
Some Lessons Learned on Writing
Predicate Logic Proofs in Isabelle/Isar

Wolfgang Schreiner
Research Institute for Symbolic Computation (RISC)

Johannes Kepler University, Linz, Austria
Wolfgang.Schreiner@risc.jku.at

October 30, 2014

Abstract

We describe our experience with the use of the proving assistant Isabelle and its proof de-
velopment language Isar for formulating and proving formal mathematical statements. Our
focus is on how to use classical predicate logic and well established proof principles for this
purpose, bypassing Isabelle’s meta-logic and related technical aspects as much as possible.
By a small experiment on the proof of (part of a) verification condition for a program, we
were able to identify a number of important patterns that arise in such proofs yielding to
a workflow with which we feel personally comfortable; the resulting guidelines may serve
as a starting point for a the application of Isabelle/Isar for the “average” mathematical user
(i.e, a mathematical user who is not interested in Isabelle/Isar per se but just wants to use it
as a tool for computer-supported formal theory development).

1

mailto:Wolfgang.Schreiner@risc.jku.at

Contents

1 Introduction 3

2 Premises 4

3 Decomposing Goals 6
3.1 Decomposition of Compound Goals . 6
3.2 Unfolding Definitions in Goals . 7
3.3 Proving Multiple Goals . 8
3.4 Proving Existential Goals . 9
3.5 Proving by Case Distinction . 11

4 Deriving Knowledge 11
4.1 Expanding Definitions . 12
4.2 Instantiating Universal Knowledge . 13
4.3 Applying Existential Knowledge . 13
4.4 Closing Proofs . 14

5 Conclusions 14

A Isabelle Theory (Formatted) 16

B Isabelle Theory (Plain) 25

2

1 Introduction

Isabelle [3] is a very well known and widely used proof assistant; its proof development language
Isar [8] allows to write formally checked proofs that are still readable by humans and indeed re-
semble to a certain extent manually developed proofs. However, as for most computer-supported
theorem proving tools, the learning curve for mastering Isabelle/Isar is pretty steep.

This is the case although there exists an abundance of material on Isabelle/Isar, in particular
the survey [6] on programming and proving in Isabelle/HOL, the book [7] that mostly serves as
the “manual” for the tool, the reference manual [8] on Isabelle/Isar, papers [5, 4] on the practical
use of the language, and on the automatic proof methods in the system [1]. However, this infor-
mation is partially overlapping, partially reflects the state of the art at different times throughout
the long history of the system (much information focuses on the application of Isabelle proof
methods and tactics in proof development rather on the more recent Isar language), partially
it is on different level of abstraction (much material focuses use of individual logical rules in
Isabelle/HOL which is rarely needed in practical proof development any more); partially the in-
tended target audience are people interested in Isabelle per se rather than average mathematical
users that just want to get their job done.

The author of this paper experienced the situation that, despite the existence of a lot of learning
material, he had a hard time to extract that information that really interested him: how to use
Isabelle/Isar for the purpose of formulating and proving mathematical statements in classical
predicate logic. Ultimately we started a small experimental learning session by formulating
some proving problem that arose in the context of program verification [2]. We used this problem
in order to investigate how to develop a proof with Isabelle/Isar in a way that corresponds to our
manual proof development (rather than in that way that Isabelle/Isar would like us lead us). In
this paper, we deliberately do not explain the content of this proving problem, since it does not
contribute to the purpose of our explication but just serves as the “raw material” from which our
observations were extracted. Of course, the results may be shaped a bit by this material, but
actually we don’t think too much.

This paper documents the (preliminary) state of our investigations. It is subsequently struc-
tured as follows: we start by setting out in Section 2 our premises on how we would like to use
Isabelle/Isar. In Section 3, we describe the patterns we have found useful for the “top-down”
decomposition of proof goals to subgoals, i.e., those steps that are usually performed first in a
proof. In Section 4, we describe the patterns we have found useful for the “bottom-up” derivation
of new knowledge from existing knowledge, i.e, those steps by which we ultimately discharge
the various subgoals. In Section 5, we give our overall conclusions. Appendix A lists the Is-
abelle/HOL theory that we have elaborated in the context of this experiment in pretty-printed
form; Appendix B lists the corresponding plain text.

Our experiments were performed with the Isabelle 2014 distribution using the recommended
jEdit interface. Undoubtedly expert Isabelle users may be able to outline better practices than
those outlined in this paper or correct some factual errors of our presentation; if so, we would be
very much interested to hear about these.

3

2 Premises

The premises of our considerations are as follows:

1. We want to state theorems by formulas in predicate logic, not in the Isabelle meta-logic.
For instance, we want to state and prove a predicate-logic theorem

theorem VC1 :
“∀(t :: address)(s :: store). pre t s ∧ null(left(s t)) −→ post (right(s t)) s t s”

without getting too much involved with the details (and even the very existence) of the
Isabelle meta-logic. While for the goals and purposes of Isabelle, the existence of an
object-logic independent meta-logic is important, the differentiation between two logical
levels is irritating for the average mathematical user.

In particular, we do not want to state and prove the corresponding meta-logic theorem

theorem VC1 :
fixes t :: “address” and s :: “store”
assumes “pre t s” and “null(left(s t))”
shows “post (right(s t)) s t s”

even if this seems to be the recommendation of Isabelle experts (and most theorems in
Isabelle-related documentation are formulated in that style).

This kind of meta-logic statements may appear also in the syntactic form

theorem VC1 :
“
∧

(t :: address) (s :: store). Jpre t s; null(left(s t))K =⇒ null(left(s t))”

which may be abbreviated to

theorem VC1 :
“
∧

(t :: address) (s :: store). pre t s =⇒ null(left(s t)) =⇒ null(left(s t))”

or even to

theorem VC1 :
“pre (t :: address)(s :: store) =⇒ null(left(s t)) =⇒ null(left(s t))”

Still we are not interested in formulating and proving such statements which actually
express rules of the Isabelle meta-logic, not theorems in the object-level predicate logic.
We don’t want to be bothered by having to explain to readers and users of our theorems the
difference between the object-level logical connective −→ and the meta-logic arrow =⇒.
We just want to state and prove predicate logic statements. We are interested in Isabelle
because (and as far as) it is a mean to achieve this goal; the use of Isabelle is for us not a
mean in itself.

2. We would like to use the Isabelle/Isar proof language to develop proofs in the usual “top-
down” style that is common in mathematical practice by repeatedly reducing goals to
smaller subgoals (“backward proofs”); only if no further reduction is possible, “bottom-
up” steps are applied to infer new knowledge from existing knowledge until the current
subgoal can be proved (“forward proofs”).

4

However, the typically presented Isar proof skeleton

theorem formula
proof

assume assumption1 and . . . and assumptionm

from . . . have formula1 by . . .
from . . . have formula2 by . . .
. . .
from . . . have formulan by . . .
from . . . show goal by . . .

qed

only presents one top-down step: the proof of formula is by an (typically implicitly se-
lected) rule reduced to the proof of the meta-logic statement

assumption1 =⇒ . . . =⇒ assumptionm ⇒ goal

Subsequently, from the assumptions by bottom-up steps gradually additional knowledge
formula1 , . . . , formulan is derived from which ultimately goal can be shown. However,
this presentation has some problems:

• The rule implicitly selected by Isabelle/Isar is a logical introduction rule that gets rid
only of the outermost logical symbol (quantifier or connective); the further reduction
of the goal is not shown.

• The goal formula is only mentioned in the last line of the derivation; we don’t see
from the beginning to which goal we (by the application of the rule) are actually
heading.

Proof scripts in this style thus don’t really convey much of the intuition that guided the
development of the proof.

Our goal is to determine how Isabelle/Isar can be used in top-down proof development
such that the generated proofs are actually presented also in the style in which they were
originally developed.

