qed
text {*
{\small
\begin{verbatim}
    static Tree deleteMin(Tree t) {
        Tree p = t.left;
        if (p == null)
            t = t.right;
        else {
            Tree p2 = t;
            Tree tt = p.left;
            while (tt != null) {
                p2 = p; p = tt; tt = p.left;
            }
            p2.left = p.right;
        }
        return t;
    }
\end{verbatim}
}
*}
```


-- "Verification Condition 1"
-- "correctness of first program path in which store is not changed "

theorem VC1 :
"\<forall>(t::address) (s::store). pre t s \<and> null (left(s t)) \<longrightarrow> post (right(s t)) s t s"
proof (auto)
fix t s
assume pre: "pre t s"
assume "null (left(s t))"
show "post (right(s t)) st s"
proof (unfold post_def)
from pre pre_def[of "t" "s"] have
pre1: "stree t s" and
pre2: "\<not> null t" by auto
from pre1 stree_def[of "t" "s"] have
pre3: "tree t s" and
pre4: " $\backslash<$ forall>p n. nodepath $p(n+1) t$ s $\backslash<$ longrightarrow>
(let $\mathrm{a} 1=\mathrm{p} \mathrm{n;} \mathrm{a2} \mathrm{=} \mathrm{p}(\mathrm{n}+1) ; \mathrm{n} 1=\mathrm{s} \mathrm{a} 1 ; \mathrm{n} 2=\mathrm{s}$ a2 in
(a2 = left n1) = (key n2 < key n1))" by auto
from pre3 tree_def[of "t" "s"] have
pre5: "(\<forall>p. \<not> ipath p t s)" by metis
from pre3 tree_def[of "t" "s"] have
pre6: " $\backslash<$ forall>p1 p2 n1 n2. nodepath p1 n1 t s \<and> nodepath p2 n2 t s \backslash <and $>\mathrm{p} 1 \mathrm{n} 1=\mathrm{p} 2 \mathrm{n} 2$ \<longrightarrow>
$\mathrm{n} 1=\mathrm{n} 2 \backslash<$ and $>(\backslash<$ forall $>\mathrm{i}<\mathrm{n} 1 . \mathrm{p} 1 \mathrm{i}=\mathrm{p} 2 \mathrm{i}))^{\prime \prime}$ by metis
show
"stree (right (s t)) s \<and>

```
(\<forall>a. \<not> nodein a t s \<longrightarrow> s a = s a) \<and>
(\<forall>k. keyin k (right (s t)) s \<longrightarrow> keyin k t s) \<and>
(\<forall>k. keyin k t s \<longrightarrow> keyin k (right (s t)) s = (\<not> minkeyin k t s))"
    proof (auto)
        -- "subproof "
        show "stree (right(s t)) s"
        proof (unfold stree_def)
            show
            "tree (right (s t)) s \<and>
                (\<forall>p n. nodepath p (n + 1) (right (s t)) s \<longrightarrow>
            (let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
                    (a2 = left n1) = (key n2 < key n1)))"
        proof (auto)
            from treeright pre2 pre3 show "tree (right (s t)) s" by auto
        next
            fix p n
            assume "nodepath p (Suc n) (right (s t)) s"
            from this pre4 nodepath_def childpath child_def pre2
            show "let a2 = p (Suc n); n1 = s (p n) in (a2 = left n1) = (key (s a2) < key n1)"
            by (metis Suc_eq_plus1 cons.simps old.nat.simps(5))
        qed
        qed
    -- "subproof "
    next
        fix k
        assume "keyin k (right (s t)) s"
        from keyinright pre2 this show "keyin k t s" by auto
    -- "subproof "
    next
        fix k
        assume "keyin k t s"
        assume "keyin k (right (s t)) s"
        assume "minkeyin k t s"
        show False sorry
    -- "subproof "
    next
        fix k
        assume "keyin k t s"
        assume "\<not> minkeyin k t s"
        show "keyin k (right (s t)) s" sorry
    qed
    qed
qed
end
```