3. We want to elaborate how with the minimum amount of knowledge about inference rules
and proof methods available in Isabelle/Isar, the main types of logical inference used in
mathematical practice can be performed. Apart from the top-down goal decomposition
steps mentioned above, these compromise in particular

• the usage of universally quantified knowledge by explicit instantiation,

• the usage of existentially quantified knowledge for introducing new constants,

• the proof of existentially quantified goals by explicit instantiation,

• the replacement of defined functions and predicates in knowledge and goals.

4. In Isabelle/Isar proof scripts frequently formulas have to be stated that are instances of
other formulas (definitions or knowledge) or parts of other formulas (goals). We would
like to elaborate how to get hold of these formulas without manual derivation.

5

3 Decomposing Goals

In this section, we show how by the proof methods auto and unfold compound goals are
decomposed to simpler goals and in atomic goals the definitions of predicates can be expanded.
We can thus perform the usual first “top-down” steps in a proof.

3.1 Decomposition of Compound Goals

When starting the proof of a theorem such as

theorem VC1 :
"∀(t::address)(s::store).
pre t s ∧ null (left(s t)) −→ post (right(s t)) s t s"

whose formula still contains universal quantifiers (∀) and logical connectives (∧, −→), we do not
use the automatically selected decomposition rule which just gets rid of a single logical symbol
(in above case, the ∀t , leaving a formula of the form ∀s. . . .). Rather we explicitly select the
auto rule to apply all the usual decomposition steps at once:

theorem VC1 :
"∀(t::address)(s::store).
pre t s ∧ null (left(s t)) −→ post (right(s t)) s t s"

proof (auto)
...

qed

The “Output” window of the Isabelle/jEdit interface shows the derived goal

goal (1 subgoal):
1.
∧
t s. pre t s =⇒ null (left (s t)) =⇒ post (right (s t)) s t s

By a sequence of fix, assume, and show steps

proof (auto)
fix t s
assume "pre t s"
assume "null (left(s t))"
show "post (right(s t)) s t s"
...

qed

we display the usual first steps of such a proof and also the ultimate goal to be shown (the
corresponding subformulas can be copied and pasted from the “Output” window). The resulting
proof state is

goal (1 subgoal):
1. post (right (s t)) s t s

6

3.2 Unfolding Definitions in Goals

When proving a goal

show "post (right(s t)) s t s"

with a defined predicate such as

definition post :: "address ⇒ store ⇒ address ⇒ store ⇒ bool" where
"post t s oldt olds =
((stree t s) ∧
(∀a::address.¬(nodein a oldt olds) −→ s a = olds a) ∧
(∀k::key.(keyin k t s) −→ keyin k oldt olds) ∧
(∀k::key.(keyin k oldt olds) −→

(keyin k t s ←→ ¬minkeyin k oldt olds)))"

we apply the unfold rule to expand the definition. If the goal is a subgoal of another proof, we
start a corresponding subproof:

show "post (right(s t)) s t s"
proof (unfold post_def)
...

qed

In the “Output” window, then the correspondingly expanded goal is displayed:

goal (1 subgoal):
1. stree (right (s t)) s ∧
(∀a. ¬ nodein a t s −→ s a = s a) ∧
(∀k. keyin k (right (s t)) s −→ keyin k t s) ∧
(∀k. keyin k t s −→ keyin k (right (s t)) s = (¬ minkeyin k t s))

We may copy and paste this goal into a corresponding show command. Since the goal is a
compound formula, we may (as described in the previous section) again apply the auto method
for automatic goal decomposition:

show "post (right(s t)) s t s"
proof (unfold post_def)
show
"stree (right (s t)) s ∧
(∀a. ¬ nodein a t s −→ s a = s a) ∧
(∀k. keyin k (right (s t)) s −→ keyin k t s) ∧
(∀k. keyin k t s −→ keyin k (right (s t)) s = (¬ minkeyin k t s))"

proof (auto)
...

qed
qed

7

3.3 Proving Multiple Goals

The decomposition of a conjunctive goal formula

show
"stree (right (s t)) s ∧
(∀a. ¬ nodein a t s −→ s a = s a) ∧
(∀k. keyin k (right (s t)) s −→ keyin k t s) ∧
(∀k. keyin k t s −→ keyin k (right (s t)) s = (¬ minkeyin k t s))"

proof (auto)
...

qed

results in multiple goals:

goal (4 subgoals):
1. stree (right (s t)) s
2.
∧
k. keyin k (right (s t)) s =⇒ keyin k t s

3.
∧
k. keyin k t s =⇒ keyin k (right (s t)) s =⇒ minkeyin k t s =⇒ False

4.
∧
k. keyin k t s =⇒ ¬ minkeyin k t s =⇒ keyin k (right (s t)) s

Please note that by the decomposition, the second formula in the conjunction

(∀a. ¬ nodein a t s −→ s a = s a)

was automatically proved; on the other hand, the proof of the formula

(∀k. keyin k t s −→ keyin k (right (s t)) s = (¬ minkeyin k t s))

was split into the two subgoals 3 and 4.
The resulting four subgoals are proved by multiple proofs separated by the next command

(the individual subformulas can be copied and pasted from the “Output” window):

show
"stree (right (s t)) s ∧
(∀a. ¬ nodein a t s −→ s a = s a) ∧
(∀k. keyin k (right (s t)) s −→ keyin k t s) ∧
(∀k. keyin k t s −→ keyin k (right (s t)) s = (¬ minkeyin k t s))"

proof (auto)
show "stree (right (s t)) s"
...

next
fix k
assume "keyin k (right (s t)) s"
show "keyin k t s"
...

next
fix k
assume "keyin k t s"
assume "keyin k (right (s t)) s"
assume "minkeyin k t s"
show False

8

...
next
fix k
assume "keyin k t s"
assume "¬ minkeyin k t s"
show "keyin k (right (s t)) s"
...

qed

Each proof thus follows the previously outlined decomposition strategies.

3.4 Proving Existential Goals

When proving an existential goal such as

show "∃p n. nodepath p n t s ∧ p n = a"

we start the proof with proof - which does not decompose the goal any further but starts a
“bottom-up” proof (see Section 4):

show "∃p n. nodepath p n t s ∧ p n = a"
proof -
...
qed

The proof requires the derivation of an instance of the formula where the existentially quantified
variables are replaced by concrete witness terms. In order to avoid writing the formula instance
we may introduce auxiliary schematic variables for these terms such that we can copy and paste
the formula from the output window and just replace the quantified variables by the schematic
variables:

show "∃p n. nodepath p n t s ∧ p n = a"
proof -
let ?p = "cons t p"
let ?n = "n+1"
have "nodepath ?p ?n t s ∧ ?p ?n = a"
...
from this show ?thesis by blast

qed

The part “. . . ” denotes the proof of the formula instance, e.g. in above case by selecting the
automatic goal decomposition

show "∃p n. nodepath p n t s ∧ p n = a"
proof -
let ?p = "cons t p"
let ?n = "n+1"
have "nodepath ?p ?n t s ∧ ?p ?n = a"
proof (auto)
...

9

end
from this show ?thesis by blast

qed

Please note the last line where the procedure blast is invoked to prove that the derived formula
is an instance of the existential goal formula (denoted by the predefined name ?thesis). The
procedure auto does here not suffice; in certain situations, even a stronger proof procedure
might be required (see the following section).

In the case of a formula with a single existentially quantified variable one might also invoke
the implicitly selected decomposition rule which replaces the existentially quantified variable
by a schematic variable such that only the value of this variable and the truth of the resulting
instance has to be established. For instance

show "∃a. nodein a t s ∧ key (s a) = k"
proof
...

qed

leads to the proof goal

goal (1 subgoal):
1. nodein ?a t s ∧ key (s ?a) = k

such that we might continue the proof with

show "∃a. nodein a t s ∧ key (s a) = k"
proof
let ?a = "..."
show "nodein ?a t s ∧ key (s ?a) = k"
proof (auto)
...

qed
qed

However, then the witness term for ?a must not depend on any value obtained during the proof.
On the contrary, in the format described above we may for instance write

show "∃a. nodein a t s ∧ key (s a) = k"
proof -
...
from ... obtain a where ...
...
have "nodein a t s ∧ key (s a) = k"
proof (auto)
...

qed
from this show ?thesis by auto

qed

which is not allowed in the more special format. In order to avoid to keep in mind a second
proof format that only can be applied in certain situations, we don’t use it any further.

10

3.5 Proving by Case Distinction

We may split a proof of a statement like

show "child (case i of 0 ⇒ t | Suc x ⇒ p x)
(case i + 1 of 0 ⇒ t | Suc x ⇒ p x) s"

by the usual technique of “case distinction” as follows

show "child (case i of 0 ⇒ t | Suc x ⇒ p x)
(case i + 1 of 0 ⇒ t | Suc x ⇒ p x) s"

proof (cases)
assume cond: "i=0"
...
from ... show ?thesis ...

next
assume cond: "i,0"
...
from ... show ?thesis ...

qed

Since the goal is not changed by the application of case distinction, we don’t mention it explicitly
at the beginning of each subproof, unless some more decomposition step is to be applied. In that
case, we may write the proof also in the format

show "child (case i of 0 ⇒ t | Suc x ⇒ p x)
(case i + 1 of 0 ⇒ t | Suc x ⇒ p x) s"

proof (cases)
assume cond: "i=0"
show ?thesis
proof ...
...

qed
next
assume cond: "i,0"
show ?thesis
proof ...
...

qed
qed

4 Deriving Knowledge

In this section, we describe how the usual “bottom-up” steps of expanding definitions and ap-
plying quantified knowledge can be performed to derive new knowledge; we also describe the
application of the automatic proof methods provided by Isabelle to close the proofs.

11

4.1 Expanding Definitions

The need to expand function definitions did not arise in our example proofs, since the auto
command expanded these automatically.

As for predicate definitions, in a situation where we know some atomic formula, e.g.

assume pre: "pre t s"

the definition of the corresponding predicate

definition pre :: "address ⇒ store ⇒ bool" where
"pre t x = (stree t x ∧ ¬null t)"

may be expanded by applying the command

from pre pre_def[of "t" "s"] have
"stree t x ∧ ¬null t" by auto

where the optional of clause may be used to give the actual arguments for the formal parameters
of the predicate. Apart from simplifying the task of the proving procedure, the explicit instanti-
ation has the advantage that by placing in the Isabelle/jEdit interface the cursor before the token
have the knowledge

picking this:
pre t s
pre t s = (stree t s ∧ ¬ null t)

is displayed from which the instantiated definition can just be copied and pasted into the proof
script. The resulting knowledge may be also immediately decomposed such as in

from pre pre_def[of "t" "s"] have
pre1: "stree t s" and
pre2: "¬ null t" by auto

Sometimes the procedure auto is too weak to infer the correctness of the claimed instanti-
ation; in such situations, the more powerful procedure metis may be used instead. However,
metis seems to have problems of deriving multiple goals simultaneously; we thus have to write

from pre3 tree_def[of "t" "s"] have
pre5: "(∀p. ¬ ipath p t s)" by metis

from pre3 tree_def[of "t" "s"] have
pre6: "(∀p1 p2 n1 n2. nodepath p1 n1 t s ∧

nodepath p2 n2 t s∧ p1 n1 = p2 n2 −→
n1 = n2 ∧ (∀i<n1. p1 i = p2 i))" by metis

to derive the two parts of the conjunctive formula that results from the instantiation of definition

definition tree :: "address ⇒ store ⇒ bool" where
"tree t s =

((∀p::path. ¬ipath p t s) ∧
(∀(p1::path) (p2::path) (n1::nat) (n2::nat).
nodepath p1 n1 t s ∧ nodepath p2 n2 t s ∧
p1 n1 = p2 n2 −→
n1 = n2 ∧ (∀i::nat. i < n1 −→ p1 i = p2 i)))"

12

4.2 Instantiating Universal Knowledge

Given a universally quantified knowledge formula, we may obtain an instantiation of this for-
mula only by constructing the instantiation manually. However, to reduce typing overhead
schematic variables for the instantiation terms may be used. For instance, the commands

let ?q1 ="cons t p1" and ?q2 ="cons t p2" and ?m1 ="n1+1" and ?m2 ="n2+1"
from pre6 have
"nodepath ?q1 ?m1 t s ∧ nodepath ?q2 ?m2 t s ∧ ?q1 ?m1 = ?q2 ?m2 −→

?m1 = ?m2 ∧ (∀i<?m1. ?q1 i = ?q2 i)" by blast

create an instance of the previously derived formula

from ... have
pre6: "(∀p1 p2 n1 n2. nodepath p1 n1 t s ∧ nodepath p2 n2 t s ∧

p1 n1 = p2 n2 −→
n1 = n2 ∧ (∀i<n1. p1 i = p2 i))" by metis

By placing the cursor on the line from pre6 have we get in the output window a copy of the
formula

picking this:
∀p1 p2 n1 n2. nodepath p1 n1 t s ∧ nodepath p2 n2 t s ∧
p1 n1 = p2 n2 −→ n1 = n2 ∧ (∀i<n1. p1 i = p2 i)

whose body may be copied and pasted into the have clause and the variables be replaced by the
schematic variables denoting the instantiation values.

4.3 Applying Existential Knowledge

Given an existentially quantified knowledge formula, we may obtain a constant corresponding
to the quantified variable by the obtain command. For instance, we may write in a proof

from ... have
"(∃a. nodein a (right (s t)) s ∧ key (s a) = k)" by ...

from this obtain a where "nodein a (right (s t)) s /\ "key (s a) = k" by auto

The knowledge derived about the formula may be also immediately decomposed respectively
specialized such as in

from ... have
"(∃a. nodein a (right (s t)) s ∧ key (s a) = k)" by ...

from this obtain a where
a3: "nodein a (right (s t)) s" and
a4: "key (s a) = k" by auto

By placing the cursor on the line from this obtain a where we e get in the output window
a copy of the formula

picking this:
∃a. nodein a (right (s t)) s ∧ key (s a) = k

whose body may be copied and pasted into the have clause and the variables be replaced by the
schematic variables denoting the instantiation values.

13

4.4 Closing Proofs

For closing proofs we may apply the following automatic procedures provided by Isabelle:

by auto This is a quick strategy that subsumes simplification (as provided by simp) with a
small amount of proof search. It is the default strategy we use most of the time.

by blast If auto fails, we try blast which is a fast tableau prover directly written in ML.

sledgehammer/metis If also blast fails, we apply sledgehammer which uses external auto-
mated provers (notably E, SPASS, and Vampire) to discover a proof. When applied via
the Isabelle/jEdit interface (buttons “Sledgehammer/Apply”), the command may take a
minute or so: if a proof is discovered, a line of the form

by (metis rules)

is displayed where rules is a list of rules that were used in the proof.

The form of the result is that of a call of the internal resolution prover metis to which
the list of rules is passed as an argument; by double-clicking on this line, the command is
inserted into the proof script; the resulting call of metis is then typically able to quickly
reconstruct the externally discovered proof and discharge of the goal.

To all these procedures the facts to be used are passed by the from clause of a proof command;
sledgehammer additionally uses the definitions and lemmas in the current scope and is thus also
able to detect missing facts that should be also listed (in addition to those facts that are needed
from the standard Isabelle libraries).

5 Conclusions

By the small “self-exercise” sketched in this paper, we were able to determine a strategy by
which we feel comfortable to elaborate proofs with the Isabelle proof assistant using the Isar
proof development language. In particular, we were able to extract from the plenitude of sources
available for Isabelle/Isar those parts that are most relevant for our purpose, the development
of theorems and proofs in classical logic in a style that closely resembles our usually preferred
practice. Undoubtedly there are still many further aspects that need to be elaborated for proving
with special theories (we did not e.g. not discuss induction or special quantifiers). However, at
least with the predicate logic aspect we now feel reasonably familiar. Further work with the tool
will certainly bring additions/revisions to our personal preferences and recommendations; we
will then update this paper correspondingly.

We hope that by the results presented in this document, others may experience a somewhat
less steep path towards the use of Isabelle/Isar for common mathematical practice.

References

[1] Jasmin Christian Blanchette, Lukas Bulwahn, and Tobias Nipkow. Automatic Proof and
Disproof in Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors, Frontiers of

14

Combining Systems (FroCoS 2011), volume 6989 of LNCS, pages 12–27. Springer, 2011.
http://www21.in.tum.de/~nipkow/pubs/frocos11.pdf.

[2] Daniel Bruns, Wojciech Mostowski, and Mattias Ulbrich. Implementation-level Verification
of Algorithms with KeY. Software Tools for Technology Transfer, 16, 2014. http://link.
springer.com/article/10.1007%2Fs10009-013-0293-y.

[3] Isabelle, 2014. http://isabelle.in.tum.de/index.html.

[4] Tobias Nipkow. Structured Proofs in Isar/HOL. In H. Geuvers and F. Wiedijk, editors, Types
for Proofs and Programs (TYPES 2002), volume 2646 of LNCS, pages 259–278. Springer,
2003. http://www21.in.tum.de/~nipkow/pubs/types02.pdf.

[5] Tobias Nipkow. A Tutorial Introduction to Structured Isar Proofs, 2008. http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.8443.

[6] Tobias Nipkow. Programming and Proving in Isabelle/HOL, August 2014.
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/
prog-prove.pdf.

[7] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, August 2014. http://isabelle.in.tum.de/doc/
tutorial.pdf.

[8] Makarius Wenzel. The Isabelle/Isar Reference Manual, August 2014. http://isabelle.
in.tum.de/doc/isar-ref.pdf.

15

http://www21.in.tum.de/~nipkow/pubs/frocos11.pdf
http://link.springer.com/article/10.1007%2Fs10009-013-0293-y
http://link.springer.com/article/10.1007%2Fs10009-013-0293-y
http://isabelle.in.tum.de/index.html
http://www21.in.tum.de/~nipkow/pubs/types02.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.8443
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.220.8443
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/prog-prove.pdf
http://www.cl.cam.ac.uk/research/hvg/Isabelle/dist/Isabelle2014/doc/prog-prove.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/tutorial.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://isabelle.in.tum.de/doc/isar-ref.pdf

A Isabelle Theory (Formatted)
theory Trees
imports Main
begin

— ——————————————————————————————–
— Trees.thy: verification of an imperative tree algorithm
—
— Given: a pointer t to the root of a non-empty binary search tree
— (not necessarily balanced).
— Verify that the procedure (deleteMin) removes the node with the
— minimal key from the tree.
—
— See Section 5 of Daniel Bruns et al:
— Implementation-level verification of algorithms with KeY
— Int J Softw Tools Technol Transfer, Springer, 17 November 2013
— DOI 10.1007/s10009-013-0293-y, http://dx.doi.org/10.1007/s10009-013-0293-y
—
— (c) 2014, Wolfgang Schreiner (Wolfgang.Schreiner@risc.jku.at)
— Research Institute for Symbolic Computation (RISC)
— Johannes Kepler University, Linz, Austria
— ——————————————————————————————–

— keys
type_synonym key ="int"

— addresses
type_synonym address ="nat"
definition null :: "address => bool" where
"null x = (x = 0)"

— nodes: key, left and right pointer
type_synonym node ="key * address * address"
fun key :: "node ⇒ key" where
"key (x,_,_) = x"

fun left :: "node => address" where
"left (_,x,_) = x"

fun right :: "node => address" where
"right (_,_,x) = x"

— generic sequences
type_synonym ’a seq ="nat => ’a"

— stores
type_synonym store ="node seq"

— paths
type_synonym path = "address seq"
fun head :: "path ⇒ address" where
"head p = p(0)"

fun tail :: "path ⇒ path" where
"tail p = (λn::nat. p (n+1))"

fun cons :: "address ⇒ path ⇒ path" where

16

"cons a p = (λn::nat. case n of 0 ⇒ a | Suc(n0) ⇒ p n0)"
fun put :: "path ⇒ nat ⇒ address ⇒ path" where
"put p k a = (λn::nat. if n = k then a else p k)"

— a2 is child of a1
definition child :: "address ⇒ address ⇒ store ⇒ bool" where
"child a1 a2 s = (a2 = left(s a1) ∨ a2 = right(s a1))"

— path element p(i+1) is child of p(i)
definition children :: "path ⇒ nat ⇒ store ⇒ bool" where
"children p i s = child (p i) (p (i+1)) s"

— p is an infinite path starting from t
definition ipath :: "path ⇒ address ⇒ store ⇒ bool" where
"ipath p t s =

(p(0) = t ∧
(∀i::nat. ¬null(p i)) ∧
(∀i::nat. children p i s))"

— p is a path of length n starting from t
definition path :: "path ⇒ nat ⇒ address ⇒ store ⇒ bool" where
"path p n t s =

(p(0) = t ∧
(∀i::nat. i < n −→ ¬null(p i)) ∧
(∀i::nat. i < n −→ children p i s))"

— p is a path of length n starting from t leading to a node
definition nodepath :: "path ⇒ nat ⇒ address ⇒ store ⇒ bool" where
"nodepath p n t s = ((path p n t s) ∧ ¬null(p n))"

— t is a tree
definition tree :: "address ⇒ store ⇒ bool" where
— no infinite paths respectively cycles and
— no sharing of nodes in multiple paths, also prevents cycles
"tree t s =

((∀p::path. ¬ipath p t s) ∧
(∀(p1::path) (p2::path) (n1::nat) (n2::nat).
nodepath p1 n1 t s ∧ nodepath p2 n2 t s ∧
p1 n1 = p2 n2 −→
n1 = n2 ∧ (∀i::nat. i < n1 −→ p1 i = p2 i)))"

— t is a search tree with unique keys
definition stree :: "address ⇒ store ⇒ bool" where
"stree t s =

((tree t s) ∧
(∀(p::path)(n::nat).
nodepath p (n+1) t s −→
(let a1 = (p n) in let a2 = (p (n+1)) in
let n1 = s(a1) in let n2 = s(a2) in
(a2 = left(n1) ←→ key(n2) < key(n1)))))"

— a is the address of a node in tree t
definition nodein :: "address ⇒ address ⇒ store ⇒ bool" where
"nodein a t s = (∃ (p::path)(n::nat). (nodepath p n t s) ∧ p n = a)"

17

— k is a key in tree t
definition keyin :: "key ⇒ address ⇒ store ⇒ bool" where
"keyin k t s = (∃ (a::address). nodein a t s ∧ key (s a) = k)"

— k is the minimum key in tree t
definition minkeyin :: "key ⇒ address ⇒ store ⇒ bool" where
"minkeyin k t s = (keyin k t s ∧ ¬(∃ k0::key. k0 < k ∧ keyin k0 t s))"

— precondition of deleteMin
definition pre :: "address ⇒ store ⇒ bool" where

— input is a non-null search tree
"pre t x = (stree t x ∧ ¬null t)"

— postcondition of deleteMin
definition post :: "address ⇒ store ⇒ address ⇒ store ⇒ bool" where

— the output is a search tree
— only the nodes in the input tree may have been changed
— the only keys in the output tree are those from the input tree
— a key from the input tree is in the output tree iff it is not the minimum key
"post t s oldt olds =
((stree t s) ∧
(∀a::address.¬(nodein a oldt olds) −→ s a = olds a) ∧
(∀k::key.(keyin k t s) −→ keyin k oldt olds) ∧
(∀k::key.(keyin k oldt olds) −→

(keyin k t s ←→ ¬minkeyin k oldt olds)))"

— ——————————————————————————————-
— Predecessor function and corresponding lemmas
— ——————————————————————————————-

fun Pre :: "nat ⇒ nat" where
"Pre i = (THE x::nat.(Suc x=i))"

lemma haspre :
"∀i::nat. i , 0 −→ (∃ x::nat. Suc x=i)"

proof (auto)
fix i::nat
assume "0 < i"
show "∃ x. Suc x = i" by (metis ‘0 < i‘ gr0_conv_Suc)

qed

lemma ispre :
"∀i::nat. i , 0 −→ Suc(Pre i) = i"

proof (auto)
fix i::nat
assume "0 < i"
moreover from this haspre have "(∃ x. Suc x = i)" by auto
ultimately show "Suc (THE x. Suc x = i) = i" by auto

qed

— ———————————————————————————————
— Lemma (childpath)
— ———————————————————————————————

18

lemma childpath:
"∀(t::address)(s::store)(p::path)(n::nat)(t0::address).

¬null t ∧ child t t0 s ∧ nodepath p n t0 s −→ nodepath (cons t p) (n+1) t s"
proof (auto)

fix t s p n t0
assume pre2: "¬ null t"
assume pre3: "child t t0 s"
assume pre4: "nodepath p n t0 s"
show "nodepath (case_nat t p) (Suc n) t s"
proof (unfold "nodepath_def")

show "path (case_nat t p) (Suc n) t s ∧
¬ null (case Suc n of 0 ⇒ t | Suc x ⇒ p x)"

proof (auto)
show "path (case_nat t p) (Suc n) t s"
proof (unfold path_def)

show "(case 0 of 0 ⇒ t | Suc x ⇒ p x) = t ∧
(∀i<Suc n. ¬ null (case i of 0 ⇒ t | Suc x ⇒ p x)) ∧
(∀i<Suc n. children (case_nat t p) i s)"

proof (auto)
fix i
assume "i < Suc n"
assume "null (case i of 0 ⇒ t | Suc x ⇒ p x)"
from this pre2 pre4 nodepath_def show "False"

by (metis ‘i < Suc n‘ less_Suc_eq_0_disj old.nat.simps(4) old.nat.simps(5) path_def)
next

fix i
assume "i < Suc n"
show "children (case_nat t p) i s"
proof (unfold "children_def")

from pre3 pre4 nodepath_def[of "p" "n" "t0" "s"] have
4: "path p n t0 s" and
5: "¬ null (p n)" by auto
show "child (case i of 0 ⇒ t | Suc x ⇒ p x)

(case i + 1 of 0 ⇒ t | Suc x ⇒ p x) s"
proof (cases)

assume cond: "i=0"
from pre3 cond 4 path_def children_def child_def have
"child t (p 0) s" by auto

from this cond show ?thesis by auto
next

assume cond: "i,0"
from pre3 cond 4 path_def children_def child_def ispre have
"child (p (Pre i)) (p i) s"

by (metis Suc_eq_plus1 ‘i < Suc n‘ less_Suc_eq_0_disj old.nat.inject)
from this cond show ?thesis by (metis Suc_eq_plus1 ispre old.nat.simps(5))

qed
qed

qed
qed

next
from pre4 nodepath_def show "null (p n) =⇒ False" by metis

qed
qed

qed

19

— ———————————————————————————————
— Lemma (treeright)
— ——————————————————————————————–
lemma treeright :
"∀(t::address)(s::store). tree t s ∧ ¬null t −→ tree (right(s t)) s"

proof (auto)
fix t s
assume pre1: "tree t s"
assume pre2: "¬null t"
show "tree (right(s t)) s"
proof (unfold tree_def)

from pre1 tree_def[of "t" "s"] have
pre5: "(∀p. ¬ ipath p t s)" by metis

from pre1 tree_def[of "t" "s"] have
pre6: "(∀p1 p2 n1 n2. nodepath p1 n1 t s ∧ nodepath p2 n2 t s ∧

p1 n1 = p2 n2 −→
n1 = n2 ∧ (∀i<n1. p1 i = p2 i))" by metis

show "(∀p. ¬ ipath p (right (s t)) s) ∧
(∀p1 p2 n1 n2.
nodepath p1 n1 (right (s t)) s ∧ nodepath p2 n2 (right (s t)) s ∧
p1 n1 = p2 n2 −→
n1 = n2 ∧ (∀i<n1. p1 i = p2 i))"

proof (auto)
fix p
assume a1: "ipath p (right (s t)) s"
show False
proof -

from a1 ipath_def[of "p" "right (s t)" "s"] have
n1: "(p 0 = right (s t) ∧ (∀i. ¬ null (p i)) ∧

(∀i. children p i s))" by auto
let ?p0 ="cons t p"
have "ipath ?p0 t s"
proof (unfold ipath_def)

show "cons t p 0 = t ∧ (∀i. ¬ null (cons t p i)) ∧
(∀i. children (cons t p) i s)"

proof (auto)
fix i
assume "null (case i of 0 ⇒ t | Suc x ⇒ p x)"
from this pre2 n1 show False by (metis Nitpick.case_nat_unfold)

next
fix i
show "children (case_nat t p) i s"
proof (unfold children_def)

from n1 children_def child_def show
"child (case i of 0 ⇒ t | Suc x ⇒ p x)

(case i + 1 of 0 ⇒ t | Suc x ⇒ p x) s"
by (metis Suc_eq_plus1 lessI less_Suc_eq_0_disj old.nat.simps(4) old.nat.simps(5))

qed
qed

qed

20

from this pre5 show False by auto
qed

next
fix p1 p2 n1 n2
assume 1: "nodepath p1 n1 (right (s t)) s"
assume 2: "nodepath p2 n2 (right (s t)) s"
assume 3: "p1 n1 = p2 n2"
show "n1 = n2"
proof -

let ?q1 ="cons t p1" and ?q2 ="cons t p2" and ?m1 ="n1+1" and ?m2 ="n2+1"
from pre6 have
"nodepath ?q1 ?m1 t s ∧ nodepath ?q2 ?m2 t s ∧ ?q1 ?m1 = ?q2 ?m2 −→

?m1 = ?m2 ∧ (∀i<?m1. ?q1 i = ?q2 i)" by blast
from this show "n1 = n2"
proof (auto)

assume "n1 , n2"
from pre2 1 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)

next
assume "n1 , n2"
from pre2 2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)

next
assume "n1 , n2"
from 3 show "p1 n1 = p2 n2" by auto

qed
qed

next
fix p1 p2 n1 n2 i
assume 1: "nodepath p1 n1 (right (s t)) s"
assume 2: "nodepath p2 n2 (right (s t)) s"
assume 3: "p1 n1 = p2 n2"
assume 4: "i < n1"
show "p1 i = p2 i"
proof -

let ?q1 ="(cons t p1)" and ?q2 ="(cons t p2)"
let ?m1 ="n1+1" and ?m2 ="n2+1"
from pre6 have
"nodepath ?q1 ?m1 t s ∧ nodepath ?q2 ?m2 t s ∧ ?q1 ?m1 = ?q2 ?m2 −→

?m1 = ?m2 ∧ (∀i<?m1. ?q1 i = ?q2 i)" by blast
from this show ?thesis
proof (auto)

assume "p1 i , p2 i"
from 1 pre2 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
by (metis One_nat_def add_Suc_right cons.simps

monoid_add_class.add.right_neutral pre2)
next

assume "p1 i , p2 i"
from 2 pre2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
by (metis One_nat_def add_Suc_right cons.simps

monoid_add_class.add.right_neutral pre2)
next

21

assume "p1 i , p2 i"
from 3 show "p1 n1 = p2 n2" by auto

next
assume 5: "∀i<Suc n2. (case i of 0 ⇒ t | Suc x ⇒ p1 x) =

(case i of 0 ⇒ t | Suc x ⇒ p2 x)"
assume 6: "n1 = n2"
from 5 6 show "p1 i = p2 i" by (metis "4"Suc_less_eq old.nat.simps(5))

qed
qed

qed
qed

qed

— ——————————————————————————————–
— Lemma (keyinright)
— ———————————————————————————————-
lemma keyinright:
"∀(t::address)(s::store)(k::key). ¬null t ∧ keyin k (right (s t)) s −→ keyin k t s"

proof (auto)
fix t s k
assume pre2: "¬null t"
assume a1: "(keyin k (right(s t)) s)"
show "keyin k t s"
proof (unfold keyin_def)

show "∃ a. nodein a t s ∧ key (s a) = k"
proof -

from a1 keyin_def[of "k" "(right(s t))" "s"] have
a2: "(∃ a. nodein a (right (s t)) s ∧ key (s a) = k)" by auto

from a2 obtain a where
a3: "nodein a (right (s t)) s" and
a4: "key (s a) = k" by auto

from a3 nodein_def[of "a" "right (s t)" "s"] obtain "p" "n" where
a5: "nodepath p n (right (s t)) s" and
a6: "p n = a" by auto

have "nodein a t s ∧ key (s a) = k"
proof (auto)

show "nodein a t s"
proof (unfold nodein_def)

show "∃ p n. nodepath p n t s ∧ p n = a"
proof -

let ?p = "cons t p"
let ?n = "n+1"
have "nodepath ?p ?n t s ∧ ?p ?n = a"
proof (auto)

from childpath nodepath_def children_def child_def pre2 a5 a6 show
"nodepath (case_nat t p) (Suc n) t s" by (metis Suc_eq_plus1 cons.simps)

next
from cons_def a6 show "p n = a" by auto

qed
from this show ?thesis by blast

qed
qed

next
from a4 show "key (s a) = k" by auto

22

qed
from this show ?thesis by auto

qed
qed

qed

static Tree deleteMin(Tree t) {
Tree p = t.left;
if (p == null)
t = t.right;

else {
Tree p2 = t;
Tree tt = p.left;
while (tt != null) {
p2 = p; p = tt; tt = p.left;

}
p2.left = p.right;

}
return t;

}

— ———————————————————————————————
— Verification Condition 1
— correctness of first program path in which store is not changed
— assume pre; p = t.left; assume p == null; t = t.right; assert post;
— ———————————————————————————————
theorem VC1 :
"∀(t::address)(s::store). pre t s ∧ null (left(s t)) −→ post (right(s t)) s t s"

proof (auto)
fix t s
assume pre: "pre t s"
assume "null (left(s t))"
show "post (right(s t)) s t s"

proof (unfold post_def)

from pre pre_def[of "t" "s"] have
pre1: "stree t s" and
pre2: "¬ null t" by auto

from pre1 stree_def[of "t" "s"] have
pre3: "tree t s" and
pre4: "∀p n. nodepath p (n + 1) t s −→

(let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
(a2 = left n1) = (key n2 < key n1))" by auto

from pre3 tree_def[of "t" "s"] have
pre5: "(∀p. ¬ ipath p t s)" by metis

from pre3 tree_def[of "t" "s"] have
pre6: "(∀p1 p2 n1 n2. nodepath p1 n1 t s ∧ nodepath p2 n2 t s∧ p1 n1 = p2 n2 −→

n1 = n2 ∧ (∀i<n1. p1 i = p2 i))" by metis
show
"stree (right (s t)) s ∧

23

(∀a. ¬ nodein a t s −→ s a = s a) ∧
(∀k. keyin k (right (s t)) s −→ keyin k t s) ∧
(∀k. keyin k t s −→ keyin k (right (s t)) s = (¬ minkeyin k t s))"

proof (auto)

— subproof
show "stree (right(s t)) s"
proof (unfold stree_def)

show
"tree (right (s t)) s ∧
(∀p n. nodepath p (n + 1) (right (s t)) s −→
(let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
(a2 = left n1) = (key n2 < key n1)))"

proof (auto)
from treeright pre2 pre3 show "tree (right (s t)) s" by auto

next
fix p n
assume "nodepath p (Suc n) (right (s t)) s"
from this pre4 nodepath_def childpath child_def pre2
show "let a2 = p (Suc n); n1 = s (p n) in (a2 = left n1) = (key (s a2) < key n1)"
by (metis Suc_eq_plus1 cons.simps old.nat.simps(5))

qed
qed

— subproof
next

fix k
assume "keyin k (right (s t)) s"
from keyinright pre2 this show "keyin k t s" by auto

— subproof
next

fix k
assume "keyin k t s"
assume "keyin k (right (s t)) s"
assume "minkeyin k t s"
show False sorry

— subproof
next

fix k
assume "keyin k t s"
assume "¬ minkeyin k t s"
show "keyin k (right (s t)) s" sorry

qed
qed

qed

end

24

B Isabelle Theory (Plain)
theory Trees
imports Main
begin

-- "-- "
-- "Trees.thy: verification of an imperative tree algorithm "
-- " "
-- "Given: a pointer t to the root of a non-empty binary search tree"
-- " (not necessarily balanced)."
-- "Verify that the procedure (deleteMin) removes the node with the"
-- "minimal key from the tree."
-- " "
-- "See Section 5 of Daniel Bruns et al: "
-- "Implementation-level verification of algorithms with KeY "
-- "Int J Softw Tools Technol Transfer, Springer, 17 November 2013"
-- "DOI 10.1007/s10009-013-0293-y, http://dx.doi.org/10.1007/s10009-013-0293-y "
-- " "
-- "(c) 2014, Wolfgang Schreiner (Wolfgang.Schreiner@risc.jku.at) "
-- "Research Institute for Symbolic Computation (RISC)"
-- "Johannes Kepler University, Linz, Austria "
-- "-- "

-- "keys"
type_synonym key ="int"

-- "addresses"
type_synonym address ="nat"
definition null :: "address => bool" where
"null x = (x = 0)"

-- "nodes: key, left and right pointer"
type_synonym node ="key * address * address"
fun key :: "node \<Rightarrow> key" where
"key (x,_,_) = x"
fun left :: "node => address" where
"left (_,x,_) = x"
fun right :: "node => address" where
"right (_,_,x) = x"

-- "generic sequences"
type_synonym ’a seq ="nat => ’a"

-- "stores"
type_synonym store ="node seq"

-- "paths"
type_synonym path = "address seq"
fun head :: "path \<Rightarrow> address" where
"head p = p(0)"
fun tail :: "path \<Rightarrow> path" where
"tail p = (\<lambda>n::nat. p (n+1))"
fun cons :: "address \<Rightarrow> path \<Rightarrow> path" where
"cons a p = (\<lambda>n::nat. case n of 0 \<Rightarrow> a | Suc(n0) \<Rightarrow> p n0)"
fun put :: "path \<Rightarrow> nat \<Rightarrow> address \<Rightarrow> path" where
"put p k a = (\<lambda>n::nat. if n = k then a else p k)"

-- "a2 is child of a1"
definition child :: "address \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"child a1 a2 s = (a2 = left(s a1) \<or> a2 = right(s a1))"

25

-- "path element p(i+1) is child of p(i)"
definition children :: "path \<Rightarrow> nat \<Rightarrow> store \<Rightarrow> bool" where
"children p i s = child (p i) (p (i+1)) s"

-- "p is an infinite path starting from t"
definition ipath :: "path \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"ipath p t s =

(p(0) = t \<and>
(\<forall>i::nat. \<not>null(p i)) \<and>
(\<forall>i::nat. children p i s))"

-- "p is a path of length n starting from t"
definition path :: "path \<Rightarrow> nat \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"path p n t s =

(p(0) = t \<and>
(\<forall>i::nat. i < n \<longrightarrow> \<not>null(p i)) \<and>
(\<forall>i::nat. i < n \<longrightarrow> children p i s))"

-- "p is a path of length n starting from t leading to a node"
definition nodepath :: "path \<Rightarrow> nat \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"nodepath p n t s = ((path p n t s) \<and> \<not>null(p n))"

-- "t is a tree"
definition tree :: "address \<Rightarrow> store \<Rightarrow> bool" where
-- "no infinite paths respectively cycles and"
-- "no sharing of nodes in multiple paths, also prevents cycles"
"tree t s =

((\<forall>p::path. \<not>ipath p t s) \<and>
(\<forall>(p1::path) (p2::path) (n1::nat) (n2::nat).
nodepath p1 n1 t s \<and> nodepath p2 n2 t s \<and>
p1 n1 = p2 n2 \<longrightarrow>
n1 = n2 \<and> (\<forall>i::nat. i < n1 \<longrightarrow> p1 i = p2 i)))"

-- "t is a search tree with unique keys"
definition stree :: "address \<Rightarrow> store \<Rightarrow> bool" where
"stree t s =

((tree t s) \<and>
(\<forall>(p::path)(n::nat).
nodepath p (n+1) t s \<longrightarrow>
(let a1 = (p n) in let a2 = (p (n+1)) in
let n1 = s(a1) in let n2 = s(a2) in
(a2 = left(n1) \<longleftrightarrow> key(n2) < key(n1)))))"

-- "a is the address of a node in tree t"
definition nodein :: "address \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"nodein a t s = (\<exists>(p::path)(n::nat). (nodepath p n t s) \<and> p n = a)"

-- "k is a key in tree t"
definition keyin :: "key \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"keyin k t s = (\<exists>(a::address). nodein a t s \<and> key (s a) = k)"

-- "k is the minimum key in tree t"
definition minkeyin :: "key \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where
"minkeyin k t s = (keyin k t s \<and> \<not>(\<exists>k0::key. k0 < k \<and> keyin k0 t s))"

-- {* precondition of deleteMin *}
definition pre :: "address \<Rightarrow> store \<Rightarrow> bool" where
-- "input is a non-null search tree"
"pre t x = (stree t x \<and> \<not>null t)"

-- "postcondition of deleteMin"
definition post :: "address \<Rightarrow> store \<Rightarrow> address \<Rightarrow> store \<Rightarrow> bool" where

26

-- "the output is a search tree"
-- "only the nodes in the input tree may have been changed"
-- "the only keys in the output tree are those from the input tree"
-- "a key from the input tree is in the output tree iff it is not the minimum key"
"post t s oldt olds =
((stree t s) \<and>
(\<forall>a::address.\<not>(nodein a oldt olds) \<longrightarrow> s a = olds a) \<and>
(\<forall>k::key.(keyin k t s) \<longrightarrow> keyin k oldt olds) \<and>
(\<forall>k::key.(keyin k oldt olds) \<longrightarrow>

(keyin k t s \<longleftrightarrow> \<not>minkeyin k oldt olds)))"

-- "---"
-- "Predecessor function and corresponding lemmas"
-- "---"

fun Pre :: "nat \<Rightarrow> nat" where
"Pre i = (THE x::nat.(Suc x=i))"

lemma haspre :
"\<forall>i::nat. i \<noteq> 0 \<longrightarrow> (\<exists>x::nat. Suc x=i)"
proof (auto)
fix i::nat
assume "0 < i"
show "\<exists>x. Suc x = i" by (metis ‘0 < i‘ gr0_conv_Suc)

qed

lemma ispre :
"\<forall>i::nat. i \<noteq> 0 \<longrightarrow> Suc(Pre i) = i"
proof (auto)
fix i::nat
assume "0 < i"
moreover from this haspre have "(\<exists>x. Suc x = i)" by auto
ultimately show "Suc (THE x. Suc x = i) = i" by auto

qed

-- "---"
-- "Lemma (childpath)"
-- "---"
lemma childpath:
"\<forall>(t::address)(s::store)(p::path)(n::nat)(t0::address).

\<not>null t \<and> child t t0 s \<and> nodepath p n t0 s \<longrightarrow> nodepath (cons t p) (n+1) t s"
proof (auto)
fix t s p n t0
assume pre2: "\<not> null t"
assume pre3: "child t t0 s"
assume pre4: "nodepath p n t0 s"
show "nodepath (case_nat t p) (Suc n) t s"
proof (unfold "nodepath_def")
show "path (case_nat t p) (Suc n) t s \<and>

\<not> null (case Suc n of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)"
proof (auto)
show "path (case_nat t p) (Suc n) t s"
proof (unfold path_def)
show "(case 0 of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x) = t \<and>

(\<forall>i<Suc n. \<not> null (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)) \<and>
(\<forall>i<Suc n. children (case_nat t p) i s)"

proof (auto)
fix i
assume "i < Suc n"
assume "null (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)"
from this pre2 pre4 nodepath_def show "False"
by (metis ‘i < Suc n‘ less_Suc_eq_0_disj old.nat.simps(4) old.nat.simps(5) path_def)

27

next
fix i
assume "i < Suc n"
show "children (case_nat t p) i s"
proof (unfold "children_def")
from pre3 pre4 nodepath_def[of "p" "n" "t0" "s"] have
4: "path p n t0 s" and
5: "\<not> null (p n)" by auto
show "child (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)

(case i + 1 of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x) s"
proof (cases)
assume cond: "i=0"
from pre3 cond 4 path_def children_def child_def have
"child t (p 0) s" by auto

from this cond show ?thesis by auto
next
assume cond: "i\<noteq>0"
from pre3 cond 4 path_def children_def child_def ispre have
"child (p (Pre i)) (p i) s"
by (metis Suc_eq_plus1 ‘i < Suc n‘ less_Suc_eq_0_disj old.nat.inject)
from this cond show ?thesis by (metis Suc_eq_plus1 ispre old.nat.simps(5))

qed
qed

qed
qed

next
from pre4 nodepath_def show "null (p n) \<Longrightarrow> False" by metis

qed
qed

qed

-- "---"
-- "Lemma (treeright)"
-- "--"
lemma treeright :
"\<forall>(t::address)(s::store). tree t s \<and> \<not>null t \<longrightarrow> tree (right(s t)) s"
proof (auto)
fix t s
assume pre1: "tree t s"
assume pre2: "\<not>null t"
show "tree (right(s t)) s"
proof (unfold tree_def)

from pre1 tree_def[of "t" "s"] have
pre5: "(\<forall>p. \<not> ipath p t s)" by metis

from pre1 tree_def[of "t" "s"] have
pre6: "(\<forall>p1 p2 n1 n2. nodepath p1 n1 t s \<and> nodepath p2 n2 t s \<and>

p1 n1 = p2 n2 \<longrightarrow>
n1 = n2 \<and> (\<forall>i<n1. p1 i = p2 i))" by metis

show "(\<forall>p. \<not> ipath p (right (s t)) s) \<and>
(\<forall>p1 p2 n1 n2.
nodepath p1 n1 (right (s t)) s \<and> nodepath p2 n2 (right (s t)) s \<and>
p1 n1 = p2 n2 \<longrightarrow>
n1 = n2 \<and> (\<forall>i<n1. p1 i = p2 i))"

proof (auto)
fix p
assume a1: "ipath p (right (s t)) s"
show False
proof -
from a1 ipath_def[of "p" "right (s t)" "s"] have

28

n1: "(p 0 = right (s t) \<and> (\<forall>i. \<not> null (p i)) \<and>
(\<forall>i. children p i s))" by auto

let ?p0 ="cons t p"
have "ipath ?p0 t s"
proof (unfold ipath_def)
show "cons t p 0 = t \<and> (\<forall>i. \<not> null (cons t p i)) \<and>

(\<forall>i. children (cons t p) i s)"
proof (auto)
fix i
assume "null (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)"
from this pre2 n1 show False by (metis Nitpick.case_nat_unfold)

next
fix i
show "children (case_nat t p) i s"
proof (unfold children_def)
from n1 children_def child_def show
"child (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x)

(case i + 1 of 0 \<Rightarrow> t | Suc x \<Rightarrow> p x) s"
by (metis Suc_eq_plus1 lessI less_Suc_eq_0_disj old.nat.simps(4) old.nat.simps(5))

qed
qed

qed
from this pre5 show False by auto

qed
next
fix p1 p2 n1 n2
assume 1: "nodepath p1 n1 (right (s t)) s"
assume 2: "nodepath p2 n2 (right (s t)) s"
assume 3: "p1 n1 = p2 n2"
show "n1 = n2"
proof -
let ?q1 ="cons t p1" and ?q2 ="cons t p2" and ?m1 ="n1+1" and ?m2 ="n2+1"
from pre6 have
"nodepath ?q1 ?m1 t s \<and> nodepath ?q2 ?m2 t s \<and> ?q1 ?m1 = ?q2 ?m2 \<longrightarrow>

?m1 = ?m2 \<and> (\<forall>i<?m1. ?q1 i = ?q2 i)" by blast
from this show "n1 = n2"
proof (auto)
assume "n1 \<noteq> n2"
from pre2 1 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)

next
assume "n1 \<noteq> n2"
from pre2 2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
by (metis One_nat_def add_Suc_right cons.simps monoid_add_class.add.right_neutral)

next
assume "n1 \<noteq> n2"
from 3 show "p1 n1 = p2 n2" by auto

qed
qed

next
fix p1 p2 n1 n2 i
assume 1: "nodepath p1 n1 (right (s t)) s"
assume 2: "nodepath p2 n2 (right (s t)) s"
assume 3: "p1 n1 = p2 n2"
assume 4: "i < n1"
show "p1 i = p2 i"
proof -
let ?q1 ="(cons t p1)" and ?q2 ="(cons t p2)"
let ?m1 ="n1+1" and ?m2 ="n2+1"
from pre6 have
"nodepath ?q1 ?m1 t s \<and> nodepath ?q2 ?m2 t s \<and> ?q1 ?m1 = ?q2 ?m2 \<longrightarrow>

?m1 = ?m2 \<and> (\<forall>i<?m1. ?q1 i = ?q2 i)" by blast

29

from this show ?thesis
proof (auto)
assume "p1 i \<noteq> p2 i"
from 1 pre2 childpath child_def show "nodepath (case_nat t p1) (Suc n1) t s"
by (metis One_nat_def add_Suc_right cons.simps

monoid_add_class.add.right_neutral pre2)
next
assume "p1 i \<noteq> p2 i"
from 2 pre2 childpath child_def show "nodepath (case_nat t p2) (Suc n2) t s"
by (metis One_nat_def add_Suc_right cons.simps

monoid_add_class.add.right_neutral pre2)
next
assume "p1 i \<noteq> p2 i"
from 3 show "p1 n1 = p2 n2" by auto

next
assume 5: "\<forall>i<Suc n2. (case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p1 x) =

(case i of 0 \<Rightarrow> t | Suc x \<Rightarrow> p2 x)"
assume 6: "n1 = n2"
from 5 6 show "p1 i = p2 i" by (metis "4"Suc_less_eq old.nat.simps(5))

qed
qed

qed
qed

qed

-- " -- "
-- "Lemma (keyinright)"
-- "-- "
lemma keyinright:
"\<forall>(t::address)(s::store)(k::key). \<not>null t \<and> keyin k (right (s t)) s \<longrightarrow> keyin k t s"
proof (auto)
fix t s k
assume pre2: "\<not>null t"
assume a1: "(keyin k (right(s t)) s)"
show "keyin k t s"
proof (unfold keyin_def)
show "\<exists>a. nodein a t s \<and> key (s a) = k"
proof -
from a1 keyin_def[of "k" "(right(s t))" "s"] have
a2: "(\<exists>a. nodein a (right (s t)) s \<and> key (s a) = k)" by auto

from a2 obtain a where
a3: "nodein a (right (s t)) s" and
a4: "key (s a) = k" by auto

from a3 nodein_def[of "a" "right (s t)" "s"] obtain "p" "n" where
a5: "nodepath p n (right (s t)) s" and
a6: "p n = a" by auto

have "nodein a t s \<and> key (s a) = k"
proof (auto)
show "nodein a t s"
proof (unfold nodein_def)
show "\<exists>p n. nodepath p n t s \<and> p n = a"
proof -
let ?p = "cons t p"
let ?n = "n+1"
have "nodepath ?p ?n t s \<and> ?p ?n = a"
proof (auto)
from childpath nodepath_def children_def child_def pre2 a5 a6 show
"nodepath (case_nat t p) (Suc n) t s" by (metis Suc_eq_plus1 cons.simps)

next
from cons_def a6 show "p n = a" by auto

qed
from this show ?thesis by blast

30

qed
qed

next
from a4 show "key (s a) = k" by auto

qed
from this show ?thesis by auto

qed
qed

qed

text {*
{\small
\begin{verbatim}
static Tree deleteMin(Tree t) {

Tree p = t.left;
if (p == null)
t = t.right;

else {
Tree p2 = t;
Tree tt = p.left;
while (tt != null) {
p2 = p; p = tt; tt = p.left;

}
p2.left = p.right;

}
return t;

}
\end{verbatim}
}
*}

-- "---"
-- "Verification Condition 1"
-- "correctness of first program path in which store is not changed "
-- "assume pre; p = t.left; assume p == null; t = t.right; assert post;"
-- "---"
theorem VC1 :
"\<forall>(t::address)(s::store). pre t s \<and> null (left(s t)) \<longrightarrow> post (right(s t)) s t s"

proof (auto)
fix t s
assume pre: "pre t s"
assume "null (left(s t))"
show "post (right(s t)) s t s"

proof (unfold post_def)

from pre pre_def[of "t" "s"] have
pre1: "stree t s" and
pre2: "\<not> null t" by auto

from pre1 stree_def[of "t" "s"] have
pre3: "tree t s" and
pre4: "\<forall>p n. nodepath p (n + 1) t s \<longrightarrow>

(let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
(a2 = left n1) = (key n2 < key n1))" by auto

from pre3 tree_def[of "t" "s"] have
pre5: "(\<forall>p. \<not> ipath p t s)" by metis

from pre3 tree_def[of "t" "s"] have
pre6: "(\<forall>p1 p2 n1 n2. nodepath p1 n1 t s \<and> nodepath p2 n2 t s\<and> p1 n1 = p2 n2 \<longrightarrow>

n1 = n2 \<and> (\<forall>i<n1. p1 i = p2 i))" by metis
show
"stree (right (s t)) s \<and>

31

(\<forall>a. \<not> nodein a t s \<longrightarrow> s a = s a) \<and>
(\<forall>k. keyin k (right (s t)) s \<longrightarrow> keyin k t s) \<and>
(\<forall>k. keyin k t s \<longrightarrow> keyin k (right (s t)) s = (\<not> minkeyin k t s))"

proof (auto)

-- "subproof "
show "stree (right(s t)) s"
proof (unfold stree_def)
show
"tree (right (s t)) s \<and>
(\<forall>p n. nodepath p (n + 1) (right (s t)) s \<longrightarrow>
(let a1 = p n; a2 = p (n + 1); n1 = s a1; n2 = s a2 in
(a2 = left n1) = (key n2 < key n1)))"

proof (auto)
from treeright pre2 pre3 show "tree (right (s t)) s" by auto

next
fix p n
assume "nodepath p (Suc n) (right (s t)) s"
from this pre4 nodepath_def childpath child_def pre2
show "let a2 = p (Suc n); n1 = s (p n) in (a2 = left n1) = (key (s a2) < key n1)"
by (metis Suc_eq_plus1 cons.simps old.nat.simps(5))

qed
qed

-- "subproof "
next
fix k
assume "keyin k (right (s t)) s"
from keyinright pre2 this show "keyin k t s" by auto

-- "subproof "
next
fix k
assume "keyin k t s"
assume "keyin k (right (s t)) s"
assume "minkeyin k t s"
show False sorry

-- "subproof "
next
fix k
assume "keyin k t s"
assume "\<not> minkeyin k t s"
show "keyin k (right (s t)) s" sorry

qed
qed

qed

end

32

	Introduction
	Premises
	Decomposing Goals
	Decomposition of Compound Goals
	Unfolding Definitions in Goals
	Proving Multiple Goals
	Proving Existential Goals
	Proving by Case Distinction

	Deriving Knowledge
	Expanding Definitions
	Instantiating Universal Knowledge
	Applying Existential Knowledge
	Closing Proofs

	Conclusions
	Isabelle Theory (Formatted)
	Isabelle Theory (Plain)

